
Image Classification Using Sum-Product Networks
for Autonomous Flight of Micro Aerial Vehicles

Bruno Massoni Sguerra
Escola Politécnica

Universidade de São Paulo, Brazil

Email: bmsguerra@gmail.com

Fabio Gagliardi Cozman
Escola Politécnica

Universidade de São Paulo, Brazil

Email: fgcozman@usp.br

Abstract—Flying autonomous micro aerial vehicles (MAVs) in
indoor environments is still a challenging task, as MAVs are
not capable of carrying heavy sensors as Lidar or RGD-B, and
GPS signals are not reliable indoors. We investigate a strategy
where image classification is used to guide a MAV; one of the
main requirements then is to have a classifier that can produce
results quickly during operation. The goal here is to explore the
performance of Sum-Product Networks and Arithmetic Circuits
as image classifiers, because these formalisms lead to deep
probabilistic models that are tractable during operation. We have
trained and tested our classifiers using the Libra toolkit and real
images. We describe our approach and report the result of our
experiments in the paper.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have demonstrated enor-

mous potential in a wide range of applications, such as rescue

missions, monitoring, research and exploration. While there is

a significant effort to produce fully autonomous UAVs, there

are still challenges when it comes to flying autonomous Micro

Aerial Vehicles (MAVs) that are between 0.1-0.5 meters in

length and 0.1-0.5 kilograms in mass [1] .

Much of the progress made in UAV autonomous flight in

indoor environments is based on solutions such as Simul-

taneous Localization and Mapping (SLAM) or other feature

tracking algorithms as described in [2]. However, SLAM is

not a viable solution for MAVs due to the fact that building a

3D model is computationally heavy [3] and the use of feature

extraction techniques does not perform well in environments

devoid of trackable features such as walls. Other traditional

solutions often involve the use of GPS or, alternatively, the

use of sensors such as Lidar [4] or RGB-D [5]. However, GPS

shows limited precision in indoor environments. Moreover,

a MAV’s reduced dimensions make it incapable of carrying

heavy sensors, thus restricting it to lightweight sensors such

as cameras. Indeed, the use of video cameras in such tasks

has shown great promise [6].

The application of an image classifier in real-time autonomous

flight using deep learning models such as deep convolutional

networks is a practical solution to enable a quadcopter to

navigate autonomously indoors environments [3]. However,

MAVs cannot budget much processing time for the relatively

complex task of image classification. The development of fast

classifiers is crucial here.

In this paper we develop image classifiers that receive

indoor images and classify them with respect to the actions

that a flying MAV must take. Our classifier are based on Sum-

Product Networks (SPNs), a “deep architecture” introduced

by Poon and Domingos [7]. SPNs have the ability to encode

probability distributions in a tractable form (that is, the cost

of probabilistic inference is polynomial in the size of the

network). The SPNs we use are in fact combined with another

tractable formalism, employing arithmetic circuits to encode

mathematical expressions needed during classification. This

mixture offers promising encodings for statistical classifiers

and compares favorably to other models, such as Bayesian

networks or Markov random fields, for which inference is quite

costly. We pursue the idea that tractable inference is crucial

to MAV flying motion in developing our image classifiers.

Our long term goal is to simulate a pilot’s choice of

action using a Sum-Product Network (coupled with arithmetic

circuits as needed). Our goal in this paper is more focused:

we are interested in evaluating the performance of SPNs as

a viable deep architecture for image classification. To train

the networks we use, we resort to a dataset composed of

images of an indoor environment and the corresponding pilot’s

commands. Our training and testing datasets consist of such

images and actions.

We review needed concepts in Section II. In Section III

we present our classification strategy, and in Section III-D we

describe our experiments and results. Section IV summarizes

our results and discusses future work.

II. BACKGROUND

In this section we collect needed concepts. Section II-A de-

scribes Sum-Product Networks, and Section II-B describes the

related language of arithmetic circuits. Section II-C reviews

the learning algorithm we have used to produce our classifiers

as well as the classification tests.

