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Abstract. This paper proposes an unifying formulation for nondeter-
ministic and probabilistic planning. These two strands of AI planning
have followed different strategies: while nondeterministic planning usu-
ally looks for min-max (or worst-case) policies, probabilistic planning
attempts to maximize expected reward. In this paper we show that both
problems are special cases of a more general approach, and we demon-
strate that the resulting structures are Markov Decision Processes with
Imprecise Probabilities (MDPIPs). We also show how existing algorithms
for MDPIPs can be adapted to nondeterministic and probabilistic plan-
ning in AI.

1 Introduction

Planning is not only ubiquitous in artificial intelligence; it also appears in many
different forms. While “classical” planning focuses on deterministic settings with-
out any uncertainty, several “non-classical” approaches have tried to deal with
various forms of uncertainty [1]. Among these approaches, probabilistic planning

has produced significant results in recent years [2,3,4]. Here one finds that prob-
abilities are used to encode risk and uncertainty, while expected utility is used to
rank plans. Another important approach is nondeterministic planning [5], where
one does not even assign probabilities to the consequences of actions.

A particularly apt perspective from which to read this literature is due to
Geffner and Bonet [6]. The idea is to make a clear distinction between plan-
ning languages, models and algorithms, and to try to capture what is common
across approaches by formulating general languages, models, and algorithms.
As discussed in Section 2, this perspective has been quite effective in unifying
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various strands of planning, from classical to probabilistic, including variants
of non-deterministic planning. A unified understanding of planning problems is
obviously beneficial not only to artificial intelligence but to several other fields
such as operations research and management.

The just mentioned general formulation takes probabilistic and nondeter-
ministic approaches as two extreme and unrelated positions concerning plan-
ning. And in fact there are apparently great differences between them. They
are based on different assumptions concerning beliefs (either always translated
into probabilities, or never translated into probabilities), and different prescrip-
tions for action (either focused on average behavior through expected utility,
or on worst-case guarantees coming from min-max). Accordingly, communities
in probabilistic and nondeterministic planning have had little real interaction.
In a sense, this is the general decision-theoretic contrast between Bayesian po-
sition that prescribes expected utility, and a min-max position that looks at
worst case behavior. But in decision theory there are many other options, and in
particular there are interesting options that can handle not only expected and
min-max positions, but also other positions in between. Thus one can have a
decision problem where some events have probability values attached to them,
while other events may be associated with “nondeterministic” phenomena.

In this paper we propose a unifying formulation for planning problems, where
we can smoothly transition between probabilistic and nondeterministic planning.
These two approaches are viewed as simple special cases, and our analysis re-
veals a spectrum of new planning problems that has not been considered by the
literature in artificial intelligence so far. We demonstrate that the resulting struc-
tures are Markov Decision Processes with Imprecise Probabilities (MDPIPs), a
model proposed in operations research to solve control problems. We also show
how existing algorithms for MDPIPs can be adapted to nondeterministic and
probabilistic planning in AI.

The remainder of this paper is organized as follows. In Section 2 we sum-
marize Geffner and Bonet’s unifying perspective on planning — thus defining
the probabilistic and nondeterministic varieties. Section 3 introduces basic con-
cepts underlying risk and uncertainty. Section 4 defines our proposal model for
probabilistic and nondeterministic planning, named NDP model. In Section
5 we demonstrate that the NDP model is a variant of Markov Decision Pro-
cesses with Imprecise Probabilities (called MDPIPs in the literature). Section
6 adapts MDPIP algorithms for NDP models. Finally, Section 7 suggests exten-
sions on PPDDL so as to represent NDP models, and in Section 8 we draw some
conclusions.

