
Markov Decision Processes for Ad Network Optimization

Flávio Sales Truzzi1, Valdinei Freire da Silva2,
Anna Helena Reali Costa1, Fabio Gagliardi Cozman3

1Laboratório de Técnicas Inteligentes (LTI)
Universidade de São Paulo (USP)

Av. Prof. Luciano Gualberto tv. 3, 158
Caixa Postal 05508– 900 – São Paulo – SP – Brazil

2Escola de Artes, Ciências e Humanidades
Universidade de São Paulo (USP)

Av. Arlindo Béttio, 1000, Ermelino Matarazzo
Caixa Postal 03828–000 — São Paulo, SP

3Decision Making Lab
Universidade de São Paulo (USP)

Av. Prof. Luciano Gualberto tv. 3, 158
Caixa Postal 05508– 900 – São Paulo – SP – Brazil

{flavio.truzzi,valdinei.freire,fgcozman,anna.reali}@usp.br

Abstract. In this paper we examine a central problem in a particular advertising
scheme: we are concerned with matching marketing campaigns that produce
advertisements (“ads”), to impressions — where “impression” is a general term
for any space in the internet that can display an ad. In this paper we propose a
new take on the problem by resorting to planning techniques based on Markov
Decision Processes, and by resorting to plan generation techniques that have
been developed in the AI literature. We present a detailed formulation of the
Markov Decision Process approach and results of simulated experiments.

1. Introduction
Internet marketing has skyrocketed in recent years. Most companies adopt rudimentary
forms of marketing, while others resort to sophisticated ideas based on collaborative, or
even social, recommendations [Kiang et al. 2000, Nagurney 2010]. Sources report that
Internet advertising revenues in the United States of America totaled $31.7 billion for
the full year of 2011, and a compound annual growth rate (CAGR) of 20.3% since 2002
[Pwc 2012].

In this paper we examine a central problem in a particular advertising scheme. We
are concerned with matching marketing campaigns to impressions. A campaign offers
products through advertisements, termed ads. An impression is any space in the internet
that can be occupied by an ad. For example, the space for a banner in a blog page is an
impression. Campaigns have ads to be displayed, and impressions from publishers (blogs
and websites alike) request ads to be displayed by them. Campaigns pay publishers to
display ads; for instance if a blog carries an ad for a car maker, the car maker will pay
the blogger — either a fixed amount per impression, or a fixed amount per actual sale
based on the impression; these are contractual arrangements between the campaign and

the publisher. Clearly there is interest in placing ads correctly, so that a campaign is
presented to the right public, thus increasing the effect of the campaign, and the revenue of
the publisher. A simple example: we should expect that a blog specialized in motherhood
should carry campaigns geared toward women.

To make matters concrete, we consider a fixed set of campaigns, a stream of im-
pressions that request ads to be selected, and a broker, normally referred to as an ad
network, that matches campaigns and impressions. The revenue of the broker comes from
the campaigns, and again it can vary depending on contractual obligations; we present
details about this later.

The problem of matching campaigns and impressions has received attention, as
our references, discussed later, indicate. The problem is normally modeled as a con-
strained optimization problem that maximizes the revenue subject to constraints such as
budget limits and inventory availability. The state of the art is to solve the optimization
problem off-line as a linear programming problem and serve ads using this optimal solu-
tion as a guidance to the online ad allocation [Chen et al. 2011]. However, such a solution
ignores the obvious fact that impressions are generated dynamically, and the whole prob-
lem is one of dynamic, sequential decision making; that is, a planning problem. In this
paper we propose a new take on the problem by resorting to planning techniques based
on Markov Decision Processes, and by resorting to plan generation techniques that have
been developed in the AI literature. Section 2 defines our problem formally, setting the
stage for our solution.

Our strategy was to build a simulator that can reproduce the behavior of cam-
paigns, publishers, and the ad network. Even though the simulator is not a contribution
in itself, we describe it in some detail in Section 3 because its behavior encodes some of
the assumptions we are making concerning ad networks and internet advertising in gen-
eral. Sections 4 and 5 respectively present the state of the art solution for ad-impression
matching, based on linear programming, and our own proposal using Markov Decision
Processes. Finally, Section 6 shows our proposal in action, while Section 7 concludes the
paper.

