
Dealing with Imprecise Probabilities:
Interval-Related Talks at ISIPTA’05

What was the conference? From July 20–24, 2005, the 4th International Sym-
posium on Imprecise Probabilities and Their Applications (ISIPTA’05) was held
on the campus of Carnegie Mellon University in Pittsburgh, Pennsylvania, USA.
This biennial conference is organized by the Society for Imprecise Probability
Theory and Applications (SIPTA) [13]. The main organizers of ISIPTA’05 were
Fabio G. Cozman (University of Sao Paulo, Brazil), Robert Nau (Duke Universi-
ty, USA), and Teddy Seidenfeld (Carnegie Mellon University). Papers presented
at ISIPTA’05 were authored by researchers from a very diverse list of countries:
Belgium, Brazil, the Czech Republic, France, Germany, Israel, Italy, New Zealand,
Russia, Slovenia, Spain, Switzerland, the UK, and the US.

This ISIPTA conference had an interesting format that had been found valu-
able in previous conferences. The first day was devoted to tutorials, starting with
an introduction to imprecise probabilities given by Gert de Cooman, President of
SIPTA. Starting the second day, each regular paper was presented in a plenary ses-
sion, which was followed by a poster session where each presenter of that session
also presented a poster and actively communicated with interested participants. A
special session was devoted to open problems, and the conference was immedi-
ately followed by a half-day workshop on a key application area, financial risk
assessment.

Next we review subjective probabilities as traditionally handled. With that as
background, we review the imprecise probability approach. In this review, we
mainly follow the tutorial given by G. de Cooman. This review is followed by
problems, challenges, and steps toward their resolution presented by researchers at
the conference.

Subjective probabilities through preferences and lotteries. To better understand
the ideas and techniques behind imprecise probabilities, let us start by describing
a traditional approach to subjective probabilities, with particular reference to an
important application of probabilistic analysis, decision making; for details see,
e.g., [11].

A person’s rational decisions are based on the relative values to the person
of different outcomes. In financial applications, the value is usually measured in
monetary units such as dollars. However, the same monetary amount may have
different values for different people: e.g., a single dollar is likely to have more
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value to a poor person than to a rich one. In view of this difference, in decision
theory, to describe the relative values of different outcomes, researchers use a special
utility scale instead of the more traditional monetary scales.

There are many different ways to elicit utility from decision makers. A common
approach is based on preferences of a decision maker among lotteries. A simple
way to define a lottery is as follows. Take a very undesirable outcome A− and a very
desirable outcome A+, and then consider the lottery A(p) in which we get A+ with
probability p and A− with probability 1 − p (p is given and is usually understood
as an “objective” probability). Clearly, the larger p, the more preferable A(p):
p < p′ implies A(p) < A(p′). Traditional decision theory is based on assumptions
concerning preferences over lotteries. For example, the following two assumptions
are usually adopted as axioms:

• the comparison amongst lotteries is a linear order—i.e., a person can always
select one of the two alternatives, and

• the comparison is Archimedean—i.e. if for all ε > 0, an outcome B is better
than A(p − ε) and worse than A(p + ε), then it is of the same quality as A(p):
B ∼ A(p) (where A ∼ B means that A and B are of the same quality).

Because of our selection of A− and A+, most reasonable outcomes are better
than A− = A(0) and worse than A+ = A(1). Due to linearity, for every p, either
A(p) < B, or B ∼ A(p), or B < A(p). If we define the utility of outcome B as
u(B)

def
= sup{p | A(p) < B}, we have A(u(B) − ε) < B and A(u(B) + ε) > B; thus,

due to the Archimedean property, we have A(u(B)) ∼ B. This value u(B) is called
the utility of the outcome B.

Comment. As defined above utility always takes values within the interval [0, 1].
It is also possible to define utility to take values within other intervals. Indeed,
note that the numerical value u(B) of the utility depends on the choice of reference
outcomes A− and A+. If we select a different pair of reference outcomes, then
the resulting numerical utility value u′(B) is different. The usual axioms of utility
theory guarantee that two utility functions u(B) and u′(B) corresponding to different
choices of the reference pair are related by a linear transformation: u′ (B) = a⋅u(B)+b
for some real numbers a > 0 and b. By using appropriate values a and b, we can then
re-scale utilities to make the scale more convenient (e.g. in financial applications,
closer to the monetary scale).