2 Planning Models

We briefly review the mathematical models needed to characterize planning tasks
with full observability for different action dynamics (we simplify the presentation
by assuming full observability; partial observability can be addressed with minor



changes in the framework). Every state model that we consider can be defined
in terms of the elements of the following basic state model [7]:

BSM1 a discrete and finite state space S,
BSM2 a non-empty set of initial states S0 ⊆ S,
BSM3 a goal given by a non-empty set SG ⊆ S,
BSM4 a non-empty set of actions A(s) ⊆ A representing the actions applicable

in each state s,
BSM5 a state transition function F (s, a) ⊆ S mapping states s and actions

a ∈ A(s) into sets of states, i.e. ‖F (s, a)‖ ≥ 1, and
BSM6 a positive action cost C(a, s) for doing a ∈ A(s) in s.

Differents models can be defined adding new restrictions or modifing the
statements 2, 5 and 6. Those models are:

– Deterministic Models, where the dynamics are defined by a deterministic
state transition function, i.e., ‖F (s, a)‖ = 1. This is the basis of the clas-

sical planning scenario, where one has additional constraints of initial state
‖S0‖ = 1 and goal C(a, s) = 1 ∀s ∈ S, a ∈ A(s). The goal is generally to
find a plan (sequence of actions) that moves from the initial state to the
goal.

– Nondeterministic Models, where the actions may result in more than one
successor state without preferences among them. So we have the same model
as in deterministic planning, but uncertainty in actions. In fact, the term
“nondeterminism” should here be understood as “automata-style” nondeter-
minism. This may be a bit confusing as nondeterminism is usually associated
with probabilities in decision theory — using the terminology discussed in
Section 3, we actually have planning under pure Knightian uncertainty. The
goal is generally to find a plan that moves from the initial state to the goal
no matter what nondeterministic actions do — that is, that works even in
the worst-case.

– Probabilistic Models, where actions have probabilistic consequences. Not
only the function ‖F (s, a)‖ ≥ 1 is given, but also the model includes a
probability distribution P (·|s, a) over F (s, a) ∀s ∈ S, a ∈ A(s). The goal
is to maximize expected utility; there are in fact several ways to take into
account costs and rewards. The important point is that the model prescribes
a unique probability distribution; thus each policy is associated with a unique

value, and selecting a policy means finding a policy such that no other policy
has a larger value.

There are algorithms that compute policies for each one of these problems. A
recent development is the derivation of a single algorithm that can be instanti-
ated for different models, including the ones just described [2]. However it should
be emphasized that this generalized formulation does not yield a smooth family
of solutions that moves from one case to the other. In particular, there is no
algorithm that has the probabilistic and nondeterministic cases as special ones,
and also that copes with mixtures of these cases. The main goal of this paper is
to start the construction of such a framework.



3 Risk, Knightian Uncertainty and Sets of Probabillies

Instead of moving directly to our general formulation, it is instructive to start
with an open-minded review of decision theory. Here a decision maker contem-
plates a set of options (in our setting, policies); each option yields a utility
depending on the state of nature that obtains [8]. We consider a set of states of
nature Ω; then each option is a function f : Ω → <. If a decision maker can spec-
ify a single probability measure P over a field of events defined on Ω, then this
“Bayesian agent” will evaluate each option f by expected utility, EP [f ]. Typi-
cally one assumes that such an agent can select any option that is be dominated
by expected utility — a simple criterion that leads to a rich theory [9].

However, there may be situations where an agent does not have a single
probability measure. A common assumption then is that the agent will have
no probability at all. The usual solution then is to look at worst-case scenar-
ios: select f that displays the highest worst utility — a minimax solution [8].
The difference between these extremes (one/no probability) is well studied in
economics and psychology. Usually the presence of probabilities is associated
with the expression risk, while the absence of probabilities is associated with
uncertainty, or rather, Knightian uncertainty (from the work of Knight [10]). To
indicate the pervasiveness of these concepts in economics practice, it suffices to
quote from a relevant speech by Alan Greenspan, read in January 3 2004:

...uncertainty is not just a pervasive feature of the monetary policy landscape;

it is the defining characteristic of that landscape. The term “uncertainty” is

meant here to encompass both “Knightian uncertainty,” in which the proba-

bility distribution of outcomes is unknown, and “risk,” in which uncertainty

of outcomes is delimited by a known probability distribution...

