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Abstract

We present an approach to probabilistic logic programming
and probabilistic argumentation that combines elements of
the L-stable semantics and the credal semantics. We derive
the complexity of inferences, propose an extended version of
argumentation graphs with a semantics that maps to the L-
stable semantics, and introduce a definition for the probability
of an argument.

1 Introduction
In this paper we deal with probabilistic versions both of logic
programs and of argumentation frameworks. On the one
hand, we propose a semantics for probabilistic logic pro-
grams that is motivated by the needs of probabilistic argu-
mentation. On the other hand, we obtain a novel approach
to probabilistic argumentation that is derived from the fea-
tures and semantics of logic programming.

In the remaining sections of the paper, we start with prob-
abilistic logic programming and move to probabilistic argu-
mentation, as this is the easiest way to chain the technical
results. However, the work was developed in the reverse
direction: we started with a few issues in probabilistic ar-
gumentation, then needed a novel approach to probabilistic
logic programming. We follow this path in the next para-
graph, as it better conveys the motivation for our proposals.

Our intended argumentation scenario is this. Consider an
artificial agent that extracts arguments from various sources
and organizes the arguments to help and support (not per-
suade) human agents, possibly dealing with assumptions and
probabilities. Work on probabilistic argumentation typically
assigns probability directly to abstract arguments, but it is
often difficult to interpret the required probabilities. We as-
sume our agent builds probabilistic arguments whose inter-
nal structure is based on rules and facts associated with prob-
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Figure 1: The conceptual pipeline.

abilities; from those probabilities the agent can arrive at the
probabilities of arguments. The whole pipeline is depicted
in Figure 1: rules and probabilities are first extracted and
then translated to arguments that support the human user.
We do not deal with the extraction process in this paper, but
we believe that rules and probabilistic facts offer a better tar-
get primary language for extraction than abstract arguments
associated with probabilities.

In Section 2 we look at probabilistic logic programs that
can serve the purpose outlined in the previous paragraph.
To do so, we combine two ideas that have been investigated
separately: the L-stable semantics for sets of rules and the
credal semantics for probabilistic facts. We define the result-
ing L-credal semantics and its basic inference problem. We
then derive the complexity of the inference problem. Even
though our motivation arises from argumentation theory, we
believe that our results are of general interest.

We then present, in Section 3, a new theory of probabilis-
tic argumentation that is based on probabilistic logic pro-
grams under the L-credal semantics. We show how argu-
ments can be constructed and how argumentation graphs can
be enlarged so that their semantics meshes smoothly with the
underlying L-stable semantics. We then propose a definition
for the probability of an argument.

Conclusions and plans for future work appear in Section 4.

2 The L-Credal Semantics
Section 2.1 combines well-known concepts, and Section 2.2
introduces the L-credal semantics.

2.1 Rules and Probabilistic Facts
We start with a vocabulary with a finite set of names for con-
stants and a finite set of names for parameterized random
variables (Poole 2003). A parameterized random variable
indexes, through its arguments, a set of random variables;
for instance, if brotherOf is a parameterized random vari-
able with two arguments, then brotherOf(Mary, John) is a
random variable. Each random variable has three values;
logic programming typically resorts to labels true, false, and
undefined. The underlying sample space is the set of all con-
figurations of random variables.

An atom consists of a parameterized random variable
with arguments that may be constants or logical variables;
for instance, brotherOf(Mary, John), brotherOf(X, John),



brotherOf(X,Y ). A ground atom is an atom without log-
ical variables (hence, a random variable). An atom can be
grounded into a ground atom by replacing its logical vari-
ables by constants. The Herbrand base is the (finite) set of
all grounded atoms (random variables) that can be built with
names in the vocabulary.

A rule is an expression of the form

H :− B1, . . . , Bm,not Bm+1, . . . ,not Bm+n.,
where H and each Bi is an atom. The atom H is the head
of the rule; the righthand side is the body of the rule. A fact
is a rule without body, written H.. A logic program is a set
of rules (some of which may be facts).

We could use classic negation ¬ and also rules without
heads (usually referred to as constraints), but, coupled with
the semantics discussed later, these constructs can be com-
piled away (Eiter, Ianni, and Krennwalner 2009).

In the remainder of this paper we assume that all given
rules have been grounded with all possible atoms. Thus we
are dealing with logic programs without logical variables.

We take uncertainty to be coded by associating probabil-
ities with selected facts as often done in probabilistic logic
programming (Fierens et al. 2014; Sato 1995). Such a sim-
ple scheme cannot capture every subjective or objective kind
of uncertainty in argumentation, but it seems to be an ex-
cellent compromise between expressivity and complexity —
not just computational complexity, but also the complexity
that a human user faces in dealing with the formalism.

We adopt ProbLog’s syntax (Fierens et al. 2014) and spec-
ify a probabilistic fact using the syntax

α :: F .
to mean, intuitively, that with probability α the fact F . is
added to the program (and with probability 1 − α the fact
F . is discarded). A set of rules and probabilistic facts is a
probabilistic logic program.

Before we move to a discussion of probabilistic seman-
tics, we briefly review a few well-known semantics for logic
programs (Caminada et al. 2015). A three-valued inter-
pretation of a logic program P is a pair (T ,F) such that
T ∩ F = ∅ and both T and F contain elements of the Her-
brand base of P. A three-valued model of P is an interpre-
tation (T ,F) such that: H is in T if there is a rule whose
head is H and where each B not preceded by not is in T ;
H is in F if every rule whose head is H is such that there
is some B not preceded by not in F . The reduct of P with
respect to a three-valued interpretation I, denoted P/I, is a
logic program without not: first, remove from P every rule
that contains not B in its body for some B ∈ T ; then, for
each remaining rule, remove not B from the body of the
rule if B ∈ F ; finally, replace any remaining occurrences
of not B′′ by some fresh symbol ♣ that represents “un-
defined”. Then P/I has a unique three-valued model with
minimal T and maximal F (with respect to set inclusion);
denote this model by ΦP(I). A partial stable model of P is
an interpretation I such that ΦP(I) = I. The well-founded
model [regular] of P is the partial stable model with min-
imal [maximal] T . A stable model of P is a partial stable
model without undefined atoms.