A. Sum-Product Networks

An important limitation of classical probabilistic graphical

models, such as Bayesian networks and Markov networks, is

the fact that inference in these models is intractable: computing

the exact probability of a marginal or conditional query is

#P − complete [8]. Therefore, if a network is large and

has many connections, we cannot expect to run inference

2016 5th Brazilian Conference on Intelligent Systems

978-1-5090-3566-3/16 $31.00 © 2016 IEEE

DOI 10.1109/BRACIS.2016.25

139

+

× ×

+ + + +

X1 X2 X2 X3 X3 X1

Fig. 1. Sum-Product Network.

quickly (where “inference” is the calculation of a conditional

probability). Moreover, the difficulty may scale exponentially

with the number of variables in the model.

Poon and Domingos have introduced Sum-Product networks

as a model with tractable inference, as the cost of inference for

a network is polynomial in the size of the network. Thus we

can hope to quickly obtain exact probabilities in a practical

problem that requires fast response (such as MAV flying

control). SPNs offer a deep architecture in the sense that they

are built in layers that can be indefinitely stacked.

Similarly to classical probabilistic graphical models, SPNs

are graphical description of probability distributions. Basically,

SPNs are rooted, directed, acyclic graphs composed by sum

and products as internal nodes, with variables as leaves,

and positive weighted edges (see Figure 1). There are two

interpretations for SPNs. One, as we have advanced already, as

tractable probabilistic graphical models. Another interpretation

is that they are deep neural networks with two types of

neurons: sums and products [9].

To define a SPN, we can, for simplicity, focus on Boolean

variables, as the extension to multi-valued discrete variables

and continuous variables is simple. The indicator function

[.] of a Boolean variable has value 1 when the argument is

true, and value zero otherwise. We will abbreviate [Xi] (the

indicator function of variable Xi) by xi and [Xi] by xi. A

SPN is denoted as a function S of the indicator variables

x1, ..., xN and x1, ..., xN by S(x1, ..., xN ,x1, ..., xN). When

the indicators specify a complete state x we abbreviate it as

S(x), when they specify evidence e, we abbreviate it as S(e).
The following two definitions capture the main concepts:

Definition 1: A SPN over finite state random variables X =
{X1, X2, ..., XN}, is a rooted acyclic graph whose leaves are
indicators x1, ..., xN and x1, ..., xN , whose internal nodes
are sum and products. Each of the edges (i, j) out of a sum
node has a non-negative weight associated with it wi,j . The
value of a product node is the product of its children values,
and the value of a sum node is

∑
j∈Ch(i) wi,jvi, where Ch(i)

are the children of i and vj is the value of node j. The value
of a SPN is the value of its root [7].

Definition 2: An unnormalized probability distribution Φ(x)
is representable by a sum-product network S iff Φ(x) = S(x)
for all states x and S is valid (a SPN is valid if it is correct
at computing the probability of evidence)[7].

+

× ×

λX2 θ2 + + λX2

×

θ1 λX1
λX1

Fig. 2. Arithmetic Circuits.

S therefore computes correctly all marginals of Φ(x) including

its partition function.

From these definitions, one can prove that the partition func-

tion of a Markov network Φ(x), where x is a d-dimensional

vector, can be computed in time polynomial in d if Φ(x) is

representable by a SPN with a number of edges polynomial

in d [7].

B. Arithmetic Circuits

Arithmetic circuits (ACs) [10] are closely related to SPNs;

they are rooted, directed, acyclic graphs with sum and products

as internal nodes (see Figure 2). However, while SPNs have

univariate distributions as leaves, ACs have indicator nodes

and parameter nodes as leaves [8].

There are tree important properties of ACs:

• an AC is decomposable if the children of a product node

have disjoint scopes.

