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Languages for Probabilistic Modeling
Over Structured and Relational Domains

Fabio Gagliardi Cozman

Abstract In this chapter we survey languages that specify probability distributions1

using graphs, predicates, quantifiers, fixed-point operators, recursion, and other log-2

ical and programming constructs. Many of these languages have roots both in prob-3

abilistic logic and in the desire to enhance Bayesian networks and Markov random4

fields. We examine their origins and comment on various proposals up to recent5

developments in probabilistic programming.6

1 Introduction7

Diversity is a mark of research in artificial intelligence (AI). From its inception, the8

field has exercised freedom in pursuing formalisms to handle monotonic, nonmono-9

tonic, uncertain, and fuzzy inferences. Some of these formalisms have seen cycles10

of approval and disapproval; for instance, probability theory was taken, in 1969, to11

be “epistemologically inadequate” by leading figures in AI (McCarthy and Hayes12

1969). At that time there was skepticism about combinations of probability and logic,13

even though such a combination had been under study for more than a century.14

A turning point in the debate on the adequacy of probability theory to AI was15

Judea Pearl’s development of Bayesian networks (Pearl 1988). From there many16

other models surfaced, based on the notion that we must be able to specify probabil-17

ity distributions in a modular fashion through independence relations (Sadeghi and18

Lauritzen 2014). In spite of their flexibility, Bayesian networks are “propositional”19

in the sense that random variables are not parameterized, and one cannot quantify20

over them. For instance, if you have 1000 individuals in a city, and for each of them21

you are interested in three random variables (say education, income, and age), then22

you must explicitly specify 3000 random variables and their independence relations.23

There have been many efforts to extend graphical models so as to allow one to24

encode repetitive patterns, using logical variables, quantification, recursion, loops,25

and the like. There are specification languages based on database schema, on first-26
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2 F. G. Cozman

order logic, on logic programming, on functional programming, even on procedural27

programming. Often these languages employ techniques from seminal probabilistic28

logics. The purpose of this chapter is to review some of these languages, starting with29

a brief review of probabilistic logic concepts, and then moving to relational variants30

of Bayesian networks and to probabilistic programming.31

In Sect. 2 we present some foundational results from probabilistic logic, so as to32

fix useful terminology concerning syntax and semantics. In Sect. 3 we look at sev-33

eral formalisms that mix, using graphs, Bayesian networks and relational modeling.34

Section4 is devoted to probabilistic logic programming; in Sect. 5 we go through lan-35

guages inspired by various logics, and in Sect. 6 we examine Markov random fields.36

In Sect. 7 we consider the emerging field of probabilistic programming. Finally, in37

Sect. 8 we very briefly mention some inference and learning techniques.38

2 Probabilistic Logics: The Laws of Thought?39

Boole’s book on The Laws of Thought is aptly sub-titled “on which are founded40

the mathematical theories of logic and probabilities” (Boole 1958). Starting from41

that effort, many other thinkers examined the combination of first-order logic and42

probabilities (Gaifman 1964; Gaifman and Snir 1982; Hoover 1978; Keisler 1985;43

Scott and Krauss 1966). Amix of logical and probabilistic reasoning was also central44

to de Finetti’s concept of probability (Coletti and Scozzafava 2002; de Finetti 1964).45

Nilsson (1986) later rediscovered someof these ideas in the context ofAI, in particular46

emphasizing linear programming methods that had been touched before (Bruno and47

Gilio 1980; Hailperin 1976).48

At the beginning of the nineties, Nilsson’s probabilistic logic and its extensions49

were rather popular amongst AI researchers (Hansen and Jaumard 1996); in particu-50

lar, probabilistic first-order logic received sustained attention (Bacchus 1990; Fagin51

et al. 1990; Halpern 2003). That feverish work perhaps convinced some that the laws52

of thought had indeed been nailed down.53

We now review some concepts used in probabilistic logics, as they are relevant to54

the remainder of this survey.55

Propositional logic consists of formulas containing propositions A1, A2, . . . , and56

the Boolean operators ∧ (conjunction), ∨ (disjunction), ¬ (negation), → (implica-57

tion) and ↔ (equivalence); further details are discussed in chapter “Reasoning with58

Propositional Logic - From SAT Solvers to Knowledge Compilation” of this Vol-59

ume. First-order logic consists of formulas containing predicates and functions, plus60

the Boolean operators, logical variables and existential/universal quantifiers (further61

details are discussed in chapter “Automated Deduction” of this Volume). Any pred-62

icate r , and any function f , is associated with a nonnegative integer, its arity. A63

predicate of arity zero is treated as a proposition. A function of arity zero is a con-64

stant. A term is either a logical variable or a constant. A predicate of arity k, followed65

by k terms (usually in parenthesis) is an atom. For instance, if baker is a predicate66

of arity 1, then both baker(x ) and baker(John) are atoms.67
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Languages for Probabilistic Modeling … 3

The syntax of a minimal propositional probabilistic logic is rather simple: we68

can have any propositional formula ϕ, and moreover any probabilistic assessment69

P (φ) = α, where φ is a propositional formula and α is a number in [0, 1]. For70

instance, both A1 ∧ ¬A2 andP (¬A3 ∨ A4 ∨ ¬A5) = 1/2 arewell-formed formulas.71

Conditional probabilistic assessments are often allowed; that is, P (φ|θ) = α where72

φ and θ are propositional formulas.73

Example 1 Suppose A1 means “Tweety is a penguim”, A2 means “Tweety is a bird”,74

and A3 means “Tweety flies”. Then75

A1 → A2, A1 → ¬A3, P (A3|A2) = 0.9576

is a set of well-formed formulas. �77

The usual semantics associated with this propositional syntax is as follows. Sup-78

pose we have propositions A1, A2, . . . , An . There are 2n truth assignments to these79

propositions (each proposition assigned true or false). To simplify the terminology,80

we refer to a truth assignment as an interpretation. Propositional probabilistic logic81

focuses on probability measures over interpretations, where the sample space Ω is82

the set of 2n interpretations. Recall that such a measure P can be specified by associ-83

ating each element ofΩ with a nonnegative number in [0, 1], guaranteeing that these84

numbers add up to one (as discussed in chapter “Representations of Uncertainty in85

Artificial Intelligence: Probability and Possibility” of Volume 1).86

A probabilistic assessment P (φ) = α, for some α ∈ [0, 1] is interpreted as a87

constraint; namely, the constraint that the probability of the set of interpretations88

satisfying φ is exactly α. A conditional probability assessment P (A1|A2) = α is89

usually read as the constraint P (A1 ∧ A2) = αP (A2).90

Example 2 Consider a (rather simplified) version of Boole’s challenge problem91

(Hailperin 1996): we haveP (A1) = α1 andP (A2) = α2, andmoreoverP (A3|A1) =92

β1 andP (A3|A2) = β2; finallywe know that A3 → (A1 ∨ A2).What are the possible93

values for P (A3)?94

There are three propositions A1, A2, A3; an interpretation can be encoded as a95

triple (a1a2a3) where ai = 1 when Ai is true, and ai = 0 otherwise. There are 896

interpretations that might be possible, but interpretation (001) is impossible because97

A3 → (A1 ∨ A2) holds. Each interpretation is to have a probability; we denote by p j98

the probability of the j th interpretation, where we order lexicographically the triple99

(a1a2a3) as if it were a binary number. Thus the constraint P (A1) = α1 means100

p4 + p5 + p6 + p7 = α1,101

and the constraint P (A3|A2) = β2 means102

p3 + p7 = β2(p2 + p3 + p6 + p7).103

Byminimizing/maximizing P (A3) = p3 + p5 + p7, subject to these constraints and104

p j ≥ 0 for all j and
∑

j p j = 1, we obtain P (A3) ∈ [L ,U ], where105
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4 F. G. Cozman

L = max(α1β1, α2β2),

U = min(α1β1 + α2β2, α1β1 + (1 − α1), α2β2 + (1 − α2)),
106

provided 0 ≤ L ≤ U ≤ 1 (otherwise the whole problem is inconsistent). �107

To use de Finetti’s terminology, a set of formulas and assessments that is satisfied108

by at least one probability measure is said to be coherent (Coletti and Scozzafava109

2002). Given a coherent set of assessments, reasoning should only inform us about110

the least commitment conclusions that are necessarily correct.111

We can of course contemplate probabilistic assessments P (φ) = α where φ is112

a formula of first-order logic and α is a number in [0, 1].1 The semantics of first-113

order formulas is given by a domain and an interpretation. A domain D, in this114

technical sense, is just a set (and should not be taken as the sort of “structured115

domain knowledge” alluded to in the title of this chapter). An interpretation is a116

mapping from each predicate of arity k to a relation in Dk , and from each function117

of arity k to a function from Dk to D (Enderton 1972).118

Each probabilistic assessment P (φ) = α, where φ is a first-order formula, is119

interpreted as a constraint on the probability measures over the set of interpretations120

for a fixed domain. If the domain is infinite, the set of interpretations is uncountable.121

