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Fábio G. Cozman
Escola Politécnica
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Abstract

Two noteworthy models of planning in AI are prob-
abilistic planning (based on MDPs and its gener-
alizations) and nondeterministic planning (mainly
based on model checking). In this paper we: (1)
show that probabilistic and nondeterministic plan-
ning are extremes of a rich continuum of prob-
lems that deal simultaneously with risk and (Knigh-
tian) uncertainty; (2) obtain a unifying model for
these problems using imprecise MDPs; (3) derive
a simplified Bellman’s principle of optimality for
our model; and (4) show how to adapt and analyze
state-of-art algorithms such as (L)RTDP and LDFS
in this unifying setup. We discuss examples and
connections to various proposals for planning un-
der (general) uncertainty.

1 Introduction
Planning problems can be classified, based on the effects of
actions, in deterministic, probabilistic or nondeterministic. In
this paper we are concerned with action dynamics under gen-
eral forms of uncertainty; indeed, we are interested in plan-
ning under bothrisk and Knightian uncertainty. We show
how to use these concepts to express probabilistic and non-
deterministic planning (and combinations thereof) asMarkov
decision processes with set-valued transitions (MDPSTs).

Similar generalizations of Markov decision processes
(MDPs) have appeared before in research on artificial intel-
ligence. For example, Givanet al. [2000] use intervals to
encode a set of exact MDPs, which is used to conduct space
state reduction of MDPs. Theirbounded-parameterMDPs
(BMDPs) form neither a superset nor a subset of MDP-
STs. Buffet and Aberdeen[2005] use BMDPs to produce
robust policies in probabilistic planning. They also show
that Real-Time Dynamic Programming (RTDP)can be used
in BMDPs. Our perspective is different: we wish to unify
various strands of planning that have proven practical value,
using a theory that has a behavioral basis on preferences and
beliefs — otherwise, we do follow a similar path to Buf-
fet and Aberdeen’s in that we exploit RTDP in our models.
Another recent work that should be mentioned is Pernyet
al.’s [2005], where transitions must only satisfy a few alge-
braic properties. Our models are a strict subset of their Al-

gebraic MDPs (AMDPs); we forgo some generality because
we want to employ models with solid behavioral justification,
and to exploit the specific structure of combined probabilistic-
nondeterministic planning. Even though general algorithms
such as AMDP-based value iteration are useful theoretically,
we find that a more specific approach based on Real-Time
Dynamic Programming leads to encouraging results on com-
putational complexity.

This necessarily brief review of closest literature shouldin-
dicate the central motivation of this work: we strive to work
with decision processes that have solid behavioral founda-
tion and that can smoothly mix problems of practical signif-
icance. A similar approach has been proposed by Eiter and
Lukasiewicz[2003], using nonmonotonic logic and causal se-
mantics to define set-valued transitions inPartial Observable
MDPs (and leaving algorithms for future work). We offer a
model that assumes full observability, and we obtain algo-
rithms and complexity analysis for our model.

The remainder of this paper is organized as follows. In
Section 3 we discuss how MDPSTs capture the continuum of
planning problems from “pure” probabilistic to “pure” non-
deterministic planning. In Section 4 we show that MDPSTs
are Markov decision processes with imprecise probabilities
(MDPIPs), a model that has received attention in operations
research and that displays a solid foundation. We also com-
ment on the various relationships between MDPSTs and other
models in the literature. In Section 5 we show that MDPSTs
lead to important simplifications of their “minimax” Bellman-
style equation (we note that such simplifications are men-
tioned without a proof by Buffet and Aberdeen[2005] for
BMDPs). We obtain interesting insights concerning compu-
tational complexity of MDPSTs and related models. Section
6 investigates algorithms that produce minimax policies for
MDPSTs. Although our results yield easy variants of value
and policy iteration for MDPSTs, we are interested in more
efficient algorithms based on RTDP. In Section 6 we derive
the conditions that must be true for RTDP to be applied. Sec-
tion 7 brings a few concluding remarks.

