
Ad Network Optimization:
Evaluating Linear Relaxations

Flávio Sales Truzzi∗, Valdinei Freire da Silva†, Anna Helena Reali Costa∗ and Fabio Gagliardi Cozman∗
∗Escola Politécnica - Universidade de São Paulo (USP)

Av. Prof. Luciano Gualverto tv. 3, 158 - Caixa Postal 05508-900 - São Paulo - SP - Brazil
†Escola de Artes, Ciências e Humanidades - Universidade de São Paulo (USP)

Av. Arlindo Béttio, 1000, Ermelino Matarazzo - Caixa Postal 03828-000 - São Paulo - SP - Brazil
Email: {flavio.truzzi,valdinei.freire,anna.reali,fgcozman}@usp.br

Abstract—This paper presents a theoretical and empirical
analysis of linear programming relaxations to ad network op-
timization. The underlying problem is to select a sequence of ads
to send to websites; while an optimal policy can be produced
using a Markov Decision Process, in practice one must resort to
relaxations to bypass the curse of dimensionality. We focus on a
state-of-art relaxation scheme based on linear programming. We
build a Markov Decision Process that captures the worst-case
behavior of such a linear programming relaxation, and derive
theoretical guarantees concerning linear relaxations. We then
report on extensive empirical evaluation of linear relaxations; our
results suggest that for large problems (similar to ones found in
practice), the loss of performance introduced by linear relaxations
is rather small.

Keywords - Ad Network, Markov Decision Process, Linear
Programming.

I. INTRODUCTION

In this paper we offer a theoretical and empirical analysis
of Ad Network optimization, one of the main computational
operations in online marketing. The practical impact of this
sort of optimization can be understood when we see that online
marketing revenue has grown quickly since mid nineties,
with a compound annual growth rate of 20.2%. In the first
semester of 2012, this market achieved a revenue of 17 billion
dollars (USD), an astonishing growth of 14% over the first
semester of 2011. The display of ads on banners on websites
account for up 21% of this market [1]. For all its importance,
not much is known about the theoretical properties of some
common models used in Ad Network optimization. In this
paper we present a worst-case analysis, based on Markov
Decision Processes, of a state-of-art approach to Ad Network
optimization based on linear programming.

To understand our problem and our analysis, consider that
most online advertising companies follow one of two business
models: an online model and an offline model. The online
model is represented by real-time bidding, in which advertisers
participate in auctions, competing for ad displays, and bidding
for particular user profiles. In the offline model, advertisers
enter a contract with an Ad Network [2]; that is, with a
company that has an inventory of sites. The Ad Network
create campaigns with a set of ads, specifying how much each
campaign pays for a click, the available time for the campaign,
its budget and the minimum number of impressions (i.e. the
minimum number of times its ads will be displayed to an user).
The Ad Network chooses how to distribute ads to users.

We focus on the offline model of Online Marketing.

There are several pricing schemes in the offline model; the
most important are the Cost per Impression (CPI), Cost per
Action (CPA), and Cost per Click (CPC). In the CPI scheme
the advertiser pays by the number of impressions, i.e., the
number of displays of an ad to a user. In the CPA scheme
the advertiser pays only when a user makes a specific action,
e.g., buy something from the advertisers’ store. In the CPC
scheme the advertiser pays only when the user clicks on the
advertisement. We are focusing on the CPC pricing scheme,
because the other models can be converted to it, as we will
show later.

The offline business model is, in essence, a sequential
decision process: the Ad Network must decide which campaign
to display to each user at a specific time, given campaign
budgets, values that campaigns pay per click, time constraints
of the campaigns, and the relationship between campaigns and
user profiles. Ad Network decisions are evaluated based on
some utility function; for example, expected revenue.

This sequential decision process can be modeled as a
Markov Decision Process (MDP) [3]. The solution of this MDP
yields the policy for the Ad Network with the best decision for
each possible combination of user profile, and budgets and time
of the campaigns. However this approach is computationally
intractable even for small problems, as the state space grows
exponentially.