In this overview we can bypass difficulties with uncountable sets, but still present122

the main points, by assuming all domains to be finite, and moreover by assuming123

that no functions, other than constants, are present.124

Example 3 Consider predicates penguim, bird, and flies, all of arity 1, and predi-125

cate friends, of arity 2. The intended meaning is that penguim(Tweety) indicates126

that Tweety is a penguim, and likewise for bird, while flies(Tweety) indicates that127

Tweety flies, and friends(Tweety,Skipper) indicates that Tweety and Skipper128

are friends. Suppose the domain is D = {Tweety,Skipper,Tux}. An interpretation129

might assign both Tweety and Tux to penguim, only the pair (Tweety,Skipper) to130

friends, and so on.131

Suppose P
(∀x : ∃y : friends(x , y)

) = 0.01. This assigns probability 0.01 to the132

set of interpretations where any element of the domain has a friend. Another possible133

assessment is ∀x : P (penguim(x )) = 0.03; note that here the quantifier is “outside”134

of the probability.135

For a domain with N elements, we have 2N possible interpretations for penguim,136

and 2N
2
interpretations for friends; the total number of possible interpretations for137

the predicates is 23N+N 2
. �138

We refer to the semantics just outlined as an interpretation-based semantics,139

because probabilities are assigned to sets of interpretations. There is also a domain-140

based semantics, where we assume that probability measures are defined over the141

domain. This may be useful to capture some common scenarios. For instance, con-142

sider: “The probability that some citizen is a computer scientist is α”. Wemight wish143

1We might be more even general by introducing “probabilistic quantifiers”, say by writing P
≥αφ

to mean P (φ) ≥ α. We could then nest P
≥αφ within other formulas (Halpern 2003). We avoid this

generality here.
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Languages for Probabilistic Modeling … 5

to interpret this through a probability measure over the set of citizens (the domain);144

the constraint is that the set of computer scientists gets probability α. Domain-based145

semantics, and even combinations of interpretation- and domain-based semantics,146

have been investigated for a while (Bacchus 1990; Fagin et al. 1990; Hoover 1978;147

Keisler 1985); however, interpretation-based semantics aremore commonly adopted.148

First-order probabilistic logic has high representational power, but very high com-149

plexity (Abadi and Halpern 1994). Another drawback is inferential vacuity: given a150

set of formulas and assessments, usually all that can be said about the probability151

of some other formula is that it lies in a large interval, say between 0.01 and 0.99.152

This happens because there are exponentially many interpretations, and a few assess-153

ments do not impose enough constraints on probability values. Finally, there is yet154

another problem: it has been observed that first-logic itself is not sufficient to express155

recursive concepts or default assumptions, and tools for knowledge representation156

often resort to special constructs (Baader and Nutt 2002; Baral 2003). Hence it does157

not seem that the machinery of first-order probabilistic logic, however elegant, can158

exhaust the laws of thought, after all.159

3 Bayesian Networks and Their Diagrammatic160

Relational Extensions161

Bayesian networks offer a pleasant way to visualize independence relations, and an162

efficient way to encode a probability distribution; as such, they have been widely163

applied within AI and in many other fields (Darwiche 2009; Koller and Friedman164

2009; Pourret et al. 2008). To fix terminology, here is a definition (see also chapter165

“Belief Graphical Models for Uncertainty Representation and Reasoning” of this166

Volume). A Bayesian network consists of a pair: there is a directed acyclic graph167

G, where each node is a random variable Xi , and a probability distribution P over168

the random variables, so that P satisfies the Markov condition with respect to G:169

each Xi is independent of its nondescendants (in G) given its parents (in G) (Pearl170

1988). Even though we can have discrete and continuous random variables in a171

Bayesian network, in this survey we simplify matters by focusing on binary random172

variables.Whenwe have a finite set of binary randomvariables, theMarkov condition173

implies a factorization of the joint probability distribution; for any configuration174

{X1 = x1, . . . , Xn = xn},175

P (X1 = x1, . . . , Xn = xn) =
n∏

i=1

P (Xi = xi |pa(Xi ) = πi ) ,176

where pa(Xi ) denotes the parents of Xi , πi is the projection of {X1 = x1, . . . , Xn =177

xn} on pa(Xi ). Often each P (Xi = xi |pa(Xi ) = πi ) is described by a local condi-178

tional probability table.179
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6 F. G. Cozman

JohnIsDedicated CourseIsHard

JohnFailsCourse

P(JohnIsDedicated = 1)
0.6

P(CourseIsHard = 1)
0.4

a b p(1|a, b)
0 0 0.5
0 1 0.8

a b p(1|a, b)
1 0 0.1
1 1 0.4

Fig. 1 The Bayesian network for the “propositional” version of the University World, where
p(1|a, b) denotes P (JohnFailsCourse = 1|JohnIsDedicated = a,CourseIsHard = b)

Consider, as an example, a simplified version of the ubiquitous “UniversityWorld”180

(Getoor et al. 2007). We have random variables JohnIsDedicated, CourseIsHard,181

and JohnFailsCourse, each one with values 0 and 1. Figure1 depicts a Bayesian182

network, where JohnIsDedicated and CourseIsHard are independent, and where183

both directly affect JohnFailsCourse.184

Bayesian networks do encode structured domain knowledge through its indepen-185

dent relations. However, domain knowledge may come with much more structured186

patterns. For example, a University World usually has many students and many187

courses, and a very repetitive structure. We might say: for any pair (x , y), where x is188

a student and y is a course, the probability that x fails given that she is dedicated and189

the course is easy is 0.1. Figure2 depicts a Bayesian network with various students190

and courses, where probabilities are obtained by repeating the conditional probability191

tables in Fig. 1.192

The question then arises as to how we should specify such “very structured”193

Bayesian networks. It makes sense to import some tools from first-order logic. For194

instance, we clearly have predicates, such as the predicate fails, that can be grounded195

by replacing logical variables by elements of appropriate domains (thuswe obtain the196

grounded predicate fails(Tina,Physics), and so on). However, here the “grounded197

predicates” that appear in a graph are not just propositions, but rather random vari-198

ables. A symbol such as fails must be understood with a dual purpose: it can be199

viewed as a predicate, or as a function that yields a random variable for each pair200

of elements of the domain. And a symbol such as fails(Tina,Physics) also has a201

dual purpose: it can be viewed as a grounded predicate, or as a random variable that202

yields 1 when the grounded predicate is true, and 0 otherwise.203

We adopt the following terminology (Poole 2003). A parvariable (for parameter-204

ized randomvariable) is a function that yields a randomvariable (its grounding)when205

its parameters are substituted for elements of the domain. The number of parameters206

of a parvariable is its arity. To specify a parameterized Bayesian network, we use207

parvariables instead of random variables.208

Of course, when we have parvariables we must adapt our conditional probability209

tables accordingly, as they depend on the values of parvariables. For example, for210

the Bayesian network in Fig. 2 we might have211

P (isDedicated(x ) = 1) = 0.6,212
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Languages for Probabilistic Modeling … 7

isDedicated(John)

isDedicated(Mary)

isDedicated(Tina)

isHard(Math)

isHard(Chemistry)

isHard(Physics)

fails(John,Math)

fails(John,Chemistry)

fails(Mary,Chemistry)

fails(Tina,Physics)

Fig. 2 The Bayesian network for the University World with three students and three courses

meaning P (isDedicated(a)) = 0.6 for each student a. Also, we might write213

P
(
fails(x , y) = 1|isDedicated(x ) = 0, isHard(y) = 0

) = 0.5,214

215

P
(
fails(x , y) = 1|isDedicated(x ) = 0, isHard(y) = 1

) = 0.8,216

and so on, assessments that are imposed on every pair (x , y).217

Each “parameterized table” specifying a conditional probability table for each218

substitution of logical variables is called a parfactor. Thus for the Bayesian network219

in Fig. 2 we need only three parfactors.220

Possibly the most popular diagrammatic scheme to specify parvariables and par-221

factors is offered by plate models. A plate consists of a set of parvariables that222

share a domain (that is, the parvariables are all indexed by elements of a domain).223

A plate model for the University World is presented in Fig. 3 (left); plates are usu-224

ally depicted as rectangles enclosing the related parvariables. The main constraint225

imposed on plates is that the domains used to index the parents of a parvariable must226

also be used to index the parvariable. Thus in Fig. 3 (left) we see that fails appears227

in the intersection of two plates, each one of them associated with a domain: fails is228

indexed by both domains.229

Plate models appeared within the BUGS project (Gilks et al. 1993; Lunn et al.230

2009) around 1992. At that time other template languages were discussed under the231

general banner of “knowledge-based model construction” (Goldman and Charniak232

1990; Horsch and Poole 1990; Wellman et al. 1992). Plates were promptly adopted233

in machine learning (Buntine 1994) and in many statistical applications (Lunn et al.234

2012).235

The BUGS package was innovative not only in proposing plates but also in intro-236

ducing a textual language inwhich to specify largeBayesian networks through plates.237

