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Abstract

This paper examines definitions of independence for events and variables in the context
of full conditional measures; that is, when conditional probability is a primitive notion and
conditioning is allowed on null events. Independence concepts are evaluated with respect to
graphoid properties; we show that properties of weak union, contraction and intersection may
fail when null events are present.
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1 Introduction

In this paper we wish to consider independence concepts associated with full conditional measures
[23]. That is, we wish to allow conditioning to be a primitive notion, defined even on null events
(events of zero probability). The advantages of a probability theory that takes conditioning as a
primitive have been explored by many authors, such as de Finetti [20] and his followers [10, 16],
Rényi [46], Krauss [37] and Dubins [23]. A significant number of philosophers have argued for
serious consideration of null events [1, 29, 38, 40, 44, 48, 49, 50, 51], as have economists and
game theorists [7, 8, 31, 32, 33, 41]. Null events, or closely related concepts, have also appeared
repeatedly in the literature on artificial intelligence: ranking and ordinal measures [17, 28, 49, 59]
have direct interpretations as “layers” of full conditional measures [10, 26, 42]; some of the most
general principles of default reasoning can be interpreted through various types of lexicographic
probabilities [5, 6, 25, 43, 36]; and as a final example, the combination of probabilities and logical
constraints in expert systems must often deal with zero probabilities [2, 9, 10, 21].

The goal of this paper is to compare concepts of independence for events and variables in
the context of full conditional measures. Our strategy is to evaluate concepts of independence by
the graphoid properties they satisfy (Section 3 reviews the theory of graphoids). This strategy
is motivated by two observations. First, the graphoid properties have been often advocated as a
compact set of properties that any concept of independence should satisfy. Even though some of
the graphoid properties may have more limited scope than others, they offer a good starting point
for discussions of independence. Second, the graphoid properties are useful in proving results
about conditional probabilities, graphs, lattices, and other models [19]. In Sections 4 and 5 we



analyze existing and new concepts of independence. We show that several key graphoid properties
can fail due to null events.

2 Full Conditional Measures

In this paper, in order to avoid controversies about countable additivity for probability, we restrict
ourselves to finite state spaces: 2 = {w1,...,wn}; any subset of {2 is an event. We use A, B, C
to denote events and W, X, Y, Z to denote (sets of) random variables; by A(X), B(Y), C(X)
and D(Y') we denote events defined either by X or by Y. Events such as {X = z} N {Y #
y} N{Z = z} are denoted simply as {X = z,Y #yZ = z}.

A probability measure is a set function P : 2 — R such that P(Q) = 1, P(A) > 0 for
all A, and P(AUB) = P(A) + P(B) for disjoint A and B. Given a probability measure, the
probability of A conditional on B is usually defined to be P(AN B) /P(B) when P(B) > 0;
conditional probability is not defined if B is a null event. Stochastic independence of events
A and B requires that P(AN B) = P(A) P(B); or equivalently that P(A|B) = P(A) when
P(B) > 0. Conditional stochastic independence of events A and B given event C requires
that P(AN B|C) = P(A|C) P(B|C) if C is non-null. These concepts of independence can be
extended to sets of events and to random variables by requiring more complex factorizations [22].

A different theory of probability ensues if we take conditional probability as a truly primitive
concept, as already advocated by Keynes [35] and de Finetti [20]. The first question is the domain
of probabilistic assessments. Rényi [46] investigates the general case where P : B x C — R,
where B is a Boolean algebra and C is an arbitrary subset of 3 (Rényi also requires o-additivity).
Popper considers a similar set up [44]. Here we focus on P : B x (B\(0) — R, where B is again a
Boolean algebra [37], such that for every event C' # ():

(1) P(C|C) = 1;

(2) P(A|C) > 0 for all A;

(3) P(AU B|C) = P(A|C) + P(B|C) for all disjoint A and B;

(4) P(AN B|C) = P(A|BNC) P(B|C) for all A and B such that BN C # ().

This fourth axiom is often stated as P(A|C') = P(A|B) P(B|C) when A C B C C' and B # ()
[4]. We refer to such a P as a full conditional measure, following Dubins [23]; there are other
names in the literature, such as conditional probability measure [37)] and complete conditional
probability system [41]. Whenever the conditioning event C' is equal to {2, we suppress it and
write the “unconditional” probability P(A) instead of P(A|Q).

Full conditional measures place no restrictions on conditioning on null events. If B is
null, the constraint P(AN B) = P(A|B) P(B) is trivially true, and P(A|B) must be defined
separately from P(B) and P(A N B). For any two events A and B, indicate by A > B the
fact that P(B|AU B) = 0. Then we can partition (2 into events Ly, ..., Lx, where K < N,
such that L; > L;y; fori € {0,..., K — 1} if K > 0. Each event L; is a “layer” of P, and
the decomposition in layers always exists for any finite algebra. Coletti and Scozzafava’s denote
by o(A) the index 7 of the first layer L; such that P(A|L;) > 0; they propose the convention
o(()) = oo [10]. They also refer to o(A) as the zero-layer of A; here we will use the term layer
level of A for the same purpose. Note that some authors use a different terminology, where the ith
“layer” is UJKZZ-LJ- rather than L; [10, 37].
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Table 1: A simple full conditional measure (e, 3 € (0,1)) where P(A) = 0 and P(B|A) =

Coletti and Scozzafava also define the conditional layer number o( A|B) as o(A N B)—o(B)
(defined only if o(B) is finite).

Any full conditional measure can be represented as a sequence of strictly positive probabil-
ity measures Fj, ..., Px, where the support of P; is restricted to L;; that is, P; : 2Li — R. This
result is proved assuming complete assessments in general spaces (not just finite) by Krauss [37]
and Dubins [23], and it has been derived for partial assessments by Coletti [12, 10].