• an AC is deterministic if the children of a sum node are

mutually exclusive, meaning that at most one is non-zero

for any complete configuration.

• an AC is smooth if the children of a sum node have

identical scopes.

If an AC is smooth and decomposable, then it represents a

valid probability distribution.

ACs and SPNs can be equivalent; it has been shown that, for

discrete domains, every decomposable and smooth AC can be

represented by a SPN with fewer or equal number of nodes

and edges. Moreover, again in discrete domains, every SPN

can be represented by an AC with at most a linear increase in

the number edges [8].

C. Training Classifiers and Computing Inferences with the
Libra Toolkit

We have used the ID-SPN algorithm to learn our classifiers

from data, and the spquery algorithm to compute inference

and test our classifiers. These algorithms are implemented in

the Libra Toolkit, a collection of algorithms put together by

Lowd and Rooshenas [11] and geared towards learning and

computing inference with a series of probabilistic models.

In this section, we present a brief overview of these two

algorithms.

140

+

×

+

AC

AC

AC AC

+

× ×

λX2 θ2 + + λ
X2

×

θ1 λX1
λ
X1

Fig. 3. An ID-SPN model. The upper level variables are shown explicitly as
sum and product nodes, while the lower level nodes represented by AC are
arithmetic circuits over the observed variables.

For both algorithms, Libra uses comma-separated lists of

variable values as datasets, with asterisks representing values

that are unknown. This allows the same format to be used for

training examples and evidence configurations. A sequence

such as 0, 0, 1, 0, 4, 3, 0 is a valid datapoint. Another valid

sequence is 0, 0, 1, ∗, 4, 3, ∗, this time with a missing value.

1) The ID-SPN algorithm: The ID-SPN algorithm is used

to learn SPNs using direct and indirect interactions.

In order to learn SPNs, the ID-SPN algorithm uses top-down

clustering to detect direct interactions; that is, it partitions

the training data to create a sum node (that represent a

mixture over different clusters) and it partitions the variables to

create a product node (that represents groups of independent

variables within a cluster). However, since this method has

difficulty in finding direct interactions among variables, ID-

SPN then combines it with methods for learning tractable

Markov networks represented as ACs.

Therefore, ID-SPN looks for indirect interactions through

latent cluster variables in the upper levels of the SPN, as well

as direct interactions through the tractable Markov networks at

the lower levels of the SPN. Traditionally, to learn a SPN, most

algorithms uses top-down clustering until it reaches univariate

distributions. ID-SPN, however, may choose to stop this pro-

cess before reaching univariate distributions and instead learn

an AC to represent a tractable multivariate distribution with

no latent variables.

An alternative way to understand ID-SPN is that it learns

SPNs where the leaves are tractable multivariate distributions

rather than univariate distributions. As long as these leaf

distributions can be represented as valid SPNs, the overall

structure can be represented as a valid SPN as well [8].

We refer to the structure learned by the ID-SPN algorithm

as a sum-product of arithmetic-circuits, or SPAC for short (see

Figure 3).

Concerning the Libra Toolkit, there are several parameters

that control the behavior of the ID-SPN implementation;

relevant parameters are given in Table I, together with their

TABLE I
ID-SPN PARAMETERS.

l1 Weight of L1 norm [5.0]
l EM clustering penalty [0.2]

ps Per-split penalty [10.0]
k Max sum nodes’ cardinalities [5]
sd Standard deviation of Gaussian weight prior [1.0]
cp Number of concurrent processes [4]
vth Vertical cut threshold [0.001]
ext Maximum number of node extensions [5]

minl1 Minimum value for components’ L1 priors [1.0]
minedge Minimum edge budget for components [200000]
minps Minimum split penalty for components [2.0]
seed Random seed

f Force to override output SPN directory

default values.

