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Planning problems can be classified, based on the effects
actions, in deterministic, probabilistic or nondeterrsiid. In
this paper we are concerned with action dynamics under ge
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Abstract

Two noteworthy models of planning in Al are prob-
abilistic planning (based on MDPs and its gener-
alizations) and nondeterministic planning (mainly
based on model checking). In this paper we: (1)
show that probabilistic and nondeterministic plan-
ning are extremes of a rich continuum of prob-
lems that deal simultaneously with risk and (Knigh-
tian) uncertainty; (2) obtain a unifying model for
these problems using imprecise MDPs; (3) derive
a simplified Bellman’s principle of optimality for
our model; and (4) show how to adapt and analyze
state-of-art algorithms such as (L)RTDP and LDFS
in this unifying setup. We discuss examples and
connections to various proposals for planning un-
der (general) uncertainty.

Introduction

Fabio G. Cozman
Instituto de Matematica e Estatistica Escola Politécnica
Universidade de Sao Paulo
Av. Prof. Mello Moraes, 2231
Sao Paulo, SP, Brazil
fgcozman@usp.br

Leliane N. de Barros
Instituto de Matematica e Estatistica
Universidade de Sao Paulo
Rua do Matao, 1010
Sao Paulo, SP, Brazil
leliane@ime.usp.br

gebraic MDPs (AMDPs); we forgo some generality because
we want to employ models with solid behavioral justification
and to exploit the specific structure of combined probatiiitis
nondeterministic planning. Even though general algori¢hm
such as AMDP-based value iteration are useful theoregicall
we find that a more specific approach based on Real-Time
Dynamic Programming leads to encouraging results on com-
putational complexity.

This necessarily brief review of closest literature shooid
dicate the central motivation of this work: we strive to work
with decision processes that have solid behavioral founda-
tion andthat can smoothly mix problems of practical signif-
icance. A similar approach has been proposed by Eiter and
LukasiewicZ 2003, using nonmonotonic logic and causal se-
mantics to define set-valued transitiond’artial Observable
MDPs (and leaving algorithms for future work). We offer a
model that assumes full observability, and we obtain algo-
rithms and complexity analysis for our model.

The remainder of this paper is organized as follows. In
§Fction 3 we discuss how MDPSTSs capture the continuum of
planning problems from “pure” probabilistic to “pure” non-

(gleterministic planning. In Section 4 we show that MDPSTs

are Markov decision processes with imprecise probabilities

eral forms of uncertainty; indeed, we are interested in-plan

ning under bottrisk and Knightian uncertainty We show (MDPIPs), a model that has received attention in operations

fesearch and that displays a solid foundation. We also com-

deterministic planning (and combinations thereofjaskov ment on the various relationships between MDPSTs and other
models in the literature. In Section 5 we show that MDPSTs

decision processes with set-valued transitions (MDPSTS) . S a2 n
dJead to important simplifications of their “minimax” Bellma

Similar generalizations of Markov decision processe X Lo
(MDPs) have appeared before in research on artificial intelStY/€ equation (we note that such simplifications are men-

ligence. For example, Givaet al. [2000 use intervals to tioned without a proof by Buffet and Aberde¢200§ for

encode a set of exact MDPs, which is used to conduct spad@VDPs). We obtain interesting insights concerning compu-
state reduction of MDPs. Thebounded-parameteviDPs tational complexity of MDPSTs and related models. Section
(BMDPs) form neither a superset nor a subset of MDp-6 investigates algorithms that produce minimax policies fo

STs. Buffet and Aberdeef2005 use BMDPs to produce MDPSTs. Although our results yield easy variants of value
robust policies in probabilistic planning. They also showand policy iteration for MDPSTSs, we are interested in more

that Real-Time Dynamic Programming (RTD&an be used efficient a!gorithms based on RTDP. In Section 6 we derive
in BMDPs. Our perspective is different: we wish to unify the conditions that must be true for RTDP to be applied. Sec-
various strands of planning that have proven practicalejalu ti0n 7 brings a few concluding remarks.

using a theory that has a behavioral basis on preferences and

beliefs — otherwise, we do follow a similar path to Buf- 2 Background

fet and Aberdeen’s in that we exploit RTDP in our models. . .
Another recent work that should be mentioned is Peghy 2.1 Varieties of planning

al.’s [2005, where transitions must only satisfy a few alge- We start reviewing a few basic models of planning problems,
braic properties. Our models are a strict subset of their Alattempting to unify them as much as possible as suggested by



recent literatur¢Bonet and Geffner, 2006 that compute the optimal policies for each one of these mod-
- - els, and algorithms that can be specialized to all of them
M1 a discrete and finite state spate [Bonet and Geffner, 2006 However, we should emphasize
M2 a nonempty set of initial statet C S, that previous unifying frameworks do not intend to handle
M3 a goal given by a set; C S, smooth “mixtures” of these planning problems. In fact, one
of our goals in this paper is to provide a framework where
NONDET and MDPs are the extreme points of a continuum
of planning problems.

