
Compact Representations of Markov Decision Processes and
Their Application to Printer Management

João Vitor Torres 1, Fabio Gagliardi Cozman1, Andr é Rodrigues2

1Escola Polit́ecnica da Universidade de São Paulo (POLI USP)
São Paulo, SP - Brazil

2HP-Brazil R&D, Porto Alegre
RS - Brazil

j v torres@yahoo.com.br, fgcozman@usp.br, andre.rodrigues@hp.com

Abstract. Many planning problems can be framed as Markov decision processes
(MDPs). In this paper we discuss situations where regularities in states and
variables lead to compact MDPs, particularly when variableshave many cate-
gories and strong interrelation. We develop techniques that generate optimal
policies by exploiting regularities in MDPs. We illustratethese ideas with a real
problem on management of printing clusters.

1. Introduction

Situations that require sequential decision making under uncertainty are often modeled by
Markov Decision Processes (MDPs) [Boutilier et al. 1999, Puterman 1994]. However, it
is not always easy to specify all transition probabilities when building an MDP; moreover,
it is not easy to generate optimal policies in large MDPs [Littman et al. 1995]. In this
paper we propose techniques that aim at simplifying the construction and manipulation of
MDPs.

The last decade has seen significant discussion of “factored” descriptions, of-
ten based on Bayesian networks (BNs) [Boutilier et al. 1999, Guestrin et al. 2003].
To further simplify the construction of MDPs, there has beeninterest in mo-
dels that explore hierarchical and logical relations amongstates and variables
[Glesner and Koller 1995, D. Koller 1998, Puterman 1994, R. Sharma 2005]; also, some
design patterns such as “NoisyOR” or “decision-tree distributions” have been detected
[C. Boutilier and Koller 1996, Glesner and Koller 1995]. Our experience in building
MDPs for real problems is that there are further regularities that have even more prac-
tical significance, and that have not received due attentionso far.

We offer two contributions in this paper. First, we propose amethodology that
generates compact factored representations by exploitingcommon features of practical
MDPs (Section 2). We have found these guidelines to be quite effective in our practical
work, particularly when random variables have many categories and display strong inter-
relation. Our second contribution is a set of techniques forgeneration of optimal policies,
where we exploit regularities in the representation of MDPs(Section 3). We also describe
an application of these guidelines to a real problem in industry; in fact, the present work
was motivated by our frustration with existing techniques in dealing with this real problem
(Section 4).

2. MDPs and Compact Representations

A (completely observable and stationary) Markov Decision Process consists of a set of
statesS, a set of actionsA, a transition matrixT for each actiona in A, a reward function
R and a cost functionC [Puterman 1994]. Thefinite setS contains all possible states
(each is a complete description of the system), and the agentmust find apolicy that
prescribes an action for each state. A transition matrixT (s, s′, a) specifies the probability
of moving froms to s′ after actiona. Finally, a reward functionR(s) associates a real
value with each state and a cost functionC(s, a) associates a real value with each pair
state/action. There exists algorithms that can find an optimal policy and determine the
value of each state for this policy, according to several criteria (finite horizon, infinite
horizon with discount, and others); two of these algorithmsarevalue iterationandpolicy
iteration [Bellman 1957, Boutilier et al. 1999].

The first step in constructing an MDP is to represent the system state by means
of variables that capture its relevant characteristics. Let SP be the system state at the
present point in time and letSF be the system state at the next point in time. We must
specify the probability valuesP (SF = si|SP = sl, A = aj). A compact representa-
tion for these probabilities can be produced using a Bayesiannetwork (BN) per action
[Boutilier et al. 1999, Guestrin et al. 2003]. We use such factored representations in the
remainder of the paper.

Example 1 Consider a printer that is modeled by two binary variables: printing queue
(q) and job size (js) and action setA = {Print , Ignore}. The printer state is given by
(q, js); there are 4 states. We can writeSP = (qP , jsP) andSF = (qF , jsF). If the action
is Print , supposeqF depends onqP and jsP , but jsF does not depend on any previous
state (Figure 1.a shows the Bayesian network).

