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Abstract. In this paper we present a new algorithm for the finite-horizon

stochastic multi-armed bandit problem with Bernoulli rewards called AdBan-

dits. It is based upon the Thompson Sampling combined with a frequentist ex-

ploitation strategy. We report the results of this new algorithm comparing it

with classical solutions to the multi-armed bandit such as: UCB, UCB-Bayes

and Thompson Sampling.

Resumo. Neste artigo apresentamos um novo algoritmo para o problema de

multi-armed bandit com tempo finito e recompensas binárias. Ele foi cri-

ado com base no algoritmo Thompson Sampling, combinando-o com uma es-

tratégia frequentista de explotação. Relatamos os resultados deste novo al-

goritmo comparando-o com algoritmos clássicos como: UCB, UCB-Bayes e

Thompson Sampling.

1. Introduction

In the finite-horizon stochastic multi-armed bandit problem there are n arms that can be

pulled. A decision maker needs to choose at each instant of time t which arm to pull,

yielding an immediate reward drawn from an underlying, fixed, but unknown distribution

associated with the chosen arm. The aim of the decision maker is to maximize the total

expected reward over the finite-horizon.

This problem has been studied extensively since its proposal by Robbins

[Robbins 1952] and it is motivated by several applications, the most classical being the

scheduling of n jobs carried out by a single machine.



We rely in another motivation, the on-line advertising which revenues are skyrock-

eting [PwC 2012]. In this problem there is an agent called Ad Network which serve ads

to users, and the click probabilities of each ad is unknown. The agent needs to discover

the underlying probabilities at the same time it is exploiting the ads. This situation exhibit

the exploitation-exploration trade-off.

2. Problem Formulation

We consider that the Ad Network has a fixed pool of ads A, known in advance, and each

element a ∈ A is defined by its underlying click probability, unknown to the Ad Network.

It is considered that the ads are working in the cost per click model without a bud-

get constraint. In this model there are no limits to the number of times one advertise can

be used, and the revenue of the Ad Network is measured by the number of conversions,

i.e. the amount of times ads are clicked.

At each time t, 0 < t < τ , a user generates a request to a site in the Ad Network’s

inventory, the site makes an ad request to the Ad Network, and finally the Ad Network

chooses which ad to display to the user, who may click or not.

We model this problem as a finite-horizon stochastic multi-armed, each arm of the

bandit corresponds to an advertise a available in the Ad Network. Each advertise is as-

sociated with an unknown Bernoulli distribution B(µa), where µa is the click probability

of the advertise a. The aim of the Ad Network is to maximize the total expected reward

until time τ , or equivalently, to minimize the expected cumulative regret, defined to be:

R(τ) = τµ∗ − E

[

τ
∑

t=1

rt

]

=
∑

a∈A

(µ∗ − µa)E[Na,τ ], (1)

where µ∗ = maxa µa denotes the expectation of the best action, rt is the reward at time t,

and Na,τ is a random variable meaning the number of draws of arm a accumulated until

t = τ .

3. Related Work

In the infinite horizon stochastic multi-armed bandit problem the objective is to find a

policy that maximizes the infinite horizon expected discounted reward, given by:

E

[

∞
∑

t=0

βtrt(π(t))

]

, (2)

where 0 < β < 1 is a fixed discount factor, and π(t) is the arm chosen by the policy π at

time t.

Gittins [Gittins 1979] proved that the optimal solution to this problem can be

achieved by a dynamic allocation index, and it could be solved numerically using the

Gittins indices.

According to Kaufmann [Kaufmann et al. 2012a] it is possible to show that the

Gittins indices can be extended to the finite horizon problem, however computing the



finite-horizon variant for the Gittins indices is only feasible for moderate horizons due to

the need to perform repeatedly dynamic programming recursions.

Lai and Robbins [Lai and Robbins 1985] proved that in this problem the regret

grows at least logarithmically, therefore an algorithm is said to solve the multi-armed

bandit problem if it can match this lower bound, i.e. R(τ) = O(log τ). In this section we

will introduce some of the usual algorithms to the multi-armed bandit problem that are

proved to respect the previously stated regret bound.

3.1. Upper Confidence Bound (UCB)

The Upper Confidence Bound (UCB1) [Auer et al. 2002] is an implementation of the

idea of optimism in face of uncertainty proposed by [Lai and Robbins 1985]. This policy

achieves logarithmic regret.