2. Problem Definition: Basic Concepts and Assumptions

An Ad Network is a network of sites that promotes the distribution of ads from advertis-
ers to publishers. There are rules and constraints concerning the distribution of advertise-
ments, and there is potential revenue for advertisers and publishers as users act in response
to advertisement. This paper consider the revenue model based on cost per click (CPC)
[Devanur and Kakade 2009]. This model returns a fixed monetary value each time a user
clicks in an ad. The effective cost per impression (eCPI) is the total revenue produced by
the revenue model in terms of impressions.

Important concepts are [Muthukrishnan 2009]:

• Advertisers produce ads to be presented and allocate them into campaigns.
• Publishers are sites containing ads sent by the Advertisers and each ad spot in a

publisher is a source.
• Campaigns are designed by the Advertisers, and are mainly characterized by: a

set of ads, a starting date, an ending date, and a revenue model. It is also common

that an advertiser contracts a minimum volume of impressions and if CPC is con-
sidered as revenue model, then a campaign is usually constrained by a maximum
budget to be spent 1.
• Ads contain the material to be distributed and the manifestation of an ad is consid-

ered an Impression from a campaign (advertiser) to a site (publisher).
• Requests are issued by sources (sites, publishers) that need ads to be presented.

The main objective of an Ad Network is to maximize eCPI across a period of time;
in other words, to find an optimal policy to distribute ads from campaigns to publishers,
so as to fulfill requests and to satisfy constraints on minimum volume and budget.

We assume that the ad network considers only the level of campaigns, i.e., ads in a
campaign are considered equally. Moreover, we assume that the advertiser of a campaign
does not interfere in the allocation of ads to publishers. We also merge sites into groups,
such that sites in the same group present similar responses to impressions from the same
campaign.

The response from a group i to an impression of a campaign j is modeled by the
Click-Through Rate (CTR), the probability pij that a click is made in some ad given a
group and a campaign. Note that sites in the same group are assumed to have the same
CTR regarding ads in the same campaign.

We also consider that ads in each campaign are available before the beginning of
the requests, and that the ad network receives a stream of request which must be filled with
such ads. This problem allows some trivial solutions in some cases. If there is no budget
limit, then the optimal solution to the problem can be made considering only the eCPI,
i.e. by choosing the campaign with the largest eCPI for each impression. On the other
hand, if campaigns have no ending date, then the optimal solution is to choose campaigns
with positive eCPI.

Common solutions in the literature are obtained in two steps. The off-line step
assumes that an estimate of the stream of requests is known a priori and obtains an optimal
solution for it. The on-line step adapts the off-line optimal solution to allocate ads to
requests as they appear in the stream of request.

3. Simulator
We have built a simulator that generates a stream of requests from publishers, and a pool
of ads from campaigns; from these the simulator manages a policy generator that can be
for instance an MDP-based policy, and produces statistics concerning performance and
revenue. The simulator was coded in the Python language and Matlab, and even though
it is not by itself an innovative piece, it encodes a number of assumptions that are worth
enumerating and justifying. First, we do not impose constraints on the minimum volume
of impressions; these are not the most important constraints and we may introduce them
in future work. Additionally, the following assumptions were adopted:

1. the ad network does not differentiate publishers, therefore is indifferent to con-
sider publishers or groups (of publishers) provided that the click response to the
impressions is sufficient when working with the group abstraction;

1It is also common that campaigns constrain publishers that may receive ads, for instance, by defining
main and secondary categories, but we consider it to be irrelevant in this work.

2. although the campaigns are originated from the advertisers, the ad network can
treat the requests at a campaign level, with no concern for the description of ad-
vertisers;

3. future requests are not influenced by requests occurred in the past;
4. time is discrete; and
5. campaigns start in the beginning of the simulation and finish in the end of the

simulation.

A simulator can be defined by a tuple < τ,G, C, PCTR, PG, Prequest >, where:

1. τ ∈ N specifies the length of the simulation;
2. G defines the group set; C defines the campaign set (includes CPC and budget);
3. PCTR : G × C → [0, 1] specifies the CTR for all group-campaign pairs, and it is

considered that the CTR does not change over time; and
4. PG : G → [0, 1], specifies the probability of an impression belonging to a group i,

and
∑

i∈G PG(i) = 1.

For each discrete time step t < τ the simulator may generate one impression following a
Bernoulli process with success probability Prequest, and the request is associated to one of
the possible groups according to the probability PG. The association of a request with a
group is denoted by a vector I = [I1, I2, . . . , I|G|], where Ii = 1 if the request is associated
with the group i, Ii = 0 otherwise. In this formulation we consider that only one request
can occur per time step, this simplification can be made without loss of generality. After
receiving the request vector I , the ad network must allocate impressions by choosing a
campaign for each request, responding with a |G| × |C| matrix A ≥ 0 such that for all
1 ≤ i ≤ G:

|C|∑
j=1

Aij ≤ Ii.

