
LEARNING CLASSIFIERS WITH MARKOV LOGIC NETWORKS

Victor A. Silva∗, Rodrigo B. Polastro∗, Fabio G. Cozman∗

∗Laboratório de Tomada de Decisão
Escola Politécnica – Universidade de São Paulo

Av. Prof Mello de Morais, 2231, CEP 05508-900
São Paulo, SP, Brazil

Emails: victorsilva@usp.br, rodrigopolastro@usp.br, fgcozman@usp.br

Abstract— One of the central steps in building a pattern recognition system is the choice of the language
that is employed to represent patterns and their classes — typical schemes involve rules, posterior probabilities,
decision trees. In this paper we investigate the performance of Markov logic, a general language that combines
first-order logic and probabilities, in the realm of pattern recognition; more specifically, in supervised learning
of classifiers. We develop the theory necessary for this application of Markov logic, and present results with real
data.

Keywords— Pattern recognition, supervised learning, Markov logic networks.

Resumo— Uma dos principais passos na construção de um sistema de reconhecimento de padrões é a escolha da
linguagem para representar padrões e suas classes — esquemas t́ıpicos envolvem regras, probabilidades posteriores,
árvores de decisão. Neste artigo investigamos o desempenho de lógica de Markov, uma linguagem geral que
combina lógica de primeira-ordem e probabilidades, em reconhecimento de padrões; mais especificamente, no
aprendizado supervisionado de classificadores. Desenvolvemos a teoria necessária para esta aplicação de lógica
de Markov, e apresentamos resultados com dados reais.

Palavras-chave— Reconhecimento de padrões, aprendizado supervisionado, redes lógicas de Markov.

1 Introduction

To attain its goals, an intelligent system must se-
lect actions based on its past experiences. A cru-
cial task in such systems is to classify data col-
lected by sensors, so as to extract useful infor-
mation out of them. In this paper we are in-
terested in pattern recognition tasks (that is, to
classify the nature of an observed pattern) where
a classifier is learned from labeled data (Devroye
et al., 1997; Jain et al., 1999). That is, we focus on
supervised techniques: we are given a collection of
labeled (pre-classified) patterns called class labels,
and the problem consists of labeling a newly en-
countered, and yet unlabeled, pattern. We wish
to focus on statistical learning of supervised clas-
sifiers (Hastie et al., 2001) — thus we wish to con-
sider classifiers that have a strong probabilistic ba-
sis.

There are many “languages” that can be used
to specify a classifier. Decision trees offer one such
language; Naive Bayes classifiers offer a different
language. Experience has shown that a trade-off is
necessary in practice: if the underlying “language”
leaves too many parameters free, the problem of
overfitting appears; if the underlying “language” is
too rigid, it may not be possible to capture rele-
vant aspects of patterns (Friedman, 1997).

In the last decade a large number of sta-
tistical models has been proposed by combin-
ing well-known statistical methods with frag-
ments of first-order logic. These models have
appeared under the banners of (among others)
inductive logic programming and probabilistic re-

lational models; their purpose is to allow struc-
tured descriptions of observed data. The poten-
tial complexity of learned descriptions depends on
the underlying language that is adopted. Thus
one may adopt Horn clauses as the representa-
tion language (Lavrac and Dzeroski, 1994; Mug-
gleton and Raedt, 1994), leveraging on their ade-
quate tradeoff between complexity and expressiv-
ity. A different approach is to start with a lan-
guage that is close to relational databases and
statistical models, and to focus on learning re-
lational structures from relational data (Dzeroski
and Lavrac, 2001; Getoor and Taskar, 2007).