Now it is clear that sequential decision making under risk is probabilistic

planning, while sequential decision making under Knightian uncertainy is non-

deterministic planning. In fact, we would like to suggest that the term “nondeter-
ministic” is an unfortunate one in the present setting, as nondeterminism usually
suggests some form of probabilistic model. It seems that Knightian uncertainty,
although longer, is a less overloaded term.

Once it is recognized that risk and Knightian uncertainty are two challenges
a decision maker may face, one is naturally lead to ask about situations of both
risk and Knightian uncertainty. That is, we may consider the possibility that
an agent displays imprecision in probability values or even that the agent con-
siders a set of probability values. There are many reasons where such a general
situation may arise. First, it may happen that existing beliefs are incomplete
or vague [11,12,13], either because there is no time/resources to spend in their
elicitation, or because experts are psychologically unable to specify precise prob-
ability values. Second, it may be the case that a group of experts disagrees on
probability values, and no compromise can be reached other than the collection
of their opinions [14,15]. Another reason to abandon a single probability measure
is when one is interested in the robustness of inferences — that is, in evaluating



how much inferences can change when probability values are allowed to vary
[9,16,17].

Our strategy in this paper is, at a fundamental level, simple: we intend to
bring the decision theory of risk and Knightian uncertainty to the realm of
artificial intelligence planning. In this setting, uncertainty will be represented by
sets of probability measures. At one extreme, we obtain probabilistic planning (all
sets are singletons); at the other extreme, we obtain nondeterministic planning
(all sets are as large as possible). Moreover, we obtain a continuum of models
as we allow sets of probability measures to transit from vacuously large ones to
singletons.

Artificial intelligence has witnessed steady interest in sets of probability mea-
sures, for example, in the theory of probabilistic logic [18,19,20], in Dempster-
Shafer theory [21,22], in theories of argumentation [23,24], and in techniques
that generalize graph-theoretic models such as Bayesian networks [25,26,27].3

Our contribution here is to identify the probabilistic/nondeterministic planning
spectrum with the theory of sets of probability measures.

4 Planning under Risk and Knightian Uncertainty: the
Probabilistic/Nondeterministic Spectrum

The Nondeterministic-Probabilistic model, named NDP model, can be seen as a
more general model since it gives a precise semantics to a new planning task, i.e.,
a task envolving nondeterministic and probabilistic effects of actions. Therefore,
a planning problem can be solved considering, simultaneously, these two types
of action’s effects.

Example 1. Given the following situation, . . . . In this case the action ? can be
envisaged as a nondeterministic-probabilistic action, where . . . .

Once the NDP model has to represent non-deterministic effects, the transition
function F (s, a), from the basic state model described in Section 2, instead of
being defined as F (s, a) ⊆ S, will map states and actions to sets of sets of the
state space. That is, for all k in F (s, a), k is a subset of or equal to S.

Definition 1. In the NDP model, the transition function F (s, a) maps states s

and actions a ∈ A(s) into non-empty sets of the parts of the state space, i.e.

F (s, a) ⊆ 2S .

Definition 2. A possible-state set k is a set composed of possible resulting

states achieved with the execution of an action a, i.e. k ∈ F (s, a) with F (s, a)
being the state transition of Definition 1.

