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Abstract. This paper investigates the application of Markov logic net-
works to supervised/unsupervised/semisupervised learning of classifiers.
We review the necessary theory, propose techniques so as to represent
the relevant learning problems in Markov logic, and present initial results
in supervised learning with real data.
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1 Introduction

When learning a classifier, a central step is the selection of a language in which
to express the classifier and the associated learning task. Some classifiers in the
literature are based on the language of probabilistic graphical models, such as
naive Bayes and decision trees classifiers. Other classifiers have their roots in
logical languages — for instance, classifiers modeled within the inductive logic
programming paradigm.

Recently, the learning community has stressed the need for languages that
can unify statistical and relational aspects of various learning problems. As a
result, a new research area named “statistical relational learning” has received
great attention. One of the most promising tools that were created within this
new area is Markov logic [1]. The purpose of Markov logic is to allow structured
descriptions of observed data and also learning from this data. This is done by
encoding dependence relations using first-order logic in such a way that any set of
sentences represents a Markov network (that is, a Markov random field). Markov
logic networks are very flexible tools that allow one to handle many aspects of
real-world problems [2]. Learning algorithms have been implemented in an open
tool called Alchemy package [3]. Markov logic is currently a natural choice if one
wishes to combine relational fragments of first-order logic with probabilities.
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In this work, we investigate Markov logic as a language for learning classifiers,
as the behavior of Markov logic in classifier learning tasks has not been explored
in detail in the literature. We focus on three main paradigms of machine learning.
At first, supervised learning is considered, where a classfier is learned from a set of
labeled instances [4, 5]. We present results with real data in supervised contexts.
We then discuss some important aspects of how unsupervised/semisupervised
leaning tasks could be modeled with Markov logic. We pay special attention
to semisupervised learning with constraints, as this kind of learning task seems
particularly amenable to the resources of Markov logic. This part of the paper
is more speculative, describing work currently underway.

Section 2 reviews important concepts on learning paradigms and Markov
logic. In Section 3 we present our main ideas on the use of Markov logic in
learning. We also describe experiments on real data in supervised problems.

2 Background

This section defines a few basic concepts. First, we introduce the main ideas
in classification and machine learning that we need; second, we present Markov
logic networks.

2.1 Supervised, unsupervised, and semisupervised learning of
classifiers

Methods usually employed in machine learning can be partitioned in two main
groups: supervised and unsupervised methods [6]. Those methods focusing on
supervised learning (SL) learn a mapping (a classifier) from attributes X to
class label Y , given a training dataset with pairs (xi, yi). Classifiers learned
can have their perfomance evaluated using test datasets. As an example, spam
detection is often modeled as a supervised learning problem.

In unsupervised learning (UL), also known as clustering, the goal is to find
interesting structures in an observed dataset, represented usually by a vector of
measurements [x1, . . . , xn]. In other words, clustering techniques try to organize
a collection of data into clusters based on similarity. In an intuitive manner,
observed values within a valid cluster are more similar to each other than they
are alike a data point in a different cluster.

Recently, learning tasks between SL and UL have received attention, under
the name semi-supervised learning (SSL). In this paradigm, the dataset avail-
able for learning tasks contains, in addition to unlabeled data, some supervised
information. In many applications, this information is the class label associ-
ated with some observations. In the contexts where SSL takes place, a dataset
can be split into two pieces: the observations Xl = [x1, . . . , xl] for which labels
Yl = [y1, . . . , yl] are given, and the observations Xu = [xl+1, . . . , xl+u] whose
labels are unknown. Providing labels for some observations is not the only way
to introduce supervised information. This can also be done, for example, by es-
tablishing constraints such as data points that have (or do not have) the same
class label.
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Indeed, in recent years, the problem of learning with constraints has been
addressed by a considerable number of researchers. Some applications for intelli-
gent systems generate natural pairwise constraints (e.g., image segmentation and
video and document retrieval). Moreover, in an interactive setting a user who
is not a domain expert may sometimes provide feedback in the form of pairwise
constraints more easily than class labels, since providing constraints does not
require the user to have significant prior knowledge about the categories in the
dataset. Usually, the literature uses the terminology must-link constraint and
cannot-link constraint to specify points that should or should not be clustered
together, respectively.

A few previous results in semisupervised learning with constraints deserve
to be mentioned. Law et al [7] employ a graphical model in model-based clus-
tering with soft and probabilistic constraints. The uncertainty of a constraint
is encoded by the distribution of the constraint random variables. The value of
each constraint reflects the uncertainty of the prior knowledge that a pair of
points comes from the same class. They show that more robust clustering so-
lutions can be obtained by allowing uncertainty in the model. Shental et al [8]
focus is on semi-supervised learning using side-information, which is not given
as labels, but as “is-equivalent” and “not-equivalent” constraints, similarly to
must and cannot-links. They show how to incorporate equivalence constraints
into the EM algorithm [9], in order to compute a generative Gaussian mixture
model of the data. Basu et al [10] introduce an approach to semisupervised clus-
tering based on hidden Markov random fields that combines constraint-based
and distance-based approaches in a single probabilistic model. Typically, the
constraints are also soft, that is, clusterings that violate them are undesirable
but not prohibited.