A considerable number of proposals for “re-
lational” learning rely on graph-based models in-
spired by Bayesian networks and Markov ran-
dom fields. For instance, relational Bayesian net-
works employ relations as nodes of a Bayesian net-
work (Jaeger, 1997; Jaeger, 2001). Markov logic
networks (MLNs) instead employ first-order for-
mulas as the nodes of a Markov random field
(Richardson and Domingos, 2006). These graph-
based models are much more expressive than their
propositional counterparts, and they have been
used successfully in bioinformatics, language pro-
cessing and diagnosis, to name a few applications
(Getoor and Taskar, 2007).

Markov logic is a very flexible language that
allows one to handle many aspects of real-world
problems in a single representation. Inference al-
gorithms have been implemented in an open tool
called Alchemy package. It is currently a natural
choice if one wishes to combine relational frag-
ments of first-order logic with probabilities. How-

ever, the behavior of Markov logic as a basis for
pattern recognition is not well explored. Due to
the flexibility of the language, one can easily face
overfitting, so the use of Markov logic is not en-
tirely straightforward when learning classifiers.

In this paper we investigate the application
of Markov logic to supervised learning of classi-
fiers. We examine the necessary theory, propose
sensible techniques to represent the dependencies
between class and attributes, and describe experi-
ments with real data. As it will be clear, our tech-
niques offer a promising picture of Markov logic as
a language for automatic pattern recognition.

Section 2 reviews relevant concepts about
classification and knowledge bases. In Section 3
the overall problem and proposed approach are
stated. Section 4 describes experiments and re-
sults obtained. The conclusion of the paper is left
to Section 5.

2 Background

2.1 Classifiers and supervised learning

A classifier is a function g (X1, . . . , XN) from at-
tributes to labels. The attributes are represented
by variables Xi’s, and the labels are the values
that a class variable Y can assume. The goal, in
constructing a classifier, is to obtain an estima-
tor Ŷ = g (X1, . . . , XN) such that Ŷ = Y . So,
to learn a classifier is to build a function g from
data. This is often referred to as training the clas-
sifier. To evaluate classifiers, the usual metric is
the probability of error, given by

eg = P (Y 6= g (X))
= E

[
IY 6=g(x) (X, Y)

]
. (1)

The empirical error rate is

êg =
1
N

N∑
i=1

IY 6=g(x) (X, Y) . (2)

The optimal classifier is given by

g∗ = arg ming eg
= arg ming P (Y 6= g (X)). (3)

These expressions use the joint distribution
P (X, Y). When the joint distribution is not avail-
able, it can be estimated from collected data,
and the classifier is built using estimates of the
joint distribution. Alternatively, the classifier can
be directly built from data, without resort to
the expression of the optimal classifier (Devroye
et al., 1997).

Usually a classifier is learned using only a por-
tion of available data, the training data. The re-
mainder of the data are used to test the classifier
(e.g., by estimating the probability of error), is the
testing data. Testing data is important to detect

overfitting ; that is, the situation where a classi-
fier is excellent for the training data but fails for
other data. If no testing data are available, at
least cross-validation must be used, in which one
proceeds by separating a fraction of the data for
testing, then repeating over the whole database.
Five-fold or ten-fold cross-validation are very com-
mon procedures.

2.2 Basics of Markov Networks

A Markov network (MN) (also known as a Markov
random field) is a statistical model for the joint
probability distribution of a set of variables X =
(X1, X2, . . . , Xn) ∈ X (Pietra et al., 1997). A MN
is composed of an undirected graph G and a set
of potential functions φk. The graph has a node
for each variable, and the model has a potential
function for each clique in the graph. A clique
is a set of completely interconnected nodes, and
a potential function is a non-negative real-valued
function over the variables of the corresponding
clique. The joint distribution represented by a
MN is given by

P (X = x) =
1
Z

∏
k

φk
(
x{k}

)
, (4)

where xk is the state of the kth clique (i.e., the
state of the variables that appear in that clique).
The denominator Z, known as the partition func-
tion, is given by

Z =
∑
x∈χ

∏
k

φk
(
x{k}

)
.

