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Risks of Semi-Supervised Learning: How
Unlabeled Data Can Degrade Performance
of Generative Classifiers

Empirical and theoretical results have often testified favorably towards the semi-
supervised learning of generative classifiers, as described in other chapters of this
book. However the literature has also brought to light a number of situations where
semi-supervised learning fails to produce good generative classifiers. Here some
clarification is due. We are not simply concerned with classifiers that produce high
classification error — this can also happen in supervised learning. Our concern
is this: it is frequently the case that we would be better off just discarding the
unlabeled data and employing a supervised method, rather than taking a semi-
supervised route. Thus we worry about the embarrassing situation where the
addition of unlabeled data degrades the performance of a classifier.

How can this be? Typically we do not expect to be better off by discarding data;
how can we understand this aspect of semi-supervised learning? In this chapter we
focus on the effect of modeling errors in semi-supervised learning, and show how
modeling errors can lead to performance degradation.

5.1 Do unlabeled data improve or degrade classification performance?

Perhaps it would be reasonable to expect an average improvement in classification
performance for any increase in the number of samples (labeled or unlabeled):
the more data, the better. In fact, existing literature presents empirical findings
that attribute positive value to unlabeled data; other chapters present some of
these results. O’'Neill’s statement that “unclassified observations should certainly
not be discarded” [O’Neill, 1978] seems to be confirmed by theoretical studies,
most notably by Castelli [1994], Castelli and Cover [1995, 1996] and Ratsaby and
Venkatesh [1995].

The gist of these previous theoretical investigations is this. Suppose samples
(x;,y;) are realizations of random variables X, and Y,, that are distributed according
to distribution p(X,, Y, ). Suppose one learns a parametric model p(X,, Y, |6) such
that p(X,, Y,|0) is equal to p(X,,Y,) for some value of § — that is, the “model is
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positive results: correct” in the sense that it can exactly represent p(X,, Y;,).1 Then one is assured
“correct” model to have an expected reduction in classification error as more and more data are
collected (labeled or unlabeled). Moreover, labeled data are exponentially more
effective in reducing classification error than unlabeled data. In these optimistic

results, unlabeled data can be profitably used whenever available.
However, a more detailed analysis of current empirical results does reveal some

examples of puzzling aspects of unlabeled data. For example, Shahshahani and Landgrebe
performance [1994] report experiments where unlabeled data degraded the performance of Naive
degradation Bayes classifiers with Gaussian variables. They attribute such cases to deviations

from modeling assumptions, such as outliers and “samples of unknown classes”
— they even suggest that unlabeled samples should be used with care, and only
when the labeled data alone produce a poor classifier. Another representative
example is the work by Nigam et al. [2000] on text classification, where classifiers
sometimes display performance degradation. They suggest several possible sources
of difficulties: numerical problems in the learning algorithm, mismatches between
the natural clusters in feature space and the actual labels. Additional examples
are easy to find. Baluja [1998] used Naive Bayes and Tree-Augmented Naive Bayes
(TAN) classifiers [Friedman et al., 1997] to detect faces in images, but there were
cases where unlabeled data degraded performance. Bruce [2001] used labeled and
unlabeled data to learn Bayesian network classifiers, from Naive Bayes classifiers
to fully connected networks; the Naive Bayes classifiers displayed bad classification
performance, and in fact the performance degraded as more unlabeled data were
used (more complex networks also displayed performance degradation as unlabeled
samples were added). A final example: Bengio and Grandvalet [2004] describes
experiments where outliers are added to a Gaussian model, causing generative
classifiers to degrade with unlabeled data.

Figure 5.1 shows a number of experiments that corroborate this anecdotal
evidence. All of them involve binary classification with categorical variables; in all of
them X, is actually a vector containing several attributes X,;. In all experiments the
generative classifiers were learned by maximum likelihood using the EM algorithm
(Chapters 2, 4). Figure 5.1.a shows the performance of Naive Bayes classifiers
learned with increasing amounts of unlabeled data (for several fixed amounts of
labeled data), where the data are distributed according to Naive Bayes assumptions.
That is, the data were generated by randomly generated statistical models that
comply with the independence assumptions of Naive Bayes classifiers. In the Naive
Bayes model, all attributes X, are independent of each other given the class Y,:
p(X,,Y,) = p(Yy) [[p(Xyi). The result is simple: the more unlabeled data, the
better. Figure 5.1.b shows an entirely different picture. Here a series of Naive Bayes
classifiers were learned with data distributed according to TAN assumptions: each

1. Note that here and in the remainder of the paper we employ p to denote distributions
and densities (for discrete/continuous variables using appropriate measures); we indicate
the type of object we deal with whenever it is not clear from the context.
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attribute is directly dependent on the class and on at most another attribute — the
attributes form a “tree” of dependencies, hence the name Tree-Augmented Naive
Bayes [Friedman et al., 1997]. That is, in Figure 5.1.b the “model is incorrect.” The
graphs in Figure 5.1.b indicate performance degradation with increasing amounts
of unlabeled data.

