
Article

On the Coherence of Probabilistic Relational Formalisms

Glauber De Bona and Fabio G. Cozman *

Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil; glauber.bona@usp.br
* Correspondence: fgcozman@usp.br

Received: 22 February 2018; Accepted: 24 March 2018; Published: 27 March 2018
!"#!$%&'(!
!"#$%&'

Abstract: There are several formalisms that enhance Bayesian networks by including relations
amongst individuals as modeling primitives. For instance, Probabilistic Relational Models (PRMs)
use diagrams and relational databases to represent repetitive Bayesian networks, while Relational
Bayesian Networks (RBNs) employ first-order probability formulas with the same purpose.
We examine the coherence checking problem for those formalisms; that is, the problem of guaranteeing
that any grounding of a well-formed set of sentences does produce a valid Bayesian network. This is
a novel version of de Finetti’s problem of coherence checking for probabilistic assessments. We show
how to reduce the coherence checking problem in relational Bayesian networks to a validity problem
in first-order logic augmented with a transitive closure operator and how to combine this logic-based
approach with faster, but incomplete algorithms.

Keywords: relational Bayesian networks; probabilistic relational models; coherence checking

1. Introduction

Most statistical models are couched so as to guarantee that they specify a single probability
measure. For instance, suppose we have N independent biased coins, so that heads has probability
p for each one of them. Then, the probability of a particular configuration of all coins is exactly
pn(1 � p)N�n, where n is the number of heads in the configuration. Using de Finetti’s terminology,
we can say that the probabilistic assessments and independence assumptions are coherent as they are
satisfied by a probability distribution [1]. The study of coherence and its consequences has influenced
the foundations of probability and statistics, serving as a subjectivist basis for probability theory [2,3],
as a broad prescription for statistical practice [4,5] and generally as a bedrock for decision-making and
inference [6–8].

In this paper, we examine the coherence checking problem for probabilistic models that enhance
Bayesian networks with relations and first-order formulas: more precisely, we introduce techniques
that allow one to check whether a given relational Bayesian network, or a given probabilistic relational
model is guaranteed to specify a probability distribution. Note that “standard” Bayesian networks are,
given some intuitive assumptions, guaranteed to be coherent [9–11]. The challenge here is to handle
models that enlarge Bayesian networks with significant elements of first-order logic; we do so by
resorting to logical inference itself as much as possible. In the remainder of this section, we explain
the motivation for this study and the basic terminology concerning it, and at the end of this section,
we state our goals and our approach in more detail.

To recap, a Bayesian network consists of a directed acyclic graph, where each node is a random
variable, and a joint probability distribution over those variables, such that the distribution and the
graph satisfy a Markov condition: each random variable is independent of its non-descendants given
its parents. (In a directed acyclic graph, node X is a parent of node Y if there is an edge from X
to Y. The set of parents of node X is denoted Pa(X). Similarly, we define the children of a node,
the descendants of a node, and so on.)

Entropy 2018, 20, 229; doi:10.3390/e20040229 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e20040229
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/4/229?type=check_update&version=1

Entropy 2018, 20, 229 2 of 24

If all random variables X1, . . . , Xn in a Bayesian network are categorical, then the Markov
condition implies a factorization:

P(X1 = x1, . . . , Xn = xn) =
n

’
i=1

P(Xi = xi|Pa(Xi) = pi), (1)

where pi is the projection of {X1 = x1, . . . , Xn = xn} on Pa(Xi).
Typically, one specifies a Bayesian network by writing down the random variables X1, . . . , Xn,

drawing the directed acyclic graph, and then settling on probability values P(Xi = xi|Pa(Xi) = pi),
for each Xi, each xi and each pi. By following this methodological guideline, one obtains the promised
coherence: a unique joint distribution is given by Expression (1).

The following example introduces some useful notation and terminology.

Example 1. Consider two neighbors, Mary and Tina. The probability that a house is burglarized is 0.001
in their town. The alarm of a house rings with probability 0.9 given that the house is burglarized and with
probability 0.01 given the house is not burglarized. Finally, if either alarm rings, the police are called. This little
story, completed with some assumptions of independence, is conveyed by the Bayesian network in Figure 1,
where burglary(x) means that the house of x (either Mary or Tina) is burglarized; similarly alarm(x) means
that the alarm of x’s house rings; and finally calls just means that the police are called by someone.