MNs are often conveniently represented as log-
linear models, with each clique potential replaced
by a exponentiated weighted sum of features of the
state, leading to

P (X = x) =
1
Z

exp

∑
j

wjfj (x)

 . (5)

A feature may be any real-valued function of the
state. There is one feature corresponding to each
possible state xk of each clique, with its weight
being log φk

(
x{k}

)
. This representation is expo-

nential on the size of the cliques. However we
are allowed to specify a much smaller number of
features (e.g., logical functions of the state of the
clique), allowing for a more compact representa-
tion than the potential-function form (particularly
when large cliques are present).

Maximum a posteriori inference in MNs in-
volves finding the most likely state of a set of query
variables given the state of a set of evidence vari-
ables. Conditional inference involves computing
the distribution of the query variables given the
evidence. The most widely employed approximate
solution to this problem is Markov chain Monte
Carlo (MCMC) methods (Gilks, 1995).

2.3 First-Order Knowledge Bases

A first-order knowledge base (KB) is a set of sen-
tences or formulas in first-order logic (Genesereth
and Nislsson, 1987). Formulas are constructed us-
ing four types of symbols: constants, logical vari-
ables, functions and predicates. Constant sym-
bols represent objects in a domain of interest (e.g.,
people: Anna, Bob, Chris, etc.). Logical vari-
ables range over the objects in the domain. Func-
tion symbols (e.g., MotherOf) represent mappings
from tuples of objects to objects. Predicate sym-
bols represent relations among objects in the do-
main (e.g., Friends) or attributes of objects (e.g.,
Smokes).

A term is any expression representing an ob-
ject in the domain; it can be a constant, a log-
ical variable, or a function applied to a tuple of
terms. For example, Anna, x, and GreatestCom-
monDivisor(x,y) are terms. An atomic formula
or atom is a predicate symbol applied to a tuple
of terms (e.g., Friends(x,MotherOf(Anna))). A
ground term is a term containing no variables. A
ground atom or a ground predicate is an atomic
formula all of whose arguments are ground terms.
Formulas are recursively constructed from atomic
formulas using logical connectives and quantifiers.
Some of the logical connectives in first-order logic,
and their representation in the Alchemy package,
are: not (!), and (^), or (v) implies (=>), if and
only if (<=>).

A positive literal is as an atomic formula; a
negative literal is a negated atomic formula. A
KB in clausal form is a conjunction of clauses,
a clause being a disjunction of literals. A possible
world assigns a truth value to each possible ground
atom.

In finite domains, first-order KBs can be
propositionalized by grounding relations and func-
tions, and by replacing each universally (existen-
tially) quantified formula with a conjunction (dis-
junction) of all its groundings. In this paper we as-
sume that domains are finite, as usually assumed
in current work on Markov logic (recent investiga-
tions have tried to remove this restriction (Singla
and Domingos, 2007)).

3 Markov Logic Networks for
Classification

A first-order KB can be thought as set of hard
constraints on the set of possible worlds. Con-
sequently, if a world violates even one formula,
it has probability equal to zero. The idea in
Markov logic networks (MLNs) is to soften these
constraints in a manner that when a world vio-
lates one formula in the KB it becomes less prob-
able. The fewer formulas a world violates, the
more probable it is. Each formula has an associ-
ated weight that reflects how strong a constraint

it is; the higher the weight, the greater the dif-
ference in log probability between a world that
satisfies the formula and one that does not, other
things being equal.

An MLN (Richardson and Domingos, 2006)
is defined as a set of pairs (Fi, wi), where Fi is
a formula in first-order logic and wi is a real
number. Together with a finite set of constants
C = {c1, . . . , c|C|}, it defines a Markov network
ML,C (Equations 4 and 5) as: (1) ML,C contains
one binary node for each possible grounding of
each predicate appearing in L. The value of the
node is 1 if the ground predicate is true and 0
otherwise; (2) ML,C contains one feature for each
possible grounding of each formula Fi in L. The
value of this feature is 1 if the ground formula is
true, and 0 otherwise. The weight of the feature
is the wi associated with the Fi in L.