2.2 The L-Credal Semantics
Our semantics for probabilistic facts is directly based on
Sato’s distribution semantics (Sato 1995; Fierens et al.
2014). A choice for probabilistic fact α :: F ., where F is
an atom, is a decision as to whether the probabilistic fact
is replaced by the fact F . or simply discarded. A total
choice is a set of choices, one per probabilistic fact. All
choices are assumed independent; for a set of probability
facts {αi :: Fi.}Ni=1, the probability of a total choice O is

P(O) =
∏

(αi::Fi.) not discarded by O

αi. (1)

A total choice transforms a probabilistic logic program
into a logic program. Thus, a probability distribution over
total choices induces a probability distribution over logic
programs. To have a complete semantics, we must decide
which semantics to adopt for the induced logic programs.

Existing approaches to probabilistic logic programming
adopt either the well-founded or the stable semantics for the
logic programs induced by total choices. The well-founded
semantics always exists and is unique; when it does not con-
tain undefined values, it is equal to the stable semantics. It
is thus not surprising that the well-founded semantics has
been proposed in connection with probabilistic facts (Sato,
Kameya, and Zhou 2005; Hadjichristodoulou and Warren
2012), for then the unique probability distribution over total
choices induces a unique distribution over atoms. However,
the well-founded semantics conflates two distinct situations
into its undefined values. On the one hand, it may be the
case that we could accept or reject an atom in more than one
way, but the semantics simply refuses to make a decision.
To use a well-known example, take the set of rules:

G1 :− not G2., G2 :− not G1., H :− G1., H :− G2..
The well-founded semantics leaves all atoms undefined. But
we in fact can label G1 as true and G2 as false while respect-
ing all structural constraints of the logic program. And we
can likewise label G1 as false and G2 as true. In both cases
H gets true, even though it is left undefined by the well-
founded semantics. And then there is another entirely dif-
ferent situation, where we cannot take neither true nor false.
An example is the logic program {H :− not H.}: atom
H cannot be true nor false without breaking some struc-
tural assumption about how logic programs behave. Even
though the two logic programs in this paragraph are funda-
mentally different, the well-founded semantics handles both
cases through the same undefined value.

The stable model semantics has no place for undefined
values, at a cost: there may be, for a logic program, many
stable models, or none. For instance, there are two stable
models for the first example in the previous paragraph. One
assigns false only to G1 and true to the other atoms; the other
assigns false only to G2 and true to the other atoms. Intu-
itively, each stable model offers a solution to the constraints
imposed by rules. For the second logic program in the pre-
vious paragraph, the stable model semantics does not exist,
signifying that there is no way to satisfy the constraints.

If a total choice O leads to a logic program with more
than one stable model, we have no information as to how to



distribute the probability P(O). One solution proposed in
the literature is to distribute that probability mass uniformly
over the stable models (Baral, Gelfond, and Rushton 2009;
Totis, Kimmig, and Raedt 2021). In that approach, if we
have two stable models, each one of them gets P(O) /2. One
may defend such a strategy through maximum entropy or
some other kind of minimum commitment principle (How-
son and Urbach 1993). However, it is not the case that a
uniform distribution is neutral when it comes to beliefs and
opinions (Walley 1991). A minimum commitment strategy
can still be found, as originally proposed by Lukasiewicz
(2005); take the set of all possible induced distribution over
models prescribed by the adopted semantics. For instance, if
we have two stable models for total choiceO, we can have a
distribution that assigns P(O) to one of them and zero to the
other, or P(O) /2 to both, and so on. Because sets of prob-
ability distributions are often called credal sets (Augustin et
al. 2014), the resulting semantics has been referred to as the
credal semantics (Cozman and Mauá 2017).

For each distribution in the semantics, the probabilities of
any value of an atom A are obtained by summing probabili-
ties for all models in which A gets the value. Each distribu-
tion thus assigns a probability to each total choice O, and of
course that probability must agree with Expression 1.

To summarize: the credal semantics of a probabilistic
logic program is the set of all probability distributions over
stable models of logic programs induced by total choices,
such that each probability distribution agrees with the prob-
abilities of total choices. If every total choice induces a
single stable model, the credal semantics induces a unique
probability distribution over all atoms. In general, the credal
semantics induces a closed convex set of probability distri-
butions over atoms (Cozman and Mauá 2017).

Alas, the credal semantics breaks down when some to-
tal choices induce logic programs without stable models. In
logic programming, where stable models are often the solu-
tion to a combinatorial problem (Eiter, Ianni, and Krennwal-
ner 2009), absence of stable models can be useful informa-
tion: it shows the constraints in the logic program cannot
be satisfied. Instead, in probabilistic logic programming, the
fact that a few scenarios cannot be satisfied should not break
the semantics. This will be particularly important when we
later move to probabilistic argumentation: it is not reason-
able to stop the analysis of probabilistic arguments just be-
cause some scenarios leave a few atoms undefined. We must
be able to proceed even when some total choices create sce-
narios that are partially, or even totally, unsatisfiable.

Our solution will be to adopt the least undefined seman-
tics, often referred to as the L-stable semantics, for logic
programs.

A least undefined stable model, or L-stable model for
short, of a logic program P is a partial stable model with
maximal T ∪ F (with respect to set inclusion). That is, a
L-stable model is a partial stable model with a minimum
number of undefined atoms. The set of L-stable models is
the L-stable semantics of P (Sacca 1997). A nice feature
of this semantics is that, if a logic program has one or more
stable models, those are exactly the L-stable models. How-
ever, if a logic program has no stable models, then there will

v = true v = false v = undefined
P(A = v) 0.5 0.5 0.0
P(B = v) 0.5 0.5 0.0
P(C = v) [0.5, 0.75] [0.25, 0.5] 0.0
P(D = v) [0.5, 0.75] [0.25, 0.5] 0.0
P(E = v) 0.0 0.5 0.5

v = true v = false v = inconsistent
P(A = v) 0.0 0.5 0.5
P(B = v) 0.25 0.25 0.5
P(C = v) 0.125 0.375 0.5
P(D = v) 0.375 0.125 0.5
P(E = v) 0.0 0.5 0.5

Table 1: Top: tight probability intervals for Example 1; if an inter-
val contains a single number, the interval is replaced by the number.
Bottom: probabilities using the SMProbLog approach.

be partial stable models for it, but they will have undefined
atoms (not necessarily all atoms will be undefined; just the
minimum number of them).
Definition 1. Given a probabilistic logic program P, its
credal least undefined stable semantics, or L-credal seman-
tics for short, is the set of all probability distributions over
L-stable models of programs induced by total choices, such
that each distribution agrees with the probabilities of total
choices.