2.2 Markov logic networks

A first-order knowledge base (KB) is a set of sentences or formulas in first-
order logic [11]. Formulas are constructed using four types of symbols: constants
(e.g., domain of people: Anna, Bob), logical variables ranging over objects of
a domain on interest, functions (e.g., MotherOf) representing mappings from
tuples of objects to objects, and predicates representing relations among objects
in the domain (e.g., Friends) or attributes of objects (e.g., Smokes). If a world
violates even one formula, it has probability zero. A KB can thus be interpreted
as a set of hard constraints on the set of possible worlds. Markov logic networks
soften these constraints so that when a world violates one formula in the KB it
becomes less probable, not impossible. The fewer formulas a world violates, the
more probable it is.

A Markov logic network (MLN) [1] is defined as a set of pairs (Fi, wi), where
Fi is a formula in first-order logic and wi is a real number. Together with a finite
set of constants C = {c1, . . . , c|C|}, it defines a Markov network (MN) ML,C as
follows.
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1. ML,C contains one binary node for each possible grounding1 of each predicate
appearing in L. The value of the node is 1 if the ground predicate is true
and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in
L. The value of this feature is 1 if the ground formula is true, and 0 otherwise.
The weight of the feature, which reflects the strength a constraint, is the wi

associated with the Fi in L.

There is an edge between two nodes of ML,C if the corresponding ground
predicates appear together in at least one grounding of one formula in L. The
probability distribution over possible worlds x specified by the ground MN ML,C

is given by

P (X = x) =
1
Z

exp

(
F∑
i

wini (x)

)
,

where F is the number of formulas in the MLN and ni(x) is the number of
true groundings of Fi in x. As formula weights increase, an MLN converges to a
purely logical KB, being equal to one in the limit of all infinite weights. Assuming
domain closure and finiteness, we have that propositionlized MLNs are finite. In
this case, the groundings of a formula are built simply by replacing its variables
with constants in all possible combinations.

As a didactic example to elucidate the use of MLN, consider a hypothetical
classification task involving three attributes (features): two of them being pre-
dictors and the third one being the class label attribute, on which predictions
should be made. Assume the following first-order formulas that fit a model to a
database available for training a classifier are given:

∀x Feature1 (x) ⇒ Class (x),
∀x Feature2 (x) ⇒ Class (x),

∀x∀y Relation (x, y) ⇒ Feature2 (x) ⇔ Feature2 (y).

If we have the constants C = {A, B} , the MLN L yields the following ground
formulas in the grounded MN ML,C :

Feature1 (A) ⇒ Class (A)
Feature2 (A) ⇒ Class (A)
Feature1 (B) ⇒ Class (B)
Feature2 (B) ⇒ Class (B)
Relation (A, B) ⇒ Feature2 (A) ⇔ Feature2 (B)
Relation (B, A) ⇒ Feature2 (B) ⇔ Feature2 (A)
Relation (A, A) ⇒ Feature2 (A) ⇔ Feature2 (A)

Relation (B, B) ⇒ Feature2 (B) ⇔ Feature2 (B).

From these grounded formulas, a proposicionalized Markov network is built. Fig-
ure 1 depicts it, where C(U) stands for Class(U), Fj (U) stands for Featurej(U)
and R(U, V) for Relation(U, V).
1 The term “grounding” means an instanciation of the predicate or function, i.e., the

replacement of a variable by its possible constant values.
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Fig. 1. Propositionalized Markov network for a set of constants C = {A, B}.

Weight learning in MLNs can be done in a discriminative or generative ap-
proach. Usually, it is carried out by the maximization of a likelihood function
of the state of a clique in the corresponding MN. To perform probabilistic in-
ference, algorithms based on MCMC methods are usually employed (the Gibbs
sampler is commonly used). Details on MLNs can be found in [12, 13].

3 Learning with Markov Logic Networks

In this section we show how to use MLNs in learning from data. Section 3.1
presents parcial results for SL tasks with real data. Section 3.2 briefly discusses
unsupervised and semisupervised problems, indicating the path our current work
is following.

3.1 Supervised learning scenarios

One might consider learning classifiers by learning weights for all formulas such
as

C⇒ A1 ∧ . . . ∧ An,

where C is the class variable and Ai is an attribute. However, as n grows, this
approach becomes untractable as it requires estimation of an exponential number
of probability values. Indeed, if each atribute has m different values and we have
c possible classes, c ·mn parameters must be learned from data. Overfitting then
emerges and leads to poor classifiers.