We have, for events A, B:

e P(B|A) = P(BJAN Lya)) [4, Lemma 2.1a].
o(AU B) =min(o(A),o(B)).
e Either o(A) = 0 or o(A°) = 0.

The following simple result will be useful later.

Lemma 1 Consider two random variables X andY, event A(X) defined by X and event B(Y)
defined by Y such that AX)NB(Y)#0. If P(Y =y{X =z}NB(Y)) = P(Y =y|B(Y))
for every x € A(X) such that {X = z} N B(Y) # 0, then P(Y = y|A(X)NB(Y)) =
PY =y|B(Y)).
Proof. We have (all summations run over {z € A(X) : 2N B(Y) # 0}):
P(Y = ylA(X) N B(Y)) Y P(X =Y =ylAX) N B(Y))
= Y PY =y{X =2} nAX)NB(Y)) x
P(X =z|A(X)NB(Y))
= ZP Y =y{X =2}nBY))P(X =z|AX)NnB(Y))
— STP(Y = y|B(Y)) P(X = 2|A(X) N B(Y)
— P(Y = y|B(Y)) Y P(X = 2|A(X) N B(Y)
= P(Y =y[B(Y)).0
The following notation will be useful. If A is such that o(A) = i and P(A|L;) = p, we
write |p],. If o(A) = 0 and P(A) = p, we simply write p instead of [p],. Table 1 illustrates this
notation.
There are several decision theoretic derivations of full conditional measures. The original
arguments of de Finetti concerning called-off gambles [20] have been formalized in several ways
[34, 45, 57, 58]. Derivations based on axioms on preferences have also been presented, both by

Myerson [41] and by Blume et al [7]. The last derivation is particularly interesting as it is based
on non-Archimedean preferences and lexicographic preferences.

)
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3 Graphoids

If we read (X 1LY | Z) as “variable X is stochastically independent of variable Y given variable
Z,” then the following properties are true:

Symmetry: (X 1LY |Z)= (Y 1L X|Z)

Decomposition: (X I (W,Y)|Z)= (X 1Y |Z)

Weak union: (X UL (W, Y)|Z)= (X LW |(Y,Z))

Contraction: (X LY |Z) & (XLWI[(Y,2)) = (XLW,Y)|Z)

Instead of interpreting L as stochastic independence, we could take this relation to indicate an
abstract concept of independence. The properties just outlined are then referred to as the graphoid
properties, and any three-place relation that satisfies these properties is called a graphoid. Note
that we are following terminology proposed by Geiger et al’s [27]; the term “graphoid” often
means slightly different concepts [18, 42]. In fact, often the four properties just listed are called
semi-graphoid properties, and the term “graphoid” is reserved to a relation that satisfies the semi-
graphoid properties plus:

Intersection: (X LW |[(Y,Z2)) & (X LY |(W,2)) = (XL (W,Y)|2)

As the intersection property can already fail for stochastic independence in the presence of null
events [14], it is less important than the other properties in the context of the present paper. But the
intersection property is important for understanding Basu’s First Theorem of statistical inference,
as shown by San Martin et al [47].

Finally, the following property is sometimes presented together with the previous ones [42]:

Redundancy: (X 1LY |X)

If we interpret W, X, Y and Z as sets of variables, redundancy implies that any property that is
valid for disjoint sets of variables is also valid in general — because given symmetry, redundancy,
decomposition and contraction, (X 1L Y| Z) < (X\Z LY\ Z|Z) as noted by Pearl [42].

Graphoids offer a compact and intuitive abstraction of independence. As an example of
application, several key results in the theory of Bayesian networks can be proved just using the
graphoid properties, and are consequently valid for many possible generalizations of Bayesian
networks [27]. Several authors have employed the graphoid properties as a benchmark to evaluate
concepts of independence [3, 55, 52]; we follow the same strategy in this paper.

4 Epistemic and coherent irrelevance and independence

Because conditional probabilities are defined even on null events, we might consider a concise
definition of independence: events A and B are independent iff P(A|B) = P(A). However,
this definition is not entirely satisfactory because it guarantees neither P(A|B¢) = P(A) nor
P(B|A) = P(B) (failure of symmetry can be observed in Table 1). In this section we study
the graphoid properties of three concepts of irrelevance/independence that attempt to correct these
deficiencies. We collect results on epistemic and strong coherent irrelevance/independence, and
then we explore the new concepts of weak coherent irrelevance/independence.
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4.1 Epistemic irrelevance/independence

Keynes faced the problem of non-symmetric independence, in his theory of probability, by defin-
ing first a concept of irrelevance and then “symmetrizing” it [35]: B is irrelevant to A iff P(A|B) =
P(A); A and B are independent iff A is irrelevant to B and B is irrelevant to A. Walley
strenghtened Keynes’ definitions in his theory of imprecise probabilities: B is irrelevant to A
iff P(A|B) = P(A|B¢) = P(A); independence is the symmetrized concept [56].! Note that
Crisma has further strenghtened Walley’s definitions by requiring logical independence [16] (we
later discuss logical independence in more detail).
We follow Walley in using epistemic irrelevance of B to A to mean

P(AIB)=P(A) if B£0  and  P(A|B°) = P(A) if B 0. (1

Epistemic independence refers to the symmetrized concept. Clearly epistemic irrelevance/independence
can be extended to sets of events, random variables, and to concepts of conditional irrelevance/independence
[56]. We wish to focus on:

Definition 1 Random variables X are epistemically irrelevant to random variables Y conditional
on random variables Z (denoted by (X ERY | Z))if P(Y = y{X =2,Z =2}) = P(Y =y|Z = 2)
for all values x, y, z whenever these probabilities are defined.

Epistemice independence, denoted using similar triplets with the symbol EIN, is the sym-
metrized concept.