Figure 5.1.c depicts a more complex scenario. Again a series of Naive Bayes
classifiers were learned with data distributed according to TAN assumptions, so
the “model is incorrect.” Note that two of the graphs show a trend of decreasing
error (as the number of unlabeled sample increases), while the other graph shows a
trend of increasing error. Here unlabeled data improve performance in the presence
of a few labeled samples, but unlabeled data degrade performance when added to
a larger number of labeled samples. A larger set of experiments with artificial data
is described by Cozman and Cohen [2002].

Figure 5.1.d shows the result of learning Naive Bayes classifiers using different
combinations of labeled and unlabeled datasets for the Adult classification problem
(using the training and testing datasets available in the UCI repository). We see that
adding unlabeled data can improve classification when the labeled data set is small
(30 labeled data), but degrade performance as the labeled data set becomes larger.
Thus the properties of this real dataset lead to behavior similar to Figure 5.1.c.

Finally, Figure 5.1.e and Figure 5.1.f show the result of learning Naive Bayes and
TAN classifiers using Data Set 8 in the benchmark data (Chapter 22). Both show
similar trends as those displayed in previous graphs.

5.2 Understanding unlabeled data: Asymptotic bias

key: asymptotic
bias

We can summarize the previous section as follows. First, there are results that
guarantee benefits from unlabeled data when the learned generative classifier
is based on a “correct” model. Second, there is strong empirical evidence that
unlabeled data may degrade performance of classifiers. Performance degradation
may occur whenever the modeling assumptions adopted for a particular classifier
do not match the characteristics of the distribution generating the data.? This is
troubling because it is usually difficult, if not impossible, to guarantee a priori that
a particular statistical model is a “correct” one.

The key to understand the vagaries of semi-supervised learning is to study
asymptotic bias. In this section we present an intuitive discussion, leaving more
formal analysis to Section 5.3. Our arguments here and in the remainder of this
chapter focus on generative classifiers learned by maximum likelihood methods. As

2. As we show in this and subsequent sections, performance degradation occurs even in
the absence of numerical errors or existence of local optima for parameter estimation.
In fact our presentation is independent of numerical techniques, so that results are not
clouded by the intricacies of numerical analysis.
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Figure 5.1 (a) Naive Bayes classifiers learned from data distributed according to
Naive Bayes assumptions with 10 attributes; attributes with 2 to 4 values. (b) Naive
Bayes classifiers learned from data distributed according to TAN assumptions with
10 attributes. (c) Naive Bayes classifiers learned from data distributed according
to TAN assumptions with 49 attributes. (d) Naive Bayes classifiers generated from
the Adult database. (e) Naive Bayes classifiers generated from the Data Set &,
benchmark data (Chapter 22). (f) TAN classifiers generated from the Data Set 8,
benchmark data (Chapter 22). In all graphs, points summarize 10 runs of each
classifier on testing data (bars cover 30th to 70th percentiles).
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classifying baby’s
gender

most of our arguments are asymptotic, the same rationale will apply to maximum a
posteriori and other Bayesian estimators, as their asymptotic behavior is dominated
by the likelihood function [DeGroot, 1970].

The gist of the argument is as follows. As we formally show in Section 5.3, the
asymptotic bias of the maximum likelihood estimator produced with labeled data
can be different from the asymptotic bias of the maximum likelihood estimator
produced with unlabeled data, for the same classifier. Suppose then that one learns
a classifier with a reasonable amount of labeled data. The resulting classifier may
be relatively close to its asymptotic limit, yielding some classification error. Now
suppose one takes a much larger amount of unlabeled data, and learns the same
classifier with all available data. Now the classifier may be tending to the asymptotic
limit for unlabeled data — and the performance for this limiting classifier may
be worse than the performance for the first “labeled” limiting classifier. The net
result is that by adding a large number of unlabeled samples one produces a worse
classifier.

However puzzling, this situation can be found even in seemingly innocent situa-
tions, and does not require sophisticated modeling errors. We now discuss a simple
example where unlabeled data degrades the performance of a generative classifier;
this (fictitious) example may help the reader grasp the sometimes unexpected effects
of unlabeled data.

