Inference with Aggregation Parfactors:
Lifted Elimination with First-Order d-Separation

Felipe I. Takiyama
Escola Politécnica
Universidade de Sdo Paulo

Abstract—In this paper we focus on lifted inference for
statistical relational models; that is, inference that avoids
complete grounding, in models that combine logical and
probabilistic assertions. We focus on relational Bayesian
networks that can be represented through parfactors and
aggregation parfactors. We present a new elimination rule
for lifted variable elimination, and show how to use first-
order d-separation to extend the reach of existing elimination
rules.

I. INTRODUCTION

Bayesian networks and Markov random fields offer
excellent tools to express probabilistic assessments over
a large number of variables [1]. These graph-based “lan-
guages” are propositional in that random variables are not
indexed by elements of a domain. For example, we may
have variables such as victoryByBob. Now if we have a
population, we may be interested in whether Ann, Bob,
etc, obtain a victory or not. The natural strategy is to
consider parameterized random variables such as win(zx),
where x is a logical variable running over the population
of interest [2], [3], [4]. We might write down a graph
such as bet(z) — win(x) — noWinner, to encode
a possibly large Bayesian network consisting of many
branches pointing to noWinner.

In this paper we consider the problem of running
inference (that is, computing probabilities) in such pa-
rameterized Bayesian networks. We consider Kisynski
and Poole’s extension of first-order variable elimination
[5], [6], currently the state-of-art when it comes to lifted
inference with aggregation parfactors. Here the meaning
of “lifted” inference is that inference is performed without
completely grounding all parameterized random variables.

We have two contributions. First, we present a new
elimination rule for aggregation parfactors, and show
its correctness. Second, we indicate how first-order d-
separation tests can be used to enhance the performance
of existing elimination rules.

Section II presents the necessary background. We then
introduce a new inference rule in Section III, and discuss
the effect of d-separation in Section IV.

II. PARFACTORS AND AGGREGATION PARFACTORS

Graph-based probabilistic models represent joint dis-
tributions over variables X = {Xi,...,X,} [1]. In
this paper we assume every random variable to have a
finite number of values. A Bayesian network consists of
a directed acyclic graph where each node is a variable

Fabio G. Cozman
Escola Politécnica
Universidade de Sdo Paulo

X;, coupled with a factorization condition on the joint
distribution; namely, P(X) =[]\, A(X;|pa(X;)), where
P(-) denotes probability and pa(X) denotes the parents
of node/variable X. A Markov random field, or Markov
network, consists of an undirected acyclic graph where
each node is again a variable X;, coupled with a fac-
torization condition (under the assumption of positivity):
PX) = Z7'TI{L, fx(Xk), where k runs over the m
cliques of the graph, Xy is the set of variables in the
kth clique, fj is any positive function of Xy, and the
normalization constant Z is called the partition function. In
very general terms we can say that both Bayesian networks
and Markov networks share the property that associated
joint probabilities behave as products of factors.

The graph-based models in the previous paragraph can
be extended to parameterized counterparts. In doing so,
we wish to obtain a more flexible language, with features
of first-order logic. There are several frameworks to do
so [7], [8]; here we adopt Poole’s language of parfactors
[4], defined as follows. A domain is a set of individuals.
We only consider finite domains here. A logical variable z
runs over a specific domain, denoted by D(z). A parame-
terized random variable, or simply parvariable, consists
of a symbol r(ty,...,t;), where r is a predicate and
each t; is either a logical variable or a constant. Here we
only consider parvariables with values true and false, but
the results can be easily generalized to any finite number
of values. A parvariable r(t,...,%;), where possible
groundings are subject to a set of constraints C, represents
a set RV(r(t1,...,tx) : C) of random variables; that
is, the set obtained by grounding r(t1,...,¢;) in every
possible way allowed by C' (that is, replacing every logical
variable by possible individuals).