We now consider the relationship between these concepts and the graphoid properties. Be-
cause irrelevance is not symmetric, there are several possible versions of the properties that might
be of interest. For example, two different versions of weak union are (X R (W)Y) | Z) =
(XerW | (Y,Z))and (W, Y)ERX | Z) = (WERX | (Y, Z)), and there are two additional
possible versions. Decomposition also has four versions, while contraction and intersection have
eight versions each. We single out two versions for each property, which we call the direct and the
reverse versions. The direct version is obtained by writing the property as initially stated in Sec-
tion 3, just replacing L by EIR. The reverse version is obtained by switching every statement of
irrelevance. Thus we have given respectively the direct and reverse versions of weak union in this
paragraph (similar distinctions have appeared in the literature for various concepts of irrelevance
[15, 24, 39, 52, 55]).

The following proposition relates epistemic irrelevance/independence with the graphoid
properties (several results in the proposition can be extracted from Vantaggi’s results [52]).

Proposition 1 Epistemic irrelevance satisfies the graphoid properties of direct and reverse redun-
dancy, direct and reverse decomposition, reverse weak union, and direct and reverse contraction.
If W and'Y are logically independent, then epistemic irrelevance satisfies reverse intersection. All
other versions of the graphoid properties and intersection fail for epistemic irrelevance. Epistemic
independence satisfies symmetry, redundancy, decomposition and contraction — weak union and
intersection fail for epistemic independence.

"Levi has also proposed P(A|B) = P(A) as a definition of irrelevance, without considering the symmetrized
concept [38]. Both Levi’s and Walley’s definitions are geared towards sets of full conditional measures, but clearly they
specialize to a single full conditional measure.
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Table 2: Failure of direct weak union for epistemic irrelevance/independence («, 3,y € (0,1),
with a« # [ # ). The full conditional measure in the table satisfies (X N (W, Y")) but fails
(XERY | W).

WoYo | WiYo WoyY1 w1Y1
wo | (15 | 18]y | LA =By | 15
| | o | A-a) |[1]

Table 3: Failure of versions of intersection for epistemic irrelevance/independence (o, €
(0,1), with & # (). The full conditional measure in the table satisfies (X EINW | Y) and
(XENY | W), butnot (X ER (W, Y)).

Proof. For epistemic irrelevance, the proof of direct and reverse redundancy, direct and reverse
decomposition, reverse weak union and reverse contraction is obtained from the proof of Theorem
1, by taking A(X) = B(Y) = Q. For direct contraction (X ERY | Z) & (X eErRW | (Y, 2)) =
(X R (W,Y) | Z)), consider that if (X, Z) # 0,

P(W,Y|X,Z) = P(W|X,Y,Z)P(Y|X,Z) = P(W|Y, Z) P(Y|Z) = P(W,Y|Z),

where the term P(W|X,Y,Z) P(Y|X, Z) is only defined when (X,Y, Z) is nonempty (if it is
empty, then the other equalities are valid because both sides are equal to zero). All other versions
of graphoid properties fail for epistemic irrelevance, as shown by measures in Tables 2, 3, 7, and
8. For epistemic independence, symmetry is true by definition; redundancy, decomposition and
contraction follow from their direct and reverse versions for epistemic irrelevance; Table 2 displays
failure of weak union, and Table 3 displays failure of intersection. [

4.2 Strong coherent irrelevance/independence

Coletti and Scozzafava have proposed a concept of independence that explicitly deals with layers
[13, 11, 52]. They define the following condition:

Definition 2 The Coletti-Scozzafava condition on (B, A) holds iff B # 0 # B¢ and o(A|B) =
o(A|B€) and o(A¢|B) = o(A€|B€), where these layer numbers are computed with respect to
probabilities over the events {AN B, AN B¢, A°N B, A°N B¢}

The Coletti-Scozzafava condition focuses only on the four events {A N B, AN B¢, A°N
B, A°N B°}; consequently, it never deals with layer numbers larger than 3.> Situations that violate

>We thank Andrea Capotorti for bringing this fact to our attention.
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Table 4: Violations of the Coletti-Scozzafava condition, where a € (0, 1).

the Coletti-Scozzafava condition are depicted in Table 4.3

Coletti and Scozzafava then define independence of B to A as: satisfaction of the Coletti-
Scozzafava condition on (B, A) plus epistemic irrelevance of B to A. The concept is not symmet-
ric (Table 1).

Another important aspect of the Coletti-Scozzafava condition is that if B (or B€) is empty,
then B is not deemed irrelevant to any other event. Coletti and Scozzafava argue that their con-
dition deals adequately with logical independence, as follows. Consider a table containing layer
numbers for events { AN B, AN B¢, A°N B, A°N B¢}. Every entry can be either finite or infinite;
thus we have 16 configurations insofar as this distinction is concerned. One of these configura-
tions is impossible (the one with four infinite entries). The other configurations can be divided
in the cases depicted in Table 5. The Coletti-Scozzafava condition blocks the irrelevance of B to
A in the second, third, fourth, sixth and seventh tables. Most cases of logical independence are
thus removed. (However, the fifth table does not fail the Coletti-Scozzafava condition even though
displays a situation of logical dependence,* as noted by Coletti and Scozzafava [10, Proposition
2].)

Vantaggi extends the main ideas in Coletti and Scozzafava’s concept of independence by
proposing a condition that can be stated as follows:

Definition 3 The conditional Coletti-Scozzafava condition on variables (Y, X) given variables Z
holds iff for all values x, vy, z,

Y=y Z=2}#0 and {Y #y Z=2z}+#0,
and
o X=zxlY =y Z=z)=0(X=2z|Y £y, Z =2)
and
oX £aY =y, Z=2) = o(X £alY £y,2=2),
where these layer numbers are computed with respectto {{X = z,Y =y, Z = 2}, {X = z,Y #
yZ=z}{X#x, Y=y Z=2}{X#2Y #y,Z==2}}.