Consider the following classification problem. We are interested in predicting a
baby’s gender (G = Boy or G = Girl) at the 20’th week of pregnancy based on two
attributes: whether the mother craved chocolate in the first trimester (Ch = Yes
or Ch = No), and whether the mother’s weight gain was more or less than 15lbs
(W = More or W = Less). Suppose that W and G are independent conditional
on Ch; that is, the direct dependencies in the domain are expressed by the graph
G — Ch — W, leading to the following decomposition of the joint distribution:
P(G,Ch,W) = P(G)P(Ch|G)P(W|Ch). Suppose also that data are distributed
according to:

P(G =Boy) = 0.5,

P(Ch =No|G =Boy) = 0.1,
P(Ch =No|G = Girl) = 0.8,
P(W =Less|Ch =No) = 0.7,
P(W = Less|Ch = Yes) = 0.2.

Note that from the above distribution we can compute the probabilities of W given
G to get:

P(W = Less|G = Boy) = 0.25,
P(W = Less|G = Girl) = 0.6.

To classify the baby’s gender given weight gain and chocolate craving, we compute
the a posteriori probability of G given W and Ch (which, from the independence



14 Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers

stated above, depends only on Ch):

P(G = Girl|Ch =No) = 0.89,
P(G = Boy|Ch =No) = 0.11,
P(G = Girl|Ch = Yes) = 0.18,
P(G = Boy|Ch =Yes) = 0.82.

From the a posteriori probabilities, the optimal classification rule (the Bayes rule,
Bayes rule discussed in the next section) is:

if Ch = No, choose G = Girl; if Ch = Yes, choose G = Boy. (5.1)

The Bayes error rate (that is, the probability of error under the Bayes rule) for this
problem can be easily computed and found to be at about 15%.

Suppose that we incorrectly assume a Naive Bayes model for the problem; that is,
assuming Naive we assume that dependencies are expressed by the graph Ch «— G — W. Thus we
Bayes incorrectly assume that weight gain is independent of chocolate craving given the

gender, thus we incorrectly assume that the factorization of the joint probability
distribution can be written as: P(G,Ch,W) = P(G)P(Ch|G)P(W|G). Suppose
that a friend gave us the “true” values of P(Ch|G), so we do not have to estimate
these quantities. We wish to estimate P(G) and P(W|G) using maximum likelihood
techniques.

In the case where only labeled data are available, estimators are obtained by
relative frequencies, with zero bias and variance inversely proportional to the
size of the database. Thus even a relatively small database will produce excellent
estimates of probability values. The estimate for P(G) will most likely be close to
0.5; likewise, estimates of P(W = Less|G = Girl) will be close to 0.6 and estimates
of P(W = Less|G = Boy) will be close to 0.25. With these estimated parameters
and the assumed decomposition of the joint probability distribution, the a posteriori
probabilities for G will likely be close to:

P(G = Girl|Ch, W) | P(G = Boy|Ch, W)

Ch = No, W = Less 0.95 0.05,

Ch = No, W = More 0.81 0.19,

Ch = Yes, W = Less 0.35 0.65,

Ch = Yes, W = More 0.11 0.89.
Suppose we take these estimates and classify incoming observations using the
the “labeled” maximum a posteriori value of G. Even though the bias from the “true” a-posteriori
classifier probabilities is not zero, this will produce the same optimal Bayes rule (5.1); that

is, the “labeled” classifier is likely to yield the minimum classification error.

Now suppose that unlabeled data are available. As more and more unlabeled
samples are collected, the ratio between the number of labeled samples and the
total number of samples goes to zero. In Section 5.3 we show how to compute the
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the “unlabeled”

classifier

asymptotic estimates in this case. The computation, which is performed in closed
form for this case, yields the following asymptotic estimates: P(G = Boy) = 0.5,
P(W = Less|G = Girl) = 0.78, P(W = Less|G = Boy) = 0.07. The a posteriori
probabilities for G will therefore tend to:

P(G = Girl|Ch, W) | P(G = Boy|Ch, W)
Ch = No, W = Less 0.99 0.01,
Ch = No, W = More 0.55 0.45,
Ch = Yes, W = Less 0.71 0.29,
Ch = Yes, W = More 0.05 0.95.

Classification using the maximum a posteriori value of G yields:

if {Ch = No, W = Less}, choose G = Girl;

if {C'h = No, W = More}, choose G = Girl;
if {Ch = Yes, W = Less}, choose G = Girl;
if {Ch = Yes, W = More}, choose G = Boy.

Here we see that the prediction has changed from the optimal in the case {Ch =
Yes, W = Less}; instead of predicting {G = Boy}, we predict {G = Girl}. We can
easily find the expected error rate to be at 22%, an increase of 7% in error.