An example should clarify the semantics.
Example 1. Suppose we have the following rules:
worksInTown(X) :− barber(X).,
worksInRiver(X) :− fisherman(X).,
worksInTown(X) :− not worksInRiver(X).,
worksInRiver(X) :− not worksInTown(X).,
shaves(X,Y ) :− barber(X),not shaves(Y, Y )..
These rules state a few facts about professions in a village,
and moreover state that a barber shaves everyone who does
not shave himself (this is a combination of well-known ex-
amples in logic programming). Suppose additionally that
we have two probabilistic facts:
0.5 :: barber(John)., 0.5 :: fisherman(John)..
By grounding, we obtain a logic program of the form:
C :− A., D :− B., C :− not D., D :− not C.,
E :− A,not E., 0.5 :: A., 0.5 :: B.. There are four to-
tal choices (∅, {A}, {B}, {A,B}), each with probability
0.25. For total choice ∅, the induced logic program has two
L-stable models (both are also stable models): one where
every atom is false except C that is true, and another where
every atom is false except D that is true. For total choice
{A}, there is a single L-stable model (that is also the well-
founded model): E is undefined, while both A and C are
true and both B and D are false. For total choice {B},
there is again a single L-stable model (that is the single sta-
ble model): A and C and E are false and both B and D
are true. Finally, for total choice {A,B} there is a single
L-stable model (that is the well-founded model): all atoms
are true except E that is undefined. By adding probabilities
across models for all possible distributions in the semantics,
we obtain the tight probability intervals in Table 1 (top). □

Note that the L-credal semantics nicely differentiates be-



tween: (i) the uncertainty captured by the probabilities in
probabilistic facts; (ii) the uncertainty regarding multiple
stable models, captured by probability intervals; (iii) the un-
certainty arising from inability to satisfy constraints, leading
to non-zero probability for undefined values.

Previous literature has discussed situations where total
choices induce logic programs without stable models. One
proposal is to automatically repair logic programs whose
rules cannot be satisfied (Ceylan, Lukasiewicz, and Peñaloza
2016). Another proposal in the literature is to set all atoms
to a value inconsistent whenever a stable model does not
exist (Totis, Kimmig, and Raedt 2021). As an interesting
comparison, we collect in Table 1 (bottom) the probabili-
ties obtained via the SMProbLog approach (Totis, Kimmig,
and Raedt 2021), where uniform probabilities are distributed
over multiple stable models and absence of stable models
puts probability mass into inconsistent values. Note how
large are the probabilities of inconsistent values, even for
atoms that can always be assigned other values.

As a final point, we argue that words such as true, false
and undefined are not really appropriate here. It seems bet-
ter to use unsatisfiable or undecided rather than undefined,
to avoid weird sentences such as “the probability that X is
undefined” or, worse, “the conditional probability that X is
undefined given that Y is undefined” (Cozman and Mauá
2017). And it seems also better to use accepted rather than
true and rejected rather than false, to avoid controversies
related to mixtures of probabilities and three-valued logic.
From now on we use accepted, rejected, and undecided.

2.3 The Complexity of Inferences
The basic inference problem in probabilistic logic program-
ming is to compute the marginal or conditional probabil-
ity of a ground atom given a probabilistic logic program.
For instance, one may be interested in the probability that
John is not a barber given that he works in the river: in
Example 1, this probability value can be anywhere within
the probability interval [1/3, 1/2]. We refer to P(H)

.
=

inf P(H) as the lower probability of atom H; similarly, to
P(H)

.
= inf P(H) as the upper probability of atom H (Au-

gustin et al. 2014; Walley 1991). And we refer to P(H|G)
.
=

infP:P(G)>0 P(H|G) as the lower conditional probability of
H given G; the latter is only defined if P(G) > 0 (like-
wise, P(H|G)

.
= supP:P(G)>0 P(H|G) is the upper condi-

tional probability).
We must define a precise decision problem in order to

study the complexity of inferences. Our inference prob-
lem receives: a grounded logic program P with probabilis-
tic facts all defined by rational numbers, a nonempty set of
query atoms that belong to the logic program, a set of se-
lected ground atoms that belong to the logic program, re-
ferred to as the evidence, and a rational number γ. Denote
byQ the event that the query atoms are all accepted, and by
E the event that the evidence atoms are all accepted. If the
evidence is empty, then the output is YES when P(Q) > γ.
If the evidence is nonempty and P(E) = 0, then the output is
NO (that is, “no probability measure satisfies P(Q|E) > γ”).
And if P(E) > 0, then the output is YES if P(Q|E) > γ and

NO otherwise.
We will show that this inference problem is complete for

a complexity class in Wagner’s Polynomial Counting Hier-
archy (Wagner 1986). We take as known concepts such as
complexity classes, decision problems, many-one polyno-
mial reductions, oracles; detailed definitions can be found
elsewhere (Papadimitriou 1994). We use well-known com-
plexity classes P, NP, coNP. We also use the complexity
class PP: a language L is in PP when there is a nondeter-
ministic Turing machine M such that l ∈ L iff more than
half of computation paths of M accept l. The Polynomial
Counting Hierarchy is the collection of complexity classes
that includes P such that if C is in the hierarchy then so are
the classes of decision problems computed by oracle ma-
chines PPC , NPC and coNPC . The Polynomial Counting Hi-
erarchy therefore contains the Polynomial Hierarchy, which
includes classes such as Σp

k = NPΣ
p
k−1 and Πp

k = coNPΣ
p
k−1

for k > 0, with Σp
0 = Πp

0 = P, and also counting classes
with oracles in the polynomial hierarchy, such as PPΣ

p
k .