A parfactor is a parameterized function, as it is a
function of parvariables. More formally, a parfactor is
atuple < L,C,V,¢ >, where L is a set of logical
variables, each tied to a domain, C' is a conjunction
of inequality constraints on logical variables in L and
appropriate constants, V' is a set of parvariables, and ¢
is a function of parvariables in V. For instance, C' may be
(x #y) A (x # a) A(y #b), where = and y are logical
variables and a and b are constants. Logical variables
in C and ¢ must be in L. A parfactor represents a set
of factors, one for each grounding of parvariables in V'
(where groundings must satisfy constraints in C').

A set of parfactors represents a joint distribution that is
produced by multiplying all factors produced by ground-

Figure 1.

A dense Markov network produced by a single parfactor.

ing. With these conventions, we can use parfactors to en-
code relational Markov networks; that is Markov networks
that are specified using relations and logical variables.
The next example builds a Markov network from a
single parfactor. Note that for a formula 6, I[f] denotes the
indicator function that yields 1 if 6 holds and O otherwise.

Example 1 Consider the singleton set

{<{z,9},0.{A(z), B(y)}, 1 + 3I[A(x)] + I[B(y)] >}.
Note: the function 1+ 3I[A(x)] +I[B(y)] is a function of
A(z) and B(y); for instance, if A(z) is true and B(y) is
false, the function yields 1 + 3 4+ 0 = 4. Now if x and y
have identical domains {aj,as,as,as}, we see that this

parfactor represents the rather dense Markov network in
Figure 1. OJ

It is also possible to define a parfactor that aggregates
the values of a set of grounded random variables. In this
case it is best to understand the parfactors as specifying
a directed model such as a relational Bayesian network.
The next example illustrates this case.

Example 2 A set of three parfactors is defined as
{91, 92,93}, such that all logical variables run over the
same domain D = {ay,...,a,}, as follows:

g1 =< {y}7 ®7 {O(y)}a ¢1 >,
92 =<{z,y},0,{B(z,9),C(y)}, p2 >,
g3 =< {z},0,{A(z), B(z,a1),...,B(z,a,)}, 3 >,
where each ¢; is a parameterized probability distribution:
o1 = PC(y))=0.2+06IC(y)],
¢2 = HB(z,y)|C(y)) = (0.4+ 0.20[B(z, y) IC(y)]
+(0.3 + 0.4I[-~B(z, y))I[-C(y)],
o3 = PA(x)|B(z,a1),...,B(z,a,))
— IJA(@) © 3y: Blz,y))-

Note that g3 aggregates groundings of B(z,y) with respect
to an auxiliary logical variable y. [J

The parfactors in the previous example, taken as pa-
rameterized conditional probability distributions, can be
either viewed as specifying a relational Markov network

Figure 2. Bayesian network by grounding parfactors in Example 2.

or, more directly, a relational Bayesian network [2] with
the following structure:

C(y) — B(z,y) = A(z),

where we indicate by the double arrow that the distribution
of A(x) given B(z,y) in fact aggregates all B(z,y) with
respect to groundings of y. Intuitively, the aggregation is
necessary as B(x,y) uses logical variables that are not
used by A(z), in this case the logical variable y. By
grounding the parfactors we obtain a Bayesian network; in
Figure 2 such a grounding is depicted when both logical
variables have identical domain D = {a1, a2} and empty
constraints. From now on we always assume that a given
set of parfactors specifies a relational Bayesian network.

We now must define aggregation parfactors: that is,
functions with a number of arguments that depends on
the number of grounding. Inspired by Kisynski and Poole
[5], [6], we define an aggregation parfactor as a tuple
< L,C,r,s,®,¢, >, where L is a set of logical variables
and C is a set of constraints (with the same conventions
as before), r and s are parvariables such that only one
logical variable that is not in s appears in r (this logical
variable is denoted by z,_s), and ® is a deterministic
commutative and associative binary operator; finally ¢, is
a factor on r. Aggregation parfactors offer a restricted set
of combination functions in Jaeger’s sense [2].