From our definition of the utility function, if an event E has an objective
(frequency-based) probability p, the utility of the lottery “A+ if E and A−
otherwise” is exactly p. Therefore, to gauge the subjective probability of an arbi-
trary event E, we can form a lottery “A+ if E and A− otherwise” and define the
subjective probability of E as the utility of this lottery. In other words, the subjective
probability P(E) of E is the value p for which the lottery “A+ if E, otherwise A−”
is equivalent to “A+ with probability p, otherwise A−.”
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Often, we have a “branching” situation involving n incompatible events E1 , …, En

such that exactly one of them will occur. E.g. coins can fall heads or tails, dice can
show 1 to 6, etc. In such situations, for every n outcomes B1, …, Bn, we can form a
lottery by assigning outcome Bi if event Ei occurs. If we know the utility ui = u(Bi) of
each outcome Bi, and we know the (subjective) probability pi = P(Ei) of each event
Ei, then the utility of the corresponding lottery may be determined as follows.

We know the subjective probability pi of each event Ei. Thus, the lottery “Bi if
Ei” if equivalent to the lottery in which we get Bi with probability pi. The fact that
u(Bi) = ui means that each Bi is equivalent to getting A+ with probability ui and A−
with probability 1 − ui. By replacing each Bi with this new “lottery,” we conclude
that the lottery “if Ei then Bi” is equivalent to a two-step lottery in which we:

• first select Ei with probability pi, and

• then, for each i, select A+ with probability ui and A− with the probability 1− ui.

In this two-step lottery, the probability of getting A+ is equal to p1 ⋅ u1 + · · · + pn ⋅ un

(often this is obtained by adding suitable axioms on combination of lotteries, but the
meaning should be intuitive here). Thus, by our definition of utility, the utility of the

lottery “if Ei then Bi” is equal to u =
n∑

i= 1
pi ⋅ ui =

n∑
i= 1

p(Ei) ⋅ u(Bi). In mathematical

terms, u is the expected value of the utility, so this approach is often called the
expected utility approach.

In the traditional approach, between several alternatives we select the one with
the largest utility u, hence the one with the largest value of the expected utility.

The “traditional” approach in mathematical terms. Events can be naturally
described as subsets Ei of the set Ω of possible states of the world; this set is called
the sample space.

From this viewpoint, a lottery can be described as a function that assigns,
to each state ω ∈ Ω, a value ƒ(ω): E.g., a lottery “if Ei then Bi” means that
ƒ(ω) = ui = u(Bi) when ω ∈ Ei. Different researchers use different terms to
describe such mappings, random variables being typical but random quantities also
common. In the imprecise probability community, often such mappings ƒ : Ω → R
are called gambles—a term made popular by P. Walley [15]. This term emphasizes
the subjective component of most theories that deal with imprecision in probability
values, and their reliance on preferences and choices. However, it should be pointed
out that several researchers in the community of imprecise probabilities seek a more
“objective” viewpoint in which “gambles” and “preferences” have no place. An
important example is K. Weichselberger’s theory of interval probabilities [16]. The
term “random variable” is thus employed both by those with a more “objectivist”
bent and by those who want to stick to a well-known term.

Now let’s consider the expected utilities u(ƒ) of different gambles further. The
terms expected value and expectation are widely used in this context; a less well-
known term that is often used in the imprecise community is the term prevision.
This term was originally proposed by B. de Finetti, one of the founders in the
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foundations of probability and decision making; the term has been made popular
in the imprecise probability community again through the work of P. Walley. A
prevision maps a gamble into a real number; a prevision u(ƒ) =

∑
ω

p(ω) ⋅ ƒ(ω)

(introduced above) is a linear functional on the linear space of all gambles.
According to the above description, a natural way to describe this functional is

to describe the probability P(E) of each event E ⊆ Ω—i.e., in mathematical terms,
to describe a probability measure P.

It is well known that we do not have to describe all the values P(E) for all subsets
E: since P(E) =

∑
ω ∈E

p(ω), it is sufficient to describe the probability density, i.e., the

probabilities p(ω) of individual states ω .

Computational aspects of the “traditional” approach. From a purely mathe-
matical viewpoint, all three approaches—prevision (linear functional), probabil-
ity measure, and probability density—are equivalent (at least when the set Ω is
finite).

However, from a computational viewpoint, there is a major difference between
the three representations.