What happened? The labeled data take us to a particular asymptotic limit, and
the unlabeled data take us to a distinct limit. In Section 5.3 we will see that this
transition is smooth as unlabeled samples are collected. Because the latter limit is
worse (from the point of view of classification) than the former, the gradual addition
of unlabeled degrades performance.

Consider again Figure 5.1.a. The graphs there illustrate the situation where
the “model is correct”: labeled and unlabeled data lead to identical asymptotic
estimates. The other graphs in Figure 5.1 illustrate situations where the “model is
incorrect”. In these cases the asymptotic estimates tend to the “unlabeled” classifier
as more and more unlabeled data are available — depending on the amount of
labeled data, the graphs start above or below this “unlabeled” limit.

5.3 The asymptotic analysis of generative semi-supervised learning

We start by collecting a few assumptions in this section, at the cost of repeating
definitions already stated in previous chapters. The goal here is to classify a vector
of attributes X,,. Each instantiation z of X, is a sample. There exists a class variable
Y, that takes values in a set of labels. To simplify the discussion, we assume that
Y, is a binary variable with values —1 and +1. We assume 0-1 loss, hence our
objective is to minimize the probability of classification errors. If we knew exactly
the joint distribution p(X,,Y,), the optimal rule would be to select the label with
highest posterior probability; this is the Bayes rule, and it produces the smallest
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classification error, referred to as the Bayes error [Devroye et al., 1996]. A classifier
is learned using n independent samples in a database; there are [ labeled samples
and u labeled samples (n = [ + u), and without loss of generality we assume that
the samples are ordered with labeled ones coming first. We assume that a sample
has probability (1 — A) of having its label hidden (the same distribution p(X,|Y,)
generates the labeled and the unlabeled samples).

Consider that a generative model is adopted as a representation for the joint
parametric model  distribution p(X,,Y,). Suppose that a parametric representation p(X,, Y,|6) with
and assumptions  parameters 6 is employed, and a database containing training samples is available

to produce estimates 6. All samples x; are collected in a database denoted by X,
and all samples y; are collected in a database denoted by Y. We consider “plug-in”
classification: compute the optimal rule pretending that p(Y,|X,, é) is the correct
posterior density of Y.

Throughout the chapter we denote the distributions/densities generating the
data by p(-) and the statistical models that are employed to learn the distribution
by p(:|6). Several smoothness and measurability assumptions on these distribu-
tions/densities are necessary to proceed with asymptotic analysis and are adopted
throghout.3

Two principles often used to generate estimates are maximum likelihood and
mazimization of posterior loss [DeGroot, 1970]; the computation of estimates using
these principles generally requires iterative methods, the most popular of which is
the EM algorithm [Dempster et al., 1977]. Generative models are well suited for
semi-supervised learning by maximum likelihood, because the likelihood is directly
affected by unlabeled data — as opposed to discriminative models, where the
associated likelihood is not affected by unlabeled data [Zhang and Oles, 2000].

likelihood We take that estimates 6 are produced by maximizing the likelihood L) =
Hézlp(:ci,yi\e) H;L:l+1p(:1:j|9). When a sample is unlabeled, its likelihood can be
written as a mixture p(X,|Y, = +1,0)p(Y, = +110) + p(X,|Y, = —1,0)p(Y, =
—1]0); we assume that such mixtures are identifiable [Redner and Walker, 1984].

We use the following known result [Berk, 1966, Huber, 1967, White, 1982]. Con-
sider a parametric model p(Z|¢) and a sequence of maximum likelihood estimates
0,,, obtained by maximization of Yo, logp(2i]6), with an increasing number n of in-
dependent samples z;, all identically distributed according to p(Z). Then 0,, — 0% as
n — oc for # in an open neighborhood of §*, where 6* maximizes E, 2 [log p(Z|0)].
If #* is interior to the parameter space, then estimates are asymptotically Gaussian.

central result Extending the result above to semi-supervised learning we have:

3. Distributions must be defined on measurable Euclidean spaces, with measurable Radon-
Nikodym densities. The dependence of p(Xy, Y»|0) on @ must be continuous so that second
derivatives exist (and first derivatives must be measurable). Likelihoods, their derivatives
and second derivatives must be dominated by integrable functions. Finally, expected values
Ey(z) [log p(Z]0)] must exist for Z equal to X, Y, and (X,,Y,). These conditions are listed
in detail by Cozman et al. [2003a].
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Theorem 5.1 The limiting value 8* of maximum likelihood estimates is:
arg max (AEp(x,.,v,) 10g p(X0, Yo |0)] + (1 — NEyx,.v,) log p(X010)]) . (5.2)

