
Received July 31, 2020, accepted August 6, 2020, date of publication August 10, 2020, date of current version August 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015661

Navigation in Restricted Channels Under
Environmental Conditions: Fast-Time Simulation
by Asynchronous Deep Reinforcement Learning
JOSÉ AMENDOLA 1, LUCAS S. MIURA1, ANNA H. REALI COSTA 2, (Member, IEEE),
FÁBIO G. COZMAN3, AND EDUARDO AOUN TANNURI 3, (Member, IEEE)
1Numerical Offshore Tank Laboratory, University of São Paulo, São Paulo 05508-900, Brazil
2Intelligent Techniques Laboratory, University of São Paulo, São Paulo 05508-900, Brazil
3Department of Mechatronics Engineering and Mechanical Systems, University of São Paulo, São Paulo 05508-900, Brazil

Corresponding author: José Amendola (jose.amendola@usp.br)

The work of José Amendola was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grant
133230/2019-8. The work of Anna H. Reali Costa was supported by CNPq under Grant 307027/2017-1 and Grant 425860/2016-7. The
work of Fábio G. Cozman was supported in part by CNPq under Grant 312180/2018-7, and in part by the Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP) under Grant 2019/07665-4. The work of Eduardo Aoun Tannuri was supported by CNPq under Grant
304784/2017-6.

ABSTRACT This paper proposes an efficient method, based on reinforcement learning, to be used as ship
controller in fast-time simulators within restricted channels. The controller must operate the rudder in a
realistic manner in both time and angle variation so as to approximate human piloting. The method is well
suited to scenarios where no previous navigation data is available; it takes into account, during training, both
the effect of environmental conditions and also curves in channels. We resort to an asynchronous distributed
version of the reinforcement learning algorithm Deep Q Network (DQN), handling channel segments as
separate episodes and including curvature information as context variables (thus moving away from most
work in the literature). We tested our proposal in the channel of Porto Sudeste, in the southern Brazilian
coast, with realistic environment scenarios where wind and current incidence varies along the channel. The
method keeps a simple representation and can be applied to any port channel configuration that respects
local technical regulations.

INDEX TERMS Fast-time maneuvering simulations, machine learning, deep reinforcement learning, ship
path following control.

I. INTRODUCTION
Navigation in restricted waters is a very complex topic that
resists automation, even as autonomous ships are planned
for the near future. Maneuvering in ports, bays and rivers
depends on the experience of pilots about the area and its
environmental conditions. Moreover, navigation is affected
by the complex hydrodynamic interactions of vessels with the
margins and bottoms of channels.

In the context of maritime maneuvering simulators,
fast-time simulations play a key Engineering role: They
are an effective way of evaluating new navigation scenar-
ios, thus identifying potential risks and characterizing the
dynamic behavior of vessels. Such simulations are usually
performed by non-pilots and do not demand a full-mission
immersive simulator. Trajectories are obtained by setting

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiong Luo .

way-points and applying control algorithms similar to those
employed in automatic pilot systems [1]. The definition of
useful way-points requires a trial and error procedure that is
particularly difficult due to environmental conditions.

Another shortcoming of fast-time simulations is that they
may produce maneuvers that do not match the ones selected
by a human pilot. The trajectories obtained may either exceed
the pilot’s acceptance criteria regarding safety distances or
may demand an unfeasible number of engine and rudder
commands. Hence fast-time simulations cannot be used as a
single tool to assess the quality of a maneuver; they must be
combined with the judgment of experienced pilots.

These facts justify the use of machine learning tech-
niques to build controllers within fast-time simulations so
as to mimic human piloting. We are thus naturally led to
reinforcement learning (RL), where an agent learns actions
through experimentation. We resort to a distributed deep
reinforcement learning algorithm to produce a fast-time

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 149199

https://orcid.org/0000-0002-9374-4724
https://orcid.org/0000-0001-7309-4528
https://orcid.org/0000-0001-7040-413X
https://orcid.org/0000-0002-1929-8447

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

simulation environment that can navigate through restricted
channels with realistic control actions and under the effect of
environmental conditions.

Our controller acts on the rudder level of an underactuated
vessel initially positioned at the channel entrance, aiming to
reach the end of the channel without colliding with the limits
defined by lateral buoys (we extend our previous work [2] and
[3] on this topic). The commands are given in discrete levels
and at discrete time intervals, as in human pilot navigation.

The novelty of this work lies in the following aspects:

• Planning algorithms for prior path generation are not
needed; only on the channel limits and center line seg-
ments are used.

• Training in a single run can result in successful trajecto-
ries under a wide range of environmental conditions.

• Learning efficiency is improved by dividing a navigation
scenario into a sequence of channel segments.

This paper is structured as follows. Section II introduces
key concepts of Deep RL, related work and our simula-
tor. Section III specifies the problem, its representation,
and the algorithm we employed, while Section IV describes
the experimental setup, the experiments and related analy-
sis. Finally, Section V presents our conclusions and future
directions.

II. PRELIMINARIES
In this section we present the fundamentals of reinforcement
learning, a short review of related work, and the simulator we
have used.

A. REINFORCEMENT LEARNING AND DEEP Q NETWORK
Reinforcement learning (RL) builds a policy for an agent out
of actions and rewards [4]. At each time step during learning,
the agent observes a state, takes an action that results in a
transition to another state and receives a reward signal. This
process is viewed as a Markov Decision Process (MDP), as it
is assumed to have the Markov property, where a transition to
a subsequent state s′ depends only on the current state s and
the action a performed on s.
An MDP is described by a set of states S, a set of possible

actions A, a transition model T (s, a, s′), T : S × A × S →
[0, 1] that yields the probability p(s, a, s′) of landing up in the
new s′ state given that the agent takes an action a in given state
s, a reward function R : S×A×S → R and a discount factor
0 ≤ γ ≤ 1 that quantifies howmuch importance we assign to
future rewards – the lower the discount factor, the more short-
sighted the agent. In practice, a human designer must specify
a reward function compatible with the problem and the task
at hand.

The goal of a RL agent is to learn an actuation policy
that allows it to collect as much reward as possible in its
interactions. A policy π : S → Amaps a state s ∈ S observed
by the agent to an action a ∈ A.
We define a state-action value function Q that estimates

how desirable it is to perform action a in a given state s. The

Q value,

Qπ (s, a) = Eπ

[
∞∑
k=0

γ krt+k+1 | st = s, at = a

]
, (1)

is the expected accumulated reward if action a is taken at state
s as specified by a policy π . An optimal policy π∗ is one that
chooses the action with the highest value inQπ

∗

(s, ·) for each
state s

π∗(s) = argmax
a
Qπ
∗

(s, a). (2)

We are interested in episodic tasks; that is, tasks that
have different episodes, and an episode consists of all states
between an initial state and a terminal state.