An aggregation parfactor < L, C,r, s, ®, ¢, > encodes
the parameterized distribution of s given r. As will be clear
later, we also need generalized aggregation parfactors that
are tuples < L,C,r,s,V,®, ¢, > [6, Definition 3.3]. All
components of such a tuple behave as before, and V' is a
set of parvariables, subject to some conditions. These par-
variables appear in other parfactors that must be combined
with the current parfactor in the course of inference; they
are called context variables (their use is clarified later).
Additionally, the factor ¢, can now be a function of r and
v1,...,U,; Where the latter are parvariables in V. When
the factor ¢, is unitary (denoted by 1), that is, a function
that returns 1 for every value in its domain, we may omit
it from the aggregation parfactor. The semantics of such
a simplified aggregation parfactors is that it represents a
set of factors (one for each appropriate grounding) that
yield 1 if ®q4ep(a,_7(---,a,...) is equal to the value
of s(...), and 0 otherwise.

Full-blown aggregation factors in addition contain an
explicit set of constraints over x,_, [6]. These additional
components are needed to specify the complete AC-FOVE
algorithm, but we will not need them here.

As already indicated, even though we can always inter-
pret a set of parfactors as a representation for a relational
Markov network, we will assume that they are given as pa-
rameterized conditional probability distributions represent-
ing a relational Bayesian network. Aggregation parfactors
are important in this setting as they allow one of encode
the dependence of a random variable on several parent
random variables (as in Example 2 for random variables
A(a;)). In essence, aggregation parfactors are needed
in relational Bayesian networks whenever a parvariable
contains less logical variables than its parents.

III. LIFTED INFERENCE: THE AC-FOVE ALGORITHM

An inference denotes the calculation of the probability
of a (possibly grounded) relation perhaps given other
grounded relations. For instance, in Example 2 we may
be interested in P(A(a1)|C(az)). Such a calculation can
proceed by grounding all parfactors into a Bayesian net-
work, and then running inference there. Alternatively,
inference may be lifted in that it may exploit symmetries in
the parfactors, thus producing results without a complete
grounding of all parfactors.

Existing algorithms for lifted inference employ counting
formulas. The motivation is simple: when dealing with
parfactors, it is usually the number of groundings assigned
true or false that matter, and not the specific truth as-
signment to all groundings. Thus it is often enough to
encode the number of true/false assignments as a variable.
More precisely, a counting formula is defined as follows
[9]. Given a parvariable r and constraints C, a counting
formula #(z:C)[r], where x is a logical variable, is a
parvariable (possibly parameterized in logical variables
other than x) with values 0, ..., n, where n is the number
of groundings of x subject to constraints C'. (Note that
this definition is somewhat simplified as we assume that
all parvariables are Boolean.) If C' is empty, it is ommited.
The parvariable # (2:C)[r] can obviously be grounded by
fixing the logical variables other than x; the meaning of
(#(2:C)[r]) = k, when the all logical variables in r are
grounded, is that exactly k groundings of r, subject to
constraints in C, are true. By convention, RV (#(z:C)[r])
is simply RV(r : C).

The restriction that a single parvariable r appears in a
counting formula is not essencial, as it is possible to define
counting formulas over a set of parvariables that share the
logical variable x [10], [11].

One interesting use of counting formulas is to en-
code aggregation operations; for instance, the parfactor
gs in Example 2 can be encoded with a function ¢3 =

f(A(x), #y[B(x,y)]) that yields

¢ (A(@) = true A #y[B(z, y)] > 0)
(A(z) = false A #y[B(x,y)] =0
0 otherwise.

:)

(This sort of representation for aggregation parfactors is
obtained by Kisynski and Poole’s operation of conversion
[6].) Given that ® is commutative and associative, only
counts matter; an inference strategy is to convert every
aggregation to counting formulas and proceed. However,
a more refined strategy is possible, one that exploits the
structure of aggregations. We discuss such a strategy later.

We will always assume that each pair of parvariables r
and s, and associated constraints, satisfies: either RV(r :
C') = RV(s : C") or RV(r : C")NRV(s : C") = 0.
It is always possible to guarantee this condition for each
operation in inference, possibly by splitting parvariables
and counting formulas (the splitting operation can be
found elsewhere [9]).

We will also assume that each parfactor is kept in
normal form, possibly by splitting [9]. That is, the set C*
of all constraints in the parfactor and its counting formulas
is such that for each inequality x # y in C* we have
E(@)\{y} = E(y)\{z}, where E(z) is the set of terms ¢
such that (x # t) € C* (and likewise for £(y)).