2 Background

2.1 Varieties of planning
We start reviewing a few basic models of planning problems,
attempting to unify them as much as possible as suggested by



recent literature[Bonet and Geffner, 2006]:

M1 a discrete and finite state spaceS,

M2 a nonempty set of initial statesS0 ⊆ S,

M3 a goal given by a setSG ⊆ S,

M4 a nonempty set of actionsA(s) ⊆ A representing the
actions applicable in each states,

M5 a state transition functionF (s, a) ⊆ S mapping states
and actiona ∈ A(s) into nonempty sets of states, i.e.
|F (s, a)| ≥ 1, and

M6 a positive costC(s, a) for takinga ∈ A(s) in s.

AdaptingM2, M5 andM6, one can produce:

• Deterministic models(DET), where the state transition
function is deterministic:|F (s, a)| = 1. In “classical”
planning, the following constraints are added: (i)|S0| =
1; (ii) SG 6= ∅; and (iii) ∀s ∈ S, a ∈ A(s) :C(s, a) = 1.

• Nondeterministic models (NONDET), where the ac-
tions may result in more than one successor state without
preferences among them.

• Probabilistic models (MDPs), where actions have
probabilistic consequences. Not only the function
|F (s, a)| ≥ 1 is given, but also the model includes:
(MDP1) a probability distributionP0(·) over S0; and
(MDP2) a probability distributionP (·|s, a) overF (s, a)
for all s ∈ S, a ∈ A(s).

For any of these models, we expect that a solution (e.g. a
policy) is evaluated on its long-term costs. The cost of a so-
lution can be evaluated in afinite-horizon, in which the max-
imum number of actions to be executed is limited tok ∈ R+.
An alternative is to considerdiscounted infinite-horizon, in
which the number of actions is not bounded and the cost of
actions is discounted geometrically using adiscount factor
0 < γ < 1. Since it is difficult to find an appropriatek
for each problem, in this paper we assume the discounted
infinite-horizon framework.1

Due to the assumption of full observability and discounted
infinite-horizon cost, a valid solution is astationary policy,
that is, a functionπ mapping statess ∈ S into actions
a ∈ A(s). Bellman’s principle of optimality defines the op-
timal cost functionV ∗(s) = mina∈A(s) QV ∗(s, a) [Bellman,
1957], where:

QV (s, a)=

8
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>

>

<

>

>

>

:

C(s, a) + γV (s′), s′ ∈ F (s, a) for DET,
C(s, a) + γ max

s′∈F (s,a)
V (s′) for NONDET, and

C(s, a) + γ
X

s′∈F (s,a)

P (s′|s, a)V (s′) for MDPs.
(1)

This principle characterizesV ∗ (also called optimal value
function) and induces the optimal policy for each model:
π∗(s) = argmina∈A(s) QV ∗(s, a). The definition of
QV (s, a) clarifies the guarantees of each model. In DET,
guarantees given byπ∗ do not depend on its execution; in
NONDET guarantees are on the worst-case cost; and in
MDPs guarantees are on expected cost. There are algorithms

1Results presented here are also applicable to finite-horizon, and
can be easily adapted to address partial observability.

that compute the optimal policies for each one of these mod-
els, and algorithms that can be specialized to all of them
[Bonet and Geffner, 2006]. However, we should emphasize
that previous unifying frameworks do not intend to handle
smooth “mixtures” of these planning problems. In fact, one
of our goals in this paper is to provide a framework where
NONDET and MDPs are the extreme points of a continuum
of planning problems.

2.2 Varieties of uncertainty

Probability theory is often based on decision theory[Berger,
1985], a most appropriate scheme in the realm of planning.
Thus a decision maker contemplates a set of actions, each
one of which yields different rewards in different states of
nature. Complete preferences over actions imply that a pre-
cise probability value is associated with each state — a situa-
tion of risk [Knight, 1921; Luce and Raiffa, 1957]. An obvi-
ous example of sequential decision making under “pure” risk
is probabilistic planning. However, often preferences over
actions are only partially ordered (due to incompleteness in
beliefs, or lack of time/resources, or because several experts
disagree), and then it is not possible to guarantee that precise
probabilities represent beliefs. In those cases, aset of proba-
bility measuresis the adequate representation for uncertainty;
such sets are often referred to ascredal sets[Levi, 1980;
Kadaneet al., 1999; Walley, 1991]. Even though terminology
is not stable, this situation is said to containKnightian uncer-
tainty (other terms areambiguityor simplyuncertainty). An
extreme case isnondeterministic planning, whereno proba-
bilities are specified.2