The structure of the BNs implies probabilistic independences (following from the Markov
condition for Bayesian networks; that is, a variable is independent of its nondescendants
given its parents [Pearl 1988]).

Example 2 In Example 1, we write the state transition probability for action Print as:
P (SF = (qF , jsF)|SP = (qP , jsP)) = p(qF |qP , jsP) × p(jsF).

Factorization techniques are of limited help when variables havemanycategories,
as conditional transition matrices may become too large forexplicit specification. In prac-
tical systems we often observe regularities that go beyond independence among variables.
We now introduce a few “design patterns” that have significant practical impact.

1 Suppose that categories of a variableX are ordered (for example,X is integer-
valued) and any change inX occurs only by a limited increase or decrease (thus
many transitions have probability zero). ThenX is said to be oflimited variation.

Example 3 Consider the printing queue variable (q) in our printer model. Assume this
variable has ten categories varying from 1 to 10. It is reasonable to assume that the queue
level can vary just two levels at each transition (up or down).

2 Suppose thatP (XF = x + t|XP = x), the probability thatX makes a transition
from a levelx to a levelx + t, does not depend onx. We assume this property to
hold for negative and positive integer values oft, with the exception of extremities
in the variable scale. ThenX is said to be ofhomogeneous variation.

Example 4 Consider again the printing queue variable (q) in our printer model. The
probability of the printing queue increasing one level is infact independent of the actual
level; for instance,P (qF = 2|qP = 1) = P (qF = 3|qP = 2) (however, whenqP = 10
thenP (qF = 11|qP = 10) = 0 as this is an extreme situation).

3 SupposeX has conditional probabilities that relate proportionaly to conditioning
variables, and this relation depends on the state of the system. This property is
calledproportional variation. Note that to use this property it is necessary that
homogeneous variationholds as well.

Example 5 Now considerjs has five categories in our printer model. The probability
of the queue increasing one level is directly proportional to the job size:p(qF = qP +
1|qP , jsP) = k × jsP , wherek is a normalization constant.

The use of these properties together allow conditional probabilities to be specified
in a very compact way. Such properties are rather valuable and should be included in a
specification language, for instance PPDDL [Littman and Younes 2004], in the future.

As a final point, we note that in the presence of large space states, reward/cost
functions require compact representation as well, often achieved in the literature through
additivity assumptions [Boutilier et al. 1999].

Example 6 We can write that the cost of executingPrint is proportional to queue level
and proportional to job size:C((qP , jsP), P rint) = k × qP × jsP .

3. Exploiting Regularities in Factored MDPs Solution

Traditional algorithms such asvalue iterationand policy iteration are not efficient for
large-scale MDPs [Boutilier et al. 1999, Littman et al. 1995]. We now propose two tech-
niques that reduce the computational burden in structured MDPs.

3.1. Offline sub-division of states

Our MDP construction method brings to the surface the level of connection in the state
space; usually pieces of the state space can often be solved independently. This in itself is
not a new observation [Puterman 1994]. However, what is important is to notice that even
if an MDP cannot be divided into independent pieces, it may have limited state transitions
that can be exploited. That is, one can identify a subset of the state space that is “closed”
in the sense that an optimal policy for it can be found only processing its states. The
solution of this fragment can then be used when processing the whole MDP. The idea is
similar to dynamic programming; however we are not operating backwards with respect
to transitions but rather operating piecewise with respectto states. An example should
clarify the idea.

Example 7 Consider a printer model with two variables: printing queue (q) and tray
level (tr), each with 10 categories, and an actions setA = {Print , Ignore}. If the action
is Print , thentr can only decrease or stay constant; if the action isIgnore, bothq andtr
can only decrease or stay constant. Note thattr can never increase; thus we can start with
a reduced MDP where this variable is set to its lowest level. After solving this reduced
MDP, we construct a new MDP in whichtr is limited to its 2 lowest levels. This adds
10 new states and the solution for the 10 initial states does not change. Thus we need to
solve just 10 states in this step. This process is repeated until the whole MDP is solved.