In this paper, we set the parameters cp, l and vth to 2, 0.2
and 0 respectively, and we focused on varying the values of

k (which control the number of sum nodes; this parameter

is related to the partition of our training data), ext (which,

if large, may cause the network to take a long time to train

and may cause overfitting), ps and l1 in order to analyze the

different learned classifiers.

2) The spquery algorithm: The spquery algorithm is used

to compute exact inference in SPNs.

There are three inputs to this algorithm, the SPN (SPAC)

model directory containing the learned SPN, an evidence file

and a query file.

Evidence files have the same comma separated format used

for the data file. When the value of a variable has not been

observed as evidence, we put a ”*” in the related column:

0, 0, 1, ∗, 4, 3, ∗
The query file must be consistent with the evidence. For

example:

0, 0, 1, 1, 4, 3, 0

For instance, the spquery method can be used with the above

query and evidence to find the conditional probability of:

P (X4 = 1, X7 = 0|X1 = 0, X2 = 0, X3 = 1, X5 = 4, X6 =
3).

III. DEVELOPMENT

A. Overview

As noted in the Introduction, our goal is to learn an image

classifier using a SPAC, in order to obtain decisions concerning

actions during a MAV flight in indoor environments. Our

classifier is trained through a dataset consisting of different

images of indoor hallways and the corresponding human

pilot’s choice of action. The classifier works by computing the

probability of an image being part of each class, and returning

the class with the higher probability. In this paper we focus

on classifier training using collected images.

In future work, we intend to use the trained classifier in a

flying MAV; our trained classifier will input real-time images

141

taken from the MAV and return a flight command that best

mimics a human pilot’s behavior.

B. Data: images and actions

Our dataset was build using captured images of several

different indoor locations as shown in Fig. 4.

Fig. 4. Sample of images from our dataset.

Every image was classified as a MAV command correspond-

ing to a human pilot‘s choice of action. In this paper, we focus

on three classes of images: ”move forward”, ”move left” and

”move right”. In Fig. 5 we have some sample images and their

corresponding command.

Fig. 5. Sample images with their corresponding command.

Each data point corresponds to one image of our dataset. Li-

bra’s current implementation of ID-SPN only supports binary-

valued variables; therefore, we had to transform our pictures

into binary images. This was done by selecting a value of

luminance level as threshold and substituting all the pixels

with luminance under the threshold by 0 (black) and the others

by 1 (white). Using a threshold of 0.45, we obtained black and

white images as shown in Fig. 6.

We then reshaped our images to 1% of their original size,

as shown in Fig. 7. By doing so, we lost some information,

but the reduction in size allowed ID-SPN to train our networks

much faster, each network taking approximately 5 minutes to

train.

To build our data file, we took each line of the black

and white figure and concatenated them into a single one-

dimensional array. Then, each array was stacked into our data

file. At the end of each data point, we added two binary

Fig. 6. Black and white images obtained.

Fig. 7. Reduction to 0.01 scale.

variables representing our classes. For a classifier with just

two classes, one single variable is needed. As we want to

classify images into three classes, we had to add two variables

corresponding to each class. 00 if it is a “move forward”

image, 01 if it is a “move right” image and 10 if it is a “move

left” image. Therefore, if we have a image with the following

structure:

imagei =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 1 0 . . . 1
0 1 0 1 . . . 1
...

...
...

...
. . .

...

0 1 1 1 . . . 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

our corresponding data point is then:

[1, 0, 1, 0, . . . , 1, 0, 1, 0, 1, . . . , 1, . . . , 0, 1, 1, 1 . . . , 0, 1, 0],

where we added a symbol to distinguish the various rows in

the one-dimensional array. The last two values in this vector

1, 0 indicate the corresponding class of the image as “move

left”.

To build our validation set, we used the hold-out
cross-validation method, which is the simplest kind of cross-

validation. We randomly separated our data into two sets, the

dataset and the validation set. In Section III-D, to classify the

images of our validation set we used the spquery method

to compute the probability of an image being part of each

class. The spquery method uses as input the evidence and

query file (as well as the learned SPN). With the validation

set defined we can build the evidence and the query files.