Vantaggi then proposes a concept, here referred to as strong coherent irrelevance:® Y is strongly
coherently irrelevant to X given Z if (i) Y is epistemically irrelevant to X given Z, and (ii) the

3The example in Table 4 (right) fails the following result by Coletti and Scozzava [10, Theorem 17]: if A and B are
logically independent, then P(A|B) = P(A|B°) and P(B|A) = P(B|A°) imply o(A°|B) = o(A°|B°). But this
result is true when we focus on the restricted set of events {A N B, AN B°, A°N B, A°N B°}.

“We thank Barbara Vantaggi for bringing this fact to our attention.

31t should be noted that Vantaggi’s concepts of independence correspond to irrelevance in our terminology (she also
studies special cases where symmetry holds [54]). Also, Vantaggi’s writing of properties is different from ours; for
example, her reverse weak union property is our direct weak union property.



conditional Coletti-Scozzafava condition holds on (Y, X') given Z [52, Definition 7.1]. This is a
very stringent concept, as strong coherent irrelevance requires Y and Z to be logically indepen-
dent.

As shown by Vantaggi [52], strong coherent irrelevance fails symmetry, direct and reverse
redundancy, and direct weak union. Her results imply that a symmetrized concept of strong co-
herent independence fails redundancy and weak union (Table 2). Note also that strong coherent
irrelevance fails direct intersection, as shown by Table 3.

4.3 The layer condition and weak coherent irrelevance/independence

In this sub-section we consider a condition on layer numbers that relaxes the Coletti-Scozzafava
condition in two ways. First, we remove the restriction on the set of events that must be taken into
account to determine layer numbers, Second, we replace conjunction with material implication in
the case B (or B€) is empty, as this replacement will lead to a host of interesting properties. In
Section 6 we comment on our reasons to make these changes and on their consequences.

Definition 4 The layer condition on (B, A) holds iff whenever B # () # B¢ then o(A|B) =
o(A|B¢) and o( A¢|B) = o(A°|B°).

The first thing to note is that the layer condition is symmetric.®

Proposition 2 If A and B satisfy the layer condition on (B, A), they satisfy the layer condition
on (A, B).

Proof. Define a = o(ANB); b = o(ANB); ¢ = o(A°N B); d = o(A°N B¢). Each one of
these four layer levels may be finite or infinite. There are thus 16 situations; one is impossible
and six others always violate the layer condition. Suppose then that no layer level is infinite and
assume a = 0, as one of the four entries must be 0. The first table in Table 5 illustrates this case.
Regardless of the value of b, o(B¢) = b because o(A N B¢) — o(B¢) = 0 by hypothesis. Then
¢c—0=4d—b,thus d = ¢ + b, and the table is symmetric. Now, if o(AN B) # 0, then we
can always re-label rows and columns so that the top left entry is zero, and the same reasoning
follows. The remaining cases are illustrated by the fifth, sixth, and seventh tables in Table 5, where
the result is immediate. []

Consequently, it is enough to indicate that two events satisfy the layer condition, without
mentioning a “direction” (B, A) or (A, B). We have:

Proposition 3 Events A and B satisfy the layer condition iff o(A|B) = o(A), o(A|B¢) = o(A),
o(A€|B) = o(A°) and o( A°| B®) = o( A®) whenever the relevant quantities are defined.

Proof. Direct by verifying all tables in Table 5 (it may be necessary to re-label rows and columns
to deal with the 9 relevant situations discussed in the proof of Proposition 2). []

The previous result directly implies equivalence of the layer condition and a more obviously
symmetric condition:’

8The Coletti-Scozzavafa condition is not symmetric, as shown by the sixth table in Table 5.
"This result was suggested to us by Matthias Troffaes.
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Table 5: Cases for the Coletti-Scozzafava and layer conditions.

Corollary 1 Events A and B satisfy the layer condition iff
o(ANB) =o(Ad)+0(B),  o(ANB*) = o(A) +o(B"),
o(A°NB) = o(A9) +0(B),  ofA°N BY) = o(A°) + o(B").

We now consider a version of the layer condition for random variables, clearly similar to
Vantaggi’s conditional Coletti-Scozzafava condition:®

Definition 5 The conditional layer condition on variables (Y, X) given variables Z holds iff for
all values x, y, z, whenever {Y =y, Z =z} # 0 and {Y # y,Z = z} # 0, then

o X=zlY =y, Z=z2)=0(X=z|Y £y, Z =2)

and

oX £alY =y, Z=2)=o(X #£alY #y,Z=2).

Before we propose concepts of irrelevance/independence based on the conditional layer
condition, we examine some useful properties of this condition.

Proposition 4 The conditional layer condition is equivalent to
o X=zxlY =y, Z=2)=0o(X =2|Z=2) ()
forall z, y, z such that {Y =y, Z = z} # .

Proof. Assume the conditional layer condition; using Proposition 3 for every {Z = z}, we obtain
oflX =x|Y =y, Z=2) =0o(X =2|Z =z2) forall 7, y and z such that {Y = y, Z = 2} # (.
Now assume Expression (2), and denote by B(Y") an event defined by Y such that B(Y) N {Z =
z} # 0. Then:

o X =z|BY)n{Z=2}) = yenéig/)O(X =z,Y =ylZ=z) —yér]lgi(r%/)o(Y =y|Z =z2)

8We note that Vantaggi’s Definition 7.3 [52] uses a condition that is very close to the conditional layer condition
in Definition 5; the difference basically is that Vantaggi requires every layer number to be computed with respect to
UX =Y =y Z=2}{X=aY#y Z=2}{X#2Y=yZ=2}{X#2Y #y,Z=12}}.