Dividing a state spaceS into n fragments decreases the number of operations per iteration
of value iteration toO(|S|2|A|/n+|S|3/n2). Besides, the required number of iterations to
convergence is polynomial in|S|, thus the number of iterations in each fragment is lower
than in the whole MDP.

3.2. Online reduction of state space

It is often difficult even to store an optimal policy for an MDP; in these cases one might re-
sort to online solution of the Bellman equation, or, following the discussion in the previous
section, online solution of fragments of the state space. Anonline solution is particularly
difficult when variables have many categories. Suppose thenthat one produces an online
solution by drastically reducing the size of the state space— we consider a strategy where
each variable has its categories mapped into just two values. We now have to define state
transition probabilities for the resulting binary variables. Our proposal is to employ the
original variables in the construction of algebraic expressions forthese probabilities, so
that each transition leads to a different approximation based on theoriginal probabilities.
Doing so, the information loss caused by the transformationis mitigated (however note
that probability distributions are no longer stationary).Again, the best way to understand
our proposal is to examine an example.

Example 8 In Example 7, transform variablesq and tr into binary variablesq̂ and t̂r.
The new variablêq indicates whether the queue is full (q̂ = 1 for q = 10) or not (q̂ = 0
for q < 10). The new variablêtr indicates whether the tray level is empty (t̂r = 0 for
tr = 1) or not (t̂r = 1 for tr > 1). We can write the probability of empty tray level
as directly proportional to queue levelq and inversely proportional to the tray leveltr;
that is,P (ˆtrF = 0 | ˆtrP = 1) = k1q/tr. Also, the probability of nonempty tray level is
P (ˆtrF = 1 | ˆtrP = 1) = 1/(1 + q/tr).

Note first that the homogeneous variation property does not hold in this method; however
the proportional variation property is still valid. Second, the solution is not stationary;
the solution is really dependent on an online scheme. Finally, it is clear that the level of
reduction in the state space size depends on the number of categories in each variable.

4. Modeling Printers with MDPs

To illustrate how the patterns and techniques discussed previously can be used in practice,
we discuss here a real application of planning under uncertainty. The problem is to create
policies for printers connected in clusters, continuouslyoperating and receiving jobs from
many users. Some printers may be faster, some may be slower; some may have features
such as color printing, while others may excel in black-and-white printing. There may be
additional constraints for the cluster, such as having all printers keep an approximately
identical toner level (so as to minimize visits from personnel responsible for changing
toner cartridges). Jobs are sent to the cluster of printers with a variety of characteristics,
and to do so in a decentralized manner (no central router of jobs, to prevent that a single
failure may disrupt the whole cluster).

In this setting, we consider each printer as an “agent” in a community, evaluating
its own options and adopting its own actions with the objetive of maximize user satisfation
in using the cluster. The routing strategy is based on auctions, as follows. First, the user
chooses his preferences for the job and sends it from a PC to any of the printers in the

Table 1. System variables and number of categories per variable.

Variable Number Interval Name
of categories for categories (brief description)

Q 10 1, 2, ..., 10 queue (length of queue)
Tr 10 1, 2, ..., 10 tray (level of tray)
Tb 10 1, 2, ..., 10 black toner (level)
Tc 10 1, 2, ..., 10 color toner (level)
Js 5 1, 2, ..., 5 job size (in pages, less than 100)
Jc 2 0, 1 job color (color or b/w)
Ju 2 0, 1 job urgency (urgent or not)
V 5 1, 2, ..., 5 velocity (printer speed)

qP

jsP

qF

jsF

(a)

qP

trP

tbP

tcP

jsP

juP

jcP

vP

qF

trF

tbF

tcF

jsF

juF

jcF

vF(b)

qP

trP

tbP

tcP

jsP

juP

jcP

vP

qF

trF

tbF

tcF

jsF

juF

jcF

vF(c)

Figure 1. Bayesian Networks: (a) Example 2; (b) Ignore; (b) Print .

cluster. The receiving printer (P0) sends the job characteristics to other printers in the
cluster. Then each printer assesses its state and chooses anactionPrint or Ignore using
its own MDP. A printer sends its selected action and the valueof its state to P0. The value
sent is the “bid” for the job. Finally, P0 selects the best bidbetween printers with action
Print and sends the job to the winner printer. If all printers choose Ignore, then the best
bit for this action is the winner.