C. Evidence and Query Files

In order to build our evidence and query files, we employed

the same procedure as used for building our data file. Each

142

image used to evaluate our classifier was transformed to black

and white and reshaped to 1% of its size. Then each of the

image‘s lines was concatenated into a single array.

The evidence file is composed of evidence points represent-

ing each image. As shown in the section II-C2, variables that

has not been observed must be represented as ”*”, therefore we

inserted two ”*” at the end of each point indicating that we do

not know the images class. As also shown in the section II-C2,

in order to compute inference, there must be a corresponding

query point to each evidence point.

The query file was then built using the same evidence points,

but substituing the two ”*” for the values corresponding to

each of the possible classes.

Since we have three different classes, we need our evidence

file to be composed of three equal evidence points for each

image with a ”**” at the end, this allows us to use the spquery
method and compute the probability of an image being part

of each of the three classes.

Therefore, for an image:

imagei =

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 . . . 0
1 0 1 . . . 0
...

...
...

...
. . .

...

1 0 1 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

We create 3 evidence points and 3 query points:

evidence points:

e pointi = [0, 0, 0, . . . , 0, 1, 0, 1, . . . , 0, . . . , 1, 0, 1 . . . , 1, ∗, ∗]
e pointi+1 = [0, 0, 0, . . . , 0, 1, 0, 1, . . . , 0, . . . , 1, 0, 1 . . . , 1, ∗, ∗]
e pointi+2 = [0, 0, 0, . . . , 0, 1, 0, 1, . . . , 0, . . . , 1, 0, 1 . . . , 1, ∗, ∗]

query points:

q pointi = [0, 0, 0, . . . , 0, 1, 0, 1, . . . , 0, . . . , 1, 0, 1 . . . , 1, 0, 0]
q pointi+1 = [0, 0, 0, . . . , 0, 1, 0, 1, . . . , 0, . . . , 1, 0, 1 . . . , 1, 0, 1]
q pointi+2 = [0, 0, 0, . . . , 0, 1, 0, 1, . . . , 0, . . . , 1, 0, 1 . . . , 1, 1, 0]

And so we can compute the probablility, given the image

as evidence, of each image being part of the ”move forward”,

”turn right” or ”move left” class.

D. Results

1) Binary Case: We start with a binary classification

problem. That is, our dataset is composed only of images

corresponding to two classes of commands “move right” or

“move left”. In this case, we used a dataset of 66 images and

a validation set of 23 images. Using the procedure described

before, we set the luminance (Lumi) threshold to 0.45 or 0.55
and built our data, evidence and query files.

To choose the ID-SPN parameters that results in the best

classifier, we set cp = 2, l = 0.2 and vth = 0; then we

generated random values for the parameters k, ext, ps and l1.

For each of the trained SPNs, we then used the spquery
method to compute the probability of each one of our vali-

dation set images being part of class “move right” and class

“move left”. As indicated before, our classifier assigns to an

image the class with the largest probability (in the case where

the classifier returns the same probability for the image being

part of both classes, it is considered an error). Therefore,

knowing the actual class of an image, we can compute the

accuracy (ACC) as

ACC =
NRight +NLeft

N
,

where NRight is the number of instances where a “move

right” image was correctly classified, NLeft is the number of

instances where an image was correctly classified as “move

left” and N is the total number of images in our validation

set.

TABLE II
BINARY CLASSIFICATION

Classifier Lumi K ext ps l1 Accuracy
1 0.55 44 3 6 6 75.00%
2 0.45 27 10 7 1 70.83%
3 0.45 30 5 5 11 66.70%
4 0.45 6 7 4 2 66.67%
5 0.55 30 6 20 20 62.50%
6 0.45 31 10 1 12 62.50%
7 0.45 38 9 9 15 62.50%
9 0.55 50 6 3 11 62.50%

Table II shows 9 of our trained SPNs, presented in de-

scending order of accuracy, with classifier 1 being the most

accurate with 75.00% of accuracy. This means that 75.00% of

the pictures in our validation set were correctly classified.