UCB1 index-based policy created by the sum of two terms, where the first term is

the average reward and the second term is related to the one-sided confidence interval for

the average reward according to the Chernoff-Hoeffding bounds [Hoeffding 1963], which

provides an upper bound on the probability that the sum of random variables deviates

from its expected value. The UCB algorithm can be viewed in Algorithm 1.

Algorithm 1: UCB1 Algorithm

Input: τ (horizon),

A (arms)

1 Play each arm a once

2 Observe rewards ra
3 Set ka = 1, ∀a ∈ A
4 Set µ̂a =

ra
ka

5 for t = |A| to τ do

6 Play arm â = argmaxa

(

µ̂a +
√

2 ln(t)
ka

)

7 Observe Reward r

8 râ = râ + r

9 kâ = kâ + 1
10 and update µ̂â =

râ
kâ

11 end

Initially each arm is played once, and after this initialization, at each time t, the

algorithm chooses the arm â as follows:

â = argmax
a



µ̂a +

√

2 ln(t)

ka



 , (3)

where µ̂a is the current estimation of the success probability of the arm a, and ka is the

number of times the arm a has been played. It is shown that the expected regret of UCB1

is bounded by:



8
∑

a:µa<µ∗

ln(t)

∆a

+

(

1 +
π2

3

) A
∑

a=1

∆a, (4)

where ∆a = µ∗ − µa. Despite the algorithm is said to solve the multi-armed bandit

problem, in fact it has poor performance compared to the other algorithms shown in this

section.

3.2. UCB-Bayes

The UCB-Bayes algorithm [Kaufmann et al. 2012a] assumes a Bayesian modeling of the

multi-armed bandit problem, where the parameter θ = (θ1, θ2, . . . , θ|A|) are drawn from

independent prior distributions {πa}1≤a≤|A|, and the parameter θa corresponds to an esti-

mation of µa.

Let
∏t

denote the posterior distribution of θ after t instants of time, with
∏0

denoting the initial prior distribution.

The draw of an arm a generates a reward rt, and the update of the distributions

occurs as follows: πt
a(θa|rt) ∝ νθa(rt)π

t−1
a (θa), where νθa(rt) is the distribution of the

reward rt, since we model the events as a Bernoulli distribution, the conjugate is a beta

function, and the update turns out to be:

πt
a(θa|rt) ∝

(

θrta (1− θa)
1−rt

) (

θα−1
a (1− θa)

β−1
)

= θrt+α−1
a (1− θa)

(1−rt)+β−1 (5)

Let Q(t, α, β) be the quantile function associated to the beta distribution with

parameters α and β, i.e. the inverse of the cumulative distribution function.

The UCB-Bayes algorithm is shown in Algorithm 2, the authors state that the term

(log τ)c in Expression 7 is used to guarantee the finite-time logarithmic regret bounds

when c ≥ 5, and the number of draws of any sub-optimal arm a is upper bounded by:

E[Na,τ ] ≤
1 + ǫ

δ(µa, µ∗)
log(A) + oǫ,c(log(n)), (6)

where δ(·, ·) is the Kullback-Leiber divergence and ǫ > 0.

Given the definition of regret in Expression 1 it is clear that this algorithm also

asymptotically attain to the optimal possible regret stated by Lai and Robbins. In our

experiments we used c = 0 as suggested by the authors to achieve the best performance.



Algorithm 2: UCB-Bayes Algorithm

Input: τ (horizon),

A (arms),
∏0

(initial prior θ),

c (parameters of the quantile)

1 for t = 1 to τ do

2 for each arm a = 1, . . . , |A| do

3

qa(t) = Q

(

1−
1

t(log τ)c
, αt−1

a , βt−1
a

)

(7)

4 end

5 draw arm ât = argmaxa qa(t)

6 Observe reward rta and update
∏t

according to Expression 5

7 end

3.3. Thompson Sampling

Thompson Sampling is an old algorithm [Thompson 1933] initially proposed to model

medical allocation problems and clinical trials. This algorithm has only recently

been proved to respect the regret bound stated in Section 2 [Agrawal and Goyal 2012,

Kaufmann et al. 2012b]. It uses a Bayesian formulation to the multi-armed bandit prob-

lem like the UCB-Bayes algorithm.