One way to avoid the curse of dimensionality in Ad
Network optimization is to convert this decision process into a
simpler, relaxed problem. Instead of deciding which campaign
to allocate for each user profile at each time step, one then
selects only the number of impressions of each campaign in
a given interval of time. Some well known formulations of
this relaxed problem resort to linear programming (LP) [5],
[6]. These relaxations of the sequential decision process have
produced excellent results, but, to the best of our knowledge,
no analysis has been published yet on the quality of such
relaxations. That is, no theoretical nor empirical analysis has
indicated how much is lost by using relaxations, in any sort
of “worst-case” sense.

In this article we offer such an analysis. We build a
Markov Decision Process that encodes the worst-case behavior
of linear programming relaxations, and derive exact results
on the loss of performance imposed by relaxations. We then
report on extensive experiments that compare linear relaxations

and Markov Decision Processes. Our results indicate that for
large problems, with sizes close to the size of real problems,
the more the budgets of the campaigns grow, the smaller is
the difference between the two methods, and the difference
may even be ignored in practice. Hence our analysis supports
the existing interest in linear relaxations for this important
optimization task.

The remainder of this paper is organized as follows.
Section II formalizes the problem of Ad Network optimization.
In Section III, we formulate the problem as an MDP, and in
Section IV we formulate the problem as a relaxed problem
to be solved by linear programming (LP). Section V builds
a worst-case analysis for the LP formulation. Section VI
describes experiments that allow us to highlight and discuss
the differences between the MDP and the LP solutions. Finally,
Section VII concludes the paper.

II. PROBLEM DEFINITION

Figure 1 depicts the flow of ad distribution in online
marketing. Initially advertisers contract the service of an Ad
Network to display ads of campaigns in websites. We assume
that the advertisers define the campaign previously. Every time
a user requests a page in a website (step 1 in Figure 1), the
website requests an ad to be displayed (step 2). Users are
characterized by their profile (known by the Ad Network).
The Ad Network decides which campaign to allocate to the
request received, and an ad of the selected campaign is sent to
the website (step 3). Then an impression is shown to the user
(step 4), who may or may not click on the ad (step 5).

This whole sequential process can be formalized as follows.

At each time t there is a probability Preq that a request is
issued to a site in the Ad Network’s inventory. We consider
that the requests follow a Bernoulli distribution with a success
probability Preq. The set of possible user profiles is G, and
PG : G → [0, 1] with

∑
i∈G PG(i) = 1, PG is the probability

function of a user being of a given user profile i.

Let C be the set of campaigns. A campaign k ∈ C is
described by a tuple < Bk, Sk, Lk, cck >, where Bk is
the budget of campaign k in number of clicks, Sk is the
starting time of the campaign, Lk is the lifetime of the
campaign, and cck is monetary value that the campaign pays
per click. Campaigns can be active or inactive, and only active
campaigns can be chosen by the Ad Network. A campaign is
active at a specific time t if Sk ≤ t < Sk + Lk and Bk > 0.

Once the campaign k is selected, its ad is displayed to
the user with profile i in a website (an impression is made).
The user may or may not click on this ad with probability
CTR(i, k), where CTR stands for click-through rate. That is,
the CTR is the probability of a click given a pair of user
profile and campaign, CTR : G×C → [0, 1]. In real problems
CTR values are typically on the order of 10−4 [5]. One click
generates a revenue equals to cck, a portion of this amount
goes to the website and the other stays with the Ad Network.
The goal of the Ad Network is to choose which campaign to
allocate to each request, while maximizing a utility function.
We assume the Ad Network to be interested in maximizing
expected revenue.

Fig. 1. Dynamics of the ad distribution process.

III. AD NETWORK AS A MARKOV DECISION PROCESS

We now formulate the Ad Network problem as a Markov
Decision Process (MDP). The formulation is based on our
previous analysis of ad network optimization [3].

MDPs offer a general framework for sequential decision
problems. An MDP is defined by a tuple 〈S,A, T ,R, τ〉 [8]
where S is the set of all states of the process, A is the set of
all possible actions to be executed at each state s ∈ S, T :
S ×A×S → [0, 1] is the transition function, R : S ×A → R
is the reward function, and τ ∈ N is a finite horizon.

The dynamics of an MDP is as follows. At any time t < τ :
(i) the process is at state s ∈ S , (ii) the action a ∈ A is
executed, (iii) the process generates reward rt = R(st, at), and
(iv) the process transits to some state s′ ∈ S with probability
P (st+1 = s′|st = s, at = a) = T (s, a, s′).