• When we have n possible states ω ∈ Ω, then, to describe the probability density
p(ω), we need to store n values p(ω) corresponding to different states ω .

• To explicitly describe the probability measure P(E), we need to store the values
P(E) corresponding to all 2n subsets E ⊆ Ω—i.e., we need to store 2n values.
For large enough n, e.g. n ≥ 500 to 1000, this value exceeds the number of
particles in the Universe and is thus not realistic.

• Finally, to explicitly describe the prevision, we must store infinitely many dif-
ferent values u(ƒ) for infinitely many gambles ƒ. When we approximate each
value ƒ(ω) by a value from a k-element set Sk, then each approximate gamble
ƒ(ω) is a function from the n-element set Ω to a k-element set Sk. There are kn

such functions ƒ : Ω → Sk; so, to directly describe a mapping u(ƒ), we need to
store kn values of u(ƒ). For k > 2, we have kn 
 2n, so for large n, representing
all these values is even less realistic than representing the probability measure.

As a result, in the traditional approach, the probability density is most commonly
used in practical applications.

From the “traditional” approach to imprecise probabilities. Utility theory is
typically based on the assumption that the preference relation is a linear order, so that
we can always select between two given alternatives. In practice, if the consequences
of two alternatives are similar, it is very difficult to select between them. Imprecise
probabilities are obtained from such partially ordered preferences.

Each gamble ƒ(ω) can still be compared with different lotteries “A+ with proba-
bility u and A− otherwise,” but we can no longer guarantee that there is only one u
for which the gamble is equivalent to this lottery. Instead there are, in general, two
values: the largest value u(ƒ) for which the lottery is worse than ƒ or is equivalent
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to ƒ, and the smallest value u(ƒ) for which the lottery is better than ƒ or equivalent
to ƒ. When u ∈ (u(ƒ), u(ƒ)), there is no guidance on whether the lottery is better or
the gamble is better.

In other words, we have an interval-valued prevision u(ƒ) = [u(ƒ), u(ƒ)] which
maps each gamble ƒ into an interval. In economic terms,

• u(ƒ) is the largest price (in “utiles”—units of utility) that we are willing to pay
to participate in the gamble ƒ, and

• u(ƒ) is the smallest price for which we are willing to sell our right to participate
in the gamble.

Interval-valued previsions form a general description framework for imprecise
probabilities (although, as we will remark later, an even more general descrip-
tion is sometimes needed). However, as mentioned earlier, explicitly describing
an interval-valued prevision requires that we store an unrealistic number (kn) of
intervals.

In principle, similarly to representing a prevision in terms of a probability
measure, we can represent an interval-valued prevision as a set of the corresponding
probability measures—namely, probability measures that correspond to all the
previsions u(ƒ) ∈ u(ƒ). However, this time, this representation does not seriously
decrease the computational complexity, because we need arbitrary convex sets P
of probability measures. Convex sets of probability measures (and sometimes non-
convex sets as well) are often called credal sets, after the credal states introduced
by I. Levi [9].

To decrease the computational complexity, it is often reasonable to restrict our-
selves to a specific case of interval-valued probability measures P(E) = [P(E), P(E)],
where P is the box {P | P(E) ∈ P(E) for all E}. Some natural conditions cannot
be represented in this form however, because an interval-valued probability cannot
express any arbitrary set of probabilities—and two different sets of probability mea-
sures represent two different interval-valued previsions. For example, the condition
that P(A) ≥ 2P(B) for some events A and B is not a condition that interval-valued
probability can exactly represent, because the constraint is over a linear combination
of events, not simply over events.

Even representing an interval-valued probability measure still requires storing a
large number (2n) of intervals. To further decrease the computational complexity,
we may want to consider an even narrower class of imprecise probabilities which
correspond to interval-valued probabilities p(ω) = [p(ω), p(ω)]. In this case, to
represent the uncertainty, we only need to store n intervals.

Other computationally interesting classes include p-boxes, where interval-
valued probabilities are given only for sets (−∞, x)—i.e., where we only know
the bounds F(x) = [F(x), F(x)] on the cumulative distribution function (cdf)
F(x)

def
= Prob(ξ ≤ x).