Figure3 (right) shows a plate model rendered by WinBUGS (a version of BUGS);238

this plate model can be specified textually by using a loop to describe the plate, and239

by introducing a statement for each parvariable in the plate model:240
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8 F. G. Cozman

Fig. 3 Left: Plate model for the University World. Right: A plate model rendered in WinBUGS
(described in the WinBUGS manual)

model {241

for (i in 1 : N) {242

theta[i] ˜ dgamma(alpha, beta)243

lambda[i] <- theta[i] * t[i]244

x[i] ˜ dpois(lambda[i])245

}246

alpha ˜ dexp(1)247

beta ˜ dgamma(0.1, 1.0)248

}249

The symbol∼ indicates that the left hand side is distributed according to the distribu-250

tion in the right hand side (Gamma, Poisson, Exponential distributions, respectively251

specified bydgamma,dpois,dexp), while the symbol<− indicates a deterministic252

expression. Rectangular nodes in the plate model, such as the one containing t[i],253

denote constants that are specified elsewhere in the program. BUGS is particularly254

powerful in that it can go beyond finite modeling, allowing discrete and continuous255

distributions (Lunn et al. 2012).256

A possible extension of plate models is to allow a parvariable to have children257

outside of its plate. Figure4 presents a popular example of such an “enhanced”258

plate; many existing topic models and factorization schemes are similarly drawn259

with “enhanced” plates.260

When a parvariable does not belong to the plate of its parent parvariables, onemust261

worry aboutaggregation. Tounderstand this, consider an example. Suppose that in the262

UniversityWorld we have a parvariable highFailureRate, of arity zero, whose value263

depends on fails(x , y) for all pairs (x , y). This parvariable should be drawn outside264
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Languages for Probabilistic Modeling … 9

α Y Z W βX

Fig. 4 The usual “enhanced” plate model for smoothed Latent Dirichlet Allocation (sLDA) (Blei
et al. 2003). Logical variables and domains are omitted. Here X is the parent of W , but X and W
belong to non-intersecting plates

of all plates in Fig. 3 (left). Consider specifying the parfactor for highFailureRate.265

All the groundings of fails(x , y), for all pairs (x , y), affect highFailureRate. Thus266

to specify probabilities for the latter we must somehow aggregate values of the267

former. This is akin to quantification in first-order logic. Most languages that allow268

probability values to depend on several objects at once resort to so-called combination269

functions (some of them will be discussed later).270

Plates were not the only tools proposed in the nineties to specify repetitive271

Bayesian networks; network fragments and object-oriented networks were also con-272

templated (Glesner and Koller 1995; Koller and Pfeffer 1997, 1998; Mahoney and273

Laskey 1996), These ideas evolved to Probabilistic Relational Models (PRMs), a274

clever mix of Bayesian networks and entity-relationship diagrams that spurred many275

efforts on knowledge representation and on Statistical Relational Learning (Fried-276

man et al. 1999; Getoor et al. 2007; Koller and Pfeffer 1998).277

In short, a PRM consists of a set of classes; each class contains a set of objects278

(similarly to a domain), and is associated with a set of parvariables. Usually a class279

is drawn as a box containing parvariables. Figure5 (top) depicts a possible PRM for280

the University World; each class contains a parvariable, and there are association281

edges between classes, indicating for instance that each Registration is paired with282

a Student and with a Course. Associations appear as dashed edges; in PRMs these283

associations are often called slot-chains (Getoor et al. 2007).284

Each parvariable X in a PRM is then associated with a parfactor specifying the285

probability for each instance of X given instances of parents of X . For instance,286

for the University World PRM we would need a parfactor to specify probability287

of fails(z) as dependent on the value of appropriate instances of isDedicated(x )288

and isHard(y). Here “appropriate instance” means “instance related by appropriate289

association”. It may happen that a parvariable depends on many instances of another290

parvariable; for example, we may have a parvariable highFailureRate that depends291

on all groundings of fails. In PRMs a parfactor may depend on an aggregate of292

instances (an aggregate is just a combination function).293

A relational skeleton for a PRM is an explicit specification of objects in each class,294

plus the explicit specification of pairs of objects that are associated. The semantics295

of a PRM with respect to a skeleton is the Bayesian network that is produced by296

instantiating the parvariables and parfactors.297

Suppose we build a graph where each node is a parvariable, and the parents of298

a parvariable r are the parvariables that appear in the parfactor for r . If this graph299

is acyclic, then every skeleton will induce an acyclic (thus valid) Bayesian network.300
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10 F. G. Cozman

Fig. 5 Top: PRM for the University World. Bottom: PRM representing genetic relationships

However, if that graph has cycles, we face a global semantics problem (Jaeger 2002):301

can we guarantee that an acyclic Bayesian network emerges for any skeleton we302

expect to have? Suppose for example that a particular gene in a personmay depend on303

that gene in the person’s father and mother. Some specification languages for PRMs304

allow classes to appear more than once in a diagram, as depicted in Fig. 5 (bottom).305

The dependences may look cyclic, but we know that “fatherOf” and “motherOf”306

are acyclic relations, so no cycles can appear when we consider specific skeletons.307

Algorithms that decide existence of global semantics have been provided for special308

cases (Getoor et al. 2007; Milch et al. 2005b), but the answer to this question in full309

generality seems quite hard, and possibly undecidable (De Bona and Cozman 2017;310

Jaeger 2002).311

As a digression, note that we can think of associations themselves as random312

variables that are fully observed in the relational skeleton. For instance, we might313

have a parvariable isCourseOf that indicates whether a course y is actually in a314

particular registration z. By grounding such a specification, one can produce a ground315

Bayesian network as depicted in Fig. 2,where only a few selected pairs student/course316

are associated with a grade. A parvariable that corresponds to an association, and317

that is fully observed in the relational skeleton, is called a guard parvariable (Koller318

and Friedman 2009).319

There is much in favor of PRMs: they are as modular and visually elegant as320

Bayesian networks, and as featured as entity-relationship diagrams. They allow one321

to represent uncertainty about the structure, by associating probabilities with associa-322

tions; they even allow for uncertainty about existence of particular instances (Getoor323

et al. 2007). Moreover, inference and learning algorithms for Bayesian networks can324

be easily adapted to PRMs (Sect. 8).325

However, a drawback of PRMs is that they have no unified formal syntax; indeed326

the term “PRM” has a rather loose meaning and it is difficult to draw boundaries327

on what is, and what is not, a PRM. There have been some attempts to formalize328

PRMs. One of them is the DAPER language, where entity-relationship diagrams are329

extended to cope with probabilities (Heckerman et al. 2007). Figure6 shows DAPER330

diagrams for the UniversityWorld, for the genetic problem, and for a HiddenMarkov331
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12 F. G. Cozman

Model, a rather simpleDynamicBayesian network (Heckerman et al. 2007).Note that332

temporal modeling is in essence a relational problem, where time steps index random333

variables; we later consider other formalisms with a focus on temporal evolution. A334

DAPER diagram can be annotated with a variety of constraints, such as the 2dag in335

Fig. 6 (meaning that each child of a node has at most two parents and cannot be its336

own ancestor!). As edges can be annotated with constraints in first-order logic, there337

are few guarantees one can offer with respect to the complexity of manipulating a338

DAPER diagram.339

There are also textual languages that aim at encoding PRMs in a formal manner;340

for instance, the Probabilistic Relational Language (PRL) (Getoor and Grant 2006)341

and also the CLP(BN ) language (Costa et al. 2003) resort to logic programming to342

specify parvariables and parfactors.343

Another comprehensive framework that combines logical constructs andBayesian344

networks is conveyed by Multi-Entity Bayesian Networks (MEBNs) (da Costa and345

Laskey 2005; Laskey 2008). AnMEBN consists of a set of network fragments (called346

MFrags), each containing parvariables (referred to as template random variables)347

and constraints over logical variables, all with associated parfactors. The language348

is very expressive as it allows for parfactors that are specified programmatically, and349

constraints that are based on first-order formulas. But MEBNs go beyond first-order350

logic in several aspects: instead of just true and false, inMEBNs some variables may351

assume the value absurd; moreover, there are ways to specify default probabilities.352

The modeling framework has been implemented and applied to practical problems353

(Carvalho et al. 2010). Figure7 shows an MEBN for the University World: each354

MFrag corresponds to a parvariable in the original plate model. Each MFrag also355

contains context parvariables, depicted in Fig. 7 in rectangles. These correspond to356

guard parvariables that induce the structure of any instantiated Bayesian network.357

Finally, each MFrag contains input parvariables, whose parfactors are specified in358

other MFrags; input variables appear in Fig. 7 as dark ovals.359

isCourse( )

isHard( )

isStudent( )

isDedicated( )

isStudent( ) isCourse( )

fails( , )

isHard( )isDedicated( )

Fig. 7 An MEBN, with three network fragments, for the University World
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Languages for Probabilistic Modeling … 13