After receiving the allocation matrix A the simulator generates the click that indicates
whether the impression allocated to a campaign has been clicked in that simulation time
according to a Bernoulli distribution with success probability equals to the PCTR of the
pair campaign-group.

The simulator dynamics for each discrete time step t is:

1. generates the impression vector I;
2. receives an allocation matrix A; and
3. generates the click event for the pair campaign-group.

4. Policy Generation Through Linear Programming
The state of the art solution for policy generation in ad networks seems to be the proposal
by Chen et al [Chen et al. 2011], that we summarize here to fix notation and provide
motivation for our own approach, to be presented in the next section. We have that:

1. i indexes |G| groups, and j indexes |C| campaigns;
2. PCTR(i, j) denotes the CTR of group i impression assigned to campaign j, qj

denotes the CPC for campaign j (how much a campaign is paying for a click),
and:

vij = PCTR(i, j)qj (1)

is the expected cost per impression (eCPI) of such assignment;

3. gj is the budget for campaign j;
4. hi denotes the request availability constraint for group i; and
5. xij denotes the number of impressions from group i allocated to campaign j.

Ad allocation can be reduced to a linear program if we assume that all impressions are
fixed at the beginning; in this case we have to solve:

max
x

∑
i,j

vijxij

s.t. ∀j,
∑
i

vijxij ≤ gj,

∀i,
∑
j

xij ≤ hi,

∀i, j, xij ≥ 0.

(2)

The solution presented in Expression (2) is optimal, but it requires knowledge of hi (num-
ber of requests available to the group i). On the other hand, hi is a random variable, i.e.
in each run (day, week, month) the number of the requests of impressions is different.
However, under the assumption that the probability distribution of the variable hi is inde-
pendent of the allocation made at that run, it’s possible to estimate that distribution. Then,
it is possible to find an off-line solution using the mean value h̄i of such distribution.
Chikering and Heckerman (2000) suggest using the estimation h̄i to turn the problem in
Expression (2) a well-posed problem and to obtain a solution x̄ij . Getting back to our
simulator, h̄i can be easily calculated by:

h̄i = τPrequestPG(i).

Then, at any time t, after receiving a request from group i, a campaign j is allocated to
such request with probability:

x̄ij∑
i′

x̄i′j
.

The problem with such solution is that it considers only h̄i, instead of considering the
whole probability distribution over hi. In the next section we model the ad network prob-
lem as a Markov Decision Process which considers the whole dynamics of requests from
groups.

5. Markov Decision Process Formulation
We now present our own proposal for ad allocation. We start by reviewing the basics of
Markov Decision Processes (MDPs).

MDPs offer a general framework for sequential decision problems. An MDP is
defined by a tuple 〈S,A, T ,R, τ〉 [Puterman 1994] as follows:

• S is the set of all states of the process,
• A is the set of all possible actions to be executed at each state s ∈ S,
• T : S ×A× S → [0, 1] is the transition function,
• R : S ×A → R is the reward function, and
• τ ∈ N is a finite horizon.

The dynamics of an MDP is as follows, at any time t < τ : (i) the process is at state st ∈ S,
(ii) the action at ∈ A is executed, (iii) the process generates reward rt = R(st, at), and
(iv) the process transits to some state s′ ∈ S with probability P (st+1 = s′|st = s, at =
a) = T (s, a, s′).

The solution for an MDP is a policy π : S → A that maps each state into an
action. An optimal policy maximizes the following value function for all state s ∈ S ,

V π(s) = E

[
τ−1∑
t=0

rt

∣∣∣∣∣ s0 = s, π

]
.

V π(s) defines the expected accumulated reward in the horizon τ .

We now model the ad network problem as an MDP by considering states, actions,
transitions, and rewards.

5.1. Ad Network as an MDP
States

The state is modelled as s = [B1, B2, . . . , Bj, I1, I2, . . . , I|G|], where Ii was defined in
section 3 and Bi is defined as the number of available ads in a campaign budget. For
example, considering 5 campaigns and 3 groups, a possible state is

[

Campaign Information︷ ︸︸ ︷
10, 3, 4, 2, 3 ,

Group Information︷ ︸︸ ︷
0, 0, 1]︸ ︷︷ ︸

State

.