Note that actual decision making is rarely restricted to ei-
ther “pure” risk nor “pure” Knightian uncertainty; in fact
the most realistic scenario mixes elements of both. Not sur-
prisingly, such combinations are well studied in economics,
psychology, statistics, and philosophy. We note that credal
sets have raised steady interested in connection with arti-
ficial intelligence, for example in the theory of probabilis-
tic logic [Nilsson, 1986], in Dempster-Shafer theory[Shafer,
1976], in theories of argumentation[Anrig et al., 1999],
and in generalizations of Bayesian networks[Cozman, 2005;
Fagiuoli and Zaffalon, 1998].

The usual prescription for decision making under risk is to
select an action that maximizes expected utility. In the pres-
ence of Knightian uncertainty, matters become more com-
plex, as now a decision maker carries a set of probability
measures and consequently every action is associated with
an interval of expected costs[Walley, 1991]. Thus a decision
maker may choose one of several criteria, such as minimax-
ity, maximality, E-admissibility[Troffaes, 2004]. In this pa-
per we follow aminimaxapproach, as we are interested in
actions that minimize the maximum possible expected cost;
we leave other criteria for future work.

2The term “nondeterministic” is somewhat unfortunate as non-
determinism is often equated to probabilism; perhaps the term plan-
ning under pure Knightian uncertainty, although longer, would offer
a better description.
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Figure 1: An MDPST representing the Example 1. Dotted lines indicate each one of the reachable sets. Cost of taking actions
d1, d2 andHT in the Example 1. States with “–” indicates the action is not applicable. ActionNoop represents the persistence
action for the absorbing states.

3 Markov decision processes with set-valued
transitions

In this section we develop our promised synthesis of proba-
bilistic and nondeterministic planning. We focus on the tran-
sition function; that is, onM5. Instead of takingF (s, a) ⊆ S,
we now have a set-valuedF(s, a) ⊆ 2S\∅; that is,F(s, a)
maps each states and actiona ∈ A(s) into aset of nonempty
subsetsof S. We refer to each setk ∈ F(s, a) as areachable
set. A transition from states given actiona is now asso-
ciated with a probabilityP (k|s, a); note that there is Knight-
ian uncertainty concerningP (s′|s, a) for each successor state
s′ ∈ k. We refer to the resulting model as aMarkov deci-
sion process with set-valued transitions (MDPSTs): transi-
tions move probabilistically to reachable sets, and the prob-
ability for a particular state is not resolved by the model. In
fact, there is a close connection between probabilities over
F(s, a) and themass assignmentsthat are associated with the
theory of capacities of infinite order[Shafer, 1976]; to avoid
confusion betweenP (k|s, a) andP (s′|s, a), we refer to the
former as mass assignments and denote them bym(k|s, a).

Thus an MDPST is given byM1, M2, M3, M4, M6, MDP1,

MDPST1 a state transition functionF(s, a) ⊆ 2S\∅ mapping
statess and actionsa ∈ A(s) into reachable sets of
S, and

MDPST2 mass assignmentsm(k|s, a) for all s, a ∈ A(s),
andk ∈ F(s, a).

There are clearly two varieties of uncertainty in a MDPST:
a probabilistic selection of a reachable set and a nondetermin-
istic choice of a successor state from the reachable set. An-
other important feature of MDPSTs is that they encompass
models discussed in Section 3:

• DET: There is always a single successor state:∀s ∈
S, a ∈ A(s) : |F(s, a)| = 1 and∀s ∈ S, a ∈ A(s), k ∈
F(s, a) : |k| = 1.

• NONDET: There is always a single reachable set, but
selection within this set is left unspecified (nondeter-
ministic): ∀s ∈ S, a ∈ A(s) : |F(s, a)| = 1, and
∃s ∈ S, a ∈ A(s), k ∈ F(s, a) : |k| > 1.

• MDPs: Selection ofk ∈ F(s, a) is probabilistic and it
resolves all uncertainty:∀s ∈ S, a ∈ A(s) : |F(s, a)| >
1, and∀s ∈ S, a ∈ A(s), k ∈ F(s, a) : |k| = 1.