A better alternative is to learn probabilities for Horn clauses that mimic the
structure of a Naive Bayes classifier, such as

C⇒ A1, . . . , C⇒ An,

whose goal then is to learn the probability that a class label value implies a
specific value for each attribute Ai. We now have only n (c ·m) parameters to
estimate. Even with reduced number of parameters to determine, our prelim-
inary experiments have shown bad performance with the resulting classifiers.
Further analysis revealed it to be actually far from a Naive Bayes classifier, be-
cause weights of formulas like C⇒ Ai are not related at all with the conditional
probability of P (Ai|C). Indeed, the probability of an implication to be true tells
us nothing about the conditional probabilities, as the formula is always true
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if ¬C ∨ Ai. Even though in [14] we found an approach to express conditional
probabilities from weighted clauses, it does not seem possible to create sensible
classifiers on the basis of learning probabilities for Horn clauses.

The best results we reached with MLNs have been produced instead with
conjuntions of class and attributes, denoted by the following formulas:

C ∧ A1, . . . , C ∧ An.

The methodology adopted to express a classifier in Markov logic based on these
formulas can be explained as follows.

1. Define the class label variable.
2. Convert attributes (predictors) and class label variable into representative

first-order predicates.
3. Build conjunctions between pairs of class and attribute predicates.
4. Build the traning and testing databases.
5. Learn weights for formulas.
6. Cross-validate the classifier model obtained.

To illustrate these steps, consider the following example. A database usually
contains rows with observed values for attributes and for class labels. Supposing
a database contains a hundred rows with binary attributes, so a classifier repre-
sentation for this example could be constructed in Alchemy syntax with three
predicates

Attribute i(row, value i!), Attribute j(row, value j!),

Class(row, value c!),

and two logic formulas:

Class(row, +value i) ∧ Attribute i(row, +value i)

Class(row, +value j) ∧ Attribute j(row, +value j).

The variable row ranges over each row number in database, and value i,
value j ranges over the values the respective attribute can assume. The operator
! placed after a variable allows one to specify variables that have mutually
exclusive and exhaustive values. For example, in Class(row, value c!), the !
means that any row has exactly one class label value. If one or multiple variables
are preceded by +, a weight is learned for each combination of their values in the
ground formula.

To investigate the performance of Markov logic classifiers, we have performed
experiments with some of the UCI repository (http://archive.ics.uci.edu/ml/)
using the Alchemy package [3]. Table 1 summarizes the accuracy of our classifier,
denoted by MLNC (Markov Logic Network Classifier), compared to other state-
of-art classification methods. None attribute selection method was employed to
any of the databases.
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Table 1. Classification results (in %) for MLNC and other methods, obtained with ten-fold cross-
validation. The results for the other classifiers were obtained from Weka (Waikato Environment
for Knowledge Analysis) [15]. #Lab and #Att are the number of labeled instances and number of
attributes (predictors + class), respectively. Information about standart deviation in classification
accuracy results for Weka methods is not available.

Bases
Bases Info. Rules Trees Bayes Nets

MLNC
#Lab #Att ZeroR DT Prism SC DS J48 NB TAN

Adult 30162 14+1 75.11 85.36 − − 75.10 85.73 82.84 85.98 86.77± 0.34
Ionosphere 351 34+1 64.10 87.18 84.90 88.60 82.90 90.31 90.31 92.59 89.76± 3.75
Nursery 3087 8+1 34.20 96.00 99.52 99.58 67.98 98.07 92.49 96.45 90.96± 1.13
Breast Cancer 569 25+1 62.74 94.20 92.27 95.25 90.51 95.43 95.61 96.31 95.79± 3.22
Image Segmen. 210 19+1 14.28 83.81 87.62 93.33 28.10 93.81 89.05 95.71 75.24± 2.71
Car Evaluation 1728 6+1 70.02 91.49 89.70 97.11 70.02 92.36 85.53 94.61 88.25± 6.26
Balance Scale 609 2+1 45.76 71.04 37.44 69.60 56.32 69.60 70.72 71.36 95.08± 3.18
Iris 150 4+1 33.33 94.00 92.67 94.00 66.67 94.00 94.00 94.67 95.33± 6.32
Monk’s 556 6+1 48.39 89.52 90.32 80.64 73.39 82.26 77.42 95.97 72.26± 7.12
Wine 178 13+1 39.89 96.08 95.51 93.82 58.43 93.82 98.87 98.31 97.22± 5.40

The values in boldface for MLNC classifier indicate notable accuracy re-
sults, and the boldface values for other classifiers indicate those whose accuracy
value was surpassed by MLNC results. In comparison with the rule-based classi-
fiers, MLNC presented superior accuracy values for most databases. Regarding
tree-based classifiers, MLNC had better or very similar results in 6-out-of-10
databases. In comparison with Bayesian networks based classifiers such as Naive
Bayes (NB) and Tree-Augmented Network (TAN), MLNC presented competitive
results. In some cases MLNC surpassed the TAN classifiers, generally considered
the best available Bayesian network based classifiers [16].