We can now state our result:

Theorem 1. The inference problem is PPΣ
p
2 -complete.

To prove Theorem 1 on the complexity of the infer-
ence problem, we need to adapt some previous results
about the credal semantics. First recall that an infinitely
monotone Choquet capacity is a set-function c from sets
in an algebra over a set Ω to real numbers in [0, 1]
such that c(Ω) = 1 − c(∅) = 1 and c(∪ni=1Ei) ≥∑

J⊆{1,...,n}(−1)|J|−1c(∩j∈JEj) for any sets of events Ei

in the algebra (Augustin et al. 2014). A set of functions
dominates a Choquet capacity c if every function in the set
is uniformly larger or equal to c. We then have:

Theorem 2. The L-credal semantics of a logic program is
a closed convex set of probability distributions that is the
largest set dominating an infinitely monotone Choquet ca-
pacity.

Proof. Identical to the proof of Theorem 1 of (Cozman and
Mauá 2017).

The proof of our complexity result will also need the fol-
lowing consequence of Theorem 2:

P(Q|E) = P(Q∩ E)
P(Q∩ E) + P(Qc ∩ E)

(2)

provided the denominator is larger than zero (Molchanov
2005). If the denominator of the latter expression is zero,
then P(Q|E) is equal to one if there is any distribution such
that P(Q∩ E) > 0, and is undefined otherwise.

The proof of membership of Theorem 1 depends a few ad-
ditional facts based on Theorem 2. To compute a lower prob-
ability P(Q), we can go over all total choices and, for each
total choice, examine whether all L-stable models are such
thatQ is obtained; if that happens, we add the probability of
that total choice to some accumulator. At the end, the accu-
mulator (that started from zero) contains the desired lower
probability. That is, to obtain a lower probability we must



go over the total choices running cautious (logical) infer-
ence for each logic program (sometimes referred to as skep-
tical inference) (Eiter, Leone, and Saccá 1998). Similarly,
to obtain an upper probability we must run brave (logical)
inference for each induced logic program – that is, we must
whether Q is obtained in some L-stable model (sometimes
referred to as credulous inference).

We can now present the proof of Theorem 1:
Proof. To prove membership in PPΣ

p
2 , we piece together

some parts of previous proofs in the literature. First, we use
the first part of the proof of Theorem 16 by Mauá and Coz-
man (2020) to build a nondeterministic Turing machine that
generates a total choice (with probability given by Expres-
sion (1)). Then, for a total choice T selected through a poly-
nomial sequence of non-deterministic moves, the machine
builds the induced non-probabilistic logic program PT . As
in that proof, the Turing machine branches into different
paths so as to decide whether k1P(Q∩ E) > k2P(Qc ∩ E)
for suitable constants k1 and k2 (this inequality is derived
from Expression (2)). Some of the paths require cautions
inference, while others require brave inference; the specific
branches are detailed in the proof of Theorem 25 by Mauá
and Cozman (2020). Now, cautions inference can be solved
by calling an oracle in Πp

2. To see this, consider the deci-
sion as to whether an atom belongs to all L-stable models.
It is enough to generate a L-stable model that does not con-
tain the atom and negate the output. To do so, first generate,
using a polynomial time nondeterministic machine, an in-
terpretation I; a polynomial time nondeterministic machine
can be used as oracle to decide whether I is in fact a L-stable
model. A similar reasoning shows that brave inference can
be solved by calling an oracle in Σp

2.
To prove hardness, we start with the following PPΣ

p
2 -

complete problem (Wagner 1986): Decide whether

#X1, . . . , Xn : ∀Y1, . . . , Ym : ∃Z1, . . . , Zs : ϕ > M,

where ϕ is a propositional formula in all propositional sym-
bols bounded to quantifiers and in Conjunctive Normal Form
(CNF) where each clause has at most three literals (proposi-
tional variables or propositional variables preceded by nega-
tion), and where M is an integer. The symbol # denotes a
counting quantifier whose result is to count the number of
configurations of bounded propositional variables that sat-
isfy the enclosed formula.

Start with the Σp
2-complete decision problem (Papadim-

itriou 1994): decide whether Θ holds, where Θ
.
=

∀Y1, . . . , Ym : ∃Z1, . . . , Zs : ϕ. We treat ϕ as a set of
clauses and each clause c as a set of literals. This decision
problem can be reduced to the computation of the semi-
stable semantics1 of an argumentation framework (Dvorǎk
2012, Theorem 12); an atom ϕ is introduced so that formula
ϕ holds iff atom ϕ is accepted in all semi-stable argumen-
tation labelings of the argumentation framework. Now we
could translate this argumentation framework into a logic
program using a well-known transformation (Caminada et
al. 2015);2 this translation has the important property that

1This semantics is defined in Section 3.1.
2This translation is discussed in Section 3.3 (footnote 3).

each labeling of the original argumentation framework cor-
responds to a L-stable model of the resulting program and
vice-versa (Caminada et al. 2015, Theorem 29). Now con-
sider including into this construction the counting quantifier
and associated propositional variables Xi. First, we have a
formula ϕ containing clauses where some literals may men-
tion the Xi. Include arguments Xi and Xi in the argumenta-
tion framework above, and treat literals with Xi as all other
propositional variables in Dvorǎk’s reduction. The next step
is to translate the argumentation framework into a logic pro-
gram and replace, for each pair Xi and Xi, the rules with
them as heads by the probabilistic fact 0.5 :: Xi. and the rule
Xi :− Xi.. The computation of the lower probability of the
atom ϕ yields the probability of the total choices for which
ϕ is in all L-stable models; using Dvorǎk’s results, that is the
probability ρ that formula Θ holds. By comparing ρ > 1/2,
we decide whether #X1, . . . , Xn : Θ > 2n+m+s−1.