M4 a nonempty set of actiond(s) C A representing the
actions applicable in each state

M5 a state transition functioR'(s,a) C S mapping state
and actiona € A(s) into nonempty sets of states, i.e.
|F(s,a)| > 1, and

M6 a positive cosC(s, a) for takinga € A(s) in s. Probability theory is often based on decision thelBgrger,
AdaptingM2, M5 andM6, one can produce: 1984, a most appropriate scheme in the realm of planning.
. .. Thus a decision maker contemplates a set of actions, each

e Deterministic models(DET), where the state transition gne of which yields different rewards in different states of
function is deterministic{F'(s,a)| = 1. In“classical”  npatyre. Complete preferences over actions imply that a pre-
planning, the following constraints are added{8)| = jse probability value is associated with each state — asitu
1; (i) Se # 0;and (i) Vs € S,a € A(s):C(s,a) = 1. ton ofrisk [Knight, 1921; Luce and Raiffa, 1957An obvi-

e Nondeterministic models (NONDET), where the ac- ous example of sequential decision making under “pure” risk
tions may result in more than one successor state withotis probabilistic planning However, often preferences over
preferences among them. actions are only partially ordered (due to incompleteness i

e Probabilistic models (MDPs), where actions have 3.&'“efs' or Iac(l; ?]f tlmg/resourceg,btljr because sevelr]alrm(pe
probabilistic consequences. Not only the function |sagrele_)., and then it is not possible to guarantee t alsprec
\F(s,a)| > 1 is given, but also the model includes: probabilities represent beliefs. In those casesetaf proba-

ot ftriby it . bility measuress the adequate representation for uncertainty;
(MDP1) a probability distributionPy(-) over Sp; and . )
(MDP2) a probability distributiorP(-|s, a) over F(s, a) such sets are often referred to @gdal sets[Levi, 1980;

foralls € S,a € Als). Kadaneet al, 19_99;_Wa|_|ey,_199]_]. Eventhought_erminology
) is not stable, this situation is said to cont&nightian uncer-
For any of these models, we expect that a solution (e.9. ginty (other terms arambiguityor simply uncertainty. An

policy) is evaluated on its long-term costs. The cost of a soextreme case inondeterministic planningvhereno proba-
lution can be evaluated infanite-horizon in which the max-  pilities are specified.

Znun;tnumf)er Qf atlcuons t%gf exeCl:t%d]sf.hrjr:nehd:tg Ry. Note that actual decision making is rarely restricted to ei-
E.ah?rr]na ve ;DS 0 fcon? |_sc0u?§ |nd|n(|je— grtﬁqnn ¢ er “pure” risk nor “pure” Knightian uncertainty; in fact
whic € number of actions IS not bounded an € COSL Ofhe most realistic scenario mixes elements of both. Not sur-

actions is discounted geometrically usingliscount factor prisingly, such combinations are well studied in econonics

0 <y < 1. Since itis difficult to find an appropriate sychology, statistics, and philosophy. We note that dreda

for. e;ach problem, in this paper we assume the d|scounte5|ets have raised steady interested in connection with arti-
infinite-horizon frameworKk. "

. o , icial intelligence, for example in the theory of probabilis
Due to the assumption of full observability and discounted.. : . .
infinite-horizon cost, a valid solution is stationary policy dt'c logic [Nilsson, 198§, in Dempster-Shafer theofghafer,

that is, a functionr mapping states € S into actions 197d, in theories of argumentatiofAnrig et al, 1999, _
a € A(s). Bellman’s principle of optimality defines the op- and in generalizations of Bayesian netwof€ezman, 2005;

timal cost functionV/*(s) = min,e a(s) Qv+ (s, a) [Bellman, Fagiuoli and Zaffalon, 1998