To solve an MDP is to find a policy that maximizes the
accumulated reward sequence. A non-stationary deterministic
policy π : S × {0, 1, . . . , τ − 1} → A specifies which action
will be executed at any state s ∈ S and at any time t < τ .

Under a policy π, at any time t < τ every state can be
associated with a value that consists of the accumulated reward
process induced by the MDP. The expected total reward of a
policy π at time i is defined for any state s ∈ S as:

V π(s, i) = E

[
τ−1∑
t=i

R(st, π(st, t))

∣∣∣∣∣ si = s

]
. (1)

The value function V ∗(·) of an optimal policy can be defined
recursively for any state s ∈ S and time t < τ by:

V ∗(s, t) = max
a∈At

{
R(s, a) +

∑
s′∈S
T (s, a, s′)V ∗(s′, t+ 1)

}
,

(2)
whereAt is the subset ofA which contains the possible actions
at time t and to be applyed in state s,V ∗(s, τ) = 0 for any state
s ∈ S. This recursive approach combines backward induction
and Bellman’s Optimality Principle [9].

Given the optimal value function V ∗(·), an optimal policy

can be chosen for any state s ∈ S and time t < τ by:

π∗(s, t) = arg max
a∈At

{
R(s, a)+

∑
s′∈S
T (s, a, s′)V ∗(s′, t+ 1)

}
.

(3)

We now model the Ad Network problem as an MDP by
specifying its states, actions, transitions, and rewards.

A. States

The state is modeled as s = [B1, B2, . . . , Bk, G], where
Bk is the remaining campaign budget as defined in Section II
and G ∈ G is the user profile that is generating a request; G =
0 means that there is no request to be solved. For example,
considering 5 campaigns and 3 user profiles, a state is

[

Campaign Information︷ ︸︸ ︷
10, 3, 4, 2, 3 ,

Request Information︷︸︸︷
3]︸ ︷︷ ︸

State

.

Information about a campaign indicates how many ads that
campaign can afford in that state. In this example, Campaign
1 can afford 10 clicks, Campaign 2 can afford 3 clicks, and so
on. The request information contains the information of which
user profile has generated a request, in this example user profile
3 has generated the request. From this state, possible next
states are: [9, 3, 4, 2, 3, G], [10, 2, 4, 2, 3, G], [10, 3, 3, 2, 3, G],
[10, 3, 4, 2, 2, G], and [10, 3, 4, 2, 3, G], where G can be any
user profile or even 0, if there are no requests.

B. Actions

An action gives the allocation of an ad from a campaign
of the campaign set C to a request from a user profile from
the set G in a decision epoch. Given our problem definition
our set of actions can be defined by A = {0, 1, . . . , |C|} with
the following meaning:

a = k (4)

where if k > 0, then k is the campaign index. If k = 0, then
Ad Network does not allocate any campaign to the request.

Recall that campaigns can be active or inactive, hence at
any time t a subset of actions At is available. We have that
0 ∈ At for all t ∈ [0, τ − 1]; and that k > 0 ∈ At if Sk ≤ t <
Sk + Lk for all t ∈ [0, τ − 1] and Bk > 0.

C. Transitions

For all actions a and all states s and s′ the function T
must obey the following requirements: 0 ≤ T (s, a, s′) ≤ 1,
and

∑
s′∈S T (s, a, s′) = 1, i.e. the function defines a proper

probability distribution over the possible next states.

The variable G in the state does not depend on the previous
state. The component of the state Bk depends only on the
previous Bk+1 and on the occurrence of click events. Given
s = [B1, B2, . . . , Bj , G] and s′ = [B′1, B

′
2, . . . , B

′
j , G

′], the
transition function T is:

T (s, a, s′) = Pt(G
′)×

∏
k∈C

P (B′k|Bk, a,G), (5)

where P (B′k|Bk, a,G) is equal to:

1
if B′k = Bk and (a 6= k or
G = 0 or Bk = 0),

CTR(G, k)
if B′k = Bk − 1 and
(a = k and G > 0 and Bk > 0),

1− CTR(G, k) if B′k = Bk and (a = k and
G > 0 and Bk > 0),

0 otherwise,

(6)

and

Pt(G
′) =

{
(1− Preq) if G′ = 0,

Preq × PG(G) if G′ ∈ G.