There is an edge between two nodes of ML,C

if the corresponding ground predicates appear to-
gether in at least one grounding of one formula in
L. From the definition of MLN and from Expres-
sions 4 and 5, the probability distribution over
possible worlds x specified by the ground MN
ML,C is given by

P (X = x) =
1
Z

exp

(
F∑
i

wini (x)

)
, (6)

where F is the number of formulas in the MLN
and ni(x) is the number of true groundings of Fi
in x. As formula weights increase, an MLN con-
verges to a purely logical KB, being equal to one
in the limit of all infinite weights (Richardson and
Domingos, 2006).

Assuming domain closure and finiteness, we
have that propositionlized MLNs are finite. In
this case, the groundings of a formula are built
simply by replacing its variables with constants in
all possible combinations.

As a didactic example, consider a pattern
recognition task involving two relevant features
and a variable denoting the class. Assume the
following formulas to be given:
∀x Feature1 (x)⇒ Class (x),
∀x Feature2 (x)⇒ Class (x),

∀x∀y Relation (x, y) ⇒ (Feature2 (x) ⇔ Feature2 (y)).

If we have the constants C = {A, B} , the MLN L
yields the following features in the grounded MN
ML,C :
Feature1 (A)⇒ Class (A),
Feature2 (A)⇒ Class (A),
Feature1 (B)⇒ Class (B),
Feature2 (B)⇒ Class (B),
Relation (A, B) ⇒ (Feature2 (A) ⇔ Feature2 (B))
Relation (B, A) ⇒ (Feature2 (B) ⇔ Feature2 (A))
Relation (A, A) ⇒ (Feature2 (A) ⇔ Feature2 (A))

Relation (B, B) ⇒ (Feature2 (B) ⇔ Feature2 (B))

Figure 1 depicts the resulting propositionalized
Markov network, where C(U) stands for Class(U),

Fj (U) stands for Featurej(U) and R(U, V) stands
for Relation(U, V).

Figure 1: Propositionalized Markov network for a
set of constants C = {A, B}.

More details about MLNs can be found else-
where (Richardson and Domingos (2006), Poon
and Domingos (2006), Singla and Domingos
(2006), Singla and Domingos (2005)).

Applying Markov logic in classification re-
quires some care. An obvious idea is to build a
classifier by learning weights for all formulas such
as

C ⇒ A1 ∧A2 ∧ . . . ∧An,

where we have a conjunction of atributes as an
implication of the class (that is, by learning prob-
abilities for Horn clauses). The Alchemy package
allows one to specify, in one sentence, the set of all
conjunctions over all attributes, thus it is easy to
explore this alternative. However, as n grows the
approach becomes unmanageable as it requires es-
timation of an exponential number of probability
values. Indeed, if each atribute has m different
values and we have c possible classes, Alchemy
learns c ·mn parameters from data — overfitting
then takes over and leads to poor classifiers.

A more concise alternative, and one that
seems natural at first, is to learn probabilities for
Horn clauses that mimic the structure of a Naive
Bayes classifier:

C ⇒ A1

C ⇒ A2

. . .

C ⇒ An

The idea is to learn the probability that a sin-
gle attribute implies the class, for each attribute.
Taking the same example as in the last paragraph,
we now have only n (c ·m) parameters to learn.
Despite the simplicity of this approach, experi-
ments showed it to produce very poor classifiers.
Further analysis revealed it to be actually far from
a Naive Bayes classifier, because weights of formu-
las like C ⇒ Ai are not related at all with the con-
ditional probability of P (Ai|C). Indeed, the prob-
ability of an implication to be true tells us nothing
about the conditional probabilities, as the formula
is always true if ¬C∨Ai. Even though Park (2002)
has proposed a way to express conditional prob-
abilities from weighted clauses, it does not seem
possible to create sensible classifiers on the basis
of learning probabilities for Horn clauses.