2.2 Varieties of uncertainty

1957, where: The usual prescription for decision making under risk is to
C(s,a) +~V(s'), s' € F(s,a) for DET, select an action that maximizes expected utility. In thespre
C(s,a) +~ max V(s')for NONDET, and ence of Knightian uncertainty, matters become more com-
Qv (s,a)= s'€F(s,0) plex, as now a decision maker carries a set of probability
C(s,a)+~ Y_ P(s'|s,a)V(s") for MDPs. measures and consequently every action is associated with
s'€F(s,a) an interval of expected codi#valley, 1991. Thus a decision

maker may choose one of several criteria, such as minimax-
|-ity, maximality, E-admissibility{ Troffaes, 2004 In this pa-
"‘per we follow aminimaxapproach, as we are interested in
actions that minimize the maximum possible expected cost;
we leave other criteria for future work.

This principle characterizeg™* (also called optimal value
function) and induces the optimal policy for each mode
m(s) = argminge ) Qv-(s,a). The definition of
Qv (s,a) clarifies the guarantees of each model. In DET,
guarantees given by* do not depend on its execution; in
NONDET guarantees are on the worst-case cost; and in__
MDPs guarantees are on expected cost. There are algorithms ?The term “nondeterministic” is somewhat unfortunate as-non
- determinism is often equated to probabilism; perhaps time péan-
!Results presented here are also applicable to finite-hmramed ~ ning under pure Knightian uncertaintgthough longer, would offer
can be easily adapted to address partial observability. a better description.
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Figure 1. An MDPST representing the Example 1. Dotted lineéciate each one of the reachable sets. Cost of taking action
dl, d2 andHT in the Example 1. States with “~” indicates the action is rplecable. ActionNoop represents the persistence
action for the absorbing states.

3 Markov decision processes with set-valued  Example 1 A hospital offers three experimental treatments

transitions to cardiac patients: drugll, drug d2 and heart transplant

. . . . (HT). States0 indicates patient with cardiopathy. The effects
In this section we develop our promised synthesis of probagf those procedures lead to other states: severe cardigpath
b_|I!st|c and_nondete_rmlnlstlc planning. We_focus on thetra (s1), unrecoverable cardiopathys®), cardiopathy with se-
sition function; that is, oM5. Instead of taking”(s,a) € S, quels ¢3), controlled cardiopathys4), stroke §5), and death
we now have a set-valuell(s,a) C 2°\0; thatis,F(s,a)  (s6). There s little understanding about drugs andd2, and
maps each stateand actiorm: € A(s) into aset of nonempty  considerable data on heart transplants. Consequentlyethe
subsetof S. We refer to each sdt € F(s,a) as areachable  is “partial” nondeterminism (that is, there is Knightian un
set A transition from states given actiona is now asso-  certainty) in the way some of the actions operate. Figure 1
ciated with a probability”(k|s, a); note that there is Knight-  gepicts transitions for all actions, indicating also the ssa

lan uncertainty concerning(s'|s, a) for each successor state assignments and the costs. For heart transplant, we suppose

sion process with set-valued transitions (MDPSTisansi-

tions move probabilistically to reachable sets, and thé&pro 4 MDPSTs. MDPIPs and BMDPs

ability for a particular state is not resolved by the model. | ) o ) .

fact, there is a close connection between probabilities ovel" this_section we comment on the relationship between
F(s,a) and themass assignmentisat are associated with the MPPSTSs and two existing models in the literatubdarkov
theory of capacities of infinite ordéBhafer, 1978 to avoid ~ decision processes with imprecise probabilities (MDPIPs)
confusion betweer®(k|s, a) and P(s'|s,a), we refer to the [White Ill and Eldeib, 1994; Satia and Lave Jr, 1923d
former as mass assignments and denote them(dys, a). bounded-parameter Markov decision processes (BMDPSs)

Thus an MDPST is given byi1, M2, M3, M4, M6, MDP1,  [Givanetal, 200d. . -
An MDPIP is a Markov decision process where transitions

MDPSTL a state transition functioR(s,a) C 2°\(@ mapping  are specified through sets of probability measures; thétes,
statess and actions: € A(s) into reachable sets of effects of an action are modelled by a credalsetver the
S, and state space. An MDPIP is given by1, M2,M3, M4, M6,

MDPST2 mass assignments(k|s,a) for all s, a € A(s), ~MDPland
andk € F(s,a). MDPIPL1 a nonempty credal séf,(a) for all s € S and