The values on the campaign information tells how many ads that campaign can afford
in that state, in the example above, the campaign 1 can afford 10 impressions, campaign
2 can afford 3 impressions and so on. The group information contains the information
of which group has generated a request, in the example above group 1 and 2 have not
generated any requests, and group 3 has generated one request that should be allocated.

Actions

In this model an action is defined as the allocation of an ad of the campaign set C to any
impressions of the group set G in a decision epoch. Given our problem definition our set
of actions can be defined by A = {0, 1, . . . , |C|} with the following meaning:

a = j (3)

where j > 0 is the campaign index. It is possible to not allocate an impression to any
campaign by assigning a = 0.

Transitions

For all actions a and all states s and s′ the function T must obey the following require-
ments: 0 ≤ T (s, a, s′) ≤ 1, and

∑
s′∈S T (s, a, s′) = 1, i.e. the function defines a proper

probability distribution over the possible next states.

The variables in vector I do not depend on the previous state and I is de-
scribed in section 3, the B component of the state depends only on the previous B
and in the occurrence of click events, given s = [B1, B2, . . . , Bj, I1, I2, . . . , Ii] and
s′ = [B′1, B

′
2, . . . , B

′
j, I
′
1, I
′
2, . . . , I

′
i], the transition function T is:

T (s, a, s′) = Pt(I
′)×

∏
j∈C

P (B′j|Bj, a, I) (4)

where P (B′j|Bj, a, I) is equal to:

P (B′j|Bj, a, I) =

1 , if B′j = Bj and (a 6= j or Ii = 0 or Bj = 0)

PCTR(i, j) , if B′j = Bj − 1 and (a = j and Ii = 1 and Bj > 0)

1− PCTR(i, j) , if B′j = Bj and (a = j and Ii = 1 and Bj > 0)

0 , otherwise
(5)

and

Pt(I
′) =

(1− Prequest) , if I ′i = 0 for all i ∈ G
PrequestPG(i) , if I ′i = 1 and I ′i′ = 0 for all i′ 6= i ∈ G
0, otherwise

Rewards

The reward function R is defined as R : S × A → R. It attaches a reward to each state
given an action, i.e. a value is obtained by performing an action on the current state. In
our model it is defined as follows:

R(s, a) =
∑
j∈C

E
[
qj × (Bj −B′j)

]
=

{
qjPCTR(i, j) , if Ii = 1 and Ba > 0

0 otherwise
,

(6)

where qj and PCTR(i, j) were defined in section 4 and define respectively the CPC for
campaign j and CTR between campaign j and group i. The intuition behind the reward
function is that it represents a local evaluation and in the case of ad networks, this local
evaluation happens to be the eCPI.

5.2. Generating policies using the MDP
Finding a solution to an MDP consists of computing a policy that maximizes the accumu-
lated reward sequence. A non-stationary deterministic policy π : S×{0, 1, . . . , τ −1} →
A specifies which action will be executed at any state s ∈ S and at any time t < τ .

Under a policy π at any time t < τ every state can be associated with a value which
consists of the accumulated reward process induced by the Markov Decision Process. The
expected total reward of a policy π at time t is defined for any state s ∈ S as:

V π(s, t) = E

[
τ−1∑
i=t

R(si, π(si, i))

]
. (7)

The value function V ∗(·) of an optimal policy can be defined recursively for any state
s ∈ S and time t < τ by:

V ∗(s, t) = max
a∈A

{
R(s, a) +

∑
s′∈S

T (s, a, s′)V ∗(s′, t+ 1)

}
, (8)

where V ∗(s, τ) = 0 for any state s ∈ S.

Given the optimal value function V ∗(·), an optimal policy can be chosen for any
state s ∈ S and time t < τ by:

π∗(s, t) = arg max
a∈A

{
R(s, a) +

∑
s′∈S

T (s, a, s′)V ∗(s′, t+ 1)

}
. (9)

6. A Case Study
In this section we present the results of our MDP-based solution and compare its re-
sults with a probabilistic approach as presented in section 4 and a greedy approach that
allocates ads to impressions with higher eCPI. All graphs that show the results of the
experiments were made by calculating the average of 1000 executions.

6.1. Experiment 1

In this experiment we want to analyze what would be the effect of using different time
limit τ for each approach: greedy, probabilistic and MDP. For this experiment the follow-
ing parameters were set: |G| = 3, |C| = 3 and B(Ci) = 10 for all i ∈ C; PCTR is defined
in table 1, PG is defined in table 2, Prequest = 0.4, and we considered three different τ :
100, 150, and 200.