Proof. In semi-supervised learning, the samples are realizations of (X,,Y,) with
probability A, and of X, with probability (1 — ). Denote by Y, a random variable
that assumes the same values of Y, plus the “unlabeled” value 0. We have p(ffv #*
0) = . The actually observed samples are realizations of (X,,Y,), thus

(X0, Yy =) = Wp(X,, Yy = ) 0020 @) (1 = N)p(X,)) [ 17o=0r @)

where p(X,) is a mixture density. Accordingly, the parametric model adopted for
(Xy,Yy) has the same form:

B(Xo, Vo = 4]0) = (Ap(X,, Yo = y]0)) 70201 @) (1 = N)p(X,[0)) Fo=0r W),

The value 6" that maximizes Ej v 3. [log;ﬁ(Xv, Y,|0)| is

argmax By, 7, [117,40) () (08 Ap(Xo, Y,10)) + Ly, _oy (Vo) (log(1 = Mp(X,[0))]
Hence 0* maximizes
B+Eyx, 72 [Tt oy (Vo) 108 DX, Yol + By, 5, [Tgw, -y (Vo) log p(X.16)]

where 8 = Alog A+ (1—X) log(1— ). As (3 does not depend on 6, we must only max-
imize the last two terms, which are equal to AE; x 3 [logp(Xv, Y,|0)|Y, # O] +
(lfA)Eﬁ(Xq,,?v) []ng(Xvw)D}L = O:| . As we have ﬁ(Xva ﬁ)DN/v 7é 0) = p(Xva Yv) and
p(X,|Y, = 0) = p(X,), the last expression is equal to AE,(x,.v,) [log p(X., Y, |0)] +
(1 = MNEpx,.v,) log p(X,]0)]. Thus we obtain Expression (5.2). m

Results by White [1982] can also be adapted to the context of semi-supervised
learning to prove that generally the variance of estimates decreases with increasing
n. The asymptotic variance depends on the inverse of the Fisher information; the
Fisher information is typically larger for larger proportions of labeled data [Castelli,
1994], [Castelli and Cover, 1995, 1996].

Expression (5.2) indicates that the objective function in semi-supervised learn-

semi-supervised ing can be viewed asymptotically as a “convex” combination of objective func-
learning as tions for supervised learning (E [log p(X,,Y,|0)]) and for unsupervised learning
“convex” (E [logp(Xy|6)]). Denote by 05 the value of 6 that maximizes Expression (5.2) for
combination a given A. Denote by 6 the “labeled” limit 6] and by §; the “unlabeled” limit

05 4 We note that, with a few additional assumptions on the modeling densities,
Theorem 5.1 and the implicit function theorem can be used to prove that 03 is

4. We have to handle a difficulty with the classification error for 6;;: given only unlabeled
data, there is no information to decide the labels for decision regions, and the classification
error is 1/2 [Castelli, 1994]. Thus we always reason with A — 0 instead of A = 0.
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a continuous function of A — that is, the “path” followed by the solution is a
continuous one.
We can now present more formal versions of the arguments sketched in Sec-
model is correct tion 5.2. Suppose first that the family of distributions p(X,, Y, |0) contains the dis-
tribution p(X,, Y, ); that is, p(X,, Y, |07) = p(X,,Y,) for some 61, so the “model is
correct.” When such a condition is satisfied, 8] = 0 = 6+ given identifiability, and
then 65 = 0, for any 0 < A < 1, is a maximum likelihood estimate. In this case,
maximum likelihood is consistent, the asymptotic bias is zero, and classification
error converges to the Bayes error. As variance decreases with increasing numbers
of labeled and unlabeled data, the addition of both kinds of data eventually reaches
the “correct” distribution and the Bayes error.
We now study the scenario that is more relevant to our purposes, where the
distribution p(X,,Y,) does not belong to the family of distributions p(X,, Y;|6).
model is incorrect Denote by e(6) the classification error with parameter 6, and suppose e(8;) > e(6;)
(as in the Boy-Girl example and in the other examples presented later). If we observe
a large number of labeled samples, the classification error is approximately e(6;). If
we then collect more samples, most of which unlabeled, we eventually reach a point
where the classification error approaches e(6;). So, the net result is that we started
with classification error close to e(6}), and by adding a great number of unlabeled
samples, classification performance degraded towards e(6}). A labeled dataset can
be dwarfed by a much larger unlabeled dataset: the classification error using the
whole dataset can be larger than the classification error using only labeled data.
summary To summarize, we have the following conclusions. First, labeled and unlabeled
data contribute to a reduction in variance in semi-supervised learning under maxi-
mum likelihood estimation. Second, when the model is “correct,” maximum likeli-
hood methods are asymptotically unbiased both with labeled and unlabeled data.
Third, when the model is “incorrect,” there may be different asymptotic biases
for different values of A\. Asymptotic classification error may also vary with A —
an increase in the number of unlabeled samples may lead to a larger estimation
asymptotic bias and to a larger classification error. If the performance obtained
with a given set of labeled data is better than the performance with infinitely many
unlabeled samples, then at some point the addition of unlabeled data must decrease
performance.