2) Multiclass Classification: For our multiclass classifier

our dataset is composed of images corresponding to the three

classes “move forward”, “move left” and “move right”. In this

case, we used a dataset of 93 images and a validation set of

33 images. We followed the same procedure used for building

our binary data file. The evidence file and the query file were

also built using the same procedure.

Once again we set cp = 2, l = 0.2, vth = 0 and used the

values for the parameters k, ext, ps and l1 that generated the

SPNs with biggest accuracy in the binary case.

The accuracy in the multiclass case is defined, using the

same notations as above, as ACC = S/N , where

S = NForward +NRight +NLeft ,

where NForward is the number of images correctly classified

as ”move forward”. Table III shows 9 of the best trained

classifiers and their respective values of accuracy.

TABLE III
MULTICLASS CLASSIFICATION

Classifier Lumi K ext ps l1 Accuracy
1 0.45 41 10 9 6 72,73%
2 0.45 13 3 7 15 63.64%
3 0.45 11 6 9 1 60.61%
4 0.45 47 10 5 16 60.61%
5 0.45 23 8 9 10 60.61%
6 0.45 37 5 8 17 60.61%
7 0.45 59 6 5 18 60.61%
8 0.45 59 4 2 9 60.61%
9 0.45 31 10 9 12 57.58%

143

It is clear that the accuracy of our classifiers in the multiclass

case is not as high as in the binary case. The most accurate

classifier in the multiclass case could predict the class of

72,73% of our images. The top three classifiers shown in Table

III (1,2 and 3) were very successful in classifying images cor-

responding to the command ”move forward” with an average

of 85.19% of accuracy. While they had problems classifying

images corresponding to the command ”move right” with an

average of just 44.44% of accuracy. In classifying ”move left”,

these classifiers presented an average of accuracy of 77.78%.

Therefore, there are a number of possibilities to enhance

the effectiveness of our multiclass classifier. For instance, the

parameters that worked best in the binary case may not be the

best parameters for the multiclass case. In addition, the number

of images in our data set might not be enough to train a more

precise classifier. It is possible that, due to the cross-validation

method used (hold-out), the images in the validation set might

not be well represented in our dataset. Another possibility for

enhancing our classifiers accuracy is increase the scale while

reshaping the images used to build our dataset (Fig.7) and

validation set. The scale used (0.01) to build our classifiers,

although responsible for gains in the learning speed, caused

information loss.

IV. CONCLUSION

The use of SPNs is promising for image classification in

environments that require fast decision making. The advantage

of SPNs (and SPACs) is that, even if training may be costly,

inference during actual operation is tractable. Inference speed

is crucial as we are interested in a real-time situation.

The Libra Toolkit offers powerful tools for learning and

computing inference in SPN. Although Libra’s interface is not

optimal for image classification, with some pre-processing of

the data it can produce classifiers in reasonable time.

Although our most accurate classifier had an accuracy of

75% (binary case), we obtained such result with a dataset of

just 66 images. A larger dataset will certainly lead to more

accurate classifiers. A better way of evaluating our classifiers

is by applying a different cross-validation technique. The hold-

out technique used in this paper, although simple and easy to

implement, does not make optimal use of data, depending on

which data points end up in the training set and which end up

in the validation set. Techniques such as k-fold cross-validation

may be more appropriate; although some data is also wasted

and it is more expensive than the hold-out cross-validation, it

is less affected by how the data are divided, and therefore is

bound to obtain more accurate results.