In this paper, every random variable is binary with values zero and one, the former meaning “false” and
the latter meaning “true”. Furthermore, we often write P(X), where X is a random variable, to mean the event
{X = 1}, and we often write P(¬X) to mean the event {X = 0}.

Note also that we use, whenever appropriate, logical expressions with random variable names, such as
alarm(Mary) _ burglary(Tina) to mean the disjunction of the proposition stating that alarm(Mary) is true and
the proposition that burglary(Tina) is true. A random variable name has a dual use as a proposition name.

From the Bayesian network in Figure 1, we compute P(alarm(Mary)) = 0.9 ⇥ 0.001 + 0.01 ⇥ 0.999 =
0.01899 and P(calls) = 0.01899 + 0.01899 � (0.01899)2.

burglary(Mary)

alarm(Mary)

calls

burglary(Tina)

alarm(Tina)

P(burglary(x)) = 0.001

P(alarm(x)|burglary(x)) = 0.9

P(alarm(x)|¬burglary(x)) = 0.01

calls = alarm(Mary) _ alarm(Tina)

Figure 1. Bayesian network modeling the burglary-alarm-call scenario with Mary and Tina. In the
probabilistic assessments (right), the logical variable x stands for Mary and for Tina.

Here are some interesting scenarios that enhance the previous example:

Example 2. (Scenario 1) Consider that now we have three people, Mary, Tina and John, all neighbors. We can
easily imagine an enlarged Bayesian network, with two added nodes related to John, and a modified definition
where calls = alarm(Mary) _ alarm(Tina) _ alarm(John).

(Scenario 2) It is also straightforward to expand our Bayesian network to accommodate n individuals
a1, a2, . . . , an, all neighbors. We may even be interested in reasoning about calls without any commitments to
a fixed n, where calls is a disjunction over all instances of alarm(x). For instance, we have that P(¬calls) =
(1 � 0.01899)n; hence, the probability of a call to the police will be larger than half for a city with more than
36 inhabitants. No single Bayesian network allows this sort of “aggregate” inference.

(Scenario 3) Consider a slightly different situation with three people, where: Mary and Tina are neighbors
Tina and John are neighbors, but Mary and John are not neighbors. Suppose also that each person may call

Entropy 2018, 20, 229 3 of 24

the police, depending on neighboring alarms. This new situation is codified into the Bayesian network given
in Figure 2.

(Scenario 4) Suppose we want to extend Scenario 3 to a town with n people. Without knowing which
pairs are neighbors, there is no way we can predict in advance the structure of the resulting Bayesian network.
However, we can reason about the possible networks: for instance, we know that each set of n people produces
a valid Bayesian network, without any cycles amongst random variables.

burglary(Mary)

alarm(Mary)

calls(Mary)

burglary(Tina)

alarm(Tina)

calls(Tina)

burglary(John)

alarm(John)

calls(John)

Figure 2. Bayesian network modeling Scenario 3 in Example 2. Probabilistic assessments are just as in
Figure 1, except that, for each x, calls(x) is the disjunction of its corresponding parents.

There are many other scenarios where probabilistic modeling must handle repetitive patterns
such as the ones described in the previous examples, for instance in social network analysis or in
processing data in the semantic web [12–14]. The need to handle such “very structured” scenarios has
led to varied formalisms that extend Bayesian networks with the help of predicates and quantifiers,
relational databases, loops and even recursion [15]. Thus, instead of dealing with a random variable X
at a time, we deal with parameterized random variables [16]. We write X(x) to refer to a parameterized
random variable that yields a random variable for each fixed x in a domain; if we consider individuals
a and b in a domain, we obtain random variables X(a) and X(b).