5.4 The value of labeled and unlabeled data

The previous discussion alluded to the possibility that e(6}) > e(8;) when the model
is “incorrect.” To understand a few important details about this phenomenon,
consider another example.

Gaussian Suppose we have attributes X,; and X,2 from two classes —1 and +1. We know
example that (X,1, Xy2) is a Gaussian vector with mean (0,3/2) conditional on {Y, = —1},
and mean (3/2,0) conditional on {Y, = +1}; variances for X,; and for X,

conditional on Y, are equal to 1. We believe that X,; and X,2 are independent
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the “labeled”
classifier

the best linear
classifier

the “unlabeled”
classifier

given Y, but actually X,; and X, are dependent conditional on {Y, = +1}:
the correlation p = E [(X,1 — E [X1|Y, = +1])(Xp2 — E [X2|Y, = +1])|Y, = +1]
is equal to 4/5 (X, and X,o are independent conditional on {Y, = —1}). Data
are sampled from a distribution such that n = P(Y, = —1) = 3/5, but we do not
know this probability. If we knew the value of p and 7, we would easily compute the
optimal classification boundary on the plane X,; x X2 (this optimal classification
boundary is quadratic). By mistakenly assuming that p is zero we are generating a
Naive-Bayes classifier that approximates P(Yy| X1, Xy2)-

Under the incorrect assumption that p = 0, the “optimal” classification boundary
is linear: z,2 = z,1 + 2log((1 — 7)/7)/3. With labeled data we can easily obtain
7 (a sequence of Bernoulli trials); then n = 3/5 and the classification boundary
is given by x,2 = x,1 — 0.27031. Note that this (linear) boundary obtained with
labeled data and the generative Naive Bayes classifier assumption is not the best
possible linear boundary minimizing the classification error. We can in fact find the
best possible linear boundary of the form z,, = x,1 + 7. The classification error
can be written as a function of v that has positive second derivative; consequently
the function has a single minimum that can be found numerically (the minimizing
v is —0.45786). If we consider the set of lines of the form z,2 = x4,1 4+, we see that
the farther we go from the best line, the larger the classification error. Figure 5.2
shows the linear boundary obtained with labeled data and the best possible linear
boundary. The boundary from labeled data is “above” the best linear boundary.

Now consider the computation of 7;, the asymptotic estimate with unlabeled
data. By Theorem 5.1, we must obtain:

o0 o0
arg maX}/ / 90(Zo1, To2) log(ng1 (Tu1, Toz) + (1 =) g3(@v1, Tv2) ) dTpada,,

nelo,1
where
go(To1,Te2) = (3/5)g1(xv1, Tu2) + (2/5)92(T01, To2),
g1 (Ivlava) - N([Oag/Z]Tadlag[la 1])7
B T 1 4/5
92(xv17xv2) - N<[3/250] ) [ 4/5 1 ]) 9
g3(ze1,02) = N([3/2,0]T, diag[1,1]).

The second derivative of this double integral is always negative (as can be seen by
interchanging differentiation with integration), so the function is concave and there
is a single maximum. We can search for the zero of the derivative of the double
integral with respect to 7. We obtain this value numerically, 1) = 0.54495. Using
this estimate, the linear boundary from unlabeled data is x,2 = x,; — 0.12019.
This line is “above” the linear boundary from labeled data, and, given the previous
discussion, leads to a larger classification error than the boundary from labeled
data. The boundary obtained from unlabeled data is also shown in Figure 5.2. The
classification error for the best linear boundary is 0.06975, while e(n;") = 0.07356
and e(n}) = 0.08141.
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Figure 5.2 Graphs for the Gaussian example. On the left, contour plots of the
mixture p(Xy1, Xv2), the optimal classification boundary (quadratic curve) and the
best possible classification boundary of the form x,2> = z,1 +~. On the right, the
same contour plots, and the best linear boundary (lower line), the linear boundary
obtained from labeled data (middle line) and the linear boundary obtained from
unlabeled data (upper line).