D. Rewards

The reward function R : S ×A → R attaches a reward to
each state given an action. In our problem, we have:

R(s, k = a) =

cck × CTR(G, k)
if k > 0,
G > 0 and Bk > 0,

0 otherwise,
(7)

where cck and CTR(G, k) were defined in Section II and
specify respectively the CPC for campaign k and the CTR
between campaign k and user profile G. The intuition behind
the reward function is that it represents a local evaluation and
in the case of Ad Networks it represents the local revenue after
choosing to display an ad from campaign k.

IV. A LINEAR PROGRAMMING RELAXATION

Linear programming focuses on maximization or mini-
mization of a linear function over a polyhedron [10]. In
canonical form,

max cTx
s.t. Ax ≤ b, x ≥ 0,

where c is a vector that corresponds to the coefficients of the
function that is being maximized, x is a vector of variables, A
is a matrix, and b is a vector. There are several algorithms
to solve a linear program, even strongly polynomial time
algorithms [11]. The simplex method is the most commonly
used [12]; despite its worst-case exponential time, this method
is in average very efficient [7].

The Ad Network problem can be relaxed into a problem
that can be solved with linear programming. In this relaxed
problem we are interested in discovering the amount of ad
displays to be allocated for each campaign in a given interval of
time. The description that follows is based on previous efforts
[5], [6], [13] with minor modifications.

Let I be the sorted list of the set defined by {Sk}∪{Sk+
Lk}, i.e. the ordered list of starting and ending times of all
campaigns, and let Jj = [Ij−1, Ij [, 1 ≤ j < |I|, i.e. the
intervals defined by the campaign time constraints. Consider
the value Tj = sup{Jj}− inf{Jj}, this value corresponds to
the length of the interval j.

Fig. 2. Example of Interval definition.

For example, in Figure 2 we have three campaigns, with
their starting times and ending times, defining 5 intervals,
consider that Ek = Sk+Lk. In this example we have that: I =
{S2, S3, S1, S3 + L3, S2 + L2, S1 + L1}, then J1 = [S2, S3[,
J2 = [S3, S1[, J3 = [S1, E3[, J4 = [E3, E2[, J5 = [E2, E1[,
and T1 = S3−S2, T2 = S1−S3, T3 = E3−S1, T4 = E2−E3,
T5 = E1 − E2.

Then we can formulate this problem as follows:

max
∑
j∈J

∑
i∈G
∑
k∈C cckCTR(i, k)xj,i,k

s.t.
∑
k∈Cj xj,i,k ≤ PreqPG(i)Tj ,∀i ∈ G,∀j ∈ J∑
i∈G
∑
j∈J CTR(i, k)xj,i,k ≤ Bk,∀k ∈ C

xj,i,k ≥ 0,∀j ∈ J ,∀k ∈ C,∀i ∈ G

Variables xj,i,k estimate how many ads from campaign k
should be displayed to users with user profile i at the interval
j. The objective function aims to maximize the total expected
revenue of the Ad Network. The first set of constraints ensures
that the solution does not exceed the expected number of
requests for each user profile i in interval j. The second
set of constraints ensures that the expected number of clicks
for each campaign does not exceed its budget. The last set
of constraints ensures that the solution is feasible for real
problems. Without the last set of constraints, it would be
possible to create requests for allocations with negative values
of xj,i,k. Clearly xj,i,k should be integer because there is no
possibility to allocate a fraction of an ad, but we can ignore
this for now.

Note that this approximation estimates how many ads from
campaigns should be shown to each user profile at each interval
on average, but it does not provide any clue on how to use
this solution. Since clicks and ad requests occur following
a Bernoulli distribution, we have near 0.5 probability that
xj,i,k is over estimated and near 0.5 probability that xj,i,k is
underestimated in any given instance; and estimates of xj,i,k
are hard to obtain.

Girgin et al. [5] proposed two ways to use this solu-
tion. The Highest LP Policy (HLP) chooses the campaign
with πLP (i, j) = argmaxk xj,i,k/

∑
k xj,i,k. The Stochas-

tic LP Policy (SLP) chooses stochastically with respect to
xj,i,k/

∑
k xj,i,k.