Plates offer a popular scheme to manipulate parameterized random variables [17]. A plate
is a set of parameterized random variables that share a logical variable, meaning that they are
indexed by elements of the same domain. A plate is usually drawn as a rectangle (associated with
a domain) containing parameterized random variables. Figure 3 shows simple plate models for the
burglary-alarm-call scenario described in Scenario 2 of Example 2.

burglary(x)

alarm(x)

Person x

burglary(x)

alarm(x) calls

Person x

Figure 3. Plate models for Scenario 2 of Example 2; that is, for the burglary-alarm-call scenario where
there is a single random variable calls. Left: A partial plate model (without the calls random variable),
indicating that parameterized random variables burglary(x) and alarm(x) must be replicated for each
person x; the domain consists of the set of persons as marked in the top of the plate. Note that each
parameterized random variable must be associated with probabilistic assessments; in this case, the
relevant ones from Figure 1. Right: A plate model that extends the one on the left by including the
random variable calls.

Plates appeared with the BUGS package, to facilitate the specification of hierarchical models, and
have been successful in applications [18]. One restriction of the original plate models in the BUGS
package is that a parameterized random variable could not have children outside of its enclosing
plate. However, in practice, many plate models violate this restriction. Figure 3 depicts a partial plate

Entropy 2018, 20, 229 4 of 24

model that satisfies the restriction of the original BUGS package (left), and the plate model that violates
it (right). Note that as long as the graph consisting of parameterized random variables is acyclic,
we know that every Bayesian network generated from the plate model is indeed consistent.

Several other combinations of parameterized random variables and graph-theoretical
representations have been proposed, often grouped under the loose term “Probabilistic Relational
Model (PRM)” [10,19,20]. Using PRMs, one can associate parameterized random variables with
domains, impose constraints on domains and even represent limited forms of recursion [19,21].
A detailed description of PRMs is given in Section 4; for now, it suffices to say that a PRM is specified
as a set of “classes” (each class is a set of individuals), where each class is associated with a set of
parameterized random variables and additionally by a relational database that gives the relations
amongst individuals in classes. The plate model in Figure 3 (left) can be viewed as a diagrammatic
representation for a minimalistic PRM, where we have a class Person containing parameterized
random variables. Note that such a minimalistic PRM with a single class Person cannot encode
Scenario 4 in Example 2, as in that scenario, we have pairs of interacting individuals.

Suppose that we want a PRM to represent Scenario 4 in Example 2. Now, the class Person must
include parameterized random variables burglary, alarm and calls. The challenge is how to indicate
which Persons are parents of a particular calls(x). To do so, one possibility is to introduce another
class, say Neighborhood, where each element of Neighborhood refers to two elements of Person.
In Section 4 we show how the resulting PRM can be specified textually; for now, we want to point
out that finding a diagrammatic representing this PRM is not an obvious matter. Using the scheme
suggested by Getoor et al. [19], we might draw the diagram in Figure 4. There, we have a class Person,
a class Neighborhood and a “shadow” class Person that just indicates the presence of a second
Person in any Neighborhood pair. Dealing with all possible PRMs indeed requires a very complex
diagrammatic language, where conditional edges and recursion can be expressed [21].

burglary(y)

alarm(y) calls(y)

Person y

burglary(x)

alarm(x) calls(x)

Person x

Neighborhood n

neighbor1(n)

neighbor2(n)

Figure 4. A Probabilistic Relational Model (PRM) for Scenario 4 in Example 2, using a diagrammatic
scheme suggested by Getoor et al. [19]. A textual description of this PRM is presented in Section 4.

Instead of resorting to diagrams, one may instead focus just on textual languages to specify
repetitive Bayesian networks. A very solid formalism that follows this strategy is Jaeger’s Relational
Bayesian Networks (RBNs) [22,23]. In RBNs, relations within domains are specified using a first-order
syntax as input, returning an output that can be seen as a typical Bayesian network. For instance,
using syntax that will be explained later (Section 2), one can describe Scenario 4 in Example 2 with the
following RBN:

burglary(x) = 0.001;
alarm(x) = 0.9 * burglary(x) + 0.01 * (1-burglary(x));
calls(x) = NoisyOR { alarm(y) | y; neighbor(x,y) };

Entropy 2018, 20, 229 5 of 24

One problem that surfaces when we want to use an expressive formalism, such as RBNs or PRMs,
is whether a particular model is guaranteed to always produce consistent Bayesian networks. Consider
a simple example [19].