Thompson Sampling algorithm is shown in Algorithm 3. The idea is to choose an

arm according to its probability of being the best arm. The great difference between the

UCB-Bayes algorithm to the Thompson Sampling algorithm is that the UCB-Bayes uses

the quantile function as an upper bound to choose which arm to pull, whereas Thompson

Sampling samples from the distributions. In the algorithm, Sa corresponds to the number

of times the chosen arm yielded a positive reward r and Fa corresponds to the number of

times the chosen arm yielded a reward r = 0.

The regret shown by Thompson Sampling [Kaufmann et al. 2012b] is upper

bounded by:

(1 + ǫ)
∑

a∈A:µa 6=µ∗

∆a(ln(τ) + ln(ln(τ)))

δ(µa, µ∗)
+ C(ǫ, µ1, . . . , µ|A|), (8)

where ǫ > 0, C(ǫ, µ1, . . . , µ|A|) is a problem-dependent constant and δ(·, ·) is the

Kullback-Leibler divergence.



Algorithm 3: Thompson Sampling

Input: τ (horizon),

A (arms),

α, β (prior parameters of a beta distribution)

1 Sa = 0, Fa = 0, ∀a ∈ A
2 for t = 1 to τ do

3 for each arm a = 1, . . . , |A| do

4 Draw θa according to Beta(Sa + αa, Fa + βa)
5 end

6 draw arm â = argmaxa θa and observe reward r

7 if r = 1 then

8 Sâ = Sâ + 1
9 else

10 Fâ = Fâ + 1
11 end

12 end

4. Ad Bandit

In this section we present our algorithm called Ad Bandit. It is inspired by Thompson

Sampling combined with a frequentist exploitation strategy. The algorithm needs to know

the priors of the distribution, the horizon τ and the exploration factor ǫ. Prior can be used

to tune the algorithm if something is known about the distributions.

The basic idea is to model each one of the arms as a Beta distribution, which is

parametrized by two parameters α and β. The α parameter can be understood as the

number of times that a particular arm yielded a reward, and the β counts the number of

times that the arm did not yielded a reward.

The algorithm has two different stages: the exploration and the exploitation stage,

both occuring at random. At the end of each stage, the algorithm checks if the pulled arm

yielded a reward or not, and it updates the beta distribution of the pulled arm in a bayesian

way.

The exploration stage is based on Thompson Sampling. The algorithm tries to

explore the arm with greater probability of being the best arm. In order to do it, it samples

from each one of the beta distributions and use the arm which yielded the greater sample,

i.e. the arm with the greater probability of being the best arm.

The exploitation stage is based on a frequentist strategy. It uses an expectation of

beta distributions as an index to exploit. The rationale for this method is that the learned

distributions takes too much time to converge to the real underlying distribution. With

that idea in mind the algorithm start to exploit based on the expected mean reward of the

distributions µ̂a:

µ̂a =
Sa

Sa + Fa

, (9)

where Sa is the number of successful trials and Fa is the number of unsuccessful trials of



the arm a. The algorithm then chooses the arm with the maximum expected mean reward,

as follows:

â = argmax
a

(µ̂a) (10)

where â is the arm chosen to be pulled. The algorithm is shown in Algorithm 4.

Algorithm 4: Adbandit Algorithm

Input: τ (horizon),

A (arms),

α, β (prior parameters of a beta distribution),

ǫ (exploration factor)

1 Sa = 0, Fa = 0, ∀a ∈ A
2 for t = 1 to τ do

3 g = random number between ]0, 1]
4 if g > t

ǫτ
then

5 for each arm a = 1, . . . , |A| do

6 Draw θa according to Beta(Sa + αa, Fa + βa)
7 end

8 Draw arm â = argmaxa θa
9 else

10 Draw arm â = argmaxa µa

11 end

12 Observe reward r

13 if r = 1 then

14 Sâ = Sâ + 1
15 else

16 Fâ = Fâ + 1
17 end

18 µ̂â =
Sâ

Sâ+Fâ

19 end

5. Experiments

In this section we present our experiments for the evaluation of the AdBandit algorithm.

We created an environment with 10 different Bernoulli arms, their success probabilities

can be viewed in Table 1, these are the same probabilities used in the experiments made

in [Kaufmann et al. 2012b]. The best possible arm is the number four with its probability

in bold.

The algorithms were all written in Python, and for the UCB, UCB-Bayes and

Thompson Sampling we used the available implementation in the project pymaBandits

1.0 written by Olivier Cappé et al1.