3.2 Unsupervised and semisupervised learning scenarios: a proposal

SL requires fully labeled patterns while learning a classifier. Labels are often
specified using human expertise, which is expensive, time consuming and error
prone [17]. Unlabeled data are usually easier to obtain. As an example, in facial
image recognition it is easy to collect videos of people’s expressions; however, it
is expensive to label videos to the corresponding expressions.

Usually, UL methods cluster datasets based on a similarity measure, fre-
quently represented as a distance function applied to a pair of observations [18].
Most times this measure is the only information available to allocate an obser-
vation into a particular cluster. Consequently, information about dependence
relations “within” the data can be inadvertently discarded. Our idea is to en-
code domain knowledge about the data to be clustered using first-order logic
formulas, in special employing Markov logic. Obviously, the representation of
domain knowledge is delicate, given the flexibility and compactness of modeling
of Markov logic. As an example, suppose one assumes the following formula as
knowledge about a correct data partition:

∀x∀y Feature i (x) ∧ Feature j (x)⇒ BelongsToCluster (x, Cluster 1),
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when the correct model satisfies:

∀x∀y Feature i (x) ∨ Feature j (x)⇒ BelongsToCluster (x, Cluster 1).

Syntatically, the difference between sentences is minimal (a disjunction is re-
placed by a conjuntion), but this can influence greatly the final configuration of
clusters.

We now turn to semisupervised learning; in particular, to semisupervised
learning with constraints. Again, we wish to use Markov logic to represent two
kinds of constraints: must-links and cannot-links.

The use of a reduced amount of labeled and data extended by a large quantity
of unlabeled instances together in semisupervised learning has generated a great
deal of controversy, with evidence in favor of adding unlabeled data [19–21]
and also evidence contrary to it [22, 23, 16, 24, 25]. It seems easy enough to add
labeled data to a problem encoded in Markov logic. What is more difficult is to
encode constraints such as must-links and cannot-links.

With MLNs, tasks involving semisupervised learning with constraints (SSLC)
can be modeled in a simple way, given the availability of a proper syntax
to define constraints. As a tutorial explanation of how this problem can be
addressed, consider the example presented in Section 3.1. In that example,
to represent must-links and cannot-links constraints over the class labels, we
could create two additional predicates denoted by MustLink(row i,row j) and
CannotLink(row i,row j). The first means that two instanciations (realizations
in tha dataset) of all atributes belong to the same class, and the latter, the op-
posite, i.e., they should not belong to the same class. To complete the model,
we have also to specify other two logic formulas correlating the constraints and
class predicates. These formulas are:

MustLink(row i, row j)⇒ Class(row i, value c)⇔ Class(row j, value c)

CannotLink(row i, row j)⇒ Class(row i, value c)⇔ Class(row j, value c).

In order to propagate the effect of the contraints for all instanciations con-
strained, a transitivity relation could also be modeled by a logic formula, like
in:

MustLink(row i, row j) ∧ MustLink(row j, row k)⇒ MustLink(row i, row k).

Note that cannot-links are not transitive, thus a sentence imposing such a
transitivity relation should not be added. Now we can extend the methodology
previously discussed in connection with SL, by suitably inserting some extra
steps to create schemes for SSLC using Markov logic. These steps are:

1. Define predicates to represent must and cannot-link constraints.
2. Build formulas correlating constraint predicates and associated class label

predicates
3. Build a formula to represent the transitivity relation between must-link con-

traint predicates.
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4 Conclusion

The results presented in this paper indicate that Markov logic is a flexible and
useful language to build classifiers. Supervised classifiers based on Markov logic
suggest that this language can sometimes exceed the performance of state-the-
art methods on real data. Besides, the main advantage of Markov logic classifiers
is the possibility of encoding deterministic and substantial relations about the
domain of interest.

Our main contribution is a methodology on how to encode classification
problems using Markov logic. Formulas that encode deterministic contraints in
semisupervised learning with constraints can be represented through Markov
logic networks. The goal of the work is to provide methods and tools that allow
an easy manipulation of constraints with Markov logic.

As future work, we intend to run experiments with Markov logic in unsu-
pervised and semisupervised settings, so as to verify the extent to which our
modeling proposals apply in those tasks. Yet in supervised classification, we
intend to refine our model of learning employing a technique for attribute se-
lection. We will also investigate the learning of classification rules by means of
an inductive logic programming system, in order to use them in Markov logic
framework.

Acknowledgments. This work has been developed in collaboration with HP.
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