This example suggests the following situation. Suppose we collect a large number

[ of labeled samples from P(Y,, Xy1, Xy2), with n = 3/5 and p = 4/5. The labeled
estimates form a sequence of Bernoulli trials with probability 3/5, so the estimates
quickly approach 1} (the variance of 7} decreases as 6/(250)). If we then add a very
large amount of unlabeled data to our data, 7) approaches 7 and the classification
error increases.

changing n and p By changing the values of 77 and p, we can produce other interesting situations. For
example, if n = 3/5 and p = —4/5, the best linear boundary is 2,2 = z,,; — 0.37199,
the boundary from labeled data is x,2 = x,1 — 0.27031, and the boundary from
unlabeled data is x,2 = x,1 — 0.34532; the latter boundary is “between” the other
two — additional unlabeled data lead to improvement in classification performance!
As another example, if n = 3/5 and p = —1/5, the best linear boundary is
Ty = Ty1 — 0.29044, the boundary from labeled data is z,o = x,;7 — 0.27031,
and the boundary from unlabeled data is z,0 = x,7 — 0.29371. The best linear
boundary is “between” the other two. In this case we attain the best possible linear
boundary by mixing labeled and unlabeled data with A = 0.08075.

We have so far found that taking larger and larger amounts of unlabeled data

changes not only the variance of estimates but also their average behavior. The
Gaussian example shows that we cannot always expect labeled data to produce a
better classifier than the unlabeled data. Still, one would intuitively expect labeled
data to provide more guidance to a learning procedure than unlabeled data. Is there
anything that can be said about the (intuitively plausible and empirically visible)
more valuable status of labeled data?

“labeled” limit One informal argument is this. Suppose we have an estimate 0. Tt is typically the

better than the case that the smaller the value of the expected Kullback- Leibler divergence between

“unlabeled” one?
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p(Yy|Xo) and p(Yy| Xy, 0), the smaller the classification error, where the Kullback-
Leibler divergence is EKL(f) = E [log(p(Y,|X,)/p(Ys]X,,0)] [Garg and Roth,
2001, Cover and Thomas, 1991]. Direct minimization of expected Kullback-Leibler
divergence yields EK L(0;) where 0] = arg maxy E [log p(Y,|X,, )]. Now unlabeled
data asymptotically yields EK L(6%) where 6% = arg maxy E [log p(X,|0)], and la-
beled data asymptotically yields EK L(6}) where 6] = argmaxg E [log p(Y,| Xy, 0)]+
E [logp(X,|0)]. Note the following pattern. We are interested in minimizing
E [log p(Y,|X,,0)]. While labeled data allows us to minimize a combination of
this quantity plus E [logp(X,|0)], unlabeled data only allows us to minimize
E [log p(X,|0)]. When the “model is incorrect,” this last quantity may in fact
be far from the “true” E [logp(X,)], and we may be getting less help from unla-
beled data than we might get from labeled data. This informal argument seems to
be at the core of the perception that labeled data should be more valuable than
unlabeled data when “model is incorrect.” The analysis presented in this chapter
adds to this perception the following comment: by trying to (asymptotically) min-
imize an expected value E [log p(X,)|f] that may even be unrelated to the “true”
E [log p(X,)], we may in fact be led astray by the unlabeled data.

5.5 Finite sample effects

many attributes

text classification

Asymptotic analysis can provide insight into complex phenomena, but finite sample
effects are also important. In practice one may have very little labeled data, and the
estimates 6 from labeled data may be so poor that the addition of unlabeled data is
a positive move. This can be explained as follows. A small number of labeled samples
may lead to estimators with high variance, thus likely to yield high classification
error [Friedman, 1997]. In those circumstances the inclusion of unlabeled data may
lead to a substantial decrease in variance and a decrease in classification error, even
as the bias is negatively affected by the unlabeled data.

In general, the more parameters one has to estimate, the larger the variance of
estimators for the same amount of data. If we have a classifier with a large number
of attributes and we have only a few labeled samples, the variance of estimators is
likely to be large, and classification performance is likely to be poor — the addition
of unlabeled data is then a reasonable action to take. Consider again Figure 5.1.c.
Here we have a Naive Bayes classifier with 49 attributes. If we have a relatively
large amount of labeled data, we start close to the “labeled” limit e(6;), and then
we observe performance degradation as we move towards e(6). However, if we
have few labeled samples, we start with very poor performance, and we decrease
classification error by moving towards e(6).