With the above definions the probabilistic function P (k|s, a), k ∈ F (a, s)
has a differnt interpretation: in the NDP model, P (k|s, a) represents the proba-
bility of the next state be one of the states in k. A complete and formal descrip-
tion of the NDP model is given by:

3 There is now significant literature on the theory and applications of sets of proba-
bility measures [28,29,30,31].



NDP1 a discrete and finite state space S,
NDP2 a non-empty set of initial states S0 ⊆ S,
NDP3 a goal situtation given by a non-empty set SG ⊆ S,
NDP4 a non-empty set of actions A(s) ⊆ A representing the actions applicable

in each state s,
NDP5 a state transition function F (s, a) ⊆ 2S mapping states s and actions

a ∈ A(s) into non-empty sets of the parts of the state space,
NDP6 a probability distribution P (·|s, a) over F (s, a) ∀s ∈ S, a ∈ A(s) where

P (k|s, a) represents the probability of choosing the possible-state set k ⊆
S when action a is applied in state s, and

NDP7 a positive action cost C(a, s) for doing a ∈ A(s) in s.

Notice that there is two types of choices in the NDP model: a probabilistic
choice of a possible-state set and a nondeterministic choice of a sucessor state
from the possible-state set. As it was shown in the Example 1, the nondeterministic-
probabilistic planning task can be characterized by domains for which the ac-
tion dynamics satisfies the following restrictions: (1) ‖F (s, a)‖ > 1 and (2)
∃k ∈ F (s, a)s.t.‖k‖ > 1, for s ∈ S, a ∈ A(s). If none of these requirements
is true, then NDP model is reduced to one of the models described in Section 2.

If the first requirement is false, i.e. ‖F (s, a)‖ = 1, and the second is true,
the NDP model is equivalent to the Non-deterministic model (Section 2). This
is because: ∀s ∈ S , a ∈ A(s), if ‖F (s, a)‖ = 1 then P (k ∈ F (s, a)|s, a) = 1,
which means that the choice of a possible state set will be deterministic while
the occurrence of a single state s′ ∈ k will be nondeterministic.

For the planning set where the first requirement is true and the second is false,
then the model corresponds to the Probabilistic Model from Section 2. This is
due to the fact that ∀s ∈ S, a ∈ A(s), k ∈ F (s, a) ‖k‖ = 1, implying that
there will be only one candidate to the nondeterministic choice, with probability
P (k|s, a) after executing a in the state s. Under this assumptions the probability
distribuition over 2S is equivalent to a probability distribuition over S.

Finally, when both requirements are false, the model is equivalent to the
Deterministic Model once there is not any point of choice: neither in the prob-
abilistic choice of a possible state set nor in the nondeterministic choice of a
sucessor state.

Furthermore, the complete NDP model is equivalent to a Markov Deci-
sion Process having imprecisely known transition probabilities. This equivalence,
proved in the next section, gives a formal semantics for the NDP model.

5 The relation between NDP and MDPIP model

Markov Decision Processes with Imprecise Probabilities (MDPIPs) [32,33] are
an extension of Markov Decision Processes (MDPs) [34] where the probabilities
describing the transition between states are not defined as a number, but as a
finite set of linear inequalities. Consequently, the possible effects of an action are
modelled by a credal set K (cite ?) over the state space instead of a probability
distribution over the same space. A precise definition of an MDPIP is:



MIP1 a discrete and finite state space S,
MIP2 a goal situtation given by a non-empty set SG ⊆ S,
MIP3 a non-empty set of actions A(s) ⊆ A representing the actions applicable

in each state s,
MIP4 a non-empty credal set Ks(a) representing the possibles probability dis-

tributions P (·|a, s) over S, and
MIP5 a positive action cost C(a, s) for doing a ∈ A(s) in s.

The formulation above is based on Game Theory and considers the existence
of a mechanism that selects the exact probability distribution after an action
has been selected. This mechanism is usually called nature and an MDPIP can
be solved only if an assumption is made about its behavior. In this paper, we
assume that nature is intent on maximizing the expected total discount cost
for each state that the planner wishes to minimize (1). Therefore, a min-max
criterion is adopted to find a policy.