An RL agent interacts with its environment as follows: in
each time step, the agent observes the state s and decides
the action a to be taken and performs it; the environment
then transitions to the next state s′ and the agent receives a
reward r as feedback. This cycle of interaction between the
agent and the environment defines an experience, given by the
tuple

〈
s, a, r, s′

〉
. Experience are used to iteratively estimate

the state-action value function Q.
Q-Learning is one of the most basic RL algorithms that

uses a table to store the Q-values of all possible pairs of action
and state [4]. The update rule of Q-Learning is

Qt (s, a)← (1− α)Qt−1(s, a)+ α(r + γ max
a′

Qt−1(s′, a′)),

(3)

where α is the learning rate (0 < α ≤ 1). The difference
between the target value and the current value is commonly
referred to as Temporal Difference (TD) Error. Q-learning
can identify an optimal action-selection policy π∗(s) = a for
anyMDP, given infinite exploration time and a partly-random
exploratory policy. Q-learning can be extended to continuous
state-spaces, using for example supervised learning tech-
niques to produce an estimate for the Q function.

Deep RL combines RLwith complex neural network archi-
tectures so as to approximate the action-value function. Deep
Q Network (DQN), a Deep RL algorithm, gained notoriety
when it was used to solve ATARI games [5] and was adopted
in our work because it is well-suited for problems where
action space is discrete and state space is continuous.

One source of instability in training are the correlations in
the sequence of observations and changes in data distribution
due to policy change. DQN tackles this problem using a
delayed copy of the neural network to estimate Q-values used
in the TD error. It also adopts experience replay, where it
stores transition data in a replay memory buffer and selects
a batch of random transitions to fit the network at every
learning step. The probability of choosing a transition can
vary according to the problem and can even benefit from
experiences that do not occur very often.

Another technique that improves DQN is Prioritized Expe-
rience Replay [6], where the sampling of experiences is
biased proportionally to the TD error. The idea is to improve

149200 VOLUME 8, 2020

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

sample efficiency by focusing learning on the most ‘‘surpris-
ing’’ experiences.

While Q-Learning and DQN are value-based algorithms
and their goal is to infer Q-values, Policy Gradient (PG)
algorithms act by optimizing estimators that directly output
a continuous action or parameters for action probability dis-
tributions. They are applicable to a wider range of problems
since they can produce stochastic policies and continuous
actions. PG algorithms also have drawbacks: they have the
tendency of converging to local optima and are less sample
efficient.

In the present paper, Deep RL techniques were combined
in a value-based approach that exploits the discrete action rep-
resentation (Section III-C). Q-values estimated for a greedy
policy can be intuitively interpreted in this domain. Q-values
can also be useful in future applications for fast-time sim-
ulations in maritime domain, when inspired by ideas from
robotics [7], [8].

The architecture we adopted extends DQN with
Distributed Prioritized Experience Replay (APE-X); the
resulting mix is known as APE-X-DQN. This latter archi-
tecture was proposed by Horgan et al. [9] and is described
in Section III-E. For an analysis of training performance,
APE-X-DQN is compared with the state-of-art PG algorithm
Proximal Policy Optimization (PPO) [10] in Section IV-D.
PPO has been rather popular within the PG category due to
its performance.

B. RELATED WORK
Few efforts focused on RL within maritime simulators until
some five years ago [11], [12]. The majority of recent papers
combining Deep RL with ship control share similar state
representations; they apply well known algorithms and differ
mostly in terms of level of actuation and in the objective
function. Most tasks can be categorized as a path follow-
ing/tracking, path planning or collision avoidance. Recent
proposals do not necessarily address exclusively one of the
tasks, but usually bring novelty and focus to one of them.

Path following in maritime domain is modeled by RL as
a control task where episodes may have indefinite length.
They can either end in a non-desirable state or have an
infinite horizon with the agent pursuing the desired set-
point. [13] used the DDPG algorithm to follow a straight
line; simulations used a 2-DOF model considering only yaw
and sway velocities. [14] also used DDPG, with a reward
function based on a Gaussian curve given by the cross-track
error and the action continuously controlled the rudder angle.
[15] extended this work so as to follow a curved path. The
agent was first trained for a straight path and then trained in
curved paths; the curves used for tracking were smooth and
the derivative of path relative course was included as state
variable. Simulations were performed for three vessel models
with a 4-DOF model (including roll angle). Reference [16]
used the same infrastructure employed in the current paper
to apply state-of-art Deep RL algorithms to a path following
control task without the need of line of sight strategy.

Path planning applications train the agent so as to provide
desired positions from the starting point to the goal, taking
the ship to be a particle; the generated path is then tracked
using any control strategy [17]. Given a sea area with current,
[18] used Q-learning in its tabular form by discretizing the
sea area uniformly and using abstract discrete actions. That
idea was extended to environmental conditions by [19], and
the approach was similarly implemented by [20], [21]. Dif-
ferently from path following applications, most path planning
tasks are defined to achieve a goal for pre-established scenar-
ios in a finite episode, considering distance to the goal as a
state variable.

Although here we do not deal with dynamic obstacles,
such as target ships, it is appropriate to review collision
avoidance solutions. The literature focuses on autonomous
ships instead of fast-time simulations analysis. Their state
space representations include distance to the goal; reward
functions include a factor proportional to goal proximity.
[22] used a Boolean variable to indicate whether a dynamic
obstacle is closer than a given range to the controlled ship and
concatenates state variables from the last observations into a
matrix; the latter was sent to a convolutional neural network
to produce a compact representation. Actions were defined
as increments in both yaw momentum and propulsion thrust,
requiring an allocation technique in order to control rudder
and propeller. The reward function consisted of a sum of
factors such as constant penalty for each obstacle closer than
delimited safe distance. Reference [23] not only dealt with
path following conventional representation for each agent,
but also variables from target ships in each agent state space.
The reward function took into account path following and
also compliance to COLREGS when ships approach each
other. Reference [24] employed the line of sight strategy
for path following in the state space and defined distance
variable in sectors around the ship within certain range. The
reward function was composed of a path following term and
a collision avoidance term that penalized the weighted sum
of sensor measurements. All reviewed collision avoidance
proposals addressed the problem of non-stationarity of the
environment by randomly generating multiple dynamic sce-
narios for training.

In our work, we focus on channel navigation with indef-
inite horizon. We assume a path is provided as a sequence
of straight segments and we pay attention to collision with
the margins, moving away from conventional path follow-
ing tasks. In a previous publication [2] we looked at a
straight channel without environmental conditions, and we
used the Fitted Q Iteration algorithm. That work was later
improved [3]: although curves were still not accepted, mea-
surements of wind, current and wave forces were processed.