Note that the corresponding result for the credal stable
semantics yields PPΣ

p
1 -completeness (Cozman and Mauá

2017); the L-stable semantics moves us one oracle up.

3 Probabilistic Argumentation: A Proposal
As we mentioned in Section 1, we began this work by look-
ing for a formalism to represent arguments with uncertainty.
In this section we offer an approach that, we feel, fixes a few
difficulties found in existing approaches. In Section 3.1 we
review terminology and existing literature on (probabilistic)
argumentation frameworks. Section 3.2 describes our pro-
posal, and Section 3.3 introduces a novel extension of argu-
mentation graphs that is needed to connect logic programs
and sets of arguments. And Section 3.4 introduces a new
definition for the probability of an argument.

3.1 A Bit of Background on (Probabilistic)
Argumentation Frameworks

Argumentation theory has been studied for centuries (van
Eemeren et al. 2014); within artificial intelligence, two
strong research agendas have been pursued: Abstract Ar-
gumentation Frameworks and Assumption-based Argumen-
tation Frameworks. They have many variants; due to space
constraints, we stick to basic definitions.

An Abstract Argumentation Framework (AAF) is a pair
(A,R) where A is a finite set of arguments and R ⊆
A × A is a relation between arguments (Dung 1995). If
(A,B) ∈ R, we say that A attacks B. An argumenta-
tion labeling associates each argument with a label, either
accepted, rejected, or undecided. A complete argumenta-
tion labeling L is an argumentation labeling such that: (i)
if argument A is rejected then there is argument B that is
accepted and that attacks A; (ii) if argument A is accepted
then for all arguments B that attack A we must have that
B is rejected; (iii) if argument A is undecided then there is
no argument B that is accepted and attacks A, and there
is an argument C that attacks A and is not rejected. A
grounded argumentation labeling is a complete argumenta-
tion labeling where the set of accepted arguments is mini-
mal. A preferred argumentation labeling is a complete ar-
gumentation labeling where the set of accepted arguments



is maximal. A stable argumentation labeling is a com-
plete argumentation labeling with no undecided argument.
A semi-stable argumentation labeling is a complete argu-
mentation labeling where the set of undecided arguments
is minimal. A semantics prescribes the labels for all argu-
ments: the complete/grounded/preferred/stable/semi-stable
semantics prescribe the corresponding argumentation label-
ings. An argumentation graph associated with an AAF is
a graph where each node is an argument and each directed
arrow corresponds to an attack.

An Assumption-based Argumentation Framework
(ABAF) takes a different perspective by emphasizing
the structure of arguments (Bondarenko et al. 1997).
Usually such a framework consists of a language, a set
of rules, a set of assumptions in the language, and a
contrary function that indicates a sentence that defeats an
assumption (Toni 2014). An argument can be viewed as
a finite tree with an element of the language in the root,
the conclusion of the argument, and nodes that represent
rules such that leaves contain assumptions (Caminada
and Schulz 2017). Logic programs and ABAFs can be
directly translated to one another (Caminada and Schulz
2017). This sort of translation to/from logic programming
applies also to many other structured argumentation and
nonmonotonic formalisms (Heyninck and Strasser 2016;
Heyninck 2019). Given this, from this point on we stay with
logic programs as the main structured representation for
argumentation schemes, even though we certainly agree that
many features such as supports, weights and preferences, as
well as more sophisticated languages (Modgil and Prakken
2014), cannot be captured by logic programs; we leave
them to future work.

Interest in probabilistic versions of argumentation frame-
works has been growing for some time. Initial efforts fo-
cused on structured argumentation, some of them closer
to probabilistic logic (Haenni 2001; Haenni 2009), while
others concentrating on probabilistic ABAFs (Dung and
Thang 2010; Riveret et al. 2007); however, their assump-
tions and probabilistic assessments are significantly differ-
ent than ours. Recent work (Čyras, Heinrich, and Toni 2021;
Hung 2017) operates closer to us by combining ABAFs with
(what amounts to) probabilistic facts, but with semantics that
are not related to our L-credal semantics. Relatively less
work has appeared on probabilistic ABAFs than on prob-
abilistic AAFs, and most (almost all) proposals for proba-
bilistic argumentation assume that probabilities are assigned
to arguments or to attacks, with differences on how these
probabilities are to be interpreted. Fortunately a detailed re-
cent survey can be consulted (Hunter et al. 2021), so here
we only offer a very brief review of the literature on prob-
abilistic argumentation and skip a few important topics that
we do not need in this paper (such as probabilistic defeasible
reasoning and argumentation for Bayesian networks).

Probabilistic AAFs can be, roughly speaking, of two
kinds. In the constellation approach, uncertainly lies in the
graph topology: arguments and attacks may be present or
absent with given probabilities (Li, Oren, and Norman 2011;
Mantadelis and Bistarelli 2020). In the epistemic approach
the graph topology is fixed and there is uncertainty as to

which degree arguments are believed — or perhaps justified,
or true, or acceptable; the interpretation varies in the litera-
ture (Baroni, Giacomin, and Vicig 2014; Hunter, Polberg,
and Thimm 2020; Thimm 2012).

The constellation approach usually relies on the concepts
of acceptance and rejection from (non-probabilistic) AAFs;
for instance, one may be interested in the probability that
some atom gets some argumentation labeling. The epis-
temic approach typically offers more notions of acceptance
or conditions of rational behavior, often based on probabilis-
tic ideas (for instance, an argument may be accepted only if
its probability is larger than some threshold). In that sense,
the epistemic approach moves away from AAFs in an at-
tempt to model the human agents involved in argumentation.

As perceptively noted by Prakken (2018), in the constel-
lation approach the probabilities are extrinsic to arguments,
as they carry uncertainty about arguing agents, while in the
epistemic approach probabilities are intrinsic to arguments.
Clearly, one can contemplate mixtures of both approaches
(Riveret et al. 2018). An interesting and relevant mixture
appears in the (already mentioned) work by Totis, Kimmig,
and Raedt (2021): they employ probabilistic logic program-
ming to build arguments but still assume that probabilities
are assigned to arguments and attacks.