There are clearly two varieties of uncertainty in a MDPST: a < A(s), representing probability distributions
a probabilistic selection of a reachable set and a nondéterm P(s'|s, a) over successor statesdh
istic choice of a successor state from the reachable set. Ann this paper we assume that a decision maker seeks a min-
other important feature of MDPSTSs is that they encompas#mnax policy (that is, she selects a policy that minimizes the
models discussed in Section 3: maximum cost across all possible probability distribusipn
This adopts an implicit assumption that probabilities ae s
e DET: There is always a single successor state: € lected in an adversarial manner; other interpretationstior
S,a € A(s) : |F(s,a)| =1 andVs € S,a € A(s),k € PIPs are possibliroffaes, 2004 Under the minimax inter-
F(s,a): |k| = 1. pretation, the Bellman principle of optimality [Satia and

. . Lave Jr, 197
e NONDET: There is always a single reachable set, but B

selection within this set is left unspecified (nondeter-V"(s) = min  max  {C(s,a) +7 > Plls,a)V*(s)};
ministic): Vs € S,a € A(s) : |F(s,a)] = 1, and e s'es

ds e S,a € A(s),k € F(s,a) : |k| > 1. . . . 2
moreover, this equation always has a unique solution that

e MDPs: Selection of € F(s,a) is probabilistic and it yje|ds the optimal stationary policy for the MDPIP. To inves
resolves all uncertaintyts € S,a € A(s) : [F(s,a)| > tigate the relationship between MDPSTs and MDPIPs, the
1,andVs € S,a € A(s),k € F(s,a) : [k| = 1. following notation is useful: wheh € F(s, a), we denote by



MDPIP

Figure 3: Relationships between models (BMDPs with pre-

P {/@ @\} 0] o cise rewards).
© [’\\@/A, @ o4 as an BMDP, and an BMDP that cannot be expressed as an
AP \Q‘ﬂ MDPST. As a technical aside, we note that #¢s, a) de-
e @ fine Choquet capacities of infinite ordewhile transitions

in BMDPs defineChoquet capacities of second ord&val-

Figure 2: This figure illustrates two examples of planning un ley, 1993; clearly they do not have the same representational
der uncertainty modeled through MDPSTs and BMDPs. Ex{ower.

ample 1 is theHeart example from Perngt al. (2005). Ex- The results of this section are captured by Figure 3. In
ample 2 is a simple example in which none of the models cathe next two sections we present our main results, where we
express the problem modelled by the other one. explore properties of MDPSTSs that make these models rather

amenable to practical use.

D(k. 5,a) the set of states such that, Uy cr(ose¥') 5 A simplified Bellman equation for MDPSTSs

ThusD(k, 5, a) represents all nondeterministic effectsiof  \yg now present a substantial simplification of the Bellman
that belong only td:. We now have: principle for MDPSTs. The intuition behind the following
Proposition 1 Any MDPSTp = (S, Sy, S¢, A, F, C, Py, m) result is this. In Equation (2), both minima and maxima are
is expressible by an MDPIR = (S, Sy, S¢, A, F, C, Py, K). taken with respect to all combinations of actions and pdessib

Proof (detailed in[Trevizanet al, 2008) It is enough to probability distributions. However, it is possible to “futhe

prove thatrs € S, a € A(s), F(s,a) (MDPSTL) andm(s, a) maximum inside the summation, so that less combinations
(MDPST2) imply K., (a) (MDPIPL). First, note thamppstz ~ Need be considered. _ _
bounds for alls’ € S the probability of being in state after | heorem 2 For any MDPST and its associated MDPI2,)

applying action: in states as follows is equivalent to:

m({s'}|s,a) < P(s'|s,a) < Z m(kls,a) < 1. (3) Vi) = aénj?s){C(&a) +Vk€Fz(; a)m(k:|s7a) max V(s e
kEF(s,a)As’€k

(To see that, use the definition of reachable sets:klet  Proof DefineV;»(s) andVg,(s) as a shorthand for the val-
F(s,a); if s & k, then it is not possible to selest as a ues obtained through, respectively, (2) and (5). We want to
nondeterministic effect aof.) prove that for all MDPSTp = (S, Sy, S¢, A, F,C, Py, m),
FromMDPSTL andMDPST2 it is possible to bound the sum its associated MDPIR = (S, So, Sa, A, F, C, Py, K), and
of the probabilities of each state in a reachablésetF(s,a) Vs € S, Vip(s) = Vir(s). Due to the Proposition 1, we have
and in the associated sB{(k, s, a): that the probability measure induced tyx, i, V*(s') for
. . k € F(s,a) in (5)is a valid choice according 16, (a), there-
0< > P(s/|s,a) <m(kls,a) < > P(s|s,a) <1 (8)  foreVs € S, Vip(s) > Vin(s). Now, it is enough to show
s'€D(k,s,a) s'ek thatVs € S, Vir(s) < Vip(s) to conclude this proof.