C. THE TPN-USP SHIP MANEUVERING SIMULATOR
The TPN laboratory at University of São Paulo maintains
the largest Brazilian Ship Maneuvering Simulation Center.
Its 4 full-mission simulators, 3 tug stations and 1 crane
simulator can run independently or in integrated manner;

VOLUME 8, 2020 149201

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

FIGURE 1. TPN-USP Ship Maneuvering Simulation Center.

they can represent different navigation or offshore scenarios
(Figure 1). The Simulation Center is employed for evaluation
of new ports and operations, risk analysis, and training of
pilots and captains. The same simulation software can also
be executed in fast-time mode, where an algorithm codifying
the behavior of the pilot controls the ship and tugs – maneu-
vers then run in an accelerated mode, enabling the execution
of a large number of runs under different conditions. Such
a maneuvering simulation is useful in the early stages of
ports design as the statistical analysis of the ship trajectories
suggests layouts for the maneuvering area or their limiting
conditions.

The mathematical model adopted in the TPN-USP simu-
lators takes the motion of a floating vessel at low speed in 6
DOF (degrees of freedom), subjected to external forces due to
the environment and tugboats, and to control forces provided
by thrusters, propeller and rudder [25], [26]. The 6 DOF ves-
sel dynamics differential equations are solved using a fourth
order Runge-Kutta integration method, including interactions
with the fluid and the external forces acting on the hull. For
the sake of simplicity, this section only presents the equations
of motion for the 3 horizontal DOF.

The Earth Fixed Global Reference Frame (GRF) coordi-
nate system is represented by oxyz. The Local Reference
Frame (LRF), oLxLyLzL , is attached to the vessel and centered
in its midship position; it moves and rotates around zL axis
with the body. Figure 2 displays the geometry of the reference
frames in the plane. The vector η = [x y ψ]T gives the
location of a vessel midship and its attitude in the GRF. In this
representation, x is the easting, y is the northing and ψ is the
yaw angle.

The floating rigid body dynamics yields the complete
low-frequency equation of motion, including hydrodynamic
inertial effects and external forces, as follows:

m− Xu̇ 0 0
0 m− Yv̇ mxG − Yṙ
0 mxG − Yṙ Iz − Nṙ

u̇v̇
ṙ


+

 0 − mr − mxGr + Yv̇v+ Yṙr
mr 0 − Xu̇u

mxGr − Yv̇v− Yṙr Xu̇u 0



FIGURE 2. Reference Frames.

×

uv
r

+ (Xu̇ − Yv̇)

 0 r 0
r 0 0
−v uc − u 0

ucvc
0


= Frudder + Fprop + Ftugs + Fcurr + Fwind + Fwave. (4)

The vectors v = [u v r]T and v̇ = [u̇ v̇ ṙ]T are the mid-
ship vessel velocity and acceleration in the LRF respectively.
Parameter m is the vessel rigid body mass, Iz is the moment
of inertia around zL , and xG is the location of the center of
mass with respect to the vessel midship position described in
the LRF. The hydrodynamic derivatives Xu̇, Yv̇, Yṙ , andNṙ are
the terms of the added mass matrix

MA = −

Xu̇ 0 0
0 Yv̇ Yṙ
0 Yṙ Nṙ

 . (5)

This model assumes an ocean current velocity of slow and
irrotational variation that can be decomposed in the LRF as
vc = [uc vc 0]T . Symbols Frudder, Fprop and Ftug denote
the vectors of rudder, propeller and tug induced forces, while
Fcurr, Fwind and Fwave denote the vectors of environmental
forces due to oceanic current, wind and first and second-order
wave interactions.

III. PROPOSAL
In this section we present the formulation of our problem
according to a RL framework. We detail the description of
states, actions, state transitions, reward function, and dis-
count factor. Finally, we describe the algorithm that finds the
desired policy.

A. STATE VARIABLES
Table 1 lists all states variables of interest, and Figure 3
depicts them. In our setting, the propeller command remains
fixed, so the agent does not control velocity [3]. This reduces

TABLE 1. State variables.

149202 VOLUME 8, 2020

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

FIGURE 3. State variables (in bold).

the dimensionality of the problem, as all variables related
to the vessel velocity and longitudinal effects of wind and
current are discarded. Unlike previous work, no information
regarding the margins was directly used in the state repre-
sentation, so as to make the solution more robust against
variations in margin geometry.

The state variable dist_to_path is the distance from the
vessel’s center point to the desired path segment. The value is
negative when the vessel is at the left side of the path point-
ing towards the channel end. The state variable cog_error
denotes the difference between the orientation of the path
segment and the course over ground (cog). The cog was
considered, rather than heading angle, as the vessel can
navigate with drift angle to compensate for environmental
forces. The variable rate_of_turn denotes the angular veloc-
ity, which is positive for clockwise rotation and is important
due to the high rotational inertia. The variables lat_wind_vel
and lat_curr_vel denote the components of wind and water
current velocities acting perpendicular to the ship. These
variables help the policy to compensate for environmental
forces that push the vessel towards the margins. Finally,
state variable dist_to_waypoint carries information on how
far the vessel is from the next way-point and is important to
anticipate the actions required for changing the cog.
As suggested by Bhatt et at. [27], normalization of

state variables so that they vary in a similar range can
enhance learning performance. The variables were normal-
ized between their extreme values observed in prior exper-
iments. The dividing factors for variables can be found
in Table 2.

TABLE 2. Dividing Factors.

B. TASK SEGMENTATION AND CONTEXT VARIABLE
Our initial experiments with curved narrow channels indi-
cated a difficulty with the states described in the previous
section. An experiment was executed in a channel with two
90◦ curves to opposite directions separated by a straight
segment. The agent was to track the centerline segments gen-
erated by the channel margin. The agent learned to navigate
in the first curve and to keep track of the straight middle seg-
ment, but failed in the second curve. That happened because
the state-space representation did not include information
about the ship position relative to the extent of the channel nor
information about the curvature. As the RL agent could not
distinguish any difference between these two states, it could
not learn the correct policy. If the policy were to simply
track the closest segment, it would eventually start to track
another highly misaligned segment, causing collision with
channel margins. Analogously, if the policy is learned with
the second curved segment, it may fail the first one. This
problem is illustrated in Figure 4 (top). The problem could
be solved by tying solutions to specifics of each part of the
channel. However, the policy for certain channel parts would
no longer be applicable to other similar parts (e.g. straight
parts of a channel would not no longer be handled by same
representation due to different positions along the channel).
Figure 4 (bottom) illustrates this issue.
The solution found to achieve a robust policy was, first,