= min (o(X=2z2Y =y, Z=2)+0(Y =y|Z =2)) -

yeB(Y)
yg]lsi(lef) oY =y|Z =2)

= yggig/) (o(X=z|Z=2)+0Y =ylZ=2)) —
yggig/) oY =y|Z =2)

= o(X::U|Z:z)+yé%i(1)1/)o(Y:y|Z:z)—
yé%i(gl/) oY =y|Z =2)

= olX=z|Z=2),

where the minima are taken with respect to values of Y that are logically independent of {Z = z}.
Thus the first part of the conditional layer condition is satisfied. For the second part, note that
ol X #z|BY)N{Z =2}) = mino(X =2'|B(Y)N{Z = z})
€T

! #

= mino(X =12|Z =2)
z'#£x

= oX#z|Z=2). O
A more obviously symmetric version of the conditional layer condition is:
Corollary 2 The conditional layer condition is equivalent to
oX=z,Y=ylZ=2)=0o(X=2z|Z=2)+o(Y =y|Z =2) 3)
forall x,y,z such that {Z = z} # (.

Proof. The fact that Expression (3) implies Expression (2) is immediate from the definition
of o(X ==x,Y =y|Z = z). To prove the converse, consider the two possible cases. For all
y, z such that {Y = y,Z = z} # (), Proposition 4 directly yields the result as we have
o X=u,Y=ylZ=2)—oY=y|lZ=2)=0(X =x|Z=2). Ifinstead {Y =y,Z =z} =
(0, theno(X = z,Y = y|Z = 2z) = o(Y = y|Z = z) = oo and Expression (3) is satisfied regard-
lessof o( X = z|Z = 2). O

Denote by (X LCY | Z) the fact that X and Y satisfy the conditional layer condition given
Z. It is interesting to note that this relation is a graphoid.

Proposition 5 The relation (X LCY | Z) satisfies symmetry, redundancy, decomposition and con-
traction; if X and'Y are logically independent given Z, then intersection is satisfied.

Proof. Symmetry follows from Expression (3).
Redundancy ((Y L X | X)): we wish to show that

o X =m|Y =y, X =x9) =o(X = 21| X = x9) .

10



If 21 # 2z, o( X =11|Y =y, X = x2) = o(X =x1|X =x9) = o0; if 1 = x93, we obtain
ofX=0,Y=yX=x1)—o(X=21,Y =y) =0=0o(X =21, X =22) — o(X = x1).
Decomposition (X 1L (W,Y)|Z) = (X ILW | Z)): we have

oW=wX=z|Z=2) = myino(W:w,X:x,Y:y]Z:z)
= myino(X:x|Z:z)+O(W:w,Y:y|Z:z)
= o(X:x]Z:z)-i—myino(W:w,Y:y|Z:z)
= o X=z|Z=2)+o(W=w|Z=2x).
Weak union (W,Y) 1L X |Z) = (W 1L X | (Y, Z))): by hypothesis we have
o X=z|W=wY =y,Z=2)=0X=2x|Z=2),

and from this (by decomposition) we obtain o(X = z|Y =y, Z = z) = o(X = z|Z = z); con-
sequently o( X = z|W =w,Y =y, Z =z2)=o(X =z|Y =y, Z = z).
Contraction (Y L X |Z) & (WILX|(Y,Z)) = (W,Y) 1L X |Z)): we have

o X=zW=wY =y Z=z2)=o0(X=z|Y =y, Z=2)=0(X =2x|Z=2).

Intersection (W L X | (Y, 2)) & (Y LX|(W,Z)) = (W,Y)LLX|Z)): we use the fact that,
due to the hypothesis of logical independence,

o X=zW=w,Z=z)=0(X=z[W=wY=yZ=2)=0X=zx|Y =y, Z =2)
for all (w, y). Then:
o X=zx|Z=2) = H%li)no(X =z, W=wlZ=z2)
= min(o(X =z|W =w,Z =2) +o(W =w|Z = 2))
w
= min(o(X =z|Y =y, Z =2)+o(W =w|Z = 2))
w
= o X =z|lY =y, Z =2)+mino(W = w|Z = 2)
w
— o(X=alY =y, Z=2)
= o X=zW=wY=y,72=2)
(because min,, o(W = w|Z = z) = 0 and then using the hypothesis). The hypothesis of logical
independence is necessary, as shown by Table 6. [J

We can now define concepts of irrelevance and independence that employ the conditional
layer condition:

Definition 6 Random variables Y are weakly coherently irrelevant fo random variables X given
random variables Z, denoted by (Y wcR X | Z), iff Y ER X | Z) and (Y .c X | Z). Random
variables X and Y are weakly coherently independent given random variables Z, denoted by
Ywan X | Z), iff YENX | Z)and (Y LC X | Z).

Given our previous results, we easily have:
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WoYo | Wi1Yo | WoY1 | WiY1
g 0 00 o0 0
T 1 00 00 2

Table 6: Failure of the intersection property (for the layer conditions) in the absence of logical
independence. Entries in the table are layer levels; the four central entries denote empty events.

Proposition 6 Weak coherent irrelevance satisfies the graphoid properties of direct and reverse
redundancy, direct and reverse decomposition, reverse weak union, and direct and reverse con-
traction. If W and Y are logically independent, then weak coherent irrelevance satisfies reverse
intersection. All other versions of the graphoid properties and intersection fail for weak coher-
ent irrelevance. Weak coherent independence satisfies the graphoid properties of symmetry, re-
dundancy, decomposition and contraction — weak union and intersection fail for weak coherent
independence.

Proof. Equalities among probability values have been proved for Proposition 1, and equalities
among layer levels have been proved for Proposition 5. All failures of symmetry, decomposition,
weak union, contraction and intersection discussed in Proposition 1 are still valid, with the same
examples. []

We have thus examined three concepts of independence that fail the weak union and the
intersection properties. The failure of intersection is not too surprising, as this property requires
strictly positive probabilities even with the usual concept of stochastic independence. However,
the failure of weak union leads to serious practical consequences. To give an example, consider
the theory of Bayesian networks [42], where weak union is necessary to guarantee that a struc-
tured set of independence relations has a representation based on a graph, and to guarantee that
independences can be read off a graph using the d-separation criterion. We intend to explore the
relationships between Bayesian networks and full conditional measures in a future publication.