This system allows many auctions to occur at the same time. Each printer follows
an optimal “local” policy, thus deciding how to participatein the auction. Although this
solution does not necessarily achieve a global optimum, it fulfills the desired objetives
and it gives flexibility to the system, allowing entrance anddeparture of printers in the
cluster. We now focus on the MDP used by each printer, as this is the focus of this paper.

4.1. State space, actions, transitions, and costs

A printer is modeled by eight variables, indicated in Table 1. These variables capture
data from the printer (Q, Tr, Tb, Tc, V), the job (Js) and user preferences for the job
(Jc, Ju). The space state formed by(q, tr, tb, tc, js, jc, ju, v) contains106 states (106 =
10 × 10 × 10 × 10 × 5 × 2 × 2 × 5). Note that job size is assumed to be smaller than a
hundred pages. Variables are denoted by capital letters while categories are not.

A printer has two actions:A = {Print , Ignore}; clearly the first means that the

Table 2. Conditional probabilities: q (top) and tr (bottom).

Print action Ignore action
trp = 1 trp 6= 1 trp = 1 trp 6= 1

qF P(qF|qP, trP, jsP,vP) qF P(qF|qP, trP,vP)

qP + 2 k0jsP k1jsP /vP

qP + 1 4k0jsP 2k1jsP /vP

qP 5k0/jsP 4k1jsP /vP qP 1 5k2/vP

qP − 1 0 2k1vP /jsP qP − 1 0 4k2vP

qP − 2 0 k1vP /jsP qP − 2 0 k2vP

Print action Ignore action
trF P(trF|qP, trP, jsP,vP) trF P(qF|qP, trP,vP)

trP 70k3/((qP + jsP)vP) trP 70k4/(qP vP)

trP − 1 2k3(qP + jsP)vP trP − 1 2k4qP vP

trP − 2 k3(qP + jsP)vP trP − 2 k4qP vP

next job will be printed, while the second ignores the request. Transitions occur when a
job arrives at the printer and the appropriate action is selected. We differentiate between
variables “before” transitions and “after” transitions byappending subscriptsP andF
respectively.

Figures 1.b-c show BNs forPrint and Ignore actions. The probabilities
P (SF |SP), for both actions, are then written in product form following these BNs. Terms
P (jsF), P (jcF) andP (juF) are totaly independent of other variables and of the selected
action. Their values are constant, equal to0.2, 0.5 and0.5 respectively. Likewise, the print
velocity does not change; thus the termP (vF |vP) is equal to 1 ifvF = vP and 0 other-
wise. TermsP (qF |SP), P (trF |SP), P (tbF |SP) andP (tcF |SP) are expressed through
algebraic formulas of conditioning variables. This is possible because variablesq, tr, tb
andtc exhibit proportional variationandhomogeneous variationproperties. These for-
mulas are different depending on the chosen action. In both actions, if trP = 1, then
the printer has no paper and cannot print. Thus, the printer cannot consume its other re-
sources such as toner, and its queue cannot decrease. These four variables also exhibit the
limited variationproperty and this reduces the number of formulae. Printer resources do
not change drastically, so they can increase or decrease their level by at most two units
at each transition. Moreover, variablestr, tb and tc cannot make transitions to higher
values. This happens because we are not interested in forecasting recharges of resources.
TermsP (qF |SP), P (trF |SP), P (tbF |SP) andP (tcF |SP) are summarized in Tables 2 and
3 respectively. These terms are expressed through formulasfor the allowed changes in
each variable. Table 3 (bottom) conveys one more important piece of information. If the
action isPrint andtrP 6= 1, then the probability of change intc depends onjc. More-
over, if the user wants a color job (jcP = 1), then this probability depends on job size
(jsP), otherwisejsP is irrelevant in this probability. Again, in the extreme values ofqP ,
trP , tbP andtcP , these formulas do not apply exactly (because a transition to a value out
of the range of the variable is not allowed); the probabilityvalue must be accumulated in
the probability of the closest allowed value for this variable.