to segment the navigation in different RL episodes, and,
second, to parameterize the Q function by a context variable.
Episode Segmentation: Each RL episode is delimited by

three way-points in the channel centerline with a fixed dis-
tance Lsegment between them. That creates two desired path
segments that the vessel must track, as seen in Figure 5.
Instead of channel center lines, those segments are used as
reference in order to standardize episode length span and to
improve learning efficiency. The distance Lsegment cannot be
too short so as to avoid trajectory instability in face of small
angles, and it cannot be too long so as to avoid reducing the
navigable area. The episode ends as soon as the vessel follows
the two desired path segments and reaches the second way-
point ahead. The segmentation improves sample efficiency,
as experiences from a portion of channel can be used for
similar situations in any channel position.
Context Variable: Pursuing two path segments with dif-

ferent angles under environmental forces demands a policy
that succeds in a diversity of situations. The higher the angle
between path segments, the more the agent must anticipate
the rudder action before finishing the actual segment. We
included context variables in the Q-value function to discrim-
inate the context of the episode that the agent is facing. This
RL technique was proposed by Schaul et al. [28]; it consists
of extending the input of the value function with information
about the context of the task being performed by the agent,
so Q(s, a) becomes Q(s, c, a). This enables multi-task gener-
alization as the policy can use information that discriminates
which task the agent is facing. In our formulation, the context
variable is the smallest difference between the orientation of

VOLUME 8, 2020 149203

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

FIGURE 4. Top: a compact representation with no information about
vessel’s position may ‘‘confuse’’ the policy. Bottom: Vessel’s position
included in the state representation prevents the reuse of policy in
different parts of the channel.

FIGURE 5. Channel partitions.

path segment ahead of the next way-point and the orientation
of the desired path segment being followed, also referred as
next_seg_diff_angle in Figure 5 (for segments at the end of
the channel, this angle is set to zero).

C. ACTIONS
In order to better represent human piloting, rudder commands
are given in discrete values and with minimum time interval

between them. The action values represent the rudder com-
mand and are normalized by the maximum rudder angle
(35◦). The rudder levels used were:−50%,−20%, 0%, 20%,
50%. The propulsion level is fixed at 60% ofmaximum power
along all trajectory. The time interval chosen for transitions
is Ttransition = 10s, which means the vessel remains with the
same commanded rudder level for that amount of time.

D. REWARD
Randløv andAlstrøm [29] argued that negative values prevent
the agent from going through states unnecessarily to accumu-
late positive rewards. Nonetheless, in our previous work [2],
reward functions with negative values for most state-space
led the agent to quickly go for collisions in order to minimize
overall negative punishment. Because the limited available
space in a channel prevents the vessel from navigating away
from the centerline, positive rewards are not an issue.

Thus we selected:

R(s, a, s′) = RcogRdistRrot + Rcollision, (6)

ensuring that reward is negative only for collision states;
factors are multiplied to provide a more steep decrease of
reward as states become undesirable. The reward terms are
defined as follows:

Rcog =
1

(1+ K |scaled_cog_displacement|)
, (7)

Rdist =
1

(1+ K |scaled_distance_to_track|)
, (8)

and

Rrot =
1

(1+ K |scaled_rot|)
, (9)

as they behave in the same way as the vessel moves away
from the track and starts rotating respectively. If the vessel
collides, a −10 punishment value is added to the function:

Rcollision =

{
−10 if ship_collided,
0 otherwise.

(10)

To understand the effect of parameter K , preliminary
experiments demonstrated thatK = 10 improves the punitive
behavior when vessel deviates from desired states; thus K =
10 was adopted. Figure 6 uses the example of rate_of_turn to
show how the factor K affects the reward term. The reward
term function is plottedwithK = 1 and amore punitive factor
K = 10.

E. LEARNING ARCHITECTURE AND ALGORITHM
We used the APE-X-DQN architecture for learning (Figure 7)
[9]. It consists of two parts that share a Replay Memory
Buffer: Actor and Learner. The actor part is actually com-
posed of several actors responsible for interacting concur-
rently with separate environment copies that, in our case, are
instances of the fast-time simulator. The role of each actor
is to evaluate a policy and to store the experiences observed
in a replay memory buffer; its policy is implemented as a

149204 VOLUME 8, 2020

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

FIGURE 6. Effects of rate_of _turn punishment; K = 1 for Less Punitive
Behavior; K = 10 for Punitive Behavior (adopted value).

FIGURE 7. Architecture: APE-X-DQN.

deep neural network. The second part of the architecture
consists of a learner that is responsible for sampling batches
of data from the replay memory buffer to update the policy
parameters. The learner periodically communicates updated
network parameters to the actors. The replay memory buffer
is centralized and shared between the actors – who feed it –
and the learner – who consumes its data.

An actor is instantiated in each computing core available.
The instance contains a copy of the policy neural network and
its function is to collect experiences by interacting with an
instance of the fast-time simulator. Actors explore different
parts of channel under different current and wind conditions
concurrently. The collected experiences consist of the state s
where an action was performed, the action a itself, the state s′

obtained after action, the reward signal r , the context variable
c and the end_flag, indicating whether the state s′ is final in
the episode.

The experience set < s, a, s′, r, c, end_flag > of an actor
is sent to an actor local buffer. Batches with b experiences
from the local buffer have their initial priority value calcu-
lated locally and then are sent to the replay memory buffer.
Priority calculation is given by the TD error using Q-values

estimated with local actor network parameters, as:

TDactor
= rt+γ max

a
Q(st , ct , a, θactor)−Q(st , ct , a, θactor), (11)

where in time step t , rt is the reward, st is the state, ct is the
context, at is the action, γ is the discount factor and θactor
represent the actor network parameters.

The actor’s policy network parameters θactor are synchro-
nized with the primary network parameters at every Tactor
experiences collected from it. Each episode ends either if the
vessel collides, reaches the end of the channel or finishes
tracking two path segments. In order to balance the learning
process throughout the channel, actors initialize the vessel
at their simulator instance randomly in one of the defined
way-points after the vessel collides or reaches the end of
channel. The exploration policy adopted by the actors is the ε-
greedy strategy that selects a random action with probability
ε and acts greedily with probability 1−ε. The actors act while
the training is carried out by the learner.

Algorithm 1 describes the interaction between each actor
and the simulator instance.