3.2 Building Probabilistic Arguments
A challenge in probabilistic argumentation is the lack of
consensus over the meaning of probabilities (Prakken 2018).
Existing proposals typically start from the probability that
an argument is accepted, or that it is justified, or even that it
is true; often it feels these approaches assume probabilities
over events that should actually be the end result of argu-
mentation. Another challenge is that almost all approaches
are based on probabilities over supposedly independent ab-
stract arguments; even approaches related to ABAFs often
assign probabilities to arguments, not to their components.
This strategy is not satisfactory when arguments must be
extracted from human discourse (Figure 1), as in real life
many arguments depend on common uncertain sources, say
observations in a clinical trial, while reaching distinct con-
clusions, for instance about the benefits of a medicine. The
structure of arguments must matter.

Given this, we believe that probabilistic argumentation
should be assumption-based, with probabilities attached to
constituent atoms. Because logic programs capture most
assumption-based argumentation schemes, we take that
probabilistic logic programming is the right language from
which to build arguments.

However, we also think there is significant value in argu-
mentation graphs when it comes to interacting with human
users. One advantage is that the user can focus on subsets of
a logic program (the arguments) and look for explanations
and justifications there, perhaps with some visual help. An-
other advantage is that the user can be informed about the
probability of arguments and not just of atoms, thus enlarg-
ing the scope of the interaction.

Fortunately, there are well-known translations from logic
programs to argumentation frameworks. We adopt the WCG
translation algorithm, named after authors Wu, Caminada



O=∅

A5

C :− not D.

A6

D :− not C.

A1

0.5 :: A.

A2

0.5 :: B.

A3

C :− A.
|

0.5 :: A.
A4

D :− B.
|

0.5 :: B.

A5

C :− not D.

A6

D :− not C.

A7

E :− A,not E.
|

0.5 :: A.

Figure 2: Arguments and graphs generated by running the WCG al-
gorithm for a total choice (left) and with probabilistic facts (right).

and Gabbay (Caminada et al. 2015). We believe this algo-
rithm is the best one at capturing the notion of an argument.

We summarize the WCG algorithm as follows. Start-
ing with a set of rules (that may include facts), process
one rule at a time. If we find a rule of the form H :−
not B1, . . . ,not Bn., then we generate an argument A
written as ⟨H ← not B1, . . . ,not Bn⟩. We say A has con-
clusion H , rules {H :− not B1, . . . ,not Bn.}, vulnera-
bilities {B1, . . . , Bn}, and a singleton set of subarguments
that contains A itself. Suppose instead we find a rule of
the form H :− B1, . . . , Bm,not Bm+1, . . . ,not Bm+n..
Refer to this rule as r and suppose further that, for
each B1, . . . , Bm there is an argument Ai with con-
clusion Bi such that r is not in the set of rules
of Ai. Then r generates an argument A written as
⟨H ← ⟨A1⟩ , . . . , ⟨Am⟩ ,not Bm+1, . . . ,not Bm+n⟩. We
say A has conclusion H , rules consisting of the union of the
sets of rules for each Ai and the singleton with rule r, vul-
nerabilities consisting of the union of the sets of vulnerabil-
ities for each Ai and the set {Bm+1, . . . , Bm+n}, subargu-
ments consisting of the union of the subarguments for each
Ai and the singleton containing just A itself. Intuitively, an
argument can be drawn as a tree-like structure, with the root
containing a top rule whose head is the conclusion, and addi-
tional rules whose conclusions belong to the right hand side
the top rule, and so on recursively. Say that A attacks A′ iff
the conclusion of A belongs to vulnerabilities of A′. Nicely,
given a set of rules, this procedure generates an AAF.

Hence, a probabilistic logic program generates, for each
total choice O, an AAF through the WCG algorithm. The
set of AAFs and their probabilities can be drawn in compact
form if one is willing to depict the structure of arguments, as
shown by the following example.

Example 2. Consider again Example 1. Figure 2 (left) de-
picts the argumentation graph obtained by selecting total
choice O = ∅ and running the WCG algorithm. The argu-
mentation graph show the structure of the arguments, even
though this is not usually drawn in an argumentation graph.

Figure 2 (right) is a bit different; there the arguments
are built running the WCG algorithm as if the probabilis-
tic facts were facts, and leaving them with their probabili-
ties. On the one hand, if we erase the probabilities, we have
the argumentation graph obtained by selecting total choice
O = {A,B} and running the WCG algorithm. On the other
hand, if we leave the probabilities, the right graph captures
the whole gamut of total choices and their probabilities. □

In Section 3.1 it will be important to use the probabilistic
logic programs “inside” arguments as generated in this ex-
ample (we will refer to them as attached probabilistic logic
programs).

At this point we have a complete pipeline correspond-
ing to Figure 1. Alas, there is an unsatisfying snag. Ex-
isting results show that it is impossible to find a semantics
for AAFs that maps back to the L-stable semantics (Cam-
inada et al. 2015, Theorem 24). The last sentence must
be made more precise. Suppose that we start with a logic
program P and we generate an AAF by running the WCG
algorithm. Suppose we find an argumentation labeling for
arguments using a selected argumentation semantics. Sup-
pose further that, for each atom C, we find the highest la-
bel amongst the labels of arguments whose conclusion is C,
where accepted > undecided > rejected. We then assign
respectively accepted/undecided/rejected to the atom C if
the highest argument label is accepted/undecided/rejected.
Can this back mapping procedure always generate L-stable
models for the original program P? Unfortunately, no, at
least not with the tools we have so far.
Example 3. Here is a short version of the key example by
Caminada et al. (2015). Consider the following rules: E :−
not E., A :− not B., B :− not A.. Now build a logic
program P1 consisting of these rules and C :− not E. and
C :− not A,not C.. And build another logic program P2

consisting of the three previous rules and D :− not E. and
C :− not A,not C,not D.. The WCG algorithm gener-
ates the same argumentation graph for both logic programs:

A1 A2 A3 A4 A5

Programs P1 and P2 have respectively two and one L-stable
models. Alas, it is not possible for a single graph, whatever
the argumentation semantics, to map back to two distinct
models. □

Somewhat surprisingly, the back mapping procedure
does work for several pairs of program/argumentation se-
mantics: We obtain respectively a partial stable/well-
founded/regular/stable model of P if we use com-
plete/grounded/preferred/stable argumentation labelings.
But no argumentation semantics can always back map into
the L-stable semantics.