: " For all § € S, we denote byF;(s,a) the set of reach-
The set of inequalities (3) and (4) fere S anda € A(s) able sets{k € F(s,a)| § — argmax,., Vi (s)}. The
describe a possible credal $&f(a) for MDPIPL. O B N s'€k " ST
o . . proof of Vs € S,Vip(s) < V/p(s) proceeds by contra-
Definition 1 The MDPIP¢ obtained through Proposition 1 diction as follows. For alls € S and alla € A(s), let

is called theassociated MDPIP of p. P(-|s,a) be the probability measure chosen by the operator

As noted in Section 1, BMDPs are related to MDPSTSs. In-max in V/»(s) and suppose thatg,.(s) > V/p(s). There-
tuitively, BMDPs are Markov decision processes where tranfore, there is & € S such thaty ), p_ ,) m(kls,a) >
sition probabilities and rewards are specified by interd@ls  P(3]s,a); asP(-|s, a) is a probability measure, there is also a
vanet al, 200d. Thus BMDPs are not comparable to MD- s € S s.t. 2okeF, (s,0) Mkls, @) < P(sls,a) andVip(3) >
PIPs due to possible imprecision in rewards; here we only . + (. i :
consider those BMDPs that have real-valued rewards. @Iearlfffj %)' ,NOW' Iit 1;( |f’ @) b;\a,l pr0§ab|l|_ty me;s_ure deflned
these BMDPs form a strict subset of MDPIPs. The relation—Y- ('ls,a) = P(s'|s,a) Vs’ € S\ {5,s}, P(5]s,a) =
ship between such BMDPs and MDPSTs is more complex! (813, @) + € andP(s|s, a) = P(s|s, a) — ¢, for e > 0. Note
Figure 2.a and 2.b presents an MDPST and an BMDP thdhat >, s P(s'|s,a)Vip > 3. s P(s'|s,a)Vip, a con-
are equivalent (that is, they represent the same MDPIP). Figradiction by the definition of(-|s, a). Thus, the rest of this

ure 2.c and 2.d presents an MDPST that cannot be expressprbof shows thaP(s'|s, a) satisfies Proposition 1.



Due to the definition o(-|s, a), we have that the left side case of an MDP modelled as an MDPST, i € S,a €
and the right side of (3) are trivially satisfied, respedivey  A(s), |F(s,a)| < |S| andVk € F(s,a), |k| = 1, this worst
P(3]s,a) andP(s|s, a). To treat the other case for botland  case complexity i€)(|S|?|.A|), the same for one round using
3, it is sufficient to define as follows: the Bellman principle for MDP§Papadimitriou, 1994

e=min{ Y m(kls,a)—P(3]s,a), P(s|s,a)— > _ m(kls,a)}. 6 Algorithms for MDPSTs
kE€F5(s,a kEFs(s,a
) 0 Due to Proposition 1, every algorithm that finds the optimal
Using this definition, we have that > 0 by hypothesis; policy for MDPIPs can be directly applied to MDPSTSs. In-
since (4) gives a lower and an upper bound to the sum o$tances of algorithms for MDPIP are: value iteration, pol-
P(-|s,a) over, respectivelyy € F(s,a) andD(k,s,a) C k. icy iteration[Satia and Lave Jr, 19T3modified policy iter-
If {s,5} € D(k,s,a) or {s,5} ¢ D(k,s,a), then noth-  ation[White Il and Eldeib, 199% and the algorithm to find
ing changes and these bounds remain valid. There is ongl optimal policies presented ifHarmanec, 1999 How-
more case for each bound that its satisfaction is trivial tooever, a better approach is to use Theorem 2. This proposi-
(i) for the upper bound whes ¢ D(k,s,a); and (i) for  tion gives a clear path on how to adapt algorithms from the
the lower bound whers ¢ k. A nontrivial case is for realm of MDPs — algorithms such as (L)RT)Bonet and
the lower bound in (4) whes ¢ k ands € k. This  Geffner, 2003 and LDFS[Bonet and Geffner, 2006 These
bound still holds because.({s}|s,a) < P(s|s,a) (by hy-  algorithms are defined f@tochastic Shortest Pagitoblems
pothesis) and) .., P(s'[s,a) = > .. m({s'}|s,a) +  (SSPs)Bertsekas, 1995SSPs are a special case of MDPs,
5 < Zs,ek\{s} m({s'}s,a) + & + P(s|s,a) < in V\ghich thgre is only org;)in_ilgialc_sgate/le) Qndlthel_set of
ey B - - goal states is nonempt@)). To find an optimal policy, an
Yven(sy P('ls,a) + Pls]s,a), § 2 0 (using Proposition 21 0 assumption is required: the goal must be redehab
1for P(|s,a)). , _from every state with nonzero probability (treachabilityas-