Finally, in the autonomous flight solution proposed, there

is only the need to learn a single SPN to be used as an

image classifier. In this paper, since we were interested in

training a number of different classifiers in order to evaluate

their performance, learning speed was a relevant factor. If the

time needed to learn the SPN (SPAC) is not a constraint, it is

possible to obtain a more precise and complex SPN (SPAC)

by increasing the scale (as shown in Fig.7) which will provide

more information about the classes to the learning algorithm.

Moreover, since the inference in SPNs is tractable, a more

complex structure will not result in a significant decrease in

the inference speed.

Future work should focus on training a more complex clas-

sifier, capable of classifying images into classes corresponding

to more of the MAV’s possible commands, like “spin right”,

“spin left”, “go up, “go down”, “stop”, etc. Thus a dataset

with images corresponding to all possible commands is also

necessary. It is also necessary to implement the MAV-classifier

interfaces; i.e., the connection between our MAV and our

classifier, allowing the images captured by the MAV to be

processed (resized to a smaller scale and turned binary) and

sent to the classifier, and allowing the corresponding command

given by the classifier to be sent back to the MAV in real-time.

With these interfaces implemented, we can retrieve the image

captured by the MAV at the moment the pilot perform each

of his commands, and we can build our dataset in a dynamic

context through a number of flight simulations with a human

pilot. Finally, it involves testing our classifier with a MAV

thought dynamic simulations.

ACKNOWLEDGMENT

We would like to thank Francisco Henrique Otte Vieira de

Faria at the Decision Making Lab for useful discussions and

help. Also, we would like to thank Guilherme Hatori Pereira

Horoi for his help with the Libra toolkit.

REFERENCES

[1] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proceedings - IEEE International Conference
on Robotics and Automation, 2011, pp. 2520–2525.

[2] N. X. D. N. X. Dao, B.-J. Y. B.-J. You, S.-R. O. S.-R. Oh, and M. H. M.
Hwangbo, “Visual self-localization for indoor mobile robots using
natural lines,” Proceedings 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453),
vol. 2, no. October, 2003.

[3] D. K. Kim and T. Chen, “Deep neural network for real-
time autonomous indoor navigation,” 2015. [Online]. Available:
http://arxiv.org/abs/1511.04668

[4] A. Bachrach, R. He, and N. Roy, “Autonomous flight in unknown indoor
environments,” International Journal of Micro Air Vehicles, vol. 1, no. 4,
pp. 217–228, 2010.

[5] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Estimation, planning, and mapping for autonomous flight
using an RGB-D camera in GPS-denied environments,” International
Symposium on Robotics Research (ISSR), pp. 1–16, 2011. [Online].
Available: http://ijr.sagepub.com/cgi/doi/10.1177/0278364912455256

[6] R. Roberts, D.-N. Ta, J. Straub, K. Ok, and F. Dellaert, “Saliency
detection and model-based tracking: a two part vision system for small
robot navigation in forested environment,” SPIE Defense, Security, and
Sensing, pp. 83 870S–83 870S–12, 2012.

[7] H. Poon and P. Domingos, “Sum-product networks: A new deep archi-
tecture,” Proceedings of the IEEE International Conference on Computer
Vision, pp. 689–690, 2011.

[8] A. Rooshenas and D. Lowd, “Learning sum-product networks
with direct and indirect variable interactions,” . . . International
Conference on Machine Learning, vol. 32, 2014. [Online]. Available:
http://jmlr.org/proceedings/papers/v32/rooshenas14.html

[9] D. R. Peharz, “Foundations of Sum-Product Networks for Probabilistic
Modeling,” PhD Thesis, no. February 2015, 2015.

[10] A. Darwiche, “A differential approach to inference in Bayesian net-
works,” J. Acm, vol. 50, no. 3, pp. 280–305, 2003.

[11] D. Lowd and A. Rooshenas, “The libra toolkit for probabilistic models,”
Journal of Machine Learning Research, vol. 16, pp. 2459–2463, 2015.

144