Algorithm 1 Actor of APE-X-DQN
1: Initialize simulator instance with channel buoys, current

map and wind map
2: Define waypoints at channel center line with distance of
Lsegment from each other

3: Initialize neural network with received parameters
4: local buffer← ∅
5: repeat
6: Observe state s and context variable c
7: repeat
8: a← ε-greedy(s, c) and execute a
9: Observe s′

10: Get reward r
11: Check if s′ is final and set end_flag
12: Add < s, c, a, s′, r, end_flag > to local buffer
13: if local buffer ≥ b then
14: Compute priorities for experiences in local buffer

(Eq. 11)
15: Add b prioritized experiences to Replay Memory

Buffer
16: end if
17: Every Tactor update θactor ← θ

18: s← s′

19: until episode ends
20: until no more episodes

The learner in the APE-X-DQN architecture employs the
DQN algorithm [5] and consists of a deep neural network that
estimates Q-values for the policy. The learner periodically
sends the actors the weights of this neural network so that
they can update their respective neural networks. The training
of the learner occurs in mini-batches B of experiences sam-
pled from the Replay Memory Buffer D. A gradient-based

VOLUME 8, 2020 149205

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

algorithm is applied to minimize the loss function with the
following learning rule:

Lt (θ) = 1/2(Gt − Q(st , ct , at , θ))2, (12)

which is basically the squared TD error with

Gt = rt + γ max
a
Q(st+1, ct+1, a, θ−), (13)

where θ represents the primary neural network parameters,
and θ− represents the target network parameters. The target
network provides the Q-value for TD Error estimation. Its
weights θ− are adjusted to the primary network weights θ
every time Tθ . Using a slow moving copy of the primary
network in TD estimation improves learning stability.

Following the original DQN paper suggestion for further
stability improvement, the loss function was taken as squared
TD error (Equation 12) when the error value was between -
1 and 1. The loss was replaced by the absolute TD error (|Gt−
Q(st , ct , at , θ)|) outside this interval.
In order to prioritize training for experiences that are more

‘‘surprising’’ [9], the probability of an experience set being
sampled from the replay memory buffer to a batch is modu-
lated by its priority factor. The experience priority is updated
by the learner primary network. The update is also performed
using TD calculations, as in Equation 11, but employing the
primary network parameters θ instead. Each training itera-
tion to the primary network occurs at every Nsteps−per−iter
experiences collected from actors. Algorithm 2 describes the
training process in the learner.

Algorithm 2 Learner of APE-X-DQN
1: Initialize Replay Memory Buffer D
2: Initialize primary action-value functionQ(s, c, a, θ) with

random weights θ
3: Initialize target action-value function Q̂(s, c, a, θ−) with

weights θ− = θ
4: repeat
5: Sample a prioritized batch B of experiences from D
6: Compute loss function L (Eq. 12)
7: Update parameters θ using supervised learning and L
8: Every Tθ steps reset θ−← θ

9: Compute priorities for D
10: Periodically remove old experiences from D
11: until no more learning

IV. EXPERIMENTS
In this section we describe experiments with a real scenario.
We describe the area setting and vessel type in Section IV-A;
then we describe the current and wind conditions in
Section IV-B. The parameters adopted in the training are
given in Section IV-C; we analyze the training process and
policy performance in Section IV-D, and finally we evaluate
the robustness of policy obtained in Section IV-E.

A. NAVIGATION AREA AND VESSEL TYPE
The proposedmethod was analyzed in navigation simulations
in the Porto Sudeste Access Channel. It is located in Sepetiba
Bay, State of Rio de Janeiro, in the Southeast region of Brazil
(Figure 8).

FIGURE 8. Location of the Porto Sudeste Access Channel.

The simulated section of the access channel is approxi-
mately 16km (8.6 nautical miles) long, in three straight parts
with a 58◦, 85◦ and 30◦ heading, respectively. The minimum
depth of the channel is 19m and the minimum width is 206m.
There is a bend to access the final stretch of the channel, with
a radius of 1600m (Figure 9).

FIGURE 9. Porto Sudeste Access Channel over the Nautical Chart.

The vessel type used was a full loaded Suezmax DP tanker
(160,000DWT). Although this ship has bow and stern
thrusters, the navigation along the access channel was carried
out only with the machine (propeller) and rudder. The ship’s
characteristics in shallow and deep waters are shown in the
Figure 10.

B. CURRENT AND WIND CONDITIONS
The training and simulations were executed in different sce-
narios. Both Flood and Ebb current conditions were consid-
ered, with speed (measured at the main curve) from 0.4 to
1.0kn. The 20knWandNwindwere associatedwith the flood
and ebb scenarios, respectively. Figure 11 shows the current
in the navigation channel obtained from a validated hydrody-
namic model. Table 3 shows the simulated environment.

149206 VOLUME 8, 2020

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

FIGURE 10. Suezmax DP tanker: (left) main characteristics; (right) maneuvering properties.

TABLE 3. Environmental Scenarios (used for validation/training).

C. TRAINING SETTINGS
Because the agent learned navigation under different envi-
ronmental conditions, massive experience collection was
required, so the architecture was combined with DQN using
48 CPU cores with 2.5GHz of clock frequency and 128GB of
RAM memory. The framework used for implementation was
RLLIB [30] with the Python programming language.

The neural network adopted is a regular Multilayer Percep-
tron [31] with input of dimension 7 (number of state variables
and a context variable) and output of dimension 5 (number of
actions). The number of hidden layers used was 2 and the
choice was based on a previous effort whose control task
solved by RL had a similar complexity [32]. The number
of perceptrons for hidden layers was chosen as 64 and 32,
respectively. The adopted activation function was ReLu (Rec-
tifier Linear Unit) [33] using ADAM optimizer [34]. The
weights of the perceptrons are updated, among other factors,
by the gradient of error weighted by a learning rate, defined as
lr = 0.001. The target network was updated with the primary

network weights at a rate of Tθ = 8.105 steps of experience
tuples collected.

The replay buffer size was set to comprise at most Nbuf =
4.8.105 steps. The number of experiences collected until a
training iteration occurs was set to Nstep−per−iter = 1000 and
the batch size to B = 128. Exploration was set to decrease
linearly from ε = 100% to ε = 10% in 2.106 steps, as seen
in Figure 12 and each actor stores b = 50 experiences locally
before sending them to replay buffer.

The numerical integration step in the training process
is 1Ttrain = 2s. This is a trade-off between computa-
tional performance and integration accuracy of the mathe-
matical model differential equations. However, the trained
policies were evaluated in time-domain simulations using
1Teval = 0.1s, as means of assuring that the coarseness of
1Ttrain does not generate unsatisfactory policies when the
fast-time simulations are executed with smaller integration
step.