The best results we obtained with MLN
have been produced instead with conjuntions of
groundings of the class and attributes, as we can
see in the following formulas:

C ∧ A1

C ∧ A2

. . .
C ∧ An

Thus, the methodology adopted to express
and validate a classifier in Markov logic based on
these formulas is defined as follows:

• Define the class label variable;

• Extract suitable and meaningful features, i.e.,
the relevant attributes to avoid model incor-
rectness;

• Convert features into representative first-
order predicates;

• Build conjunctions between pairs of class
predicates and feature predicates;

• Build the traning and testing databases;

• Run generative weight learning;

• Cross-validate the classifier model obtained.

To understand this methodology, consider the
following example. A database usually contains
rows with observed values for attributes and class.
Each row contains observed values for attributes
that can be denoted by variables X1, . . . , XN ,
where N is the problem’s dimension. Suppose a
database D contains a hundred rows with two bi-
nary features denoted by featurei, featurej , and
with a class variable. A classifier representation
for this example would then be constructed with
three predicates and three logic formulas. In the
syntax of the Alchemy tool, it would be as follows:

feature_i(row, value_i!)

feature_j(row, value_j!)

class(row, value_c!)

*class(row, +value_i) ^ *feature_i(row, +value_i)

*class(row, +value_j) ^ *feature_j(row, +value_j)

*class(row, +value_k) ^ *feature_k(row, +value_k)

The variable row ranges over each row number in
database, and value_i, value_j range over the
value the respective attribute can assume. The
operator ! placed after a variable allows one to
specify variables that have mutually exclusive and
exhaustive values. For example, in class(row,
value!), the ! means that any row has exactly
one class label value. When predicates in a for-
mula are preceded by *, all possible ways in which
* can be replaced by ! are considered. If multiple
variables are preceded by +, a weight is learned
for each combination of their values in the for-
mula. Together, formulas, their symbols and op-
erators constitute the basis to construct (ground-
ing and structure) a MN (see Richardson and

Table 1: Classification results (in %) for MLNC, rule, tree and Bayes-based classifiers. In Weka, infor-
mation about standart deviation in classification accuracy results is not available.

UCI database #lab
Rules Trees Bayes nets

MLNC
ZeroR DT Prism SC DS J48 NB TAN

Adult 1500 75.11 85.36 − − 75.10 85.73 82.84 85.98 82.90± 1.35
Ionosphere 351 64.10 87.18 84.90 88.60 82.90 90.31 90.31 92.59 89.76± 3.75
Nursery 3087 34.20 96.00 99.52 99.58 67.98 98.07 92.49 96.45 90.96± 1.13
Breast Cancer (Diag.) 569 62.74 94.20 92.27 95.25 90.51 95.43 95.61 96.31 95.79± 3.22
Image Segmen. 210 14.28 83.81 87.62 93.33 28.10 93.81 89.05 95.71 75.24± 2.71
Car Evaluation 1728 70.02 91.49 89.70 97.11 70.02 92.36 85.53 94.61 88.25± 6.26
Balance Scale 609 45.76 71.04 37.44 69.6 56.32 69.6 70.72 71.36 95.08± 3.18
Iris 150 33.33 94.00 92.67 94.00 66.67 94.00 94.00 94.67 95.33± 6.32
Monk’s 556 48.39 89.52 90.32 80.64 73.39 82.26 77.42 95.97 72.26± 7.12
Wine 178 39.89 96.08 95.51 93.82 58.43 93.82 98.87 98.31 97.22± 5.40

Domingos (2006, Table I, Figure 1), for details on
this construction). After expressing an MN model
of the database in Markov logic, the next step
would be to build appropriate training and test-
ing databases. Generative weight learning could
be done afterwards. At last, ten or five-fold cross-
validation should be perfomed.