A. C-FOVE

The C-FOVE algorithm [9] is a refinenment on several
first-order variable elimination algorithms [4], [12], [13],
[14], [15]. The idea is to stay close to the variable elimi-
nation algorithm used to compute inferences in Bayesian
networks [1]. In variable elimination, at each step a vari-
able is selected and eliminated by multiplication of factors
and summation. In C-FOVE, if possible a parvariable is
selected and eliminated by multiplication of parfactors and
“lifted” summation. To do so, operations of splitting (a
parfactor may be split into several), unification (logical
substitutions may be needed to allow parfactors to be
multiplied together), multiplication, and exponentiation
may be needed. These operations are detailed by Milch et
al [9]. However, it may happen that in a particular situation
no variable can be eliminated; conditions that must be
satisfied for a variable to be eliminated are indicated later.
In such a case C-FOVE has two options. One option is
to ground a selected parvariable, and proceed. Note that
grounding a parvariable may create a large number of
random variables, thus leading to high computational cost.

The second option for C-FOVE, when elimination is not
possible, is to introduce a counting formula, as follows.
Suppose < L,C,{ry,...,rm},¢ > is a parfactor in
normal form, and there is one relation r; such that a free
logical variable = appears only in ;. We can remove this
parfactor from the given set of parfactors, and replace it
with a new parfactor, such that inferences on the remaining
parvariables are not affected. This new parfactor is

< L/a Clv {Tla sy i1, #(‘TCT)[TJv Tit1y- .- 7T'm}, ¢, >,
where L' = L\{z}, C’ denotes the set of constraints in
C restricted to inequalities involving L\{z}, C, denotes

the constraints C' restricted to inequalities involving only

x, and ¢’ is such that, for k € {0,...,n},

¢/(7’1,...,7’Z‘_1,k,7"i+1,...77"m) =
k
O(T1y oy Tim1, TUE, T 1,y e vy)
&(r1y ..., i1, false, 74, . . ,rm)”_k.

Note that counting formulas may be summed out or
grounded as needed so as to allow parvariables to be
eliminated. These operations are, again, detailed by Milch
et al [9].

An enhanced version of C-FOVE is given by Taghipour
et al [10]; in this version it is possible to introduce
counting formulas on several parvariables simultaneously.
That is, we may have #(z:C)[r1,72,...,7m]. Another
enhanced version also allows more complex elimination
patterns, by grouping random variables [11].

C-FOVE is guaranteed to run inference exactly, and
in specific problems it may be able to avoid grounding.
However, it may need to ground parvariables even in
simple problems.

Example 3 Consider again Example 2, and inference
P(A(a1)). C-FOVE cannot eliminate C(y) because it
appears in two parfactors whose multiplications yields
a parfactor with two logical variables (elimination only
applies for a parvariable that contains all logical variables
in the parfactor). And C-FOVE cannot eliminate B(z,y):
if the aggregation parfactor is turned into a parfactor with
counting formula #y[B(xz, y)], then this parfactor must be
multiplied with go and B(x,y) cannot be eliminated from
the result (elimination only removes a parvariable r from
a parfactor when RV(r : C) NRV(+' : C) = @ for any
other 7/ in the parfactor; B(z,y) and #y[B(z,y)] violate
this). Grounding B(z, y) is the only way to proceed. [J

B. AC-FOVE

The AC-FOVE algorithm follows the same structure
of the C-FOVE algorithm, but provides operations that
deal directly with aggregation parfactors without con-
verting them into counting formulas [6, Section 3.4.3].
Suppose the aggregation parfactor of interest is g =<
L.C,r s, V,®, ¢, >. The AC-FOVE algorithm offers
adapted splitting, multiplication, and elimination opera-
tions for such a parfactor, even for cases when the “child”
parvariable s contains logical variables that are not in the
“parent” parvariable 7.