The distance between way-points Lsegment considers the
trade-off mentioned in Section III-B, so that the desired
path segment does not intersect margins considering the
lowest radius of the bends r and the minimum channel
width w compatible with real-world channels. The adopted
values are compliant with the Harbour Approach Channels
Design Guidelines [35]. For the navigation speed of 4m/s,
under moderate crosswind and cross current velocities, w =
4Beam ≈ 190m. The minimum value for bend radius is r =
5Loa ≈ 1400m. Considering this scenario as the bottleneck,
Lsegment = 650m.

VOLUME 8, 2020 149207

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

FIGURE 11. Environmental conditions - Current Vectors and Wind Direction: (up) Flood tide scenario; (down) Ebb tide scenario.

FIGURE 12. Exploration ε along training.

D. MULTIPLE SCENARIOS TRAINING
In this experiment, actors collected experiences in 4 different
wind and current scenarios for Porto Sudeste simultaneously
(E04, E08, F04 and F08, as shown in IV-B). These four

scenarios were deemed representative of the phenomena we
wish to study. This training was extended until the collection
of 6.106 experience sets, and required less than 1h30 with
the available computational resources. Three different trials
were run both with APE-X-DQN and also with the PPO
algorithm as amatter of comparison. The evolution of training
is measured in terms of steps collected by the actors. In order
to obtain a fair comparison, PPO trials were set with the same
hyperparameters that are common to both algorithms, such
as number of actors, batch size, steps collected per training
iterations and learning rate. Other PPO specific parameters
were maintained according to its original paper [10].

Figure 13 displays the average accumulated reward as
training progresses. The more steps are collected and train-
ing iterations occur, the higher the average accumulated
reward per episode grows until it stabilizes in a near-optimal

149208 VOLUME 8, 2020

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

FIGURE 13. Average accumulated reward per episode (moving average
from 100 episodes). Mean from 3 learning trials in darker orange and
darker blue; standard deviation in shaded lighter orange and lighter blue.

situation. Marginal oscillations are common as the episodes
run over different portions of the channel. Although such
oscillations occur for both algorithms, PPO displayed a
slower convergence.

FIGURE 14. Average episode length (moving average from 100 episodes).
Mean from 3 learning trials in darker orange and darker blue; Standard
deviation in shaded lighter orange and lighter blue.

Figure 14 also conveys the training improvement as the
average episode length grows, meaning that the vessels are
navigating longer distances without collision.

As the desired trajectory is obtained by testing the policy
in the full channel and the training episode is limited to the
extent of two path segments, an evaluation is performed at
every 10 training iterations. Figure 15 shows the maximum
fraction of the channel obtained by the policy with explo-
ration suspended in scenario E10. This scenario was not
explored during training and is considered one of the most
critical scenarios that occur in the channel area. Therefore,
it was chosen to evaluate the generalization ability of the
policy. The values were also averaged for 3 trials of each
algorithm. The value shows high variance among trials as
small differences in policy canmake the vessel collide in early
curves.

For practical purposes, the policy can be adopted as soon
as the evaluation satisfies the established condition, which
is 95% of the channel portion reached. The behavior can

FIGURE 15. Fraction of channel reached by periodic evaluation of policy.
Mean from 3 learning trials in darker orange and darker blue; Standard
deviation in shaded lighter orange and lighter blue.

be extended to any other scenarios as well. Even with a
somewhat oscillatory convergence, APE-X-DQN was able to
produce a policy that generalized navigation to E10 scenario
first.

The choice of APE-X-DQN is still more attractive in this
domain not only for obtaining the desired policy faster, but
also for estimating Q-values, as previously mentioned in
Section II-A.

As an example of the policy performance, the trajectory
obtained for training under condition E08 is depicted in
Figure 16. The agent is able to maneuver in both curves, even
under the effect of environmental forces. Note that the agent
can anticipate the change in the orientation of the desired path
segments to execute the curve with minimum overshoot.

Figure 17 shows the minimum distance between the vessel
and the margins during navigation under Scenario E08. The
agent could keep a safe distance from the margins during
the complete maneuver. The minimum distance is 64m in
the first curve at t = 1200s, which is acceptable (usual
acceptance criteria adopted by pilots is distance larger than
0.5− 1× Beam).
The vessel’s heading, course over ground (cog), and the

channel centerline orientation are shown in Figure 18. The
heading and cog are ahead of the channel orientation angle,
showing the ability to anticipate the curve, as a result of the
state-space model that contains information of the curvature
ahead and distance to the orientation change. Consequently,
the maneuver could be performed with almost no overshoot
in the bends. The difference between cog and heading is
the drift angle, required for compensating the perpendicular
environmental forces. The value is less than 5◦ in the present
case and is also employed by human pilots as a measurement
of how difficult the course is.

The agent actions (rudder angle) are shown in Figure 19,
for a 1000s time-window. The agent applies minimum
positive rudder angle to keep the required drift angle for
counteracting the environmental forces in straight segments
(t < 700s and t > 1500s). During the curve, there is a
higher rudder action necessary to control the rate-of-turn.

VOLUME 8, 2020 149209

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

FIGURE 16. Trajectory obtained for condition E08 (green vectors=wind, blue vectors=current).

FIGURE 17. Minimum distance between vessel and margins for condition
E08.

FIGURE 18. Vessel’s heading and course over ground in Scenario E08.

The frequency of rudder commands is similar to a
human-controlled maneuver.

Although the maneuver is executed with a fixed propeller
command, the speed over ground varies from 3.4m/s to

FIGURE 19. Rudder angles commanded by the agent and its effective
value in Scenario E08.

FIGURE 20. Speed over ground along the navigation in Scenario E08.

4.5m/s, due to the variation of the longitudinal environmental
forces and the speed loss after curves (Figure 20). This varia-
tion is sufficiently small such that the RL agent (that does not

149210 VOLUME 8, 2020

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

take the speed as a state variable) could accurately control the
vessel’s maneuver. The experiences acquired during training
enabled the agent to learn how to generalize the vessel’s
behavior in this speed interval.

The policy obtained was able to keep track of the desired
path segments at the same time that environmental forces
were compensated; that was achieved with rudder commands
that closely resemble human piloting. As expected, the pres-
ence of a context variable and the distance to way-point pro-
vided to the policy improved the ability to anticipate curves
without getting too close to margins.

E. ROBUSTNESS ANALYSIS
The policy trained in the four described scenarios simulta-
neously had improved extrapolation ability; the agent was
able to successfully navigate in different scenarios from the
ones used in training. Table 4 shows the new scenarios,
with changes in wind conditions from E08. The agent was
presented to those conditions and still could successfully
navigate the complete channel (Figure 21).

TABLE 4. Wind changes from Scenario E08.

FIGURE 21. Policy trained in Scenarios E04,E08,F04,F08 and
simultaneously tested in E08 with wind changes. Blue ship: Scenario
E08WM20-; Orange ship: Scenario E08WM20+; Purple ship: E08WD250,
Green ship: E08WD290.