Consequently, argumentation graphs are not really appro-
priate to convey the L-stable semantics, and hence the L-
credal semantics, to a human user as envisioned in Figure 1.
The next section solves this problem.

3.3 Argumentation-Conclusion Frameworks
We wish to keep the L-stable semantics for logic programs
but still be able to recover L-stable models from argumenta-
tion graphs.

Our proposal is straightforward: enlarge AAFs so that
each argument is explicitly associated with a conclusion.
The resulting framework is still rather abstract as no argu-
ment exhibits internal structure. But conclusions are now di-
rectly seen by a user; as argumentation is about conclusions,
it makes sense to give them a better status. We propose:



Definition 2. An Argumentation-Conclusion Framework
(ACF) is a tuple (A,S, f,R), where A is a finite set of ar-
guments, S is a set of atoms referred to as conclusions, f is
a function from arguments to conclusions, and R ⊆ A×A
is an attack relation as before.

We write that for a conclusion c, the set of arguments as-
sociated with it is denoted by f−1(c). An argumentation-
conclusion graph is a directed graph where each node con-
tains an argument and its conclusion, and each arrow goes
from a node containing an attacking argument to a node con-
taining an attacked argument.
Example 4. The program in Example 2 with total choice
O = {A,B} and program P1 in Example 3 respectively
lead to the following argumentation-conclusion graphs:

A1(A) A2(B) A3(C) A4(D)A5(C)A6(D) A7(E)

A1(E) A2(C) A3(B) A4(A) A5(C)
□

Given an ACF, we can label each conclusion as accepted,
undecided, or rejected. Clearly such a conclusion labeling
maps to an argumentation labeling: take the label of argu-
ment A to be the label of f(A). And the previous back-
mapping procedure produces a conclusion labeling out of
any given argumentation labeling.

Obviously, an ACF can be generated by any logic pro-
gram by running the WCG algorithm with the small change
that arguments are explicitly associated with their conclu-
sions at the end. We refer to the resulting algorithms as the
extended WCG algorithm.

Definitions related to argumentation labelings can be
readily adapted to conclusion labelings. For instance, con-
sider the definition of complete conclusion labeling:
Definition 3. Let (A,S, f,R) be an ACF and L a conclu-
sion labeling of S. Then L is a complete conclusion labeling
iff
(i) if a conclusion a is rejected then for every argument
A ∈ f−1(a) there is an argument B that attacks A with
accepted conclusion f(B);
(ii) if a conclusion a is accepted then for some argument
A ∈ f−1(a), each argument B that attacks A must have a
rejected conclusion f(B).
(iii) if a conclusion a is undecided then there is no argu-
ment A ∈ f−1(a) for which all arguments B that attack A
have f(B) as rejected; and for some argument A ∈ f−1(a),
there is no argument B that attacks A with accepted con-
clusion f(B), and there is an argument C that attacks that
same A and whose conclusion f(C) is not rejected.

Using this definition, other semantics immediately follow:
Definition 4. Suppose L is a conclusion labeling. L is
grounded iff it is complete and the set of accepted conclu-
sions is minimal. L is preferred iff it is complete and the
set of accepted conclusions is maximal. L is stable iff it is
complete and no conclusion is left undecided. L is semi-
stable iff it is complete and the set of undecided conclusions
is minimal.

We then obtain the desired correspondence between logic
program and argumentation semantics:

Theorem 3. Let P be a logic program and C =
(A,S, f,R) the ACG generated by the extended WCG algo-
rithm. Then the complete, preferred, grounded, stable and
semi-stable conclusion labelings of C are identical to the
labels assigned respectively by the partial stable, regular,
well-founded, stable and L-stable models of P.

Proof. As proved by Caminada et al. (2015), the complete
semantics for C yields the same results as the partial stable
semantics applied to P. As the other semantics are com-
puted by maximizing/minimizing specific labels at the con-
clusion level, they are equivalent to applying the desired se-
mantics directly in the logic program.

To conclude this section, we ask: Is it possible to translate
any ACG to a logic program with equivalent semantics over
conclusions? There is a well-known procedure that gener-
ates a logic program from an AAF such that all argumen-
tation semantics discussed here are preserved, except the
semi-stable semantics (Caminada et al. 2015).3 Can a simi-
lar result be found for ACFs? In fact, we can do even better
with ACFs. Consider the following procedure:
Definition 5. Let C = (A,S, f,R) be an ACF. For each
argument A, generate the rule f(A) :− not f(B1), ...,not
f(Bm). where the Bi are the arguments that attack A. De-
note by PC the logic program consisting of these rules.

The next theorem proves the desired equivalence between
the semantics before and after the translation.
Theorem 4. Let C = (A,S, f,R) be an ACG and PC

be the corresponding logic program produced by Definition
5. Then the partial stable, regular, well-founded, stable, L-
stable models of P assign the same labels to atoms as labels
assigned respectively by the complete, preferred, grounded,
stable, semi-stable conclusion labelings of C.

Proof. Denote by CPC
the ACG produced by the extended

WCG algorithm with PC as input. Theorem 3 shows that
labels are the same for PC and CPC

for all semantics in the
theorem. Hence, if C and CPC

produce the same conclu-
sion labeling, we are done. Note that we allow C to have
more than one argument with the same conclusion and that
is attacked by the same arguments while CPC

can have just
one “copy” of that argument. Such repeated arguments in C
do not affect the conclusion labelings. Now, if we assume
that C and CPC

have distinct conclusion labelings, the set
of conclusions from their arguments is different and/or the
set of vulnerabilities associated with them is different. In the
translation shown in Definition 5, each rule of PC contains
in its head H the conclusion associated with an argument
from C and, from extended the WCG algorithm, we know
each rule becomes an argument in CP. Therefore the set of
conclusions is the same. Similarly, the set of vulnerabilities
must be the same in C and CPC

. Because of that, C and
CPC

produce the same conclusion labelings.