4 Experiments

To investigate the performance of Markov logic
classifiers, we have performed experiments with
some of the UCI1 databases. For inference and
weight learning we have used an open software
tool Alchemy (Kok et al., 2005), which provides a
series of algorithms for statistical relational learn-
ing and probabilistic inference.

The methodology for tests was organized
as follows: (1) specification of the problem’s
model (relational MN) in Markov logic; (2) pre-
processing of database consisting of discretizing
continuous variables (as Alchemy only works with
categorical/discrete data), converting instances of
variable into atoms (first-order logic) and building
of appropriate training and testing data; (3) gen-
erative learning of weights associated to formulas
in the model; and (4) running inference algorithms
on query variables.

Table 1 summarizes the accuracy of our clas-
sifiers, denoted by MLNC (Markov Logic Net-
work Classifier), and of other state-of-art classi-
fication methods. They are: Naive Bayes (NB),
Tree-Augmented Naive Bayes (TAN), J48, Prism,
Decision Table (DT), Simple Cart (SC), Deci-
sion Stump (DS) and ZeroR (these algorithms
are included in Weka (Waikato Environment for
Knowledge Analysis) (Witten and Frank, 1999)).
The UCI databases used in our experiments were:
Adult, Breast Cancer Iris, Wine, all of them
amongst the most popular databases in the lit-
erature; and also the Balance Scale, Car Evalu-
ation, Image segmentation, Ionosphere, MONK’s
problems and Nursery. Some of this databases

1Available in http://archive.ics.uci.edu/ml/

were trimmed to reduce computation time. In this
reduction the classes proportion was kept intact.
The discretization of the databases was done with
a supervised discretization algorithm included in
Weka.

The results in the table for our classi-
fier, MLNC, were obtained with ten-fold cross-
validation over the selected databases. In com-
parison with the rule-based classifiers, MLNC
presented superior accuracy values for most
databases. Regarding tree-based classifiers,
MLNC had better or very similar results in 5-
out-of-10 databases. In comparison with Bayesian
network classifiers such as Naive Bayes and TAN.
MLNC presented competitive results. In sev-
eral cases MLNC surpassed the TAN classifiers,
generally considered the best available Bayesian
network classifiers (Cohen et al., 2004; Friedman
et al., 1997).

5 Conclusion

The results presented in this paper suggest that
Markov logic is a flexible and useful contender as
a language for describing patterns and classifiers.
Supervised classifiers based on Markov logic are
on a par with the state-of-art classifiers, some-
times surpassing their performance on real data.
Besides, the main advantage of Markov logic clas-
sifiers seems to be the possibility of encoding de-
terministic relations about the domain of inter-
est. Again, one must be careful to avoid an explo-
sion of parameters to be learned while specifying
a Markov logic classifier; the method described in
Section 3 is the main contribution here.

As future work we intend to explore Markov
logic in semi-supervised learning under con-
straints; that is, in situations where data may be
related by deterministic constraints (Basu et al.,
2004; Law et al., 2005; Shental et al., 2003).
Markov logic is particularly well suited in this con-
text as it can easily model the deterministic con-
straints within the language itself.

Acknowledgments

This work has received generous support from HP
Brasil R& D. The third author is partially sup-
ported by CNPq.

References

Basu, S., Bilenko, M. and Mooney, R. J. (2004). A
probabilistic framework for semi-supervised
clustering, KDD ’04: Proceedings of the tenth
ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM
Press, New York, NY, USA.

Cohen, I., Cozman, F. G., Sebe, N., Cirelo,
M. C. and Huang, T. S. (2004). Semisu-
pervised learning of classifiers: theory, al-
gorithms, and their application to human-
computer interaction, IEEE Transactions on
Pattern Analysis and Machine Intelligence .