FIGURE 22. Policy trained in Scenarios E04,E08,F04,F08 and
simultaneously tested in other scenarios. Blue ship: Scenario F05; Orange
ship: Scenario E10; Purple ship: E05, Green ship: E06.

FIGURE 23. Distance to margins for policy trained with Scenarios
E04,E08,F04,F08, and tested in other scenarios. (0-F05; 1-E10; 2-E05;
3-E06; 3-E08WM20-; 4-E08WM20+; 5-E08WD250; 6-E08WD290).

The robustness of the agent can also be accessed in scenar-
ios with different current conditions from those used during
training. Figure 22 demonstrates the behavior in Scenarios
E05, E06, E10 and F05. For both ebb and flood currents,
the agent executed the curves much better than in single
scenario training and no collisions occurred.

Figure 23 depicts the distance from vessel to margins
for all navigations in scenarios not included in training. All

VOLUME 8, 2020 149211

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

trajectories succeed in reaching the end of the channel; note
that the agent performed curves with safe distance to margins
and small discrepancies in behavior amongst most scenarios.

Extrapolation to new conditions (robustness) was achieved
because experiences under different scenarios were processed
during training. That strategy prevented the neural network
from overfitting to one environmental scenario.

V. CONCLUSION
We presented a solution for trajectory generation in fast-time
simulations of navigation in restricted port channels. Our
solution can handle narrow curves and environmental forces
that might affect the vessel differently as channel orientation
changes. We also employed human-like commands with dis-
crete levels spaced by time intervals. Our solution is based on
reinforcement learning and requires substantial parallel com-
puting resources; we demonstrated its robustness by running
through scenarios in which the controller had not been trained
for.

Futurework should include the final phase of ship berthing,
which depends on commands to tugboats and propeller com-
mands for velocity reduction. Although the present work
focuses on fast-time simulations for project analysis, where
obstacles are static, future work must also consider two-way
channels with passing vessels, with further analysis on safety
so that the model can be transferred to autonomous marine
vehicles.

ACKNOWLEDGMENT
The authors would like to thank to Petrobras for supporting
the development of the maneuvering simulator used in this
work.

REFERENCES
[1] C. Chen, M. Vantorre, E. Lataire, M. Candries, K. Eloot, and

A. J. Verwilligen, ‘‘Intelligent control strategies used in fast-time ship
manoeuvring simulations,’’ in Proc. Marsim, 2018, pp. 1–17.

[2] J. Amendola, A. E. Tannuri, F. G. Cozman, and H. A. R. Costa, ‘‘Batch
reinforcement learning of feasible trajectories in a ship maneuvering sim-
ulator,’’ in Proc. Anais do Encontro Nacional de Inteligência Artificial e
Computacional (ENIAC), 2018, pp. 263–274.

[3] J. Amendola, E. A. Tannuri, F. G. Cozman, and A. H. R. Costa, ‘‘Port
channel navigation subjected to environmental conditions using reinforce-
ment learning,’’ in Proc. Int. Conf. Offshore Mech. Arctic Eng., vol. 58844.
New York, NY, USA: American Society of Mechanical Engineers, 2019,
pp. 1–10.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). Cambridge, MA, USA:
MIT Press, 2018.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[6] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized
experience replay,’’ 2015, arXiv:1511.05952. [Online]. Available:
http://arxiv.org/abs/1511.05952

[7] F. Cruz, S. Magg, Y. Nagai, and S. Wermter, ‘‘Improving interactive
reinforcement learning: What makes a good teacher?’’ Connection Sci.,
vol. 30, no. 3, pp. 306–325, 2018.

[8] T.M.Moerland, J. Broekens, and C.M. Jonker, ‘‘Emotion in reinforcement
learning agents and robots: A survey,’’ Mach. Learn., vol. 107, no. 2,
pp. 443–480, Feb. 2018.

[9] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. van Hasselt, and D. Silver, ‘‘Distributed prioritized experience
replay,’’ 2018, arXiv:1803.00933. [Online]. Available: http://arxiv.
org/abs/1803.00933

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

[11] M. Stamenkovich, ‘‘An application of artificial neural networks for
autonomous ship navigation through a channel,’’ in Proc. IEEE PLANS
Position Location Navigat. Symp. Rec., Monterey, CA, USA, 1992,
pp. 346–352.

[12] M. Lacki, ‘‘Reinforcement learning in ship handling,’’ TransNav, Int. J.
Mar. Navigat. Saf. Sea Transp., vol. 2, no. 2, pp. 157–160, 2008.

[13] L. Zhang, L. Qiao, J. Chen, and W. Zhang, ‘‘Neural-network-based rein-
forcement learning control for path following of underactuated ships,’’ in
Proc. 35th Chin. Control Conf. (CCC), Jul. 2016, pp. 5786–5791.

[14] A. B. Martinsen and A. M. Lekkas, ‘‘Straight-path following for under-
actuated marine vessels using deep reinforcement learning,’’ IFAC-
PapersOnLine, vol. 51, no. 29, pp. 329–334, 2018.

[15] A. B.Martinsen and A.M. Lekkas, ‘‘Curved path following with deep rein-
forcement learning: Results from three vessel models,’’ in Proc. OCEANS
MTS/IEEE Charleston, Oct. 2018, pp. 1–8.

[16] R. P. A. Rejaili and J. M. P. Figueiredo, ‘‘Deep reinforcement learning
algorithms for ship navigation in restricted waters,’’ Mecatrone, vol. 3,
no. 1, pp. 1–10, 2018.

[17] C. Zhou, S. Gu, Y. Wen, Z. Du, C. Xiao, L. Huang, and M. Zhu,
‘‘The review unmanned surface vehicle path planning: Based on multi-
modality constraint,’’ Ocean Eng., vol. 200, Mar. 2020, Art. no. 107043.

[18] K. Mitsubori, T. Kamio, and T. Tanaka, ‘‘Finding the shortest course of
a ship based on reinforcement learning algorithm,’’ J. Jpn. Inst. Navigat.,
vol. 110, pp. 9–18, Mar. 2004.

[19] T. Kamio, K. Mitsubori, T. Tanaka, H. Fujisaka, and A. Haeiwa, ‘‘Effects
of prior knowledge on multi-agent reinforcement leaning system to find
courses of ships,’’ Austral. J. Intell. Inf. Process. Syst., vol. 12, no. 2,
pp. 18–23, 2010.

[20] C. Wang, X. Zhang, R. Li, and P. Dong, ‘‘Path planning of maritime
autonomous surface ships in unknown environment with reinforcement
learning,’’ in Proc. Int. Conf. Cognit. Syst. Signal Process. Singapore:
Springer, 2018, pp. 127–137.