In the next section we examine concepts of irrelevance/independence that satisfy the weak
union property.

S Full irrelevance and independence

Even a superficial analysis of Table 2 suggests that epistemic and coherent independence fail to
detect obvious dependences among variables: there is a clear disparity between the two rows, as
revealed by conditioning on {W = w; }. The problem is that epistemic independence is regulated
by the “first active” layer, and it ignores the content of lower layers. Hammond has proposed a
concept of independence that avoids this problem by requiring [31]:

P(A(X) N B(Y)|C(X) N D(Y)) = P(A(X)[C(X)) P(B(Y)|D(Y)), 4)

for all events A(X), C'(X) defined by X, and all events B(Y), D(Y') defined by Y, such that
C(X)N D(Y) # (. Hammond shows that this symmetric definition can be decomposed into two
non-symmetric parts as follows.

12



Definition 7 Random variables X are h-irrelevant to random variables'Y (denoted by (X HRY'))
iff P(B(Y)|A(X)ND(Y)) =P(B(Y)|D(Y)), for all events B(Y'), D(Y') defined by Y, and all
events A(X) defined by X, such that A(X) N D(Y') # 0.

If (XHRY) and (Y HIR X)), then X and Y are h-independent. Expression (4) is equivalent to
h-independence of X and Y (for one direction, take first A(X) = C(X) and then B(Y) =
D(Y); for the other direction, note that P(A(X) N B(Y)|C(X) N D(Y)) is equal to the product
P(A(X)|B(Y) N C(X) N D(Y)) P(B(Y)|C(X) N D(Y))).

We can extend Hammond’s definition to conditional independence (a move that has not been
made by Hammond himself; Halpern mentions a conditional version of Hammond’s definition
under the name of approximate independence [30]):

Definition 8 Random variables X are h-irrelevant to random variables Y conditional on random
variables Z (denoted by (X HRY | Z)) iff

P(BY){Z =2} n A(X)N D(Y)) = P(B(Y){Z = z} N D(Y)),

for all values z, all events B(Y'), D(Y') defined by Y, and all events A(X) defined by X, such
that {Z = z} N A(X) N D(Y) # 0.

The “symmetrized” concept is:

Definition 9 Random variables X and Y are h-independent conditional on random variables Z
(denoted by (X HNY | Z2)) iff ( X HRY | Z) and (Y HIR X | Z).

This symmetric concept of conditional h-independence is equivalent to (analogously to Expression

)

PAX)NBY)|{Z =2} nC(X)ND(Y)) = )
PAX){Z =2} nC(X)) P(B(Y)|{Z ==z} nD(Y)),

whenever {Z = z} N C(X) N D(Y) # 0.
The definition of h-irrelevance can be substantially simplified: for random variables X, Y,
and Z, (X HRY | Z) iff

P(Y = yl{X =2,Z = 2} N D(Y)) = P(Y = y[{Z = 2} N D(Y))

for all z, y, z and all events D(Y") defined by Y such that {X =z, Z = 2z} N D(Y) # 0 (directly
from Lemma 1).

The positive feature of h-irrelevance is that it satisfies direct weak union, and in fact h-
independence satisfies weak union. Unfortunately, both concepts face difficulties with contraction.

Theorem 1 H-irrelevance satisfies the graphoid properties of direct and reverse redundancy, di-
rect and reverse decomposition, direct and reverse weak union, and reverse contraction. If W and
Y are logically independent, then h-irrelevance satisfies reverse intersection. All other versions
of the graphoid properties and intersection fail for h-irrelevance. H-independence satisfies the
graphoid properties of symmetry, redundancy, decomposition and weak union — contraction and
intersection fail for h-independence.
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Proof. Denote by A(X), B(Y) arbitrary events defined by X and Y respectively, chosen such that
if they appear in conditioning, they are not logically incompatible with other events. We abbreviate
the set {W = w} by w, and likewise use z for {X =z}, y for {Y =y}, z for {Z = z}.
Symmetry fails for h-irrelevance as shown by Table 1.

Direct redundancy: (X HIRY | X) holds because

PY =y{X =21, X=2}NBY))=PY =y{X =21} NnBY)),

when x1 = x9 (and {X = x1, X = 25} = () otherwise).
Reverse redundancy: (Y HIR X | X) holds because

PX =xi[{Y =y, X =22} NA(X)) = P(X = z:1[{X =22} N A(X)) =0
if 1 # x5 and
PX=21{Y =y, X =22} NAX)) =P X =x1{X =z} NAX)) =1

if Tl = X9.
Direct decomposition: (X HR (W,Y) | Z) = (X HIRY | Z) holds as

Py{z,z} nB(Y)) = > P(w,yl{z,2} N B(Y))
= Y P(wyl{z} nB(Y))

= P(y{z}nB(Y)).

Reverse decomposition: ((W,Y)HR X | Z) = (Y HR X | Z) holds because (note that summa-
tions over values of W need only include values such that {w, y, 2} N A(X) # 0):

Pl{y,z} NA(X)) = > P(w,zl{y,z} NA(X))
=3 Plal{w,y, 2} 1 ACX) Plulfy, 2} 1 A(X))
= Y Pl{z} nAX)) P(wl{y, 2} N A(X))

= Pl{z} N AX) Y Plul{y, 2} N A(X))
= Pl{z}NA(X)).

Direct weak union: (X HR (W)Y) | Z) = (X eRY | (W, Z)) holds because {w} N B(Y') is an
event defined by (W, Y) and consequently:

Plyw,z, 2} N B(Y)) = P(w,yl{z,z} 0 ({w}; N B(Y)))
P(w,y{z} 0 ({w} N B(Y)))
= P(y{w,z} n B(Y)).