Devroye, L., Györfi, L. and Lugosi, G. (1997). A
Probabilistic Theory of Pattern Recognition
(Stochastic Modelling and Applied Probabil-
ity), Springer.

Dzeroski, S. and Lavrac, N. (2001). Relational
Data Mining, Springer, Berlin.

Friedman, J. H. (1997). On bias, variance, 0/1-
loss, and the curse-of-dimensionality, Data
Mining and Knowledge Discovery 1(1): 55–
77.

Friedman, N., Geiger, D. and Goldszmidt, M.
(1997). Bayesian network classifiers, Machine
Learning 29(2-3): 131–163.

Genesereth, M. R. and Nislsson, N. J. (1987).
Logical Foundations of Artificial Intelligence,
Morgan Kaufmann Publishers.

Getoor, L. and Taskar, B. (2007). Introduction to
Statistical Relational Learning, MIT Press.

Gilks, W. R. (1995). Markov Chain Monte Carlo
in Practice, Chapman & Hall/CRC.

Hastie, T., Tibshirani, R. and Friedman, J. H.
(2001). The Elements of Statistical Learning,
Springer.

Jaeger, M. (1997). Relational Bayesian networks,
in D. Geiger and P. P. Shenoy (eds), Confer-
ence on Uncertainty in Artificial Intelligence,
Morgan Kaufmann, San Francisco, Califor-
nia, pp. 266–273.

Jaeger, M. (2001). Complex probabilistic mod-
eling with recursive relational Bayesian net-
works, Annals of Mathematics and Artificial
Intelligence 32: 179–220.

Jain, A. K., Murty, M. N. and Flynn, P. J. (1999).
Data clustering: a review, ACM Computing
Surveys 31(3): 264–323.

Kok, S., Singla, P., Richardson, M. and Domingos,
P. (2005). The alchemy system for statistical
relational AI, Technical report, Department
of Computer Science and Engineering, Uni-
versity of Washington.

Lavrac, N. and Dzeroski, S. (1994). Inductive
Logic Programming: Techniques and Appli-
cations, Ellis Horwood, New York.

Law, M. H. C., Topchy, A. P. and Jain, A. K.
(2005). Model-based clustering with proba-
bilistic constraints, SIAM International Data
Mining Conference.

Muggleton, S. and Raedt, L. D. (1994). Induc-
tive logic programming: Theory and meth-
ods, Journal of Logic Programming 20: 629–
679.

Park, J. D. (2002). Using weighted max-sat en-
gines to solve mpe, Eighteenth national con-
ference on Artificial intelligence, American
Association for Artificial Intelligence, Menlo
Park, CA, USA, pp. 682–687.

Pietra, S. D., Pietra, V. D. and Lafferty, J. (1997).
Inducing features of random fields, IEEE
Transactions on Pattern Analysis and Ma-
chine Intelligence 19(4): 380–393.

Poon, H. and Domingos, P. (2006). Sound and ef-
ficient inference with probabilistic and deter-
ministic dependencies, AAAI, AAAI Press.

Richardson, M. and Domingos, P. (2006). Markov
logic networks, Machine Learning 62(1-
2): 107–136.

Shental, N., Bar-Hillel, A., Hertz, T. and Wein-
shall, D. (2003). Computing Gaussian mix-
ture models with EM using equivalence con-
straints, NIPS.

Singla, P. and Domingos, P. (2005). Discrim-
inative training of Markov logic networks.,
AAAI, AAAI Press / The MIT Press.

Singla, P. and Domingos, P. (2006). Memory-
efficient inference in relational domains,
AAAI, AAAI Press.

Singla, P. and Domingos, P. (2007). Markov logic
in infinite domains, Conference on Uncer-
tainty in Artificial Intelligence, AUAI Press,
pp. 368–375.

Witten, I. H. and Frank, E. (1999). Data Mining:
Practical Machine Learning Tools and Tech-
niques with Java Implementations, Morgan
Kaufmann.