The last remaining case (to prove that Equation (4) iSsymption). For MDPSTS, this assumption can be generalized
true for P([s, a)) happens whes ¢ D(k,s,a) ands ¢ py requirement that the goal be reachable from every state
D(k, s,a) for the upper bound in (4). This case is valid yith nonzero probability for all probability measures ireth
because there is b’ € F(s,a) such thatk’ # k and  moqel. The following proposition gives a sufficient, howeve
5 € k' by the definition of reachable set, thif§s|s,a) <  not necessary, condition to prove the reachability assiompt
> keP-(s,a) M(kls,a) = m(k|s,a) by hypothesis. If there for MDPSTSs.
is not as’ € k\ {5} st. P(s'|s,a) > 0 this up- . ;
per bound stil hol\ds{, ]élse, cho(os!n;g as 5 will validate Proposition 3 If, for all s € S, there exists: € A(s) such

> =2 i that, forallk € F(s,a) and alls’ € k, P(s'|s,a) > 0,theniit
all the bounds.  SinceP’(-|s,a) respects Proposition 1, '/ gicient to prove that the reachability assumption iidva

we get a contradiction becau3€, s P(s'ls,a)V(s') > ysing at least one probability measure for eacte S and
Y ves P(s'ls,a)V(s’) but by hypothesisP(:[s,a) = ¢ A.
ArGMAX p (.15 a)ek, (a) 2uses L (8|8, a)V*(s).  Therefore,

Vs € S, Vin(s) < Vin(s), what completes the proof. 0 Proof If the reachability assumption is true for a specific se-

quence of probability measur@s= (P!, P2 ....P"), then

An immediate consequence of Theorem 2 is a decreagbere exists a policyr and ahistory i, i.e. sequence of vis-
of the worst case complexity order of MDPIPs algorithmsited states and executed actions, inducedrkgnd P such
used for solving MDPSTs. Consider first one iteration of thethath = (s € Sp, 7(s%),s',...,m(s" 1), s" € Sg) is min-
Bellman principle of optimality for eackh € S (oneround) imum andvs € S, Py(s°) E? Pi(sts=1, m(st1)) > 0.
using Equations (2). Define an upper bound|Bfs,a)|  Sinces'*! can always be reached, because there exists an ac-
forall s € S anda € A(s) of an MDPST instance by tion ¢ € A(s?) such thatP(sit!|s¢,a) > 0, then, for any
F = max,es{max,c (s [F(s,a)[} < 25/, Inthe MDPIP  sequence of probability measures in the model, every lyistor
obtained through Proposition 1, computationiéf(s) con- A’ induced byr containsh, i.e., reaches™ € S¢. O

sists of solving alme_ar program induced by the? operator Example 2 Consider the planning problem in the Example
on (2). Because this linear program hak variables and  1"5'the cost of actions in Figure 1. We have obtained the
its description is proportional tb, the worst case complex- following optimal policy for this MDPST:
ity of one round isO(|A||S|PT'F"), forp > 2 andg > 1.
The value ofp andgq is related to the algorithm used to solve 50 | 51
this linear program (for instance, using the interior paht Tt = I @
gorithm[Kojima et al,, 1989 leads top = 6 andg = 1, and
the Karmarkar’s algorithniKarmarkar, 198%leads top to
3.5 andq to 3). .
However, the worst case complexity for one round using/ ~Conclusion
Equation (5) isO(|S|?|.A|F). This is true because the prob- In this paper we have examined approaches to planning across
ability measure that maximizes the right side of Equationmany dimensions: determinism, nondeterminism, risk, un-
(2) is represented by the choieeax ¢ V(') in Equation  certainty. We would like to suggest that Markov decision
(5), avoiding the cost of a linear program. In the specialprocesses with set-valued transitions represent a reivlarka