The formalisms reviewed in this section rely on graphs to encode classes, associa-360

tions, parvariables and their dependences; they do not offer much syntactic guidance361

as to how one should encode the parfactors. Most of the languages we discuss in the362

remainder of this chapter can specify both the dependences amongst parvariables363

and the parfactors; to do so, they use textual descriptions.364

4 Probabilistic Logic Programming365

Logic programming is an old and core AI technology (Baral 2003), as discussed in366

chapter “Logic Programming” of this Volume. It is not surprising that probabilistic367

logic programming has been pursued for some time (Lukasiewicz 1998; Lakshmanan368

and Sadri 1994; Ng and Subrahmanian 1992; Ngo and Haddawy 1997).369

Poole was an early advocate of the idea that logic programming can be used370

to extend Bayesian networks with relational modeling (Poole 1993b). In Poole’s371

Probabilistic Horn Abduction (PHA) language one can write:372

symptom(S) <- carries(D), causes(D,S).373

disjoint([causes(D,S): 0.7, nc(D,S): 0.3]).374

Here we have a rule, indicating how a symptom shows up, and a statement indicating375

that either causes(D, S) is true with probability 0.7, or nc(D, S) is true with376

probability 0.3. The PHA language later evolved into Independent Choice Logic377

(ICL), where decision-making and multi-agent scenarios can be modeled (Poole378

1997, 2008).379

Another seminal proposal for a mixture of logic programming and probabilities380

was Sato’s distribution semantics, embodied in the popular package PRISM (Sato381

1995; Sato and Kameya 2001). A similar syntax and semantics appeared in Fuhr’s382

work on Probabilistic Datalog (Fuhr 1995). The distribution semantics has been383

adopted by many languages (Riguzzi et al. 2014; De Raedt and Kimmig 2015); to384

understand it, a few definitions are needed.385

A logic program is a set of declarative rules that just describe a problem; finding386

a solution is the task of an inference engine (Dantsin et al. 2001; Eiter et al. 2009).387

A normal logic program consists of rules written as (Dantsin et al. 2001)388

A0 :− A1, . . . , Am, notAm+1, . . . , notAn.389

where the Ai are atoms and not indicates negation as failure. The head of this rule390

is A0; the remainder of the rule is its body. A rule without a body, written simply391

as A0., is a fact. A subgoal in the body is either an atom A (a positive subgoal) or392

not A (a negative subgoal). A program without negation is definite, and a program393

with only grounded atoms is propositional.394
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14 F. G. Cozman

The Herbrand base of a program is the set of all grounded atoms built from395

constants and predicates in the program. As before, we allow for constants, but we396

do not consider functions, so as to staywith finite Herbrand bases. The grounding of a397

program is the propositional program obtained by applying every possible grounding398

to each rule, using only the constants in the program (i.e., using only grounded atoms399

in the Herbrand base).400

The dependency graph of a program is a directed graph where each predicate is a401

node, and where there is an edge from a node B to a node A if there is a rule where402

A appears in the head and B appears in the body; if B appears right after not in any403

such rule, the edge is negative; otherwise, it is positive. The grounded dependency404

graph is the dependency graph of the propositional program obtained by grounding.405

A program is acyclicwhen its grounded dependency graph is acyclic. The seman-406

tics of an acyclic program is rather simple, and given by the program’s Clark com-407

pletion (Clark 1978): roughly, take the grounding of the program, and for each head408

A, make it true if some rule with head A has all its subgoals recursively assigned to409

true. At the end of this process, we have an interpretation for the predicates.410

Take a probabilistic logic program to consist of probabilistic facts in addition to411

rules and facts. A probabilistic fact is written as α::A., where α is a number in [0, 1]412

and A. is a fact (here we use the syntax of the popular package Problog (Fierens et al.413

2014).414

Sato’s distribution semantics is, in essence, a distribution over logic programs: for415

each probabilistic fact α::A., with probability α fact A. is added to the program, and416

with probability 1 − α the fact is not added to the program (all probabilistic facts are417

selected independently). Note that each selection of probabilistic facts generates a418

logic program.419

Example 4 To understand the distribution semantics, consider a probabilistic logic420

program in Problog’s syntax. The first line establishes some deterministic facts,421

followed by probabilistic ones, and then we have a few rules (each rule uses an422

auxiliary predicate associated with a probabilistic fact):423

isStudent(john). isStudent(mary). isCourse(math).424

0.6::isDedicated(X).425

0.4::isHard(Y).426

0.5::a1(X,Y). 0.1::a2(X,Y).427

0.8::a3(X,Y). 0.4::a4(X,Y).428

fails(X,Y) :- isStudent(X), isDedicated(X),429

isCourse(Y), isHard(Y), a1(X,Y).430

fails(X,Y) :- isStudent(X), isDedicated(X),431

isCourse(Y), not isHard(Y), a2(X,Y).432

fails(X,Y) :- isStudent(X), not isDedicated(X),433

isCourse(Y), isHard(Y), a3(X,Y).434

fails(X,Y) :- isStudent(X), not isDedicated(X),435

isCourse(Y), not isHard(Y), a4(X,Y).436
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Languages for Probabilistic Modeling … 15

The Herbrand base is then the set of groundings obtained by replacing logical vari-437

ables by the constants john, mary, and math. Altogether, these facts, probabilistic438

facts, and rules are similar to the plate mode in Fig. 3 (left). Note that predicates439

isStudent and isCourse correspond to guard parvariables; they can also be seen as440

the context parvariables depicted in Fig. 7. �441

One convenient feature of probabilistic logic programs (with Sato’s distribution442

semantics) is that they inherit the “default” assumptions used in logic programming.443

For instance, if we do not say that isCourse(mary) is true, then it is automatically444

false. This simplifies the specification of “guard parvariables”: for instance, in the445

example above the parvariables isStudent and isCourse aptly specify the structure446

of the graph, and are not associated with probabilities.447

Poole’s PHAfocusedon acyclic probabilistic logic programs,whileSato’s original448

proposal focusedondefinite, but not necessarily acyclic, probabilistic logic programs.449

These syntactic restrictions have been removed in a variety of ways. One natural450

extension is to allow stratified negation; that is, to allow cycles in the dependency451

graph as long as there is no negative edge in any cycle (Dantsin et al. 2001). Here is452

a well-formed probabilistic logic program in Problog’s syntax:453

smokes(X) :- not relaxed(X).454

smokes(X) :- influences(Y,X), smokes(Y).455

0.3::influences(john,mary).456

0.3::influences(mary,john).457

0.2::relaxed(mary).458

For any sample of the three probabilistic facts, the resulting logic program has a459

cycle. But this is not a problem, for cyclic logic programs still have a semantics460

(Dantsin et al. 2001); in fact, any probabilistic logic program such that the rules form461

a stratified logic program induces a unique probability measure over interpretations.462

The Problog package deals with probabilistic stratified logic programs (Fierens et al.463

2014; De Raedt and Kimmig 2015).464

Probabilistic logic programs that contain cycles and arbitrary negation have been465

also studied (Hadjichristodoulou andWarren 2012; Lukasiewicz 2005;Riguzzi 2015;466

Sato et al. 2005). Several semantics have been proposed for such programs. We467

mention here two semantics: one is based on the stable model semantics, where a468

logic program admits more than a single stable model as its meaning (Gelfond and469

Lifschitz 1988), and the well-founded semantics, where a logic program admits a470

single well-founded model, but that model may contain true, false and undefined471

assignments (VanGelder et al. 1991). The stablemodel semantics induces not a single472

probability measure over interpretations, but a set of probability measures, while the473

well-founded semantics induces a single probability measure over assignments of474

three-valued logic (Cozman andMauá 2017c). Another possibility, adopted by the P-475

log language, is to use the stablemodel semantics, but to assume a uniformprobability476

distribution over the set of stable models of any sampled logic program (Baral et al.477

2009). The LPMLN language also distributes probability over sets of interpretations478
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16 F. G. Cozman

(Lee andWang 2015), resorting to a syntax that resemblesMarkov logic (Sect. 6). Yet479

another approach is represented by a probabilistic version of the Datalog± language480

(Ceylan et al. 2016), where the stable semantics is adopted but program repairs are481

automatically invoked when the program is inconsistent.482

There is no consensus yet on how to handle probabilistic logic programs with483

disjunctive heads and other common constructs (Cozman and Mauá 2017c). Logic484

Programs with Annotated Disjunctions (LPADs) offer syntax to handle disjunction485

probabilistically (Vennekens et al. 2004), as also done in CP-logic (Vennekens et al.486

2009). A LPAD may contain a rule such as487

(heads(Coin):0.6); (tails(Coin):0.4) :- toss(Coin).488

to model a biased coin. An alternative is to adapt the stable model semantics of489

disjunctive programs to handle probabilities (Cozman and Mauá 2017a).490

Even more general combinations of answer set programming, first-order sen-491

tences, and probabilities have been investigated (Nickles and Mileo 2015); another492

extension that has received attention is the specification of continuous random vari-493

ables (Nitti et al. 2016).494

All of these extensions of Sato’s semantics still aim at defining a distribution495

over interpretations of grounded atoms. A few years later than Sato’s distribution496

semantics, a different approach to probabilistic logic programming was advocated,497

with the combination of Inductive Logic Programming and probabilities (Muggleton498