Example 1 A hospital offers three experimental treatments
to cardiac patients: drugd1, drug d2 and heart transplant
(HT ). States0 indicates patient with cardiopathy. The effects
of those procedures lead to other states: severe cardiopathy
(s1), unrecoverable cardiopathy (s2), cardiopathy with se-
quels (s3), controlled cardiopathy (s4), stroke (s5), and death
(s6). There is little understanding about drugsd1 andd2, and
considerable data on heart transplants. Consequently, there
is “partial” nondeterminism (that is, there is Knightian un-
certainty) in the way some of the actions operate. Figure 1
depicts transitions for all actions, indicating also the mass
assignments and the costs. For heart transplant, we suppose
that all transitions are purely probabilistic.

4 MDPSTs, MDPIPs and BMDPs
In this section we comment on the relationship between
MDPSTs and two existing models in the literature:Markov
decision processes with imprecise probabilities (MDPIPs)
[White III and Eldeib, 1994; Satia and Lave Jr, 1973] and
bounded-parameter Markov decision processes (BMDPs)
[Givanet al., 2000].

An MDPIP is a Markov decision process where transitions
are specified through sets of probability measures; that is,the
effects of an action are modelled by a credal setK over the
state space. An MDPIP is given byM1, M2,M3, M4, M6,
MDP1 and

MDPIP1 a nonempty credal setKs(a) for all s ∈ S and
a ∈ A(s), representing probability distributions
P (s′|s, a) over successor states inS.

In this paper we assume that a decision maker seeks a min-
imax policy (that is, she selects a policy that minimizes the
maximum cost across all possible probability distributions).
This adopts an implicit assumption that probabilities are se-
lected in an adversarial manner; other interpretations forMD-
PIPs are possible[Troffaes, 2004]. Under the minimax inter-
pretation, the Bellman principle of optimality is[Satia and
Lave Jr, 1973]:

V
∗(s) = min

a∈A(s)
max

P (·|s,a)∈Ks(a)
{C(s, a) + γ

X

s′∈S

P (·|s, a)V ∗(s′)};

(2)
moreover, this equation always has a unique solution that
yields the optimal stationary policy for the MDPIP. To inves-
tigate the relationship between MDPSTs and MDPIPs, the
following notation is useful: whenk ∈ F(s, a), we denote by
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der uncertainty modeled through MDPSTs and BMDPs. Ex-
ample 1 is theHeart example from Pernyet al. (2005). Ex-
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express the problem modelled by the other one.

D(k, s, a) the set of states such thatk \
(

⋃

k′∈F(s,a) 6=k k′
)

.

ThusD(k, s, a) represents all nondeterministic effects ofk
that belong only tok. We now have:

Proposition 1 Any MDPSTp = 〈S, S0, SG,A,F, C, P0, m〉
is expressible by an MDPIPq = 〈S, S0, SG,A, F, C, P0,K〉.

Proof (detailed in[Trevizanet al., 2006]) It is enough to
prove that∀s ∈ S, a ∈ A(s), F(s, a) (MDPST1) andm(s, a)
(MDPST2) imply Ks(a) (MDPIP1). First, note thatMDPST2
bounds for alls′ ∈ S the probability of being in states′ after
applying actiona in states as follows

m({s′}|s, a) ≤ P (s′|s, a) ≤
∑

k∈F(s,a)∧s′∈k

m(k|s, a) ≤ 1. (3)

(To see that, use the definition of reachable sets: letk ∈
F(s, a); if s′ 6∈ k, then it is not possible to selects′ as a
nondeterministic effect ofa.)

FromMDPST1 andMDPST2 it is possible to bound the sum
of the probabilities of each state in a reachable setk ∈ F(s, a)
and in the associated setD(k, s, a):

0 ≤
∑

s′∈D(k,s,a)

P (s′|s, a) ≤ m(k|s, a) ≤
∑

s′∈k

P (s′|s, a) ≤ 1 (4)

The set of inequalities (3) and (4) fors ∈ S anda ∈ A(s)
describe a possible credal setKs(a) for MDPIP1. ⊓⊔

Definition 1 The MDPIPq obtained through Proposition 1
is called theassociated MDPIP of p.