| s2 | s3 | s4 | s5 | s6
| HT | Noop | Noop | Noop | Noop



entry in this space of problems. MDPSTSs are quite generalBuffet and Aberdeen, 20950. Buffet and D. Aberdeen. Robust
as they not only capture the main existing planning models planning with (L)RTDP. IrProc. of the 19th IJCAlpages 1214~
of practical interest, but also they can represent mixtures of 1219, 2005.
these models — we have emphasized throughout the papEfozman, 2006 F.G. Cozman. Graphical models for imprecise
that MDPSTSs allow one to combine nondeterminism of ac- probabilities. International Journal of Approximate Reasonjng
tions with probabilistic effects. It is particularly impant to 39(2-3):167-184, 2005.
note that MDPSTSs specialize rather smoothly to DET, NON-[Eiter and Lukasiewicz, 2003T. Eiter and T. Lukasiewicz. Proba-
DET or MDP; if an MDPST belongs to one of these cases, its bilistic reasoning about actions in nonmonotonic causabties.
solution inherits the complexity of the special case at hand In Proc. of the 19th UAlpages 192-199, 2003.
Such a “smooth” transition to special cases does not olftain {Fagiuoli and Zaffalon, 1998E. Fagiuoli and M. Zaffalon. 2U: An
one takes the larger class of MDPIPs; the general algorithms exact interval propagation algorithm for polytrees witmay
require one to perform bilevel programming (linear progsam variables.Artificial Intelligence 106(1):77-107, 1998.
are nested, as one linear program is needed to compute tifeivanet al, 2004 R. Givan, S. M. Leach, and T. Dean. Bounded-
value) and do not treat efficiently the special cases. parameter Markov decision processegitificial Intelligence
In fact, MDPSTSs are remarkable not only because they are 122(1-2):71~-109, 2000.

rather general, but because theyroeoverly general — they [Harmanec, 19_9_9 D. Harmanec. A generalization of the concept of
are sufficiently constrained that they display excellemtpa- Markov decision process to imprecise probabilities.ISIPTA
tational properties. Consider the computation of an jlenat  Pages 175-182, 1999. _ _
of the Bellman equation for a statga round). This is an es- [Kadaneetal, 1999 J.B. Kadane, M.J. Schervish, and T. Seiden-
sential step both in versions of value and policy iteratiod a  feld: Rethinking the Foundations of StatisticSambridge Uni-
in more sophisticated algorithms such as (suitably adapted versity Press, 1999. o
RTDP. As discussed in Section 6, rounds in MDPSTs havéKarmarkar, 1984 N. Karmarkar. A new polynomial-time algo-
much lower complexity than rounds in general MDPIPs — rithm for linear programming. I®Procs of the 16th annual ACM
in essence, the simplification is the replacement of a linear SNircvp?g:EmN%nJgio%%ffompuumges 302-311. ACM Press
program by a fractional knapsack problem. _ PR ' . . ,

- ; ; ; .. [Knight, 1921 F.H. Knight. Risk, Uncertainty, and ProfitHart,

Finally, we would like to emphasize that MDPSTSs inherit , e

the pleasant conceptual aspects of MDPIPs. They are bas?d S”chaffner & Manx; Hougﬂhton |\/||ff||r? Company, Boston,.1921.
on solid decision theoretic principles that attempt to eepr K%L?:r?a?t dﬂéllia?eariol\:lb cficr?tln;fgoﬁihtﬂnlzfg?ﬁh:;rdpgg\r(gme'InA
sent, as realistically as possible, rigkd Knightian uncer- g : o . o
tainty. We feel that \Yve ha?/e only scratched 3’16 surface ef thi Progress in Mathematical Programming: Interior-point aret

} ) lated methodspages 29-47. Springer-Verlag, 1988.
space of problems; much remains to be done both on theore[ltevi' 1080 I. Levi. The Enterprise of KnowledgeMIT Press,

ical and practical fronts. 1980,
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