1996). The resulting mixture has been pursued in many guises, usually under the499

banner of Probabilistic Inductive Logic Programming (De Raedt et al. 2010; De500

Raedt 2008). Assumptions are often distinct from Sato’s, for instance by placing501

probabilities over the set of proofs of a logic program (sometimes referred to as502

proof theoretic semantics) (Cussens 1999; De Raedt and Kersting 2004).503

Two additional formalisms that specify Bayesian networks using logic program-504

ming principles, but not all syntactic conventions of logic programming, are Logical505

BayesianNetworks (LBNs) (Fierens et al. 2005, 2004) andBayesianLogic Programs506

(BLPs) (DeRaedt andKersting 2004; Kersting et al. 2000). Both distinguish between507

guard parvariables and parvariables associated with probabilities. To illustrate, con-508

sider the following Bayesian Logic Program fragment (DeRaedt andKersting 2004):509

carrier(x) | founder(x)510

carrier(x) | mother(m,x), carrier(m),511

father(f,x), carrier(f)512

where mother and father are logical predicates (that is, guard parvariables), while513

founder and carrier are associated with probabilities that must be given separately.514

Logical Bayesian Networks adopt additional elements of logic programming in the515

manipulation of logical predicates (Fierens et al. 2005).516
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Languages for Probabilistic Modeling … 17

5 Probabilistic Logic, Again; and Probabilistic517

Description Logics518

A natural idea would be the mix graphs as used in Bayesian networks with general519

assessments as allowed in probabilistic logics. This is exactly the scheme adopted520

in Andersen and Hooker’s Bayesian Logic and its variants (Andersen and Hooker521

1994; de Campos et al. 2009; Cozman et al. 2008). The resulting probabilistic log-522

ics can often be viewed as specification languages for credal networks; that is, for523

graph-based models that encode sets of probability distributions rather than a single524

distribution (Cozman 2000).525

Another natural idea is to specify Bayesian networks using extended first-order526

formulas (Bacchus 1993). For instance, one might write527

∀x , y : fails(x , y) ≡ (isDedicated(x ) ∧ a1(x , y)) ∨ (isHard(y) ∧ a2(x , y)),
∀x , y : P (

a1(x , y) = 1
) = 0.2, ∀x , y : P (

a2(x , y) = 1
) = 0.6,

(1)528

where the symbol ≡ is used to emphasize that we have a definition, and both a1529

and a2 are auxiliary predicates (similar to the auxiliary probabilistic facts used in530

Example4). It is worth noting that, for fixed x and y , Expression (1) specifies a531

Noisy-OR gate for fails (Pearl 1988).532

Expression (1) suggests a general strategy, where a Bayesian network is533

specified by associating each random variable Xi with a definition Xi ≡ f (pa(Xi ),534

Y1, . . . ,Ym), for a deterministic function f of the parents of Xi and some auxiliary535

random variables Y1, . . . ,Ym that are assigned probabilities P
(
Y j = 1

) = α j . Poole536

refers to the latter random variables as independent choices, as he argues in favor537

of this specification strategy (Poole 2010). This sort of strategy is used in structural538

models to handle continuous random variables (Pearl 2009).539

Another popular strategy in combining logic and probabilities is to mix Bayesian540

networks and description logics. Recall that description logics are (usually) decid-541

able fragments of first-order logic that suffice for many knowledge representation542

tasks (Baader et al. 2017), as discussed in chapter “Reasoning with Ontologies” of543

Volume 1. A description logic (usually) contains a vocabulary containing individ-544

uals, concepts, and roles. New concepts can be defined by intersection, union, or545

complement of other concepts. And a concept can be defined using constructs ∃r.C546

or ∀r.C , where r is a role and C is a concept. An inclusion axiom is written C 
 D,547

and a definition is written C ≡ D, where C and D are concepts. A semantics for a548

description logic can (usually) be given by translation of individuals into constants,549

concepts into unary predicates, roles into binary predicates, and by translation of var-550

ious operators into logical operators (Borgida 1996). That is, we have a domainD that551

again is a set, and for each concept C we have a set I(C) of elements of the domain,552

and for each role r we have a set I(r) of pairs of elements of the domain. Inclusion553

C 
 D means that I(C) ⊆ I(D), and C ≡ D means that I(C) = I(D). Moreover,554

the intersection C � D, for concepts C and D, is translated into C(x ) ∧ D(x ); simi-555

larly union is translated into disjunction and complement is translated into negation.
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18 F. G. Cozman

A more involved translation is needed for ∃r.C ; this concept should be interpreted556

as “the set of all x such that there is y satisfying r(x , y) and C(y)”. For instance, the557

expression558

Student � ∃hasChild.Female559

defines the set of studentswho have at least a daughter. In symbols, ∃r.C is interpreted560

as {x ∈ D|∃y ∈ D : (x, y) ∈ I(r) ∧ y ∈ I(C)}. Similarly, ∀r.C is interpreted as {x ∈561

D|∀y ∈ D : (x, y) ∈ I(r) → y ∈ I(C)}.562

An early partnership between Bayesian networks and description logics is the563

P-CLASSIC language: there the description logic CLASSIC is enlarged with prob-564

abilities in a domain-based semantics (Koller et al. 1997a). One must draw a graph565

where nodes refer either to concepts or to parvariables that indicate how many indi-566

viduals are related by roles. Inference in P-CLASSIC produces, for instance, “the567

probability that a randomly selected individual is a student and has a daughter”; in568

symbols: P (Student � ∃hasChild.Female). Other combinations of Bayesian net-569

works and description logics have produced tools that resemble P-CLASSIC (Ding570

et al. 2006; Staker 2002; Yelland 1999).571

An interpretation-based semantics is adopted by PR-OWL (Carvalho et al. 2013;572

Costa and Laskey 2006), a language that combines constructs from description log-573

ics with Multi-Entity Bayesian Networks (Sect. 3). Another popular strategy has574

been to use versions of Poole’s independent choices together with description logics575

(Lukasiewicz et al. 2011; Riguzzi et al. 2015); for instance, in DISPONTE one can576

write577

0.9::Bird 
 Flies,578

thus mixing Problog’s syntax with an inclusion axiom (Riguzzi et al. 2015). Some579

languages even employ Bayesian networks to specify probabilistic choices (Ceylan580

and Peñaloza 2014; d’Amato et al. 2008). For instance, in the Bayesian DL-LiteR581

language one can write582

Bird 
 Flies : condition = true583

to mean that the inclusion axiom is present with probability P (condition = true)584

that is in turn given by a Bayesian network (d’Amato et al. 2008).585

There are many other probabilistic description logics that go beyond Bayesian586

networks, often including sophisticated logical operators and interval-valued assess-587

ments (Klinov and Parsia 2011; Lukasiewicz 2008). These languages have found588

application in the semantic web, in information retrieval, and in knowledge rep-589

resentation by ontologies. The reader can benefit from substantial surveys in the590

literature (Lukasiewicz and Straccia 2008; Predoiu and Stuckenschmidt 2009).591
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Languages for Probabilistic Modeling … 19

6 Markov Random Fields: Undirected Graphs592

We have so far considered languages where probabilities are specified directly;593

that is, if the probability that John is dedicated is 0.9, one just writes594

P (JohnIsDedicated = 1) = 0.9. An entirely different strategy is employed in595

Markov random fields (Koller and Friedman 2009). There one uses an undirected596

graph, where each node is a random variable, and where each clique Ci of the graph597

is associated with a positive function fi (Ci ) (recall that a clique is a complete sub-598

graph); see also chapter “Belief Graphical Models for Uncertainty Representation599

and Reasoning” of this Volume. For instance, the Markov random field defined in600

Fig. 8 has nine cliques containing two random variables, and two cliques containing601

three random variables. With rather general assumptions, the joint distribution then602

factorizes as603

P (X1 = x1, . . . , Xn = xn) = (1/ν)
∏

i

fi (Ci = ci ),604

where the product goes over the set of cliques, and for each clique Ci the sym-605

bol ci is the projection of {X1 = x1, . . . , Xn = xn} on the random variables in Ci .606

The normalization constant ν is called the partition function, and it is equal to607 ∑
x1,...,xn