This CPC formulation is very versatile as it can be con-
verted to a CPI formulation by just setting

CTR(i, k) = 1 ∀i ∈ G,∀k ∈ C.
It turns out that the CPA and CPC has the same formulation,
but CTR(i, k) values would be lower.

To finish this section, we compare the complexity of the
MDP formulation and the LP relaxation.

In the LP formulation, if boundary constraints 8 are not
considered, the number of constraints is of order O(|J | ×
|G|+ |C|), but by definition 1 ≤ |J | ≤ 2× |C|. So the number
of constraints is of order O(|G||C|)w, while the number of
variables is of order O(|G||C|2) for the same reason.

The size of the policy to be found is equal to |S| ×
|{1, 2, . . . , τ}| , and |S| = (|G| + 1) ×

∏
k∈C(Bk + 1), if

we consider Bmin = mink∈C{Bk}, it follows that |S| ≥
(|G| + 1) × (Bmin + 1)|C|. This makes the MDP solution
intractable even for small problems because of its memory
requirements. In real settings there are hundreds of campaigns
with budgets of thousands of clicks.

V. MDP VERSUS LP: A WORST-CASE ANALYSIS

In the previous section we showed that solving the LP
approximation is less computationally intensive than solving
the MDP. Whereas the LP formulation grows quadratic within
the number of campaigns, the MDP formulation grows ex-
ponentially within the number of campaigns. LP formulation
also approximates discrete variables to continuous, so that
in LP formulation computational cost does not depend on
budget and horizon sizes, whereas in the MDP formulation
it does. Despite LP formulation being much more desirable
regarding computational cost, it does not present optimality.
In this section we show why LP formulation is not optimal
and design a worst case regarding revenue performance.

LP formulation is constructed by considering a de-
terministic problem, but the Ad Network problem is a
stochastic one; LP formulation approximates such a stochas-
tic problem by its expected counterpart. First, user pro-
file requests follow multinomial distribution with means
(1−Preq), PreqPG(1), PreqPG(2), . . . , PreqPG(|G|); since Ad
Network actions do not affect user profile requests, making
user profile requests deterministic does not affect optimal
solution. Second, clicks in ads occur following a binomial
distribution with success rate given by CTR(i, k) but limited
to budget; since in every instance obtained after executing a
solution (be it HLP or SLP) clicks in each campaign are limited
to the respective budget, in this case making clicks determinis-
tic does affect optimal solution. Because LP formulation does
not consider the click dynamics, in the worst case, i.e., when
clicks occur bellow mean, LP solution allocate campaigns with
low CTR, whereas high CTR campaigns should be tried. Girgin
et al. [5] suggest artificially increasing budget of high CTR
campaign, although is difficult to say how much should be
increased to improve the results, and even in this case we can
not reach optimality.

Since LP solution is inherently suboptimal, we can ask how
far from the MDP solution is the LP solution. We answer such
a question by considering a simple set-up: 1 user profile and 2
campaigns. In this set-up we can devise 3 cases: (i) campaigns
that do not share time intervals, (ii) campaigns with time
intervals partially overlaped, and (iii) a campaign with time
intervals included on the time intervals of the other.

For clarity consider ctrk = CTR(1, k). We analyze spe-
cific instances of the case (iii) when: Preq = 1, S1 < S2,

L1 → ∞, L2 → ∞, ctr2 → 0, B2 = 1, cc1 = cc2 = 1,
ctr1 = B1

Preq(S2−S1)
, and 0 < limL2→∞,ctr2→0 L2 × ctr2 < ε,

and this limit exist if an appropriate path to L2 and ctr2 is
chosen 1.

With this setting it is clear that the optimal solution to
this problem is exploiting the campaign 1 until its budget be
depleted; and when budget from campaign 1 is equal to zero
start exploiting campaign 2. Since T1 = S2−S1 and T2 →∞,
the LP solution to this problem gives that for the first time
interval it would allocate Preq × T1 requests to campaign 1,
whilst for the second time interval it would allocate Preq×T2

requests to campaign 2. We can now enunciate the following
propositions.

Proposition 1: The value V πMDP obtained under MDP
formulation for the worst case above is restricted to:

B1 < V πMDP < B1 + ε.