[21] C. Chen, X.-Q. Chen, F. Ma, X.-J. Zeng, and J. Wang, ‘‘A knowledge-free
path planning approach for smart ships based on reinforcement learning,’’
Ocean Eng., vol. 189, Oct. 2019, Art. no. 106299.

[22] Y. Cheng and W. Zhang, ‘‘Concise deep reinforcement learning obstacle
avoidance for underactuated unmanned marine vessels,’’ Neurocomputing,
vol. 272, pp. 63–73, Jan. 2018.

[23] L. Zhao and M.-I. Roh, ‘‘COLREGs-compliant multiship collision avoid-
ance based on deep reinforcement learning,’’ Ocean Eng., vol. 191,
Nov. 2019, Art. no. 106436.

[24] E. Meyer, H. Robinson, A. Rasheed, and O. San, ‘‘Taming an autonomous
surface vehicle for path following and collision avoidance using deep
reinforcement learning,’’ IEEE Access, vol. 8, pp. 41466–41481, 2020.

[25] N. A. Q. Filho, M. Zimbres, and A. E. Tannuri, ‘‘Development and vali-
dation of a customizable DP system for a full bridge real time simulator,’’
in Proc. Int. Conf. Ocean, Offshore Arctic Eng. (OMAE), vol. 1A, 2014,
pp. 1–11.

[26] E. A. Tannuri, F. Rateiro, C. H. Fucatu, M. D. Ferreira, Q. I. Masetti,
and K. Nishimoto, ‘‘Modular mathematical model for a low-speed maneu-
vering simulator,’’ in Proc. 33rd Int. Conf. Ocean, Offshore Arctic Eng.
(OMAE), San Franscisco, CA, USA, 2014, pp. 1–10.

[27] A. Bhatt, M. Argus, A. Amiranashvili, and T. Brox, ‘‘CrossNorm:
Normalization for off-policy TD reinforcement learning,’’ 2019,
arXiv:1902.05605. [Online]. Available: https://arxiv.org/abs/1902.05605

[28] T. Schaul, D. Horgan, K. Gregor, and D. Silver, ‘‘Universal value function
approximators,’’ in Proc. Int. Conf. Mach. Learn., 2015, pp. 1312–1320.

[29] J. Randløv and P. Alstrøm, ‘‘Learning to drive a bicycle using reinforce-
ment learning and shaping,’’ in Proc. Int. Conf. Mach. Learn. (ICML),
1998, pp. 463–471.

[30] E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox, K. Goldberg,
J. E. Gonzalez, M. I. Jordan, and I. Stoica, ‘‘RLlib: Abstractions for
distributed reinforcement learning,’’ 2017, arXiv:1712.09381. [Online].
Available: http://arxiv.org/abs/1712.09381

149212 VOLUME 8, 2020

J. Amendola et al.: Navigation in Restricted Channels Under Environmental Conditions

[31] S. S. Haykin, Neural Networks: A Comprehensive Foundation.
Upper Saddle River, NJ, USA: Prentice-Hall, 1999.

[32] R. Hafner and M. Riedmiller, ‘‘Reinforcement learning in feedback con-
trol,’’Mach. Learn., vol. 84, no. 1, pp. 137–169, Jul. 2011.

[33] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1–6.

[34] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Representations (ICLR), San Diego, CA,
USA, Y. Bengio and Y. LeCun, Eds., May 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

[35] M. McBride et al., ‘‘Harbour approach channels—Design guidelines,’’
PIANC, Gen. Secretariat Boulevard Roi Albert II, Brussels, Belgium,
PIANC Rep. 121, Jan. 2014.

JOSÉ AMENDOLA received the degree in electri-
cal engineering from the University of São Paulo,
in 2013, where he is currently pursuing the mas-
ter’s degree with the TPN Laboratory. He is also
a Software Developer with the TPN Laboratory,
University of São Paulo. His current research inter-
ests include artificial intelligence, autonomous
navigation, and intelligent control systems.

LUCAS S. MIURA is currently pursuing the bach-
elor’s degree in automation and control engineer-
ing with the University of São Paulo. He is also
a member of the University AI Turing Group. His
current research interests include machine learn-
ing, data science, and software engineering.

ANNA H. REALI COSTA (Member, IEEE)
received the Ph.D. degree in electrical engineering
from the University of São Paulo (USP), Brazil.
She has been a Guest Research Scientist with
the Karlsruhe Institute of Technology (KIT), Ger-
many, working on computer vision and intelligent
mobile robots, with the Institute for Process Com-
puting, Automation and Robotics (IPR), and with
the FZI Research Center for Computer Science
in Karlsruhe working on machine learning and

computer vision. She has also been a Guest Researcher with Carnegie
Mellon University, where she worked on planning, execution, and learning
for multi-robot applications. She is currently a Full Professor with USP.
She is also the Head of the Intelligent Techniques Research Laboratory,
USP. Her research interests include machine learning, more specifically in
reinforcement learning, autonomous agents, and transfer learning.

FÁBIO G. COZMAN received the engineering
degree from the University of São Paulo (USP),
Brazil, and the Ph.D. degree in robotics from
Carnegie Mellon University, USA. He is cur-
rently a Full Professor with USP, where he works
with probabilistic reasoning andmachine learning.
He has served, among other activities, as the Pro-
gram Chair and a General Chair of the Conference
on Uncertainty in Artificial Intelligence, an Area
Chair of the International Joint Conference on

Artificial Intelligence, an Associate Editor of the Journal of Artificial Intel-
ligence, the Journal of Artificial Intelligence Research, and the International
Journal of Approximate Reasoning, and the Chair of the Special Committee
on Artificial Intelligence of the Brazilian Computer Society.

EDUARDO AOUN TANNURI (Member, IEEE)
was born in São Paulo, Brazil, in 1976. He received
the degree in mechatronics engineering and the
Ph.D. degree in control from the University of São
Paulo, Brazil, in 1998 and 2003, respectively.

He is currently a Full Professor with the Depart-
ment of Mechatronics Engineering, University of
São Paulo. He has published 188 articles in con-
ferences and 38 in journals. His research interest
includes non-linear dynamics and control, with

applications in autonomous maritime vehicles and ship maneuverability.
He has been a member of the International Towing Tank Conference (ITTC)
Maneuvering Committee, since 2011. He received award of the Best Student
Paper in the IFAC CAMS Conference, in 2001, and the National Prizes
(Brazilian Navy EngineeringMerit Award, in 2017, and the National Agency
for Petroleum, Natural Gas and Biofuels Innovation Prize, in 2019).

VOLUME 8, 2020 149213