1Available in: http://mloss.org/software/view/415/ last time accessed in July 17.



For Thompson Sampling and AdBandits we started with no knowledge of the

priors, i.e. αa = 1 and βa = 1 for all arms a. And we used c = 0 for the UCB-Bayes as

described by the authors for best performance.

Table 1. Arms probabilities for the experiments.

Arms

Arm Success Probability

1st 0.02
2nd 0.02
3rd 0.02
4th

0.10

5th 0.05
6th 0.05
7th 0.05
8th 0.01
9th 0.01
10th 0.01

The performance of the algorithms are compared using the expected mean re-

gret following Expression 1. We created a baseline for the optimal decision making:

r∗(t) = 0.1t and compared to the cumulative mean reward of each algorithm over 1, 000
simulations.

5.1. AdBandit Evaluation

First we compare the AdBandit algorithm for different values of the exploration rate pa-

rameter ǫ.

Figure 1 shows the behavior of the algorithm for different values ǫ. Inspecting the

expected regret at the end of the simulation (t = τ = 15, 000), it falls with the decrease

of the exploration ratio, until the value of ǫ = 0.2, and starts growing again for ǫ = 0.15,

this effect comes from trade-off between exploitation and exploration.

In our experiments we consider that an exploration ratio of 50% is safe against

bad probability estimation, but the parameter could be tuned for different environments.

It also can be concluded that exploration ratios under ǫ = 0.2 can be a good option

under small horizons or whether the arms probabilities are not very different from each

other. We can see this effect in the times between 2× 103 and 1× 104 for ǫ = 0.15.

The distribution of the regret can be viewed in the box plot in Figure 2. We can

see that the median (indicated by the red line inside each box) is near the regret value of

60 for all values of ǫ. The upper 75% of the values of the simulation (upper line of the

box) are under a regret of 100 and the lower 25% (lower line of the box) are all near the

value of 50.

We can see that the median is consistently falling with the decrease of parameter

ǫ, but the outliers also grow (the outliers are plotted individually with crosses). The lower

number of outliers were achieved with an exploration ratio of 40%.
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Figure 1. AdBandit mean regret for 15,000 horizon with different values of ǫ over

1,000 simulations.

5.2. Comparison with algorithms in literature

In order to evaluate the AdBandit performance we compared the mean regret of the algo-

rithm with ǫ = 0.5 against the performance of the Thompson Sampling, UCB-Bayes and

UCB algorithms, all of them usual algorithms in the multi-armed bandit literature.

In Figure 3 we compare all four algorithms against each other, in this figure we

see that the UCB algorithm performs very badly compared to the other algorithms with a

mean regret near 700.

In Figure 4 we show only the best three algorithms: AdBandit, Thompson Sam-

pling and UCB-Bayes. Among them the UCB-Bayes has the worst performance with a

mean regret near 110, followed by Thompson Sampling with a mean regret near 85, and

AdBandit with a mean regret near 65 achieving the best performance.

In Figure 5 we show the distributions of the three best algorithms. AdBandit

proved to be the best of them with the lower median, with 75% of its values near the

median of the second best algorithm (Thompson Sampling). UCB-Bayes was the algo-

rithm with the smaller number of outliers, but with the higher value of regret of all, with

a median near 110, whilst Thompson Sampling had a median near 90.

6. Conclusion

In this paper we proposed a new algorithm for the multi-armed bandit problem called Ad-

Bandit, it was crafted upon an existing algorithm called Thompson Sampling, combining

a bayesian exploration with a frequentist exploitation. We reported the experimental re-

sults of the algorithm by comparing its performance measured by the expected cumulative

regret against the algorithms UCB, UCB-Bayes and Thompson Sampling.
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Figure 2. Distribution of AdBandit for 15,000 horizon with different values of ǫ.

over 1,000 simulations.

The algorithm AdBandit proved to be the best of the four algorithms for all the

values tested of its exploration parameter ǫ. We also compared the distribution of the

1, 000 simulation values using a box plot showing that it achieves the lower median, and

the 75% of the values being lower than the median of all other algorithms.

Despite the excellent experimental results, one remaining question is whether this

algorithm also presents the optimal regret behavior as described in Section 2. This ques-

tion is currently under investigation, and we also want to extend the experiments to more

diverse scenarios and applying this algorithm directly to our main motivation problem,

the Ad Network problem.
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