Proof: Consider P tremain the probability that at time t
there still remains budget in campaign 1. Since T2 → ∞
and ctr1 > 0, there exists tε1 > 0 such that P tε1remain >

ε1
B1

.
Consider ε1 = limL2→∞,ctr2→0 L2×ctr2 which represents the
value of presenting campaign 2 infinitely. Then,

V πMDP > B1(1− P
tε1
remain) + ε1 > B1.

The upper bound is trivial given that limL2→∞,ctr2→0 L2 ×
ctr2 < ε.

Proposition 2: The value V πLP obtained under LP formu-
lation for the worst case above is restricted to:

V πLP <

B1∑
b=1

b×
(
T1

b

)
(ctr1)

b(1− ctr1)T1−b

+

T1∑
b=B1+1

B1 ×
(
T1

b

)
(ctr1)

b(1− ctr1)T1−b + ε

.

Proof: Since campaign 1 is explored only on the first
interval, the Ad Network has T1 trials to consume budget
B1. Then, the value obtained in the first period is given by
the expected number of success limited to B1 in a binomial
distribution with T1 trials and success rate ctr1. The factor ε
stand for the condition on limL2→∞,ctr2→0 L2 × ctr2.

Proposition 3: The relative performance of MDP solution
against LP solution in the worst case is given by the limit

lim
T1→∞

[
1−

(
1− 1

T 1

)T1
]−1

=
e

e− 1
≈ 1.582.

Proof: The relative performance is given by the ratio
V πMDP
V πLP . Taking into account previous propositions and that
ctr1 = B1

T1
, we have the worst case for B1 = 1, and ε → 0.

Then, V πMDP → B1 = 1 and

V πLP →
T1∑
b=1

(
T1

b

)
(ctr1)

b(1−ctr1)T1−b = 1−
(
1− 1

T1

)T1

.

1For example: L2 = t2, ctr2 = 1
t2

, with t→ 0.

V πLP attains its minimum when T1 →∞. Since V πMDP → 1,
the relative performance is simply given by (V πLP)−1.

The relative performance denotes how much better the
MDP is solution compared to the LP solution. We have that in
the worst case the relative performance is 1.582, i.e., the MDP
solution can be 58.2% better than the LP solution. However,
usually Bk � 1 in real problems and we show empirically
that the relative performance is much smaller than 1.582 in
this case.

VI. EXPERIMENTS

In order to compare the results of the MDP and the
Approximation by Linear Programming we conduct a simple
experiment within the (iii) set-up of section V, but consider dif-
ferent settings for parameters B1, B2, T1, T2, and CTR(1, 2),
whilst still setting

CTR(1, 1) =
B1

Preq(S2 − S1)
=

B1

PreqT1
.

We conduct experiments to show how the ratio V πMDP
V πLP

evolves when the budget increases in 4 different scenarios. In
every scenario we set T1 = 50, 000. The first scenario consid-
ers the worst case, i.e., B2 = 1, T2 → ∞, CTR(1, 2) → 0.
The second scenario relaxes the size of the second interval
by using T2 = 50, 000, in this case the Ad Network would
not have infinity time to consume budget of campaign 1. The
third scenario relaxes the budget and CTR of campaign 2
by using B2 = B1, CTR(1, 2) = 0.1 × CTR(1, 1); in this
case campaign 1 is much more attractive than the campaign
2, but the LP solution can now make some revenue in the
second interval. Finally, the fourth scenario relaxes CTR of
campaign 2 to be closer to CRT of campaign 1 by setting
CTR(1, 2) = 0.5×CTR(1, 1). Note that, from scenario 1 to
4, the value of the LP solution get closer and closer to the
value of MDP solution.

Figure 3 shows the relative performance of the solutions in
the four scenarios. We can clearly see that the difference be-
tween the optimal solution to the approximation is a decreasing
function of the budget size. For clarity, Figure 3 shows only
until Bk = 50. However we run the experimentuntil Bk = 200,
we got a difference of about 2.5% in the worst scenario and
about 2.0% in the better scenario.