The printer model does not have a reward function, because there is no fi-

Table 3. Conditional probabilities: tb (top) and tc (bottom).

Print action Ignore action
trp = 1 trp 6= 1 trp = 1 trp 6= 1

tbF P(tbF|qP, trP, tbP, jsP,vP) tbF P(tbF|qP, trP, tbP,vP)

tbP 1 70k5/((qP + jsP)vP) tbP 1 70k6/(qP vP)

tbP − 1 0 2k5(qP + jsP)vP tbP − 1 0 2k6qP vP

tbP − 2 0 k5(qP + jsP)vP tbP − 2 0 k6qP vP

Print action Ignore action
trp trp

= 1 6= 1 = 1 6= 1

jcP = 0 jcP = 1

tcF P(tcF|qP, trP, tcP, jsP, jcp,vP) tcF P(tcF|qP, trP, tcP,vP)

tcP 1 70k7

qP vP

70k8

(qP +jsP)vP
tcP 1 70k9

qP vP

tcP − 1 0 2k7(qP vP) 2k8(qP + jsP)vP tcP − 1 0 2k9qP vP

tcP − 2 0 k7(qP vP) k8(qP + jsP)vP tcP − 2 0 k9qP vP

nal, objective state. However there are two cost functions,one for each action:
C(Ignore) = G4jcP tcP + (G5trP tbP vP)/(qP jsP) and C(Print) = (G1jcP)/tcP +
(G2juP qP jsP)/(trP tbP vP) + G3/tbP , whereGi are constants. These functions “pun-
ish” idleness of resources.

4.2. Offline sub-division in the Printer MDP

We are interested in a policy that yields minimum cost as the printer operates conti-
nuously. We thus look for an infinite-horizon discounted policy [Puterman 1994]. Current
algorithms would have significant difficulty dealing with106 states; here we note that fac-
tored representations are just descriptive techniques anddo not by themselves simplify
the search for an optimal policy. However, when an MDP is constructed using common
patterns in the domain, it becomes easy to identify regularities that can be exploited in the
solution.

By analyzing the Printer MDP, it is easy to see that it can be divided in five in-
dependent MDPs — this is possible because printers does not change their own printing
speeds. Thus, each new MDP has a fixed value for the variablev.

Second, we exploit the fact that variablestr, tb andtc can change their levels only
downwards. Thus, we start solving the MDP with these variables fixed at their lowest
level. When we do this, the state space contains only 200 states, a number that can be
easily handled by existing algorithms. Then, after solvingthese small MDPs, we use
the result to evaluate MDPs with a “higher” category in one ofthese three variables. This
procedure is repeated until the original MDP is solved. Eachnew category adds 200 states
in state space, but just these new states are solved in each step. This procedure is orders
of magnitude faster than taking the whole MDP into a solutionalgorithm.

4.3. Online reduction in the Printer MDP

The first step to construct a “binarized” state space for our printer model is to transform
the original variables. Let̂x be the new binary variable that relates tox, the original

Table 4. Conditional probabilities: q̂ (top) and t̂r (bottom).