Consider summing out the parvariable r from g, assum-
ing that no other parfactor involves parvariables whose
grounding intersects RV(r : C). In this case, AC-FOVE
offers a logarithmic-time algorithm to eliminate r [6,
Propositions 3.6 and 3.7], by adapting Pingala’s square-
and-multiply algorithm. In effect, the conditions assumed
by the algorithm impose that all groundings RV(r : C)
must be independent of each other. When such an assump-
tion cannot be made, AC-FOVE examines the possibility
that an aggregation parfactor may share other parvariables
(those contained in the context set V') with other parfac-
tors. In some cases, the addition of context parvariables
works perfectly, as in the next example.

Example 4 Consider a variant on Example 2, where:
91 =<{y},0.{C(W)}, é1 >,
92 =<A{z,y}, 0,{B(=,y),C(2)}, 62 >,
93 =<A{z},0,{A(z), B(z,a1),..., B(z,an)}, ¢3 >,

where ¢ and ¢3 are as in Example 2, but ¢, is:

¢2 = HB(z,y)|C(x))
(0.4 + 0.21[B(z, y)I[C(z)]
+(0.3 + 0.4I[-B(z, y)NI[-C(z)].

The change is apparently small (from C(y) to C(x) in go).
Consider inference P(A(a1)). AC-FOVE applies without
problems: we fix C'(z) at true, and run a logarithmic-
time procedure to eliminate B(x,y); then we fix C(x)
at false, and run the same procedure. In fact, in this case
we can run the algorithm as follows. Fix C(x) at true,
then note that P(A(x)|C(x) = true) = 1 — A(B(x,y) =
false|C'(z) = true)™; likewise, P(A(z)|C(z) = false) =
1— P(B(z,y)="false|C(x)=false)". Hence, P(A(ay)) =
0.8(1 — (0.49)") +0.2(1 — (0.7)™). O

However, as the next example indicates, the elimination
rules in the original presentation of AC-FOVE do not
successfully handle situations such as Example 2.

Example 5 Consider now Example 2 and inference
P(A(ay)). AC-FOVE proceeds as in the previous example
[6, Section 3.4.3], by fixing the value of the context par-
variable C'(y), and eliminating B(z,y). This is obtained
by recursively multiplying grounded factors; for instance,
$2(B(,ai), C(a;)) and ¢2(B(x,a;), C(a;)) with i # j.
The result is a factor with variables C(a;) and C(a;);
note that these are distinct variables and that imposing
C(z) to be true does not capture the range of possible
values for this pair of variables. The problem is that each
iteration of the square-and-multiply method introduces a
new grounding of C'(y), and in the end the resulting factor
will be exponential in size. [J

Despite the fact that the original AC-FOVE algorithm
leads to incorrect results in Example 5, we will show that
it is possible to exactly compute P(A(a1)) in this example
without any grounding. We now develop techniques that
allow this to be done correctly, and later show how to
compute the desired value P(A(aq)).

C. Fixing AC-FOVE

The last example shows that the elimination of par-
variables from aggregation parfactors must be examined
more carefully than suggested in the original AC-FOVE.
In this section we identify a condition that, if imposed,
eliminates the sort of problem we faced in Example 5.
The condition is introduced in the following result that
mimics Proposition 3.6 from Kisynski’s work [6].

Theorem 1 Suppose that in a set G of parfactors we have
the aggregation parfactor ¢ =< L,C,r,s,V,®,¢, >
such that:

o the set of constraints C' is in normal form;

o the set of logical variables in r and in the set of
logical variables in s differ only in that the former
set contains x,_, and the latter does not;

e no other parfactor in G shares random variables with
RV(r: C);

e no parvariable in V uses x,_.

Then:
> 9 =

RV (r:C)

< L,C\Cp, VU {s}, 0>, (1)

where ¢ is produced by Pingala’s algorithm; that is, ¢
is equal to ¢, in the following recursive procedure: ¢
equal to ¢, for k = 0, and for larger k, up to m where
m is the number of bits in the binary representation of n
without the leftmost bit,

o :{ > Pr_10k—1
¥ S dbr_16k-1

The proof of this result is in the Appendix.