V (s) = min
a∈A(s)

max
P (·|s,a)∈Ks(a)

{C(a, s) + γ
∑

s′∈S

P (s′|s, a)V (s′)} (1)

In [33] it has been shown that the solution to (1), called V ∗(s), exists and is
the only one. It is also proved that the optiomal policy for an MDPIP can be
expressed by a stationary policy, i.e., the same policy for any instant in time.

Proposition 1. The NDP model is a special case of the MDPIPs model.

Proof. Note that NDP1, NDP3, NDP4 and NDP7 are equal, respectively, to
MIP1, MIP2, MIP3 and MIP5. Thus the proof is reduced to prove that NDP5
and NDP6 implies in MIP4.

Suppose, without lost of generality, that P (k = {si, . . . , sj}|s, a) = p for a
s ∈ S, a ∈ A(s), and k ∈ F (s, a). Therefore the following inequations hold:

0 ≤ P (sl|s, a) ≤ p ∀sl ∈ {si, . . . , sj} (2)

0 ≤
∑

sl∈{si,...,sj}
P (sl|s, a) ≤ p (3)

The set of inequations (2) and (3) describe the credal set Ks(a) of MIP4.

Propositon 1 not only makes the results in [32,33] valid for the NDP model,
but also suggests algorithms to solve it. An example of algorithm from Opera-
tional Research used to solve a problem modelled by a NDP is given in the next
section.

6 Algorithms

7 Languages

The formulation of the planning task as a state model, or a Markov Decision
Process in the case of probabilistic planning, has opened up the field to try new
approaches, p.e., from the operational research field.



A probabilistic planning problem can be specified through probabilistic ef-
fects of actions. The 4th International Planning Competition (IPC-4), happen
in 2004, included a track on probabilistic planning for the first time. The results
of the competition included an interactive system for planner evaluation, a set
of benchmark problems, and some important learned lessons. It also resulted
on a specification language for probabilistic planning (PPDDL), an extension of
PDDL (the standard language for specifying planning domains and problems),
[35].

A probabilistic effect declares an exhaustive set of probability-weighted out-
comes. For isntance, in PPDDL the syntax for probabilistic effects is:

(probabilistic p1e1 . . . piei . . . pkek)

meaning that effect ei occurs with probability pi such as pi ≥ 0 and
∑k

i=1 pi =
1. The PPDDL language incorporates syntactic extensions to PDDL that allows
to specify Markov Decision Processes (MDPs).

The 5th International Planning Competition (IPC-5), generalized the prob-
abilistic planning track to include separate subtracks for nondeterministic plan-
ning. Therefore, some extensions to PPDDL, required to model non-deterministic
effects, added non-deterministic statement of the form:

(oneof e1 . . . ei . . . ek)

where ei are PPDDL effects. The semantics is that when executing such
effect, one of the ei is chosen and applied to the current state.

However, there is a class of planning problems that has not been considered
in the IPC-5 or by the planning community: the nondeterministic and proba-
bilistic planning. While there are significant efforts given to both research fields:
probabilistic planning [2,3,4] and nondeterministic planning [5], there is not been
yet a proposal of model, language and algorithms for this joint formulation of
planning.

Falar rapidamente sobre a extensão de PPDDL:

(probabilistic p1 (oneof e1
1 . . . e

j1
1 ) . . . pk (oneof e1

k . . . e
jk

k ))

Os exemplos na introdução seriam ’syntatic sugar’ para a notação acima.

8 Conclusions and future works

Falar sobre o artigo do Thomas Dean e Robert Givan [36] onde é considerado
um caso especial de MDPIP (a probabilidade de transição para cada estado é
dada por um intervalo). O nosso é mais geral e ainda permite expandir o modelo
para tratar restrições como P (s1|s, a) > 2 ∗ P (s2|s, a) mantendo a proposição 1
válida.

Falar sobre o artigo do Harmanec [37] para uma outra visão do problema de
MDPIP.

Trabalho futuro, adaptar outros algoritmos de PO e Planejamento (RTDP e
LRTDP) para NDP.
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