3This is the translation also mentioned in the proof of Theo-
rem 1: each argument maps to an atom (we use the same letters
for both) and each atom H produced by an argument is associated
with a rule H :− not B1, . . . ,not Bm., where B1, . . . , Bm are
the atoms corresponding to arguments that attack the argument H .



To summarize, we have proposed Argumentation-
Conclusion Frameworks that put conclusions in center stage.
We have proved that ACFs do guarantee nice correspon-
dences with logic programs, going beyond AAFs — as
ACFs do even display a correspondence between L-stable
models and semi-stable conclusion labelings.

3.4 Finally: The Probability of an Argument
Having put in place an infrastructure for probabilistic argu-
mentation, we are ready to ask: What exactly is the probabil-
ity of an argument? We do not believe that there is a unique
probability value that captures all uncertainty around a given
argument, and we can explore a few options by examining
the structure of arguments.

Note, first, that there is a difference between the probabil-
ity of a conclusion and of an argument. A conclusion may
be accepted due to many different arguments operating with
respect to distinct total choices.

Instead, when computing the “probability of an argu-
ment”, we should take into account only the information at-
tached to the argument. We need some machinery for that.
Suppose we have a probabilistic logic program P and some
argument A in that program. Suppose also that we run the
WCG algorithm with P as input, but we treat probabilis-
tic facts as if they were facts (this is illustrated by the right
graph in Figure 2 in connection with Example 2). The set
rules generated by the WCG algorithm is a set that contains
rules, some of which may be facts, and probabilistic facts.
We refer to this suitably enlarged set rules as the probabilis-
tic logic program attached to A. We then propose:

Definition 6. Given a probabilistic argumentation-
conclusion graph C generated from a probabilistic logic
program P, and an argument A in C, the probability of
argument A is the probability that the conclusion of A is
accepted in the probabilistic logic program attached to A.

An example is important here, so as to clarify the idea:

Example 5. In Example 2, the probability of arguments A1

and A3, as well as the probability of arguments A2 and A4,
is 0.5. The probability of arguments A5 and A6 is one; this
makes sense because, if we view not as introducing assump-
tions in the argument, these assumptions should be taken to
hold when looking at the argument in isolation. In fact, the
atoms preceded by not behave as Toulmin’s warrants —
that is, as statements that should be accepted when eval-
uating an argument (Besnard and Hunter 2008). Finally,
the probability of argument A7 is zero; regardless of atom
A, atom E cannot be accepted. Note that if we had sim-
ply erased atoms preceded by not, we would obtain the rule
E :− A. and the probability of E would then be 0.5. Thus it
makes sense to take the whole logic program inside an argu-
ment while evaluating the probability of the argument: the
program may reveal internal connections between atoms. □

Similar ideas have been proposed for variants of ABAFs,
for instance by taking the probability of premises (Hunter
2013) or of premises and conclusion (Prakken 2018).

To conclude, we note that the conditional probability of
the conclusion given the premises has been studied in the

literature (Timmer et al. 2017). Such a notion deserves atten-
tion if we allow rules themselves to be probabilistically fired,
for instance by resorting to ProbLog’s probabilistic rules
(Fierens et al. 2014). Such a rule is written α :: H :− B.,
where B denotes the body; it is syntactic sugar for a rule
H :− B. and a fresh probabilistic fact α :: F . whose atom
F does not appear anywhere. For instance, suppose we have
the following logic program associated with an argument:
H :− G1, G2, G3,not G4., 0.5 :: G1., 0.5 :: G2.,

0.5 :: G3 :− G5,not G6. 0.5 :: G5..
Then the probability of the argument is (0.5)4, but the con-
ditional probability of H given G1, G2, G3, G5 all accepted
is 0.5. We might even condition on not G4 not G6, and
this may be a profitable avenue to pursue in the future. Here
we take the position that the atoms preceded by not carry
the warrants of the argument and as such must be left outside
of conditioning.

4 Conclusion
In this paper we have dealt with two interrelated issues: how
to handle non-singleton/empty sets of stable models in prob-
abilistic logic programming, and how to put together a prac-
tical and meaningful theory of probabilistic argumentation.
These challenges are connected by the fact that probabilistic
facts and rules can be used to build probabilistic arguments,
and probabilistic argumentation has specific needs concern-
ing absence of stable extensions. Our solution is to com-
bine the credal semantics (for probabilistic facts) with the
L-stable semantics (for logic programs).

We have introduced the L-credal semantics for logic pro-
grams. We derived the complexity of the inference problem
in the propositional case, proving PPΣ

p
2 -completeness. We

conjecture that similar proofs can be used to prove PPΣ
p
3 -

completeness for the inference problem when predicates
have bounded arity. This is our next step. Another fu-
ture step is the development of inference algorithms, pos-
sibly by combining techniques for probabilistic and credal
inference (Cozman and Mauá 2020; Fierens et al. 2014;
Totis, Kimmig, and Raedt 2021).

We also contributed with the Argumentation-Conclusion
Framework, an extended version of Dung’s Argumentation
Framework that smoothly connects the semantics of logic
programming and the semantics of argumentation. In par-
ticular, we obtained a connection between probabilistic logic
programs and probabilistic argumentation that is important
within the pipeline suggested by Figure 1.

Finally, we have proposed a definition for the probability
of an argument. While a single concept does not seem to
capture all the uncertainty carried by an argument, our pro-
posal is a step forward that can be extended in future work.

Overall, we have addressed the conceptual foundation be-
hind the pipeline in Figure 1; we know how to represent
rules and probabilistic facts, and how to build, present and
evaluate probabilistic arguments. Of course, we have cap-
tured only a fraction of logic programming and argumen-
tation theory; much more work is due to capture various se-
mantics, disjunctive heads and aggregates, supports, weights
and preferences. We will focus on that in future work.
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Cozman, F. G., and Mauá, D. D. 2017. On the semantics
and complexity of probabilistic logic programs. Journal of
Artificial Intelligence Research 60:221–262.
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