Reverse weak union: (W, Y)HR X | Z) = (W HR X | (Y, Z)) holds because
Plal{w,y, 2z} N A(X)) = P(z[{z} N A(X))

14



by hypothesis and P(z|{z} N A(X)) = P(z|{y, z} N A(X)) by reverse decomposition.

Reverse contraction: (Y HRX | Z) & (WHRX | (Y,Z)) = ((W,Y) HIR X | Z) holds because
P(al{w, y, 2} N A(X)) = P(a|{y, =} 1 A(X)) = P(a|{z} N A(X)).

Reverse intersection: (WHRX | (Y,Z)) & (YHRX |(W,Z)) = (W, Y)HRX | Z) holds
because, due to the hypothesis of logical independence,

Pz{w,z} N A(X)) = P(z{w,y, 2} N A(X)) = P(z[{y, 2} N A(X))
for all (w, y). Thus we can write
Px{z} nA(X)) = > P(z,w[{z} N A(X))

= Y P(al{w, 2z} NA(X)) P(w|{z} N A(X))
= 3 P(zl{y. 2} N A(X)) P(w]{z} N A(X))

= P(zl{y, 2} NA(X)) Y P(wl{z} N A(X))

= Pzl{y,z} N A(X))
= Plzl{w,y,2} N A(X)).

All other versions of graphoid properties fail for h-irrelevance, as shown by measures in Tables 2,
3,7, and 8.
Now consider the “symmetrized” concept of h-independence. Symmetry is true by definition;
redundancy, decomposition and contraction come from their direct and reverse versions for h-
irrelevance. Table 2 displays failure of contraction, and Table 3 displays failure of intersection for
h-independence. []

Note that Table 2 is now responsible for failure of direct contraction, as now (X HIRY") and
(X HRW | Y) but not (X HIR (W,Y)).

It is natural to consider the strenghtening of h-independence with the conditional layer con-
dition. The first question is whether or not to strenghten the conditional layer condition itself. We
might consider the following condition:

o X =zaz{{Y =y, Z=2}NAX)) =o(X =2|{Z =2z} N A(X)) (6)

for all z, y, z and every event A(X) defined by X such thatand {Y =y, Z = z} N A(X) # 0.
As shown by the next result, this condition is implied by the conditional layer condition.

Proposition 7 If Expression (2) holds for all x, y, z such that and {Y = y,Z = z} # (), then
Expression (6) holds for all x, y, z and every event A(X) defined by X such that {Y =y, 7 =
2} NA(X) # 0.

Proof. If x ¢ A(X), then the relevant layer levels are both equal to infinity. Suppose then
that z € A(X). Using the abbreviations adopted in the proof of Theorem 2 for events such as
{X =z}, we have:

o(zl{y, z} NAX)) = o(fz}NAX)|y, 2) — o(A(X)]y, 2)
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= NAX — mi !
o({z} N A(X)ly, 2) x,gg&)O(fvly,Z)

= NAX - i !
o({z} NA(X)|z) w,gg&)O(w )
= o(zl{z}NAX)). O
We propose the following definition.

Definition 10 Random variables X are fully irrelevant to random variables Y conditional on
random variables Z (denoted (X FIRY | Z)) iff

PY =y{X =2,2=21nB(Y)) = P(Y =yl{Z =2} N B(Y)),
O(Y:y‘XZZL',Z:Z):O(Y:y|Z:Z),
forall x, y, z, and all events B(Y') defined by Y such that {X = x,Z = z} N B(Y') # (.

Full independence is the symmetrized concept. Theorem 2 and Proposition 6 then imply the
following result.

Theorem 2 Full irrelevance satisfies the graphoid properties of direct and reverse redundancy, di-
rect and reverse decomposition, direct and reverse weak union, and reverse contraction. If W and
Y are logically independent, then full irrelevance satisfies reverse intersection. All other versions
of the graphoid properties and intersection fail for full irrelevance. Full independence satisfies the
graphoid properties of symmetry, redundancy, decomposition and weak union — contraction and
intersection fail for full independence.

We have thus examined two concepts of independence that fail the contraction and inter-
section properties. While failure of intersection is not surprising, the failure of contraction has
important consequences — for example, contraction is needed in the theory of Bayesian networks
for essentially the same reasons that weak union is needed.

It must be noted that only one of direction of contraction fails. Specifically, direct contrac-
tion fails, and direct contraction is a much less compelling than most other graphoid properties.
While reverse contraction convincingly stands for the fact that “if we judge W irrelevant to X
after learning some irrelevant information Y, then W must have been irrelevant [to X ] before
we learned Y [42]; a similar reading of direct contraction reveals a much less intuitive property.
On this account, it seems that h-irrelevance is more appropriate than epistemic irrelevance, and
that full irrelevance is more appropriate than weak coherent irrelevance — and likewise for the
corresponding independence concepts.

6 Conclusion

In this paper we have examined properties of full conditional measures, focusing on concepts of
irrelevance and independence. We started by reviewing the concepts of epistemic and strong co-
herent irrelevance/independence. We then introduced the layer condition and the related concept
of weak coherent irrelevance/independence (Definitions 5 and 6), and derived their graphoid prop-
erties (Propositions 5 and 6). We then moved to concepts of irrelevance/independence that satisfy
the weak union property. We have:
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e presented an analysis of Hammond’s concepts of irrelevance and independence with respect
to graphoid properties (Theorem 1) — in fact, we note that Hammond and others have not
attempted to study conditional irrelevance and independence (our Definitions 8 and 9);

o introduced the definition of full irrelevance and independence, and presented the analysis of
their graphoid properties (Definition 10 and Theorem 2).