As noted in Section 1, BMDPs are related to MDPSTs. In-
tuitively, BMDPs are Markov decision processes where tran-
sition probabilities and rewards are specified by intervals[Gi-
vanet al., 2000]. Thus BMDPs are not comparable to MD-
PIPs due to possible imprecision in rewards; here we only
consider those BMDPs that have real-valued rewards. Clearly
these BMDPs form a strict subset of MDPIPs. The relation-
ship between such BMDPs and MDPSTs is more complex.
Figure 2.a and 2.b presents an MDPST and an BMDP that
are equivalent (that is, they represent the same MDPIP). Fig-
ure 2.c and 2.d presents an MDPST that cannot be expressed

NON−DET

DET MDP
MDPST

MDPIP

BMDP

Figure 3: Relationships between models (BMDPs with pre-
cise rewards).

as an BMDP, and an BMDP that cannot be expressed as an
MDPST. As a technical aside, we note that theF(s, a) de-
fine Choquet capacities of infinite order, while transitions
in BMDPs defineChoquet capacities of second order[Wal-
ley, 1991]; clearly they do not have the same representational
power.

The results of this section are captured by Figure 3. In
the next two sections we present our main results, where we
explore properties of MDPSTs that make these models rather
amenable to practical use.

5 A simplified Bellman equation for MDPSTs
We now present a substantial simplification of the Bellman
principle for MDPSTs. The intuition behind the following
result is this. In Equation (2), both minima and maxima are
taken with respect to all combinations of actions and possible
probability distributions. However, it is possible to “pull” the
maximum inside the summation, so that less combinations
need be considered.
Theorem 2 For any MDPST and its associated MDPIP,(2)
is equivalent to:

V
∗(s) = min

a∈A(s)
{C(s, a) + γ

X

k∈F(s,a)

m(k|s, a)max
s′∈k

V
∗(s′)} (5)

Proof DefineV ∗
IP (s) andV ∗

ST (s) as a shorthand for the val-
ues obtained through, respectively, (2) and (5). We want to
prove that for all MDPSTp = 〈S, S0, SG,A,F, C, P0, m〉,
its associated MDPIPq = 〈S, S0, SG,A, F, C, P0,K〉, and
∀s ∈ S, V ∗

IP (s) = V ∗
ST (s). Due to the Proposition 1, we have

that the probability measure induced bymaxs′∈k V ∗(s′) for
k ∈ F(s, a) in (5) is a valid choice according toKs(a), there-
fore ∀s ∈ S, V ∗

ST (s) ≥ V ∗
IP (s). Now, it is enough to show

that∀s ∈ S, V ∗
ST (s) ≤ V ∗

IP (s) to conclude this proof.
For all ŝ ∈ S, we denote byFŝ(s, a) the set of reach-

able sets{k ∈ F(s, a)| ŝ = argmaxs′∈k V ∗
ST (s′)}. The

proof of ∀s ∈ S, V ∗
ST (s) ≤ V ∗

IP (s) proceeds by contra-
diction as follows. For alls ∈ S and all a ∈ A(s), let
P (·|s, a) be the probability measure chosen by the operator
max in V ∗

IP (s) and suppose thatV ∗
ST (s) > V ∗

IP (s). There-
fore, there is as ∈ S such that

∑

k∈Fs(s,a) m(k|s, a) >

P (s|s, a); asP (·|s, a) is a probability measure, there is also a
s ∈ S s.t.

∑

k∈Fs(s,a) m(k|s, a) < P (s|s, a) andV ∗
IP (s) >

V ∗
IP (s). Now, letP (·|s, a) be a probability measure defined

by: P (s′|s, a) = P (s′|s, a) ∀s′ ∈ S \ {s, s}, P (s|s, a) =
P (s|s, a) + ǫ andP (s|s, a) = P (s|s, a) − ǫ, for ǫ > 0. Note
that

∑

s′∈S P (s′|s, a)V ∗
IP >

∑

s′∈S P (s′|s, a)V ∗
IP , a con-

tradiction by the definition ofP (·|s, a). Thus, the rest of this
proof shows thatP (s′|s, a) satisfies Proposition 1.