The key (new) condition is the last one; that is, no
parvariable in V' uses x,_s. Note that Example 5 fails
exactly because logical variable y appears in B(x, y), does
not appear in A(x), and it does appear in the context
parvariable C(y).

if the kth bit is 0,
otherwise.]

IV. ELIMINATION AND D-SEPARATION

A visual inspection of Figure 2 should indicate where
the original AC-FOVE fails: by fixing the value of a
“generic” C(y), we are not fixing the value of all ground-
ings of C(y) that indeed matter for A(x), as the arrows
move across individuals in the domain. A visual inspection
also clarifies why AC-FOVE easily solves Example 4.
Figure 3 shows the Bayesian network that is obtained
by grounding the original relational Bayesian network in
Example 4 with common domain {a,as}, all sets of
constraints empty. It is then clear that computing P(A(ay))
is an easy task as every individual induces a simple
standalone Bayesian network.

It might seem that only simple relational Bayesian
networks such as presented in Example 4 are within
the realm of the corrected AC-FOVE (that is, AC-FOVE
with the corrected operation discussed in the previous
section). The important point is whether the corrected AC-
FOVE can indeed avoid grounding. We now show that the
corrected AC-FOVE can be quite powerful when coupled
with d-separation concepts. Indeed, such a combination
leads to immediate inference in Example 5.

The idea of d-separation is to obtain, by graphical
means and in polynomial time, all independence relations
between a given variable, conditional on a given set of
variables, and all other variables in a Bayesian network
[1]. With d-separation one can detect in polynomial time
all variables that are needed to obtain an inference; all
other variables can be discarded. The basic concept of
d-separation and algorithms that produce all d-separation
relations have been extended to relational Bayesian net-
works by Taghipour et al [16]. The resulting first-order
d-separation method is crucial in lifted inference.

B(ala% &(@@)

Figure 3. Bayesian network by grounding parfactors in Example 4.

'\@@/‘

Figure 4. Bayesian network by first-order d-separation and grounding
with respect to domain {a1, a2} in Example 6.

Indeed, first-order d-separation must always be run
during lifted inference, to discard as many parvariables
as possible, so as to allow lifted operations to apply.

Example 6 Consider Example 5. Suppose first-order d-
separation is run, and parvariables that do not affect the
inference are discarded. The remaining parvariables, if
grounded, produce the Bayesian network in Figure 4. If
we have n individuals, the same process produces the
grounded Bayesian network in Figure 5. We can now run
AC-FOVE, eliminating C(y) and then applying Theorem
1 to obtain

P(A(ay)) = 1—(0.6x0.840.3x0.2)" = 1—(0.54)". O

V. CONCLUSION

In this paper we have presented novel results about exact
lifted inference in first-order probabilistic models based on
parfactors. The first contribution is the corrected version
of Kisynski’s theorem on lifted elimination of aggregation
parfactors (Theorem 1). The second contribution is the
discussion of d-separation as a technique to enhance lifted
inference.

The corrected AC-FOVE algorithm was implemented
in a publicly available software package.! The current
version runs lifted inferences as described in this paper,
but first-order d-separation is not integrated yet.

'Source code and binary executables are available at
https://github.com/ftakiyama/AC-FOVE. We plan to describe this
package in more detail elsewhere.

Figure 5. Bayesian network by first-order d-separation and grounding
with respect to domain {a1, ..., an} in Example 6.

Future work should explore in more detail the use of
d-separation in lifted inference. Additionally, one can also
investigate how to increase the expressivity of parfactors
in order to derive more flexible and powerful inferences.

ACKNOWLEDGMENTS

The first author thanks Jacek Kisynski for kindly clar-
ifying by email several questions concerning aggregation
parfactors. The second author is partially supported by
CNPq. The work reported here received substantial sup-
port by FAPESP grant 2008/03995-5.