Print action. Ignoreaction.
q̂P = 0 q̂P = 1 q̂P = 0 q̂P = 1

ˆtrP
ˆtrP

ˆtrP
ˆtrP

0 1 0 1 0 1 0 1
q̂F P(q̂F | q̂P, ˆtrP, ˆjsp, v̂P) q̂F P(q̂F | q̂P, ˆtrP, v̂P)

0 k0 k1 0 k2vP

jsP
0 1 1 0 k3vP

1 k0jsP qP
k1jspqP

vP
1 k2 1 0 0 1 k3

Print action. Ignoreaction.
ˆtrP = 0 ˆtrP = 1 ˆtrP = 0 ˆtrP = 1

ˆtrF P(ˆtrF | q̂P, ˆtrP, ˆjsp, v̂P) ˆtrF P(ˆtrF | q̂P, ˆtrP, v̂P)

0 1 k4 0 1 k5

1 0 k4(jsP + qP)vP /trP 1 0 k5qP vP /trP

variable. We use the transformations in the following table; to understand how to read
this table, consider its second column:q̂ = 0 maps to1 ≤ q ≤ 9 and q̂ = 1 maps to
q = 10. Printer velocity does not change, thus(v) is not transformed. Thus:

q̂ t̂r t̂b t̂c ĵs ĵc ĵu

0 q: 1 à 9 tr: 1 tb: 1 tc: 1 js: 1 à 2 jc: 0 ju: 0
1 q: 10 tr: 2 à 10 tb: 2 à 10 tc: 2 à 10 js: 3 à 5 jc: 1 ju: 1

In this model, binary variables point to extreme situationsin a printer. For exam-
ple, q̂ points if printing queue is full (̂q = 1) or if it is not (q̂ = 0). t̂r points if printer has
paper (̂tr = 1) or if it has not (̂tr = 0). t̂b points if there is black toner (̂tb = 1) or if there
is not (t̂b = 0). t̂c points if there is color toner (̂tc = 1) if or there is not (̂tc = 0). ĵu points
if the user has urgency (̂ju = 1) or if he has not (̂ju = 0). In our model onlyĵc does not
have such interpretation. We emphasize that the information lost in the transformation is
minimized with the use of original variables in probabilityexpressions.

In the reduced model, variables inherit the same independence relations that origi-
nal variables, thus the new BNs are the same of Figure 1, just changing variablesx to x̂.
However, the key point is that,at each transition, the variables in the original network are
used to evaluate probability values. That is, the MDP is solved online for the probability
values that hold in the original model. The terms that are specified through the BNs are
summarized in Tables 4 and 5. TermsP (ˆjsF), P (ˆjcF) andP (ˆjuF) are independent of
the chosen action and of the actual state. These terms value1/2 each. Printer velocity
does not change, thus ifvF = vP thenP (vF | vP) is 1 else it is0.

In the reduced model, the MDP can be solved in real time using traditional al-
gorithms like value iteration, as the online processing requirements are relatively simple.
We again emphasize that, as probabilities change from iteration to iteration, the model is
not stationary as a whole.

5. Experimental Results
A simulator program was used to analyze which printer model produces the best cluster
performance. In this simulator, three different models of printer were employed in bid

Table 5. Conditional probabilities: t̂b (top) and t̂c (bottom).

Print action. Ignoreaction.
ˆtbp = 0 ˆtbp = 1 ˆtbp = 0 ˆtbp = 1

ˆtrP
ˆtrP

ˆtrP
ˆtrP

0 1 0 1 0 1 0 1
ˆtbF P(ˆtbF | q̂P, ˆtrP, ˆtbP, ˆjsp, v̂P) ˆtbF P(ˆtbF | q̂P, ˆtrP, ˆtbP, v̂P)

0 1 1 0 k6(qP +jsP)vP

tbP
0 1 1 0 k7qP vP

tbP

1 0 0 1 k6 1 0 0 1 k7

Print action. Ignoreaction.
ˆtcp = 0 ˆtcp = 1 ˆtcp = 0 ˆtcp = 1

ˆtrP
ˆtrP

ˆtrP
ˆtrP

0 1 0 1 0 1 0 1
ˆjc = 0 ˆjc = 1

ˆtcF P(ˆtcF | q̂P, ˆtrP, ˆtcP, ˆjsp, ˆjcp, v̂P) ˆtcF P(ˆtcF | q̂P, ˆtrP, ˆtcP, v̂P)