Due to the definition ofP (·|s, a), we have that the left side
and the right side of (3) are trivially satisfied, respectively, by
P (s|s, a) andP (s|s, a). To treat the other case for boths and
s, it is sufficient to defineǫ as follows:

ǫ = min{
X

k∈F
s
(s,a)

m(k|s, a)−P (s|s, a), P (s|s, a)−
X

k∈Fs(s,a)

m(k|s, a)}.

Using this definition, we have thatǫ > 0 by hypothesis;
since (4) gives a lower and an upper bound to the sum of
P (·|s, a) over, respectively,k ∈ F(s, a) andD(k, s, a) ⊆ k.
If {s, s} ∈ D(k, s, a) or {s, s} 6∈ D(k, s, a), then noth-
ing changes and these bounds remain valid. There is one
more case for each bound that its satisfaction is trivial too:
(i) for the upper bound whens 6∈ D(k, s, a); and (ii) for
the lower bound whens 6∈ k. A nontrivial case is for
the lower bound in (4) whens 6∈ k and s ∈ k. This
bound still holds becausem({s}|s, a) ≤ P (s|s, a) (by hy-
pothesis) and

∑

s′∈k P (s′|s, a) =
∑

s′∈k m({s′}|s, a) +

δ ≤
∑

s′∈k\{s} m({s′}|s, a) + δ + P (s|s, a) ≤
∑

s′∈k\{s} P (s′|s, a) + P (s|s, a), δ ≥ 0 (using Proposition
1 for P (·|s, a)).

The last remaining case (to prove that Equation (4) is
true for P (·|s, a)) happens whens ∈ D(k, s, a) and s 6∈
D(k, s, a) for the upper bound in (4). This case is valid
because there is nok′ ∈ F(s, a) such thatk′ 6= k and
s ∈ k′ by the definition of reachable set, thusP (s|s, a) ≤
∑

k∈Fs(s,a) m(k|s, a) = m(k|s, a) by hypothesis. If there
is not a s′ ∈ k \ {s} s.t. P (s′|s, a) > 0 this up-
per bound still holds, else, choosings′ as s will validate
all the bounds. SinceP (·|s, a) respects Proposition 1,
we get a contradiction because

∑

s′∈S P (s′|s, a)V (s′) >
∑

s′∈S P (s′|s, a)V (s′) but by hypothesisP (·|s, a) =
argmaxP (·|s,a)∈Ks(a)

∑

s′∈S P (s′|s, a)V ∗(s). Therefore,
∀s ∈ S, V ∗

ST (s) ≤ V ∗
IP (s), what completes the proof. ⊓⊔

An immediate consequence of Theorem 2 is a decrease
of the worst case complexity order of MDPIPs algorithms
used for solving MDPSTs. Consider first one iteration of the
Bellman principle of optimality for eachs ∈ S (oneround)
using Equations (2). Define an upper bound of|F(s, a)|
for all s ∈ S and a ∈ A(s) of an MDPST instance by
F = maxs∈S{maxa∈A(s) |F(s, a)|} ≤ 2|S|. In the MDPIP
obtained through Proposition 1, computation ofV ∗(s) con-
sists of solving a linear program induced by themax operator
on (2). Because this linear program has|S| variables and
its description is proportional toF, the worst case complex-
ity of one round isO(|A||S|p+1

F
q
), for p ≥ 2 andq ≥ 1.

The value ofp andq is related to the algorithm used to solve
this linear program (for instance, using the interior pointal-
gorithm[Kojima et al., 1988] leads top = 6 andq = 1, and
the Karmarkar’s algorithm[Karmarkar, 1984] leads top to
3.5 andq to 3).

However, the worst case complexity for one round using
Equation (5) isO(|S|2|A|F). This is true because the prob-
ability measure that maximizes the right side of Equation
(2) is represented by the choicemaxs′∈k V (s′) in Equation
(5), avoiding the cost of a linear program. In the special

case of an MDP modelled as an MDPST, i.e.∀s ∈ S, a ∈
A(s), |F(s, a)| ≤ |S| and∀k ∈ F(s, a), |k| = 1, this worst
case complexity isO(|S|2|A|), the same for one round using
the Bellman principle for MDPs[Papadimitriou, 1994].