∏
i fi (Ci = ci ) (see also chapter “Belief Graphical Models for Uncertainty608

Representation and Reasoning” of this Volume). There are technical complications609

if we want to find a Markov condition for such graphs in the presence of zero prob-610

abilities; we do not dwell on such details here.611

The graph in Fig. 8 induces a very structured Markov random field, as we can612

expect the function for clique relaxed(Ann) − smokes(Ann) to be equal to the613

function for clique relaxed(Bob) − smokes(Bob), and so on. It is thus natural614

to think about languages that would allow us to specify repetitive Markov random615

fields. We mention two approaches: relational Markov networks and Markov logic616

networks.617

A relational Markov network is the exact counterpart of PRMs in the con-618

text of undirected graphs (Taskar et al. 2007). A relational Markov network con-619

sists, first, of a set of clique templates; each template contains parvariables and620

conditions on parvariables that determine which instantiations are connected by621

smokes(Ann) smokes(Bob)

relaxed(Ann) relaxed(Bob)

influences(Ann,Ann)

influences(Ann,Bob)

influences(Bob,Ann)

influences(Bob,Bob)

Fig. 8 The Markov random field about smoking

420050_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:6/6/2019 Pages: 37 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

20 F. G. Cozman

edges (some implementations specify such conditions using database queries writ-622

ten in SQL). Given a domain (or a database), a template is instantiated into a623

set of random variables and edges between those random variables. The sec-624

ond part of a relational Markov network is a set of functions that map par-625

variables to positive numbers; we refer to these functions again as parfactors626

(note that these parfactors are not restricted to values in [0, 1]). As an exam-627

ple, we could build the Markov random field in Fig. 8 by specifying parvariables628

relaxed, smokes, and influences, and parfactors f (relaxed(x ), smokes(x )) and629

g(smokes(x ), influences(x , y), smokes(y)). For instance, we might specify the630

first parfactor as follows:

relaxed(x ) smokes(x ) f (relaxed(x ), smokes(x ))

0 0 2
0 1 1
1 0 1
1 1 3

631

Given an instantiation of the parvariables, the parfactors can be instantiated as well,632

and the result is a Markov random field such as the one in Fig. 8.633

Because relational Markov networks can represent uncertainty about links, they634

have been successful in tasks such as collective information extraction (Bunescu and635

Mooney 2004) and activity recognition (Liao et al. 2006).636

Markov logic networks adopt a different, albeit related, strategy (Domingos and637

Lowd 2009; Richardson andDomingos 2006). Instead of parvariables and parfactors,638

we really start with predicates and first-order sentences; the only departure from dry639

first-order logic is that we associate a weight with each sentence.640

In our “smoking” example, we might contemplate two weighted sentences:641

Weight = 2 : ∀x : relaxed(x ) → smokes(x ),

Weight = 4 : ∀x , y : influences(x , y) ∧ smokes(x ) → smokes(y).
(2)642

As before, predicates have a dual role as parvariables, and a grounding of a predicate643

works as a random variable.644

The semantics of Markov logic networks can be explained operationally, by a645

procedure that takes a Markov logic network and a set D, the domain, and produces646

a Markov random field. The procedure is rather simple: first, ground all sentences647

with respect to all groundings, repeating weights as appropriate. For instance, in the648

“smoking” example with domain {Ann,Bob}, we obtain649
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Weight = 2 : relaxed(Ann) → smokes(Ann),

Weight = 2 : relaxed(Bob) → smokes(Bob),

Weight = 4 : influences(Ann,Ann) ∧ smokes(Ann) → smokes(Ann),

Weight = 4 : influences(Ann,Bob) ∧ smokes(Ann) → smokes(Bob),

Weight = 4 : influences(Bob,Ann) ∧ smokes(Bob) → smokes(Ann),

Weight = 4 : influences(Bob,Bob) ∧ smokes(Bob) → smokes(Bob).

650

Now read each one of these weighted propositional sentences as a function:651

“Weight = α : φ” yields

{
eα when φ is true,

1 otherwise.
652

This somewhat mysterious convention yields a single joint probability distribution653

for any Markov logic network with a given domain. If we denote by X1, . . . , Xn the654

random variables that correspond to all groundings of all predicates, the convention655

is that:656

P (X1 = x1, . . . , Xn = xn) = (1/Z) exp

⎛

⎝
∑

j

w j n j

⎞

⎠ ,657

where j runs over the weighted sentences, w j is the weight of the j th weighted658

sentence, and n j is the number of groundings of the j th sentence that are true for659

the configuration {X1 = x1, . . . , Xn = xn} (and Z is the normalization constant). In660

our “smoking” example, the Markov random field induced by Expression (2) has the661

undirected graph depicted in Fig. 8.662

Example 5 A short exercise is instructive. Consider the Markov logic network663

Weight = ln(2) : A ∧ B, Weight = ln(10) : ¬A ∧ ¬B,664

665

Weight = ln(10) : B ∧ C(x ).666

For a domain {a1, . . . , aN }, we get random variables A, B, C(a1), . . .C(aN ). For667

instance, for N = 2 we get the following Markov random field:668

A B
C(a1)

C(a2)

669

The partition function is, using a bit of combinatorics,670

Z =
(

10
N∑

i=0

(
N
i

))

+
(

N∑

i=0

10i
(
N
i

))

+
(

N∑

i=0

(
N
i

))

+
(

2
N∑

i=0

10i
(
N
i

))

671

= 11 × 2N + 3 × 11N ,672
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22 F. G. Cozman

and then P (A = 1) = (2N + 2 × 11N )/Z and P (B = 1) = 3 × 11N/Z . �673

Markov logic networks offer an attractive combination of logic and probability; it674

is really a clever idea that has been vigorously applied in practical problems (Domin-675

gos and Lowd 2009; De Raedt et al. 2016). A clear advantage of such “undirected”676

languages is that they have no problem with cycles, as for instance PRMs do. One677

can only wonder if we have finally nailed down the laws of thought.678

However, Markov random fields are much less transparent than PRMs when it679

comes to the meaning of the functions attached to cliques. These functions are not680

probabilities; rather, their normalized product yields the joint distribution. Interpret-681

ing the numbers is already a challenge in the propositional setting, but the relational682

setting introduces significant complications because the relative effect of functions683

depends on the number of groundings — this in turn depends on the size of the684

domain and on the arity of predicates. Consider Example5: for N = 1 we have685

P (A = 1) = 24/55 < P (A = 0), but as N grows, P (A = 1) grows as well, and we686

have limN→∞ P (A = 1) = 2/3. In general, it is very hard to know, at design time,687

what the weights mean when instantiated (Poole et al. 2012; Jain et al. 2007).688

An additional difficulty with Markov logic networks is that a material implication689

A → B is not really related to a conditional probability ofB givenA:A → Bmay be690

truewith very high probability just becauseA is almost always false. Thus attaching691

a weight to a material implication says little about conditional probabilities.692

And to close these remarks on Markov logic networks, consider the following693

short and startling example.2694

Example 6 Suppose we have a Markov logic network consisting of three weighted695

(propositional) sentences:696

Weight = 2 : A, Weight = 1 : A → B, Weight = 0 : C → B.697

Then the probability that A is true is 0.83481, but the probability that the sentence698

C → B is true is 0.864645. That is, the latter sentence has higher probability than699

the former, thus reversing the order of their weights! �700

There are other graph-based probabilistic models besides Bayesian networks and701

Markov random fields (Sadeghi and Lauritzen 2014), but it does not seem that they702

have been lifted to relational settings,with the notable exception ofRelationalDepen-703

dency Networks (Neville and Jensen 2007). A dependency network consists of a704

graph, possibly with cycles, where each node is a random variable and edges are705

bidirectional, and each node is associated with a conditional probability table speci-706

fying its probabilities given its neighbors in the graph (Heckerman et al. 2000). The707

joint distribution is not obtained in closed-form, but rather by a limiting procedure;708

it is thus a bit hard to relate local parameters and global behavior. Relational Depen-709

dency Networks employ the same toolset of PRMs to extend dependency networks:710

now the nodes of a graph are parvariables organized in classes, and a dependency711

2This example is due to my colleague Marcelo Finger (personal communication).
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Languages for Probabilistic Modeling … 23

network is obtained by grounding the parvariables and associated parfactors (Neville712

and Jensen 2007). The ability to encode cyclic patterns has been useful in applica-713

tions, for instance in natural language processing (Toutanova et al. 2003).714

7 Probabilistic Programming715

The emergence of PRMs and related formalisms during the nineties prompted some716

researchers to explore programming languages with probabilistic constructs. Some717

early formalisms, like RBNs, IBAL, and Blog, illustrate important design choices.718

Jaeger’s Relational Bayesian Networks (RBNs) associate probabilities with pred-719

icates so that, given a finite domain, one obtains a Bayesian network that specifies a720

probability distribution over interpretations of the predicates. The design philosophy721

behind this language is to have a few powerful constructs that are quite expressive722

but that still allow for theoretical analysis. We have a vocabulary of predicates; a723

predicate name stands also for a parvariable with the same arity. Each predicate is724

associated with a probability formula (in essence, a parfactor specification). Here is725

an example:726

burglary(x) = 0.005;727

alarm(x) = 0.95 burglary(x) + 0.01 (1-burglary(x));728

cityAlarm = NoisyOr{0.8 alarm(x)|x; x = x};729

The probability formula for burglary is the simplest one: a number. That probability730

formula can be understood as: ∀x : P (burglary(x ) = 1) = 0.005. The probability731

formula for alarm basically consists of arithmetic operations with parvariables; only732

a few operations are allowed in RBNs. One could read this probability formula as733

follows: for each x , if burglary(x ) is true, then return 0.95; otherwise, return 0.01.734