Yet another class that has received great attention (due to conceptual and com-
putational properties) is the class of Choquet capacities [2]. Sub-classes of special
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interest are 2-monotone capacities (which are set-functions with the properties of
interval-valued measures plus the condition that P(A ∪ B) ≥ P(A) + P(B) for dis-
joint events A and B), and the class of infinitely monotone capacities, also known as
belief functions in Dempster-Shafer theory. In the Dempster-Shafer (DS) approach
we have n sets S1, …, Sn with “masses” mi (

∑
mi = 1). Then, the class P of possible

probability measures P is described as follows: We select n probability measures
Pi such that Pi is located on the set Si with probability 1 (i.e., Pi(Si) = 1). Then,

for every set E ⊆ Ω, we define P(E)
def
=

n∑
i= 1

mi ⋅ Pi(E). The corresponding lower

probability P(E)
def
= inf

P ∈P
P(E) defines an infinitely monotone capacity.

Interval-related comment on the DS approach. In DS, for each event E, we can
compute the corresponding bounds for the probability P(E) as P(E) =

∑
Si ∩ E �=∅

mi

and P(E) =
∑

Si ⊆ E
mi. The lower bound is called the belief in E, and the upper bound

is called the plausibility of E. Vice versa, if we know the bounds P(E) for each
event E, we can uniquely reconstruct the sets Si and the masses mi.

From the interval viewpoint, it seems reasonable to consider an interval version
of the DS approach, where for each set Si, we only know the interval mi = [mi, mi] of
possible values of the corresponding mass. Here, the possible probability measures
are p(E) =

∑
mi ⋅ pi(E), where mi ∈ mi and each probability measure pi(E) is

located on the set Si. For this interval-valued DS approach, we can find the bounds
on P(E) as P(E) = min

( ∑
Si ∩ E �=∅

mi, 1
)

and P(E) =
∑

Si ⊆ E
mi. However, it is no

longer possible to uniquely reconstruct the mass intervals mi from these bounds.
For example, for Ω = {a, b, c} and m({a, b}) = m({b, c}) = m({a, c}) = [0, 0.6],
we have P(E) = 1 for all E �= ∅ and P(E) = 0 for all E �= Ω; however, we have the
exact same bounds for P(E) if we take, e.g., m = [0, 0.7] instead of [0, 0.6].

Research problems. To use imprecise probabilities, we must elicit them, update
them, and use them to make conclusions and produce decisions. Papers presented
at IPIPTA’05 covered all stages of this process:

• how to elicit imprecise probabilities; in particular, how to set up a learning
process that would eventually enable us to get a good description of imprecise
probabilities;

• how to update them when new information appears; and

• how to make inferences from the known information and how to make decisions
based on this information.

It is important to note that independence relations usually significantly decreases
the computational complexity of a problem. For example, if we have two variables
each of which takes n values, then:

• to describe a general probability distribution, we must describe n2 values p(x, y),
but
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• on the other hand, if we know that x and y are independent, we only need to
describe 2n � n2 values p(x) and p(y), and we will then be able to reconstruct
p(x, y) as p(x) ⋅ p(y).

In view of this importance, the conference included papers describing how we can
define and use independence for imprecise probabilities. An important aspect of
this is that the concept of independence itself becomes ambiguous in the case of
imprecise probabilities, and different kinds of independence can be specified and
their differences understood.

A type of model that has received significant attention, and where independence
relations are extensively explored, is the credal network model. A credal network
can be understood as a generalization of the popular Bayesian network model,
where a graph is used to specify distributions and independence relations in a
visually pleasant and computationally efficient manner. Credal networks were the
object of several papers presented at ISIPTA’05.

A lot of interesting mathematical and algorithmic results presented at ISIPTA’05
were interval-related; it is difficult to adequately describe all these results without
making this report too long. We will therefore concentrate on the results that have
an applied character.

Practical applications. Most current work on imprecise probability focuses on the
representation of subjective uncertainty. Thus, the corresponding techniques are
most useful in situations when we do not have objective (frequency-based) proba-
bilities, and we have to rely on subjective human expertise. This often happens, e.g.,
when we try to predict consequences of behavior of difficult-to-analyze complex
systems.

Applications described at the conference included the following.

• Applications to climate change models were described by A. P. Dempster (Har-
vard University), J. Lawry and G. Fu (University of Bristol, U.K.), J. W. Hall
(University of Newcastle-upon-Tyne, U.K.), and E. Kriegler (Potsdam Institute
of Climate Impact Research, Germany); in particular, A. P. Dempster noted the
need for caution when deciding which part of climate change is due to natural
variation and which is human-induced.