0 1 1 0 k8qP vP

tcP

k9(qP +jsP)vP

tcP
0 1 1 0 k10qP vP

tcP

1 0 0 1 k8 k9 1 0 0 1 k10

generation for jobs: a heuristic printer model, a model withoffline division of states, and
a model with online reduction of states. The heuristic printmodel calculates its bid by
adding variables:tr + max(tb, tc) − q. This model does not consider uncertainty and
is considered a baseline for comparisons. The tests were conducted under four different
cluster configurations:

• 4 printers with different velocities, where 2 are color printers, and 10 users;
• 4 printers with different velocities, where 2 are color printers, and 15 users;
• 4 equal color printers and 10 users;
• 4 equal color printers and 15 users.

This way homogeneous cluster were compared against heterogeneous ones. Also, dif-
ferent workloads (10 and 15 users) were compared too. Two measures were utilized to
analyze cluster performance: the mean time for a urgent job execution, and compliance
with color requisition for the jobs (for instance, a color job could be executed in black and
white due to redirection to a printer without color toner). Figure 2 shows the simulation
results for the first measure. We notice that the offline approach has a better performance
in a heterogeneous cluster. In an homogeneous cluster the online solution is better than
the offline solution. The online approach has to solve the MDPfor each job, adding some
time to the execution. The offline approach has the solution previously calculated and
stored, thus requiring only more memory space. With respectto the second measure, the
two MDP solutions have an equivalent performance near to 100%. The heuristic model
has the best first measure for a homogeneous cluster, but it has a poor performance in the
second measure for this case.

6. Conclusion

Recent years have seen growing interest in “structured” MDPs, where the structure may be
due to factorization, or hierarchical relationships amongvariables, or logical constraints.
It is important to have guidelines for constructing MDPs so that these regularities surface

naturally. We have tried in this paper to contribute with newideas in this direction. Con-
cepts such as limited and homogeneous variation should be inthe hands of designers, so
that a solid methodology can be in place for the constructionof structured MDPs. We
have also shown how regularities can be exploited during selection of optimal policies.
Finally, we have described an application of our ideas to a real domain: we have shown
an application where jobs are routed in a cluster of printers, where each printer bids for
jobs using its own MDP.

Acknowledgements

The first author was supported by HP Brazil R&D; the second author was partially sup-
ported by CNPq. We acknowledge help from Instituto de Pesquisas Eldorado and FDTE.

References

Bellman, R. (1957).Dynamic Programming. Princeton University Press.
Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning: Structural assumptions

and computational leverage.Journal of Artificial Intelligence Research, pages 1–94.
C. Boutilier, N. Friedman, M. G. and Koller, D. (1996). Context-specific independence in bayesian

networks.Uncertainty in Artificial Intelligence, pages 115 – 123.
D. Koller, A. P. (1998). Probabilistic frame-based systems.American Association for Artificial

Intelligence, pages 580 – 587.
Glesner, S. and Koller, D. (1995). Constructing flexible dynamic belief networks from first-order

probalistic knowledge bases.ECSQARU, pages 217–226.
Guestrin, C., Koller, D., Parr, R., and Venkataraman, S. (2003). Efficient solution algorithms for

factored MDPs.Journal of Artificial Intelligence Research, 19:399–468.
Littman, M. L., Dean, T. L., and Kaelbling, L. P. (1995). On the complexity of solving Markov

decision problems. InProceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 294–402, Montreal, Canada. AUAI.

Littman, M. L. and Younes, H. L. S. (2004). PPDDL1.0: An extension to PDDL for expressing
planning domains with probabilistic effects.International Planning Competition.

Pearl, J. (1988).Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, Los Angeles, California.

Puterman, M. L. (1994).Markov Decision Process. J. Wiley & Sons, New York.
R. Sharma, P. P. (2005). Probabilistic reasoning with hierarchically structured variables.Interna-

tional Joint Conference on Artificial Intelligence.

Figure 2. Mean time urgent jobs execution