APPENDIX

Proof of Theorem 1: It can be shown [6] that parfactor
< L,C,r,s,V,®, ¢, > is equivalent to the product of two
parfactors: < L, Cy, {r}UV, ¢, > and < L\ {z,_s},C\
Cyp,{#xr—s : [r],s},¢ >. Once we eliminate r from
these parfactors, we obtain a parfactor < L,C\ C,,V U
{s}, bm >

Let R be the set of parvariables obtained by propo-
sitionalizing r on every individual bound to z,_g that
satisfies constraints in C. In what follows, the symbol
>~ ¢, means “sum out a parvariable ' € R from ¢,”.
Since only z,_ is propositionalized and it only appears
in r (last condition), every factor produced by >_ ¢, will
be identical (no matter which parvariable ' € R is
eliminated).

We show now that ¢,, calculated through Pingala’s
algorithm produces the correct result. Let (¢,)™ denote
the multiplication of ¢, by itself n times. It suffices to
show that

bm =D -+ (6z)",¥m € N.)
——

n—1
We do it by induction. For the base case of n = 1,
we have m = 0 and thus ¢g = ¢,. For n = 2, we have

m =1 and ¢ = > (¢.)% Suppose Equation (2) is true
for n = j and m = k. Then, forn = 2j orn =25 + 1

we have to calculate ¢p1:

Z ¢ ¢y if the (k+1)th bit is 0
Ohy1 =

o> badrdr otherwise

D ()"

2l DI CRE
—— N———

n—1 n—1

S0 [DD @) | DD (@)
Hl_/ ———

— n—1

Do D (@a)™"
2n—1

Z . Z(%)QHH

—_——
2n

Thus, if Equation (2) is valid for n, then it is valid for
2n and 2n+ 1. Because every natural number greater than
1 can be expressed by these expressions, Expression ((2))
obtains for every natural number. [

REFERENCES

[1] D. Koller and N. Friedman, Probabilistic Graphical Mod-
els: Principles and Techniques. MIT Press, 2009.

[2] M. Jaeger, “Relational Bayesian networks,” in Conference
on Uncertainty in Artificial Intelligence, 1997, pp. 266-273.

[3] D. Koller and A. Pfeffer, “Probabilistic frame-based sys-
tems,” in National Conference on Artificial Intelligence
(AAAI), 1998, pp. 580-587.

[4] D. Poole, “First-order probabilistic inference,” in Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
2003, pp. 985-991.

[5] J. Kisynski and D. Poole, “Lifted aggregation in directed
first-order probabilistic models,” in Int. Joint Conf. on
Artificial Intelligence, 2009, pp. 1922-1929.

[6] J. J. Kisynski, “Aggregation and constraint processing in
lifted probabilistic inference,” Ph.D. dissertation, Computer
Science, University of British Columbia, 2010.

[7] L. Getoor and B. Taskar, Introduction to Statistical Rela-
tional Learning. MIT Press, 2007.

[8] L. D. Raedt, Logical and Relational Learning. Springer,
2008.

[9] B. Milch, L. S. Zettlemoyer, K. Kersting, M. Haimes,
and L. P. Kaelbling, “Lifted probabilistic inference with
counting formulas,” in AAAI, 2008, pp. 1062-1068.

[10] N. Taghipour and J. Davis, “Generalized counting for
lifted variable elimination,” in International Workshop on
Statistical Relational Al, 2012.

[11] N. Taghipour, “Lifted probabilistic inference by variable
elimination,” Ph.D. dissertation, KU Leuven, 2013.

[12] R. de Salvo Braz, E. Amir, and D. Roth, “Lifted first-order
probabilistic inference,” in International Joint Conference
in Artificial Intelligence (IJCAI), 2006.

, “MPE and partial inversion in lifted probabilistic

variable elimination,” in AAAI, 2006.

, “Lifted first-order probabilistic inference,” in An

Introduction to Statistical Relational Learning, L. Getoor

and B. Taskar, Eds. MIT Press, 2007, pp. 433-451.

, “A survey of first-order probabilistic models,” in
Innovations in Bayesian Networks, ser. Studies in Com-
putational Intelligence, Springer, 2008, pp. 289-317.

[16] N. Taghipour, W. Meert, J. Struyf, and H. Blockeel, “First-
order Bayes-ball for CP-logic,” in Workshop on Statistical
Relational Learning, Leuven, Belgium, 2009, pp. 1-3.

(13]

(14]

[15]