• Applications to ecology, in particular, to soil contamination, were described by
C. Baudrit and D. Dubois (Institut de Recherche en Informatique de Toulouse,
France).

• Applications to elicitation of medical knowledge were described by A. A. Silva
and F. M. Campello de Souza (Universidade Federal de Pernambuco, Recife,
Brazil).

• Application to biometrics (in particular, to pose estimation) were given by
P. Cuzzolin (University of California at Los Angeles) and R. Frezza (Università
di Padova, Italy).
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• Applications to financial problems were described in the tutorials given by
P. Cheridito (princeton University), S. D’Silva, J. B. Kadane, M. Schervish,
T. Seidenfeld (Carnegie Mellon University), R. T. Rockafeller (University of
Washington), S. Uryasev (University of Florida), P. Vicig (Universita di
Trieste, Italy), and M. Zabarankin (Stevens Institue of Technology). Practical
applications to the optimization of electric company portfolios were proposed
by D. Berleant and G. Sheblé (Iowa State University) and M. Dancre and
J. P. Argaud (Electricité de France).

In financial applications, there is an additional important issue. An interval-valued
prevision describes the price at which the user is willing to sell his or her participa-
tion in a gamble and the price at which the user is willing to buy this participation.
When these prices are reasonably small, it is reasonable to expect that there will be
someone else willing to, correspondingly, buy or sell this participation. However,
when we go to large-scale transactions, we may not find a seller or a buyer—or
a transaction may even be banned by, e.g., anti-trust law. For example, one might
expect to be able to sell a small piece of gold, but it is not so clear that there would
be a ready buyer if the US decided to sell all its gold reserves.

To describe actual financial transactions, it is therefore desirable to describe
not the price for which the user is willing to sell, but rather the price that the
user can expect to get. This idea was discussed by P. Vicig. In his description, the
main difference between a generalized prevision u(ƒ) describing this price and the
standard prevision is that the homogeneity u(λ ⋅ ƒ) = λ ⋅ u(ƒ) of a standard prevision
is replaced by a weaker condition of convexity. Other relevant issues were discussed
in detail at the workshop on financial risk assessment.

Beyond the standard approach to imprecise probabilities. In some practical sit-
uations, the interval-valued prevision model for describing subjective probabilities
is too crude, and more complex models are needed to describe human preference
and decision making.

Several such situations were described at the conference, both situations in
which we need to go beyond interval-valued previsions, and situations where we
need to take objective probabilities into account. Let us describe these situations in
more detail.

Beyond interval-valued previsions. The traditional approach to decision making
is based on the assumptions that the preference ordering of outcomes and lotteries
is linear (a ≤ b or b ≤ a) and that it satisfies the Archimedean property. Since the
interval-valued prevision model is based on standard utility theory, these assump-
tions are, to some extent, preserved in the interval-valued prevision model—and
both these assumptions are only approximately true.

Beyond the Archimedean assumption. The Archimedean assumption does not take
into account the empirical phenomenon that people prefer choices with more infor-
mation; this phenomenon is known as the Ellsberg paradox. An example follows.



INTERVAL-RELATED TALKS AT ISIPTA’05 161

Suppose that we have an event E with frequency 1 /2, and an event E ′ whose
frequency is completely unknown. Empirically, most people prefer to get “A+ if
E, otherwise A−” (i.e., “A+ with probability 1/2, otherwise A−”) rather than “A+

if E ′, otherwise A−.” We have defined subjective probability of an event E as the
value u for which “A+ if E, otherwise A−” is equivalent to “A+ with probability
u, otherwise A−.” Thus, the subjective probability P(E ′) of the event E ′ does not
exceed 1/2.

On the other hand, one can easily see that the same relation holds for the
negations ¬E and ¬E ′: ¬E holds with the frequency 1 / 2, and the frequency of
the event ¬E ′ is completely unknown. Thus, most people will prefer “A+ is not
¬E, otherwise A−” to “A+ if ¬E ′, otherwise A−.” Hence, we have P(¬E ′) ≤ 1/2.
Since P(¬E ′) = 1 − P(E ′), we thus have P(E ′) ≤ 1 / 2 and P(E ′) ≥ 1 / 2—i.e.,
P(E ′) = 1/2.