The results in this paper show that there are subtle challenges in combining full conditional
measures with statistical models that depend on graphoid properties. We intend to report in detail
on the consequences of our results for the theory of Bayesian networks in a future publication.
We note that future work should develop a theory of Bayesian networks that effectively deals with
full conditional measures, either by adopting new factorizations, new concepts of independence,
or new separation conditions (perhaps even for the concepts that fail symmetry [53]). Future work
should also investigate whether other concepts of independence can be defined so that they satisfy
all graphoid properties even in the presence of null events.

In closing, we should appraise the convenience of the layer condition and its use in defining
weak coherent and full irrelevance/independence. The conditional Coletti-Scozzafava condition
is apparently motivated by a desire to connect epistemic irrelevance with logical independence.
Indeed, the Coletti-Scozzafava condition on (B, A) promptly blocks all cases of logical indepen-
dence in Table 5, except the fifth one, and a symmetrization of the condition blocks all cases.
However, the condition is perhaps too strong when directly extended to conditional probabilities,
as the conditional Coletti-Scozzafava blocks all logical dependences between the fixed condition-
ing events and the other relevant variables. We have thus preferred to consider a relaxed condition
where logical independence is not always automatically blocked (specifically, in the fifth, sixth
and seventh cases in Table 5), and the resulting layer condition does seem to have pleasant prop-
erties; for example, it generates a graphoid. Still, one might ask why should the layer condition be
adopted at all given that we are not stressing too much the issue of logical dependence. There are
two reasons to adopt the layer condition.

First, the layer condition does prevent pathological cases (as depicted in Table 4) that are
not related to logical dependence. The characteristic of such examples is that the “relative nullity”
of events is not captured just by conditional probability values. We believe that a most promising
path in producing a concept of independence for full conditional measures that does satisfy the
graphoid properties is to somehow preserve the “distance” in layers for various events as we deal
with probabilities. Possibly the machinery of lexicographic probabilities will be required in order
to retain information on layer numbers [7, 31]. The layer condition is a step in that direction.

The second reason to adopt the layer condition, now in the particular case of full indepen-
dence, is that this condition seems to be necessary in order to produce representations of “product”
measures that contain some resemblance of factorization. We intend to report on this issue in a
future publication.

Finally, there is yet another difference between the layer condition and the Coletti-Scozzafava
condition. In the latter the layer numbers are computed with respect to a restricted set of events,
whereas in the former we have removed this requirement. Such a difference is again attributed to
our desire to keep layer numbers “permanently” attached to events, so that mere marginalization
or conditioning does not change these numbers.
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woYo w1Yo Woy1 w1Y1
zo | Bl (A -5)h af a(l - f)
a1 | [A=9)8L [ [A=1( =/ |[(1-a)f | (1-a)d=7)

woYo w1Yo woY1 w1Y1
zo | V81 | WA =8)]y | [A=8], | [A=-7A-8)]
1 af a(l —p3) (1—-w)p (1—a)(1—-p)

Table 7: Failure of versions of decomposition, weak union, contraction, and intersection for epis-
temic irrelevance (o, 3,7 € (0,1), with & # 3 # v # «). The full conditional measure in
the top table satisfies (X EIR (I¥,Y")) but it fails (Y EIR X) (version of decomposition) and it
fails (Y EIR X | W) (version of weak union); it satisfies (X EIRY") and (W EIN X | V) but it fails
((W,Y) EIR X)) (two versions of contraction); it also satisfies (X EIRY | W) (two versions of
intersection, and by switching W and Y, another version of intersection). The full conditional
measure in the bottom table satifies ((W,Y") EIR X ) but it fails (X EIRY") (version of decomposi-
tion) and it fails (X EIR Y | W) (version of weak union); it satisfies (Y EIR X) and (W EIN X | V),
but it fails (X IR (W,Y)) (two versions of contraction).
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A Counterexamples to graphoid properties

Tables 2, 3, 7, 8 present violations of decomposition, weak union, contraction and intersec-
tion for epistemic irrelevance/independence, coherent irrelevance/independence, h-irrelevance/h-
independence and full irrelevance/independence. Table 9 summarizes these counterexamples.

Note that some counterexamples for h-/full irrelevance depend on the fact that X is h-/fully
irrelevant to (W,Y") in the top table of Table 7. To verify that this is true, it is necessary to
verify the equality P(W,Y |z, A(W,Y)) = P(W,Y|A(W,Y)) for z = {x¢, 21} and for every
nonempty subset A(W,Y") of {woyo, w1yo, woy1, w1y1} (there are 15 such subsets).
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Direct properties of irrelevance and independence Epistemic/Coherent | H-/Full
(X L(W.V)[2) = (X LW][(Y,2)) 2 :
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(X LW[(Y.2)) & (X LY[(W,2)) = (X L(W.Y)[2) | 3 3
Non-direct/non-reverse properties of irrelevance Epistemic/Coherent/H-/Full
(XUWY) Z2)= (Y1 X|Z) 7 (top)
(WY)LX|Z)= (X1Y|Z) 7 (bottom)

(X L(W.Y)|2) = (Y LX|(W,2)) 7 (top)
(WY)ULX|Z)= (XLY|(W, Z2)) 7 (bottom)
YUX|Z)& (XLUWY,2) = (XLW,Y)|Z) 7 (bottom)
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WALX|(Y,2)) & (X LY [(W,Z)) = (W,Y) L X|Z) | 7 (top)

(X UW[(Y,2) & (Y ILX[(W,Z)) = (W,Y) L X][Z) | 7 (top)

Table 9: Summary of counterexamples. The properties are written using 1l ; this symbol must
be replaced by the concept of interest (epistemic/coherent/h-/full irrelevance/independence). All
entries indicate the number of a table containing a counterexample. The top table lists failures of
properties for independence and failures of direct properties for irrelevance; the bottom table lists
failures of properties of irrelevance that are neither “direct” nor “reverse” versions of graphoid
properties. Note that reverse intersection may fail for all concepts in the absence of logical inde-
pendence.
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