We also calculate in the four scenarios the relative perfor-
mance for a budget equals to 500 clicks, and Table I shows
the result. Real life problems have in average a budget of
10, 000 clicks. However, since in this case the MDP model
presents a huge state space (|S| = 108), we only calculate
the relative performance in the worst case with T1 = 108

and CTR(1, 1) = 10−4. In this case we have a relative
performance of 1.0040, meaning that the MDP formulation
offers less than 0.4% of improvement when compared to the
LP solution.

TABLE I. RELATIVE PERFORMANCE OF MDP AGAINST LP SOLUTION
FOR INTERVAL SIZE 50,000 AND B1 = 500.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
1.0181 1.0181 1.0164 1.0120

Fig. 3. Relative performance of MDP against LP solution. Fixed time and
increasing budgets.

VII. CONCLUSION

In this paper we investigated the difference between the
optimal solution and an approximation formulated as a linear
program in the problem of displaying ads on web pages using
the cost per click model.

We constructed four scenarios, including a worst case
scenario, and for a budget of one click we calculated the
relative performance of the MDP solution when compared to
the LP solution. In the worst case scenario the MDP solution
can be 58.2% better than the LP solution. However, our
experiments shows that as the budget of campaigns grows, this
difference falls quickly. For a small budget of 50 clicks, this
difference falls to about 6.0% in the worst case scenario and
to about 4.0% in a better scenario. For a budget equal to 500
clicks, this difference drops to 1.81% in the worst case and
1.2% in the better scenario. Finally, when we have a budget
of real problems such as 10,000 clicks, the difference in the
worst case is only of 0.4%.

With this knowledge of the relative performance in mind,
we can conclude that the LP solution is not far of the optimal
solution, and this difference may be disregarded, since real
sized problems have hundreds of campaigns and their budgets
are in the order of thousands of clicks, making this difference
even smaller.

ACKNOWLEDGMENTS

Flávio Sales Truzzi is supported by CAPES. This research
was partly sponsored by FAPESP – Fundação de Amparo
à Pesquisa do Estado de São Paulo (Procs. 11/19280-8 and
12/19627-0) and CNPq – Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico (Procs. 311058/2011-6 and
305395/2010-6).

REFERENCES

[1] I. A. Bureau, “IAB Internet Advertising Revenue Report 2012,” no.
October, 2012.

[2] S. Muthukrishnan, “Ad exchanges: Research issues.” in Workshop on
Internet and Network Economics (WINE 2009), 2009, pp. 1–12.

[3] F. S. Truzzi, V. Freire, A. H. R. Costa, and F. G. Cozman, “Markov De-
cision Processes for Ad Network Optimization,” in Encontro Nacional
de Inteligencia Artificial (ENIA), 2012.

[4] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision processes,” Mathematics of operations research, vol. 12, no. 3,
pp. 441–450, 1987.

[5] S. Girgin, J. Mary, P. Preux, and O. Nicol, “Managing advertising
campaigns - an approximate planning approach,” Frontiers of
Computer Science, vol. 6, no. 2, pp. 209–229, 2012. [Online].
Available: http://dx.doi.org/10.1007/s11704-012-2873-5

[6] Y. Chen, P. Berkhin, B. Anderson, and N. R. Devanur,
“Real-time bidding algorithms for performance-based display
ad allocation,” Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining - KDD ’11, p. 1307, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2020408.2020604

[7] A. Schrijver, Theory of Linear and Integer Programming. Wiley, 1998.
[8] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-

namic Programming. Wiley-Interscience, Apr. 1994.
[9] D. Bertsekas, Dynamic Programming: Deterministic and Stochastic

Models. Prentice-Hall International, 1987. [Online]. Available:
http://books.google.com.br/books?id=-6RiQgAACAAJ

[10] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Courier Dover Publications, 1998.

[11] E. Tardos, “A strongly polynomial algorithm to solve combinatorial
linear programs,” Operations Research, vol. 34, no. 2, pp. 250–256,
1986.

[12] G. B. Dantzig, “Maximization of a linear function of variables subject
to linear inequalities,” in The Basic George B. Dantzig, R. W. Cottle,
Ed., 2003, pp. 24–32.

[13] M. Langheinrich, A. Nakamura, N. Abe, T. Kamba, and Y. Koseki,
“Unintrusive customization techniques for web advertising,” Computer
Networks, vol. 31, no. 11, pp. 1259–1272, 1999.