6 Algorithms for MDPSTs
Due to Proposition 1, every algorithm that finds the optimal
policy for MDPIPs can be directly applied to MDPSTs. In-
stances of algorithms for MDPIP are: value iteration, pol-
icy iteration[Satia and Lave Jr, 1973], modified policy iter-
ation[White III and Eldeib, 1994], and the algorithm to find
all optimal policies presented in[Harmanec, 1999]. How-
ever, a better approach is to use Theorem 2. This proposi-
tion gives a clear path on how to adapt algorithms from the
realm of MDPs — algorithms such as (L)RTDP[Bonet and
Geffner, 2003] and LDFS[Bonet and Geffner, 2006]. These
algorithms are defined forStochastic Shortest Pathproblems
(SSPs)[Bertsekas, 1995] (SSPs are a special case of MDPs,
in which there is only one initial state (M2) and the set of
goal states is nonempty (M3)). To find an optimal policy, an
additional assumption is required: the goal must be reachable
from every state with nonzero probability (thereachabilityas-
sumption). For MDPSTs, this assumption can be generalized
by requirement that the goal be reachable from every state
with nonzero probability for all probability measures in the
model. The following proposition gives a sufficient, however
not necessary, condition to prove the reachability assumption
for MDPSTs.

Proposition 3 If, for all s ∈ S, there existsa ∈ A(s) such
that, for allk ∈ F(s, a) and alls′ ∈ k, P (s′|s, a) > 0, then it
is sufficient to prove that the reachability assumption is valid
using at least one probability measure for eachs ∈ S and
a ∈ A.

Proof If the reachability assumption is true for a specific se-
quence of probability measuresP = 〈P 1, P 2, . . . .Pn〉, then
there exists a policyπ and ahistoryh, i.e. sequence of vis-
ited states and executed actions, induced byπ andP such
thath = 〈s0 ∈ S0, π(s0), s1, . . . , π(sn−1), sn ∈ SG〉 is min-
imum and∀s ∈ S, P0(s

0)
∏i≤n

i=1 P i(si|si−1, π(si−1)) > 0.

Sincesi+1 can always be reached, because there exists an ac-
tion a ∈ A(si) such thatP (si+1|si, a) > 0, then, for any
sequence of probability measures in the model, every history
h′ induced byπ containsh, i.e., reachessn ∈ SG. ⊓⊔

Example 2 Consider the planning problem in the Example
1 and the cost of actions in Figure 1. We have obtained the
following optimal policy for this MDPST:

π
∗ =

s0 s1 s2 s3 s4 s5 s6
d1 d2 HT Noop Noop Noop Noop

7 Conclusion
In this paper we have examined approaches to planning across
many dimensions: determinism, nondeterminism, risk, un-
certainty. We would like to suggest that Markov decision
processes with set-valued transitions represent a remarkable



entry in this space of problems. MDPSTs are quite general,
as they not only capture the main existing planning models
of practical interest, but also they can represent mixtures of
these models — we have emphasized throughout the paper
that MDPSTs allow one to combine nondeterminism of ac-
tions with probabilistic effects. It is particularly important to
note that MDPSTs specialize rather smoothly to DET, NON-
DET or MDP; if an MDPST belongs to one of these cases, its
solution inherits the complexity of the special case at hand.
Such a “smooth” transition to special cases does not obtain if
one takes the larger class of MDPIPs; the general algorithms
require one to perform bilevel programming (linear programs
are nested, as one linear program is needed to compute the
value) and do not treat efficiently the special cases.

In fact, MDPSTs are remarkable not only because they are
rather general, but because they arenotoverly general — they
are sufficiently constrained that they display excellent compu-
tational properties. Consider the computation of an iteration
of the Bellman equation for a states (a round). This is an es-
sential step both in versions of value and policy iteration and
in more sophisticated algorithms such as (suitably adapted)
RTDP. As discussed in Section 6, rounds in MDPSTs have
much lower complexity than rounds in general MDPIPs —
in essence, the simplification is the replacement of a linear
program by a fractional knapsack problem.

Finally, we would like to emphasize that MDPSTs inherit
the pleasant conceptual aspects of MDPIPs. They are based
on solid decision theoretic principles that attempt to repre-
sent, as realistically as possible, riskand Knightian uncer-
tainty. We feel that we have only scratched the surface of this
space of problems; much remains to be done both on theoret-
ical and practical fronts.
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