Table 1. CTR values
C1 C2 C3

G1 0.05 0.50 .05
G2 0.80 0.81 .05
G3 0.05 0.81 .80

Table 2. PG values

Group PG

G1 .50
G2 .25
G3 .25

The parameters PCTR, Prequest, and Pg were chosen in order to show the effect of
a different time limit in each one of the three methods: greedy, probabilistic and MDP.

In the top-left graph of Figure 1, τ was set to 100. In this case the probabilistic and
the MDP approaches outperformed the greedy one. The greedy approach starts allocating
requests to the campaign with higher eCPI (C2), and after the end of the budget of this
campaign its performance begins to degrade; this effect can be seen in the decrease of the
curve slope near t = 40, while the MDP and the probabilistic approaches maintain almost
the same results.

In the top-right graph of Figure 1, τ was set to 150, and the effect of time can
be seen on both MDP and probabilistic methods. The probabilistic maintains almost a
straight line until the budgets are almost spent when its performance starts to degrade.

The MDP approach starts to outperform the greedy approach near t = 40, for the same
reason explained in the above paragraph.

When τ is set to 200 as shown on the bottom graph of Figure 1 the MDP agent
spent all the budget of the campaigns near t = 185, outperforming both greedy and the
probabilistic approaches, even though all methods are getting almost the same revenue in
the end, for this τ .

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Experiment 1 − τ=100

R
e

v
e

n
u
e

Time

Greedy

Probabilistic

MDP

0 50 100 150
0

5

10

15

20

25

30

Experiment 1 − τ=150

Time

R
e

v
e

n
u
e

Greedy

Probabilistic

MDP

Figure 1. Revenue over time. Top left: the simulation runs until τ = 100. Top right:
the simulations runs until τ = 150. Bottom: the simulation runs until τ = 200.

6.2. Experiment 2

The objective of this experiment is to experience a little more realistic conditions. In the
first experiment the probabilities have been chosen so as to force the greedy method to
first exhaust campaigns with higher eCPI over the choice of a narrower allocation for a
CTR group-campaign a bit more restricted, which is usually harder to be satisfied.

In this experiments the following parameters were set: |G| = 3, |C| = 3 and
B(Ci) = 10, i ∈ C; PCTR is defined in table 3, PG is defined in table 4, Prequest = 1,
and τ ranging from 100 to 300. The values of PCTR were chosen at random and with low
values to simulate a more realistic conditions.

Table 3. CTR values
C1 C2 C3

G1 0.08 0.02 .20
G2 0.16 0.10 .04
G3 0.09 0.09 .05

Table 4. PG values

Group PG

G1 .35
G2 .20
G3 .45

In this experiment for τ = 100 the three methods perform almost equally as shown
in the top-left graph of Figure 2. This effect came from the fact that there is still campaigns
with high probability of clicks in the requests stream with not all budget spent.

When τ is set to 200 as shown in the top-right graph of the same Figure, both
probabilistic and MDP aproaches outperform the greedy method, because it starts to de-
crease its slope near t = 120. This effect can be explained because the greedy approach
burns out the higher eCPI campaign faster, not taking advantage of requests from groups
that have a more specific CTR for some campaign.

In the bottom graph of Figure 2, when τ = 300 almost all budget is spent, and the
probabilistic and greedy methods perform nearly the same. However, we can see that the
MDP approach is still better than the other two approaches.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Time

R
e
v
e

n
u

e

Experiment 3 − τ=100

Greedy

Probabilistic

MDP

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Time

R
e
v
e

n
u

e

Experiment 3 − τ=200

Greedy

Probabilistic

MDP

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Time

R
e

v
e
n

u
e

Experiment 3 − τ=300

Greedy

Probabilistic

MDP

Figure 2. Revenue over time. Top left: the simulation runs until τ = 100. Top right:
the simulations runs until τ = 200. Bottom: the simulation runs until τ = 300.

7. Conclusion and Discussion

In this paper we proposed a new method to ad allocation subjected to budget constraints
as an alternative to solve the ad allocation problem using planning techniques in an MDP
framework.

We believe that this approach has a major improvement over the state of art so-
lutions because the MDP can capture the dynamics of the problem that other methods
cannot tackle. In our experiments neither the greedy nor the probabilistic methods could
outperform our method, and the experiments indicate that modeling as MDPs is better
than other approaches, even though there is still many scenarios and other methods to be
investigated.