We note that text classification is an important problem where many attributes
are often available (often thousands of attributes), and where generative semi-
supervised learning has been successful [Nigam et al., 2000].
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5.6 Model search and robustness

In semi-supervised learning we must always consider the possibility that a more
accurate statistical model will lead to significant gains from unlabeled data. That
is, we should look for the “correct” model whenever possible. In fact, the literature

looking for has described situations where a fixed-structure classifier, like the Naive Bayes,

correct models performs poorly, while model search schemes can lead to excellent classifiers [Bruce,
2001, Cohen et al., 2003, 2004]. In particular, Cohen et al. [2004] discuss and
compare different model search strategies with labeled and unlabeled data for
Bayesian network classifiers. Results show that TAN classifiers, learned with the
EM algorithm [Meila, 1999], can sometimes improve classification and eliminate
performance degradation with unlabeled data compared to the simpler Naive Bayes.
In contrast, structure learning algorithms that maximize the likelihood of class and
attributes, such as those proposed by Friedman [1998] and van Allen and Greiner
[2000], are not likely to find structures yielding good classifiers in a semi-supervised
manner, because of their focus on fitting the joint distribution rather than the
a posteriori distribution (as also argued by Friedman et al. [1997] for the purely
supervised case). The class of independence-based methods for structure learning,
also known as constraint-based or test-based methods, is another alternative for
attempting to learn the correct model. However, these methods do not easily adapt
to use unlabeled data. Such a modification of algorithms by Cheng et al. [1997]
is presented in Cohen et al. [2004], showing either none or marginal improvement
compared to the EM version of TAN, while requiring much greater computational
complexity. A third alternative is to perform structure search, attempting to
maximize classification accuracy directly. Cohen et al. [2004] proposed to use
a stochastic structure search algorithm (Markov chain Monte Carlo), accepting
or rejecting models based on their classification accuracy (estimated using the
labeled training data), while learning the parameters of each model using maximum
likelihood estimation with both labeled and unlabeled data. This strategy yielded
very good results for datasets with moderate number of labeled samples (and much
larger number of unlabeled samples), but did not work well for datsets with very
small number of labeled samples, because of its dependence on estimation of the
classification error during the search.

Given the results in this chapter, unlabeled data can also be useful in testing
modeling assumptions. If the addition of unlabeled data to an existing pool of
labeled data degrades performance, then there is clear indication that modeling

detecting assumptions are incorrect. In fact one can test whether differences in performance

incorrect models are statistically significant, using results by O’Neill [1978]; once one finds that a
particular set of modeling assumptions is flawed, a healthy process of model revision
may be started. In fact, one might argue that model search/revision should always
be an important component in the toolset of semi-supervised learning [Cozman
et al., 2003b].
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5.7 Conclusion

Given the possibility of performance degradation, it seems that some care must be
taken in generative semi-supervised learning. Statements that are intuitively and
provably true when models are “correct” may fail (sometimes miserably!) when
models are “incorrect.” Apparently mild modeling errors may cause unlabeled data
to degrade performance, even in the absence of numerical errors, and even in sit-
uations where more labeled data would be beneficial. Examples of performance
degradation from outliers and other common modeling errors can be easily con-
cocted [Cozman et al., 2003a].

In the absence of modeling errors, labeled data differ from unlabeled data only
on the “information they carry about the decisions associated with the decision
regions” [Castelli and Cover, 1995]. However as we consider the possibility of
modeling errors, labeled data and unlabeled data also differ in the biases they induce
on estimates. The analysis in Sections 5.2, 5.3, and 5.4 focused on asymptotic bias,
a strategy that avoids distractions from finite sample effects and numerical errors.
However we note that finite sample effects may be important in practice, as we
discuss in Section 5.5.

At this point is is perhaps useful to add a few comments of methodological

methodology character. Given a pool of labeled and unlabeled data, generative semi-supervised
learning is an attractive strategy. However one should always start by learning a
supervised classifier with the labeled data. This “baseline” classifier can then be
compared to other semi-supervised classifiers through cross-validation or similar
techniques. Whenever modeling assumptions seem inaccurate, unlabeled data can
be used to test modeling assumptions. If time and resources are available, model
search should be conducted, attempting to reach a “correct” model — that is,
a model where unlabeled data will be truly beneficial. Techniques discussed in
Section 5.6 can be employed in this setting. An additional step is to compare the
baseline classifier to non-generative methods. There are many semi-supervised non-
generative classifiers, as discussed in other chapters of this book. There is also a
significant number of methods that use labeled and unlabeled data for different
purposes — for example, methods where the unlabeled data are used only to
conduct dimensionality reduction (Chapter 12). However we should warn that a few
empirical results in the literature suggest the possibility of performance degradation
in non-generative semi-supervised learning paradigms, such as transductive SVM
[Zhang and Oles, 2000] and co-training [Ghani, 2002].
A final methodological comment concerns active learning — that is, the option of
active learning labeling selected samples among the unlabeled data. This option should be seriously
considered whenever possible. It may be that the most profitable use of unlabeled
data in a particular problem is exactly as a pool of samples from which some
samples can be carefully selected and labeled. In general, we should take the value
of a labeled sample to be considerably higher than the value of an unlabeled sample.