The probability formula for cityAlarm is more involved: it defines a combination735

expression that is a Noisy-OR gate of all instances of alarm, each one of them736

associated with a probability 0.8.737

The syntax of combination expressions is rather intimidating. A combination738

expression is written comb(F1, . . . , Fk |y1, . . . , ym : φ), where each Fi is a probabil-739

ity formula, each y j is a logical variable that appears in the formulas Fi ,φ is a formula740

containing only logical variables, Boolean operators and equality; finally, comb is741

a function that takes a multiset of numbers (a set with possibly repeated numbers)742

and returns a number in [0, 1]. The semantics of combination expressions can be743

explained operationally as follows. First, collect all logical variables that appear in744

any F1, . . . , Fk , and not in {y1, . . . , ym}. These are the free logical variables of the745

combination expression. Basically, a combination expression is a function that yields746

a number in [0, 1] for each instance of the free logical variables. To compute this747

number for a fixed instance of the free logical variables, go over all instances of the748

logical variables y1, . . . , ym that satisfy φ. For each one of these instances, compute749

the value of F1, . . . , Fk . This produces a multiset of numbers in [0, 1]. Finally, apply750
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24 F. G. Cozman

Fig. 9 The Bayesian
network for the “alarm”
RBN with domain
{John,Mary}

burglary(John) burglary(Mary)

alarm(John) alarm(Mary)cityAlarm

comb to this multiset to obtain the value of the combination function for the fixed751

instance of the free variables. Clearly this is not a simple scheme, and it reveals the752

difficulty of producing a specification language with a small set of constructs that753

still can capture a large number of practical scenarios.754

In any case, any RBN defines, for a given finite domain, a Bayesian network. For755

instance, we obtain the Bayesian network in Fig. 9 when we take the RBN specified756

previously and domain {John,Mary}. The conditional probability tables for this757

Bayesian network can be read from the RBN; the only non-trivial specification is the758

Noisy-OR gate for cityAlarm.759

In the IBAL language (Pfeffer 2001), elements of functional programming are760

mixed with probabilistic assessments. A basic construct is a stochastic choice, syn-761

tactically expressed as dist[p1 : e1, . . . , pn : en], where each pi is a number and each762

ei is an expression: with probability pi , the result of the statement is the evaluation of763

ei . Useful syntactic sugar is provided by the flip(p) construct, yielding 1 with proba-764

bility p and 0 with probability 1 − p (the flip construct appears already in stochastic765

programs that inspired IBAL (Koller et al. 1997b).766

For example, this IBAL statement767

alarm = (quake & flip(0.1)) | (burglary & flip(0.7));768

assigns a Noisy-OR gate to alarm, by taking a disjunction (|) of conjunctions (&).769

And the following IBAL code is related to the University World:770

student() = { isDedicated = flip 0.6; };771

course() = { isHard = flip 0.4; };772

registration(s,c) = {773

fails = if s.isDedicated774

then (if c.isHard then flip 0.4 else flip 0.1)775

else (if c.isHard then flip 0.8 else flip 0.5);};776

Note how PRM classes are encapsulated in functions, and parvariables appear as777

“local variables”. In IBAL one can also specify a domain and observations, and778

ask about probability values. Moreover, IBAL is not just a template language, as779

it offers many programming constructs that allow for arbitrary (Turing-complete)780

computations (Pfeffer 2001).781

Another “generative” language is Milch et al.’s Bayesian Logic, referred to as782

Blog (Milch et al. 2005a). A distinctive feature of Blog is that one can place a783

distribution over the size of the domain; consider for instance (Wu et al. 2016):784
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Type House;785

#House ˜ Poisson(10);786

random Boolean Burglary(House h)˜BooleanDistrib(0.1);787

random Boolean Earthquake ˜ BooleanDistrib(0.002);788

random Boolean Alarm(House h) ˜789

case [Burglary(h), Earthquake] in {790

[false, false] -> BooleanDistrib(0.01),791

[false, true] -> BooleanDistrib(0.40),792

[true, false] -> BooleanDistrib(0.80),793

[true, true] -> BooleanDistrib(0.90)794

};795

The second line associates a Poisson distribution with the number of houses. A796

language where domain size is not necessarily fixed is sometimes called an open-797

universe language (Russell 2015). Such a language must deal with a number of798

challenges; for instance, the need to consider infinitely many parents for a random799

variable (Milch et al. 2005a). The flexibility of Blog has met the needs of varied800

practical applications (Russell 2015).801

It is only natural to think that even more powerful specification languages can802

be built by adding probabilistic constructs to existing programming languages. An803

early language that adopted this strategy is CES, where probabilistic constructs are804

added to C (Thrun 2000); that effort later led to the PTP language, whose syntax805

augments CAML (Park et al. 2008). A similar strategy appeared in the community806

interested in planning: existing languages, sometimes based on logic programming,807

have been coupled with probabilities — two important examples are Probabilistic808

PDDL (Yones and Littman 2004) and RDDL (Sanner 2011). The latter languages809

have been used extensively in demonstrations and in competitions, and have been810

influential in using actions with deterministic and with uncertain effects to obtain811

decision making with temporal effects.812

A rather influential language that adds probabilistic constructs to a functional813

programming language (in this case, Scheme) is Church (Goodman et al. 2008). Even814

though the goal of Church was to study cognition, the language is heavily featured;815

for instance, we can use the “flip” construct, plus conjunction and disjunction, to816

define conditional probability tables as follows:817

(define flu (flip 0.1))818

(define cold (flip 0.2))819

(define fever (or (and cold (flip 0.3))820

(and flu (flip 0.5))))821

and we can even use recursion to define a genometric distribution:822

(define (geometric p)823

(if (flip p) 0 (+ 1 (geometric p))))824
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26 F. G. Cozman

A descendant of Church is WebPPL; here the probabilistic constructs are added to825

JavaScript. For instance, a conditional probability table is written as follows:826

var flu = flip(0.1);827

var cold = flip(0.2);828

var fever = ((cold && flip(0.3))||(flu && flip(0.5)));829

Many other probabilistic programming languages have been proposed by adding830

probabilistic constructs to programming languages from procedural to functional831

persuasions (Gordon et al. 2014b; Kordjamshidi et al. 2015; Narayanan et al. 2016;832

Mansinghka and Radul 2014; McCallum et al. 2009; Paige and Wood 2014; Pfeffer833

2016; Wood et al. 2014). These languages offer at least “flip”-like commands, and834

some offer declarative constructs that mimic plate models. For instance, in Haikaru835

(Narayanan et al. 2016) one can specify a Latent Dirichlet Allocation model (Blei836

et al. 2003) in a few lines of code, for instance specifying a plate as follows:837

phi <˜ plate _ of K: dirichlet(word_prior)838

In some cases probabilistic languages have been proposed in connection with prob-839

abilistic databases (Gordon et al. 2014a; Saad and Mansinghka 2016), a related840

technology that we mention again in Sect. 8.841

Another strategy in probabilistic programming is to add a powerful library to an842

existing language. For instance, the Figaro toolkit offers a mature and complete prob-843

abilistic modeler and reasoner on top of the programming language Scala, together844

with solid methodological guidelines (Pfeffer 2016). Another powerful toolkit is845

available in the Infer.NET project, a framework that meshes with several languages846

(Minka et al. 2014). There are other toolkits that provide substantial probabilistic847

programming features (Bessiere et al. 2013; Salvatier et al. 2016), and even recent848

efforts to mix probabilistic programming with techniques from deep learning (Tran849

et al. 2017).850

A popular probabilistic programming language with a unique and powerful fea-851

ture set is Stan (Carpenter et al. 2017), whose syntax looks deceptively similar to the852

declarative BUGS language. In fact Stan offers imperative and modular program-853

ming, loops and even recursion. For instance, in Stan a loop can assign values to a854

variable repeatedly:855

for (n in 1:N) {856

t = inv_logit(a+x[n]*b);857

y[n] ˜ bernoulli(t);858

total = total + x[n];859

}860

and one can define a recursive function such as861

int random_fib(int n) {862
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if (n<2) return n + 0.02 * bernoulli(0.1);863

else return random_fib(n-1) + random_fib(n-2);864

}865

There is now substantial activity in probabilistic programming, and the final word866

on the subject is not yet written.3 Some languages include continuous distributions,867

disintegrations, and even symbolic manipulation of probabilities. Most languages go868

well beyond relational versions of Bayesian networks andMarkov random fields, for869

instance by including recursion.870

The main goal of probabilistic programming within artificial intelligence has871

been to “enable probabilistic modeling and machine learning to be accessible to the872

working programmer, who has sufficient domain expertise, but perhaps not enough873

expertise in probability theory or machine learning” (Gordon et al. 2014b). Proba-874

bilistic programming is not only relevant to artificial intelligence, but also attracts875

users interested in randomized algorithms and cryptography, and even quantum com-876

puting (Barthe et al. 2015); in fact, several issues now investigated in probabilistic877

programming stay closer to programming language design than to knowledge rep-878

resentation.879

8 Inference and Learning: Some Brief Words880

This survey focuses on the syntax and semantics of various languages that aim at881

probabilistic modeling; the goal is to serve the reader a taste of what these languages882

can do. Now, once a model is specified, it may be necessary to compute the prob-883

ability of various events; such a computation is called an inference. While the first884

relational extensions of Bayesian networks worried mostly about inference (Bacchus885