Although our proposal can overcome the other methods, the MDP has a serious
flaw: the state space is usually huge, even for small scenarios, making the transition
probability function sometimes intractable, even using sparse matrices to represent it.
However, we believe that the hugeness of the state space is an opportunity to explore new
formalisms, alternative techniques and best representations of states.

One way to tackle the hugeness of the state space is to use a factored represen-
tation of the MDP [Boutilier et al. 1999, Guestrin et al. 2003], which can represent large
structured MDPs compactly. In this representation, the state is implicitly described by
using state variables and the transition model is made using a dynamic Bayesian network,
allowing an exponential reduction in the representation size of the MDPs. Moreover, there
are algorithms that can automatically discover and exploit the hidden structure of factored
MDPs [Kolobov et al. 2012] in order to solve MDPs faster and with less memory.

The next step of this work is to start adding more constraints in the problem,
such as: minimum number of impression per campaign, category restrictions and a better
reward function that is not only based on revenue in favor of creating a more homogeneous
distribution of ads from different campaigns.

The presented simulator may have its rules relaxed to better capture the dynamics
of the system being modeled. One may want that the system could handle receiving
multiple requests from different groups. In order to do this the Prequest probability should
be dropped, and the PG changed to λ of a Poisson distribution [Haight 1967], and the
events of requests would be drawn from such distributions. This change would modify
the I vector as follows, I = [I1, I2, . . . , I|G|], where Ii = X if the group i has issued X
requests, and any group i ∈ G would be able to generate requests in the same simulation
time.

The planning solution that its proposed in this paper used a fixed CTR to create
the plan, as did the other methods in the Literature, despite the fact that in real world
the CTR is always changing. Then it is natural to investigate the possibility of adding
reinforcement learning techniques [Sutton and Barto 1998] with the purpose of exploring
more realistic scenarios and increasing the performance when the CTR is changing. We
believe that the fusion of real time CTR estimation and MDP planning working together
is the holy grail to solve the problem of ad allocation.

There is many opened research opportunities in this area, motivated not only be-
cause its intrinsic business application, but also for the sake of the improvement that these

researches can make on planning, MDP, reinforcement learning and other branches of
artificial intelligence.

Acknowledgements
Anna Helena Reali Costa and Fábio Gagliardi Cozman are partially supported by CNPq.
Flávio Sales Truzzi is supported by CAPES. The work reported here has received sub-
stantial support through FAPESP grant 2008/03995-5 and FAPESP grant 2011/19280-8.

References
Boutilier, C., Dearden, R., and Goldszmidt, M. (1999). Stochastic dynamic programming

with factored representations. Artificial Intelligence, 121:2000.

Chen, Y., Berkhin, P., Anderson, B., and Devanur, N. R. (2011). Real-time bidding algo-
rithms for performance-based display ad allocation. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’11, pages 1307–1315, New York, NY, USA. ACM.

Chickering, D. M. and Heckerman, D. (2000). Targeted advertising with inventory man-
agement. In Proceedings of the 2nd ACM conference on Electronic commerce, EC ’00,
pages 145–149, New York, NY, USA. ACM.

Devanur, N. R. and Kakade, S. M. (2009). The price of truthfulness for pay-per-click
auctions. Proceedings of the tenth ACM conference on Electronic commerce - EC ’09,
page 99.

Guestrin, C., Koller, D., Parr, R., and Venkataraman, S. (2003). Efficient solution algo-
rithms for factored MDPs. Journal of Artificial Intelligence Research, 19:399–468.

Haight, F. A. (1967). Handbook of the Poisson distribution [by] Frank A. Haight. Wiley
New York,.

Kiang, M. Y., Raghu, T. S., and Shang, K. H.-m. (2000). Marketing on the Internet —
who can benefit from an online marketing approach ? Decision Support Systems.

Kolobov, A., Mausam, and Weld, D. S. (2012). Discovering hidden structure in factored
MDPs. Artificial Intelligence, 189:19–47.

Muthukrishnan, S. (2009). Ad Exchanges : Research Issues. pages 1–12.

Nagurney, A. (2010). An Integrated Framework for the Design of Optimal Web Banners.
pages 1–20.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience.

Pwc, U. S. (2012). IAB Internet Advertising Revenue Report - Full Year 2011. (April).

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, USA, 1st edition.