So, if we compare two lotteries: “1 utile if E and 0 otherwise” and “1 utile
if E ′ and 0 otherwise,” we see that both lotteries have exactly the same expected
utility 1 / 2, but the first is preferable to most persons. So, here we have a fine
distinction between lotteries with the same value of expected utility. Such situations
can be described by multi-dimensional utilities and/or multi-dimensional (e.g.,
infinitesimal) probabilities; see, e.g., [11].

This fine structure is especially important for events of probability 0—because
there is a clear difference between an impossible event E = ∅ for which the proba-
bility is exactly 0 and a rare event (e.g., E = {0} for a uniform distribution on the
interval [0, 1]) which is theoretically possible. This distinction was described by
B. Vantaggi (Università di Roma “La Sapienza,” Italy).

In geometry, this distinction is captured by the notions of Hausdorff dimension
and the corresponding Hausdorff measure. For example, within a 3-D space, a
surface has Hausdorff dimension 2, and its Hausdorff measure is the area of this
surface; a curve has Hausdorff dimension 1, and its length is the Hausdorff measure
of this curve. It is therefore reasonable, for an event of probability 0, to consider its
Hausdorff dimension and Hausdorff measure as a degree of its subjective probabil-
ity. This was described by S. Doria from Università G. D’Annunzio, Chieti, Italy.
In effect, this is similar to using multi-dimensional probabilities, because we have
a continuum of new values where previously we had a single value P(E) = 0.

Another important situation is estimating the subjective probability of a state-
ment S as the proportion of the experts who consider this statement to be true.
When t(n) out of n experts believe in S, then we take p ≈ t(n) / n. We start with the
best available experts. If there are too few of them to make a reasonable estimate
for p, we would want to ask more experts. Usually t(n) is proportional to n, so
when n increases, we indeed get a better estimate for p. However for certain types
of statements such as those describing surprising discoveries which have not yet
become common knowledge, we may have t(n) / n > 0 when we start with the best
experts, but, as n grows, t(n) / n → 0 . Such cases can be described, e.g., by the
dependence t(n) ≈ a ⋅ nα , where α < 1; in this case, lim t(n) / n = 0, but clearly the
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subjective probability of this statement is higher than of a statement that everyone
considers false (t(n) = 0 for every n); see, e.g., [12].

Beyond linearity. While we earlier loosened the assumption of linear ordering
for events, we still assumed that in the gamble “Bi if Ei,” each outcome Bi has
a well-defined utility ui, i.e., that utilities come from a linearly ordered set of
real numbers. In practice, the utility of outcomes is also only partially ordered. To
adequately describe the corresponding interval-valued (and more general) gambles,
we can use multi-valued probabilities; see, e.g., [4], [5], [14].

Beyond crisp partial orders. In the interval-valued prevision approach, we assume
that for every two alternatives a and b, the user will always select one of the three
options:

• definitely prefer a,

• definitely prefer b, or

• definitely indicate that neither a not b can be preferred.

In real life, however, the transition is not crisp but fuzzy: When we decrease the
advantages of a over b, the user’s preference will not change abruptly but rather
gradually change from “definitely better” to “probably better” to “somewhat better”
to “I don’t know.” In other words, a user describes his or her preferences by
using words from natural language. To describe such preferences, it is therefore
reasonable to use fuzzy logic, a technique specifically designed to describe such
words in computer understandable form. Such fuzzy-valued previsions have indeed
been successfully used in several applications, including applications to climate
change presented at the conference by J. Lawry, J. Hall, and G. Fu.

Objective probabilities. Issues in dealing with objective probabilities include com-
bining them with subjective probabilities, and applying to them the imprecise prob-
ability concept.

Combining subjective probabilities with objective (frequency-based) probabilities.
Often, we need to combine subjective probabilities with frequency-based ones. For
example, the statement “80% of birds fly” describes a frequency, while the statement
“I am 90% sure that this particular bird flies” describes a subjective probability,
and the statement “I am 90% sure that at least 80% of birds fly” combines subjec-
tive and frequency-based probabilities. Such combinations are difficult to describe
adequately, and when appropriately described, lead to difficult computational prob-
lems; these problems were enumerated in a talk by T. Lukasiewicz (Università di
Roma “La Sapienza,” Italy).