1993; Gilks et al. 1993; Poole 1993a; Wellman et al. 1992), a turning point was the886

development of machine learning methods for PRMs around 1999 (Friedman et al.887

1999). Most languages have been, since then, accompanied by appropriate learning888

methods (De Raedt 2008; Getoor and Taskar 2007; Milch and Russell 2007; De889

Raedt et al. 2016).890

A discussion of inference and learning algorithms for all languages described891

previously would certainly require another (even longer) survey. To keep matters at892

a manageable size, only a few central results are mentioned in the remainder of this893

section, mostly on inference algorithms.894

Consider then the challenge of computing probabilities for a PRM, or a prob-895

abilistic logic program, or some probabilistic program. One strategy is to take the896

relational specification and translate it to a Bayesian network (or Markov random897

field), and then run inference in the latter (Koller et al. 1997a; Wellman et al. 1992).898

It may be that a particular inference does not require the whole Bayesian network;899

3Lists of languages can be found at http://probabilistic-programming.org/wiki/Home and https://
en.wikipedia.org/wiki/Probabilistic_programming_language.
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only a sub-network may be requisite for the inference of interest. And even if the900

grounded Bayesian network is infinite, it may be possible to approximate inference901

with a suitable grounded sub-network (Laskey 2008; Pfeffer and Koller 2000).902

In some cases, onemay compute a desired probabilitywithout even generating this903

requisite grounded sub-network. Consider an example: supposewe have parvariables904

X (x ) and Y , associated with assessments:905

∀x : P (X (x ) = 1) = 0.4, Y =
{
1 if ∃x : {X (x ) = 1},
0 otherwise.

906

If we have a domain with N elements, then P (Y = 1) = 1 − (0.6)N ; there is no907

need to generate the N + 1 requisite random variables. Example5 shows that a more908

sophisticated combinatorial argument may be used to compute an inference without909

generating the requisite Markov random field.910

Informally, lifted inference refers to a computation of probabilities that does not911

generate the requisite sub-network. Research on lifted inference started with a sem-912

inal paper by Poole (2003), who proposed a few combinatorial operators to handle913

some important cases. The number of lifted operators and algorithms has grown914

enormously, and existing surveys convey extensive references (Kersting 2012; De915

Raedt et al. 2016; Van den Broeck and Suciu 2017). Research on lifted inference has916

emphasized an abstract framework where the “input language” is just a set of par-917

factors (de Salvo Braz et al. 2007), similar to the ones adopted in relational Markov918

networks. Several techniques of lifted inference have also been applied to proba-919

bilistic logic programming (Riguzzi et al. 2017). One can also consider algorithms920

for approximate inference that look at parvariables rather than grounded random921

variables, thus working in a lifted fashion.922

It is likely that most applied work must resort to approximate inference, both923

based on variational methods or on sampling algorithms (Koller and Friedman 2009).924

In fact, plate models were originally built to specify models in BUGS, a package925

focused on Gibbs sampling (Gilks et al. 1993). For many languages, approximate926

inference is all that one can hope, and the survey papers already mentioned contain a927

substantial number of relevant references.Theuseof samplingmethods is particularly928

important in probabilistic programming, where exact inference is very difficulty.929

Most probabilistic programming languages in essence do inference by repeatedly930

running code and storing statistics.931

During the development of lifted inference, an important connection has surfaced932

between probabilistic logic programming and probabilistic databases. The latter con-933

sist of databases where data can be annotated with probabilities; querying such a934

database raises the same computational problems as running inference with parfac-935

tors (Suciu et al. 2011). The literature on probabilistic databases has produced deep936

results on the classes of queries that can be actually be solved in polynomial time.937

A natural question then is whether one can, for a fixed a language, answer any938

inference in polynomial time. If a language guarantees polynomial time inference,939

when parvariables, parfactors and query are fixed, and the input consists of the940
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domain, then the language is domain-liftable (Van den Broeck 2011). While pio-941

neering results by Jaeger show that even some rather simple languages fail to be942

domain-liftable (Jaeger 2000, 2014), the work on lifted inference has demonstrated943

that several important languages are domain-liftable (Taghipour et al. 2013; Van den944

Broeck et al. 2014).945

Domain-liftability has a narrow focus: it concentrates on polynomial complexity946

when the input is just the domain. One can study the complexity of inference in a947

broader framework. First, we may have, as input, the parvariables and parfactors948

and domains and query: we then have the inferential complexity of the language.949

Another possibility is to have, as input, the domains and query (the parvariables and950

parfactors are fixed): we then have the query complexity of the language. Finally951

we may have, as input, just the query (the parvariables, parfactors and domains952

are fixed): we then have the domain complexity of the language. There is now a953

substantial set of results on these notions of complexity, both for languages based954

on first-order logic (Cozman and Mauá 2015; Mauá and Cozman 2016) and for955

probabilistic logic programming (Cozman and Mauá 2017b, c). Besides complexity956

questions, the theory of probabilistic programming has produced serious analysis of957

programming patterns and semantic foundations (Gordon et al. 2014b).958

Lifted inference is not the only genuinely relational aspect of inference for the959

languages we have surveyed. Another important problem is deciding whether a prob-960

abilistic program has global semantics; that is, deciding whether all possible ground-961

ings of a probabilistic program do define a probability distribution (Jaeger 2002).962

Yet another problem is referential uncertainty, where one is uncertain about an asso-963

ciation between individuals in a domain (Getoor et al. 2007). Inference in relational964

probabilistic languages covers a large range of techniques.965

An evenmore bewildering variety of techniques has been developed in connection966

with machine learning for languages discussed in this survey. In fact, most of those967

languages have been proposed already with corresponding learning algorithms. This968

is certainly true for Probabilistic Inductive Logic Programming (De Raedt 2008; De969

Raedt et al. 2010), and indeed for most work on probabilistic logic programming970

(Riguzzi et al. 2014; Sato 1995). Machine learning has also been a central concern971

of probabilistic programming (Goodman et al. 2008; Gordon et al. 2014b), and a972

basic feature of PRMs from their inception (Friedman et al. 1999; Getoor and Taskar973

2007).974

Broadly speaking, there are two distinct problems that learning algorithms try to975

solve: one is parameter learning, where a set of syntactically correct statements is976

given, and the exact probability valuesmust be estimated fromdata; the other problem977

is structure learning, where both the statements and the probability values must978

be extracted from data. Methods based on Inductive Logic Programming typically979

assume that a set of positive and negative examples is available, and the goal is to980

guarantee that positive examples are derived by the learned model, while negative981

examples are not (De Raedt 2008). Statistical methods have different assumptions,982

usually focusing on maximization of some score that depends on the data and the983

model. For parameter learning, the most popular score is the likelihood function;984

for structure learning, it is necessary to penalize the complexity of the statements,985
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and a multitude of scores is available, most of them imported from the literature986

on Bayesian networks (Koller and Friedman 2009). The main difficulty in structure987

learning is the size of the space of possible sets of statements; generally someheuristic988

search is employed (Getoor andTaskar 2007;DeRaedt et al. 2016). The vast literature989

on data mining and machine learning offers many possible techniques to apply, as990

the reader can appreciate by reading the papers cited in this survey.991

9 Conclusion992

This chapter has visited many different languages that aim at probabilistic modeling993

in knowledge representation and machine learning. As noted previously, the focus994

of this survey has been to provide a gentle discussion of syntactic and semantic995

features of existing languages, without too much technical detail; a careful review996

of inference has not been attempted, and the broad topic of learning algorithms has997

been barely scratched. Moreover, we have focused on specification languages with998

an “artificial intelligence motivation”, and avoided languages that address specific999

tasks such as risk analysis or information retrieval. A hopefully satisfactory way to1000

continue the study of languages for probabilistic modeling in artificial intelligence1001

is to consult the list of references for this chapter.1002

It seems fair to say that there is no single language that can serve all purposes; a1003

skilled practitioner cannot hope to use a single language in every application. One1004

can find languages that are narrow and efficient, and languages that are flexible and1005

that resist exact inference. One can find declarative and imperative languages, with1006

both pros and cons of these programming paradigms. And certainly the future will1007

bring an even more diverse zoo of languages. No unified set of Laws of Thought1008

emerges from the current literature.1009
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