Can objective probabilities be imprecise? In standard physics, we assume that for
enough random events, the frequencies tend to a limit—the (objective) probability.
In situations like chaotic dynamics, however, it is reasonable to consider events
for which the frequencies do not tend to any definite limit. Such situations were
described and analyzed by L. C. Rego and T. L. Fine (Cornell University) in terms
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of Kolmogorov complexity (for an introduction to Kolmogorov complexity see,
e.g., [10]).

Session on computational challenges. A special open problems session was devot-
ed to computational challenges. The session tried to focus on a few challenges, rather
than cover the (too many!) possible questions one might try to formulate concerning
imprecise probabilities.

A quick introduction was given by the session organizer F. G. Cozman (Univer-
sity of Sao Paulo, Brazil), who noted that in many problems related to imprecise
probabilities, we deal with characteristics c(p) such as moments, the probabilities
within a certain interval, values F(t) of the cdf, etc., which are linear in terms of
the unknown probabilities p(ω). A typical practical problem is that we know the
ranges of some of these characteristics ai ≤ ci(p) ≤ ai, and we want to find the
range [a, a] of the possible values of some other characteristic c(p). For example,
we might have the bounds on the marginal cdfs Fx(t) and Fy(s) of x and y, and we
want to find the range of the cdf Fx +y(z) for x + y at a particular point z.

In such problems, to find a (correspondingly, a), we must minimize (correspond-
ingly, maximize) the linear objective function c(p) under linear constraints—i.e.,
solve a linear programming (LP) problem. There are known efficient algorithms
and software for solving LP problems, and they are actively used in imprecise
probabilities.

However, there are important practical problems which lie outside LP, e.g.,
problems involving independence, when constraints are linear in p(x, y) = p(x) ⋅p(y)
and thus, bilinear in p(x) and p(y). Some of these problems were emphasized by
B. Vantaggi. She also mentioned that even without independence, constraints on
conditional probabilities P(A |B) sometimes present the following computational
challenges.

• If P(B) > 0, then, because of the definition of the conditional probability
P(A |B) = P(A & B) / P(B), e.g., the constraint P(A |B) ≤ p0 is equivalent to
a linear constraint P(A & B) ≤ p0 ⋅ P(B).

• However when P(B) = 0, there is no such easy reduction. One possible way to
solve this problem may be to consider probabilities whose values are not real
numbers but rather elements of a lexicographically ordered vector space.

Another important problem she noted is to design clarifying graphical representa-
tions of the corresponding concepts and results, such as credal networks and similar
models. These would help the decision maker to take the corresponding information
into account.

T. Lukasiewicz emphasized the computational problems related to represen-
tations that allow combination of probabilities and first-order sentences (that is,
sentences in logic that allow quantifiers “for all” and “there exists,” plus relations
and functions). Among other things, such representations can be used to combine
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statements about subjective and objective probabilities in expert systems. However,
the computational complexity of the resulting problems is very high, and currently
no viable algorithm exists that can process such general problems.

V. Kreinovich (University of Texas at El Paso) described the following compu-
tational challenges related to data processing under imprecise probabilities.

• We can extend formulas of interval arithmetic to the cases when in addition to
the interval, we also know bounds on the cdf or on the first moment. However,
it is still difficult to extend them to the case when we know both bounds on cdf
and on the first moment, or when we also know bounds on the second moment.

• There are many open problems related to extending statistical formulas like
population average, population variance, correlation, etc., to the case when we
only know the intervals xi of possible values of the sample values xi.

D. Berleant (Iowa State University) described related challenges regarding arith-
metic on p-bounds [1]. These include:

• how to deal with p-boxes which are only known with some limited certainty;

• how to make decisions under such uncertainty; and

• how to do back-calculation—i.e., find bounds on an input xi given the desired
uncertainty for the result y = F(x1, …, xn) and for other inputs.

Beyond the talks. The banquet was held in the one of the city’s main attractions: the
world-famous Andy Warhol Museum (Warhol was born and grew up in Pittsburgh).
I. Levi gave the banquet talk, focusing on the arguments in favor and against
convexity of credal sets.

Pittsburgh is the largest inland port in the US. The conference organized a dinner
cruise on the city’s picturesque “three rivers”: the Allegheny and Monongahela
Rivers which meet to form the Ohio River (an important tributary of the Mississippi
River).

The next conference will be held in Summer 2007, most likely in Prague. See
you there!
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