Example 3. Suppose we are modeling genetic relationships using the parameterized random variable gene(x),
for any person x. Now, the genetic features of x depend on the genetic features of the mother and the father of x.
That is, we want to encode:

If y and z are such that motherOf(y, x) and fatherOf(z, x) are true, then the probability of gene(x)
depends on gene(y) and gene(z).

It we try to specify a PRM for this setting, we face a difficulty in that some instances of gene could depend
on other instances of the same parameterized random variable. Indeed, consider drawing a diagram for this PRM,
using the conventions suggested by Getoor et al. [19]. We would need a class Person, containing parameterized
random variable gene, and two shadow classes, one for the father and one for the mother; a fragment of the
diagram is depicted in Figure 5. If we could have a Person that appears as the father of his own father, we would
have a cycle in the generated Bayesian network. Of course, we know that such a cycle can never be generated
because neither the transitive closure of motherOf, nor of fatherOf can contain a cycle. However, just by looking
at the diagram, without any background understanding of motherOf and fatherOf, we cannot determine whether
coherence is guaranteed.

Person (Mother) y

gene(y)

gene(z)

Person (Father) z

Person x

gene(x)

Figure 5. The PRM for the genetic example, as proposed by Getoor et al. [19].

The possibility that RBNs and PRMs may lead to cyclic (thus inconsistent) Bayesian networks has
been noticed before. Jaeger [23] suggested that checking whether an RBN always produces consistent
Bayesian networks, for a given class of domains, should be solved by logical inference, being reducible
to deciding the validity of a formula from first-order logic augmented with a transitive closure operator.
This path has been explored by De Bona and Cozman [24], yielding theoretical results of very high
computational complexity. On a different path, Getoor et al. [19] put forward an incomplete, but more
intuitive way of ensuring coherence for their PRMs; in fact, assuming that some sets of input relations
never form cycles, one can easily identify a few cases where coherence is guaranteed.

Thus, we have arrived at the problems of interest in this paper: Suppose we have an RBN or
a PRM. Is it coherent in the sense that it can be always satisfied by a probability distribution? Is it
coherent in the sense that it always produces a unique probability distribution? Such are the questions
we address, by exploring a cross-pollination of ideas described in the previous paragraph. In doing
so, we bring logical rigor to the problem of coherence of PRMs and present a practical alternative to
identifying coherent RBNs.

After formally introducing relational Bayesian networks in Section 2, we review, in Section 3,
how its coherence problem can be encoded in first-order logic by employing a transitive closure
operator. Section 4 presents PRMs and the standard graph-based approach to their coherence checking.
The logical methods developed for the coherence problem of RBNs are adapted to PRMs in Section 5.
Conversely, in Section 6, we adapt the graph techniques presented for tackling the coherence of PRMs
to the formalism of RBNs.

Entropy 2018, 20, 229 6 of 24

2. Relational Bayesian Networks

In this section, we briefly introduce the formalism of Relational Bayesian Networks (RBNs).
We use the version of RBNs presented in [23], as that reference contains a thorough exposition of
the topic.

Let S and R be disjoint sets of relation symbols, called the predefined relations and probabilistic
relations, respectively. We assume that S contains the equality symbol =, to be interpreted in the usual
way. Each predicate symbol is associated with a positive integer k, which is its arity. Given a finite
domain D = {d1, . . . , dn}, if V is a set of relation symbols (as R or S), a V-structure D is an interpretation
of the symbols in V into sets of tuples in D. Formally, a V-structure D maps each relation symbol
v 2 V with arity k into a subset of Dk. We denote by ModD(V) the set of all V-structures over a given
finite domain D. Given a domain D, a v 2 V with arity k and a tuple t 2 Dk, v(t) is said to be a ground
V-atom. A V-structure D defines truth values for ground atoms: if v is mapped to a relation containing
t, we say that v(t) is satisfied by D, which is denoted by D |= v(t).

Employing the syntax of function-free first-order logic, we can construct formulas using
a vocabulary of relations V, together with variables, quantifiers and Boolean connectives. We call
these V-formulas, and their meaning is given by the first-order logic semantics, as usual, through the
V-structures. We denote by j(x1, . . . , xm) a V-formula where x1, . . . , xk are free variables, in the usual
sense. If j is a V-formula and D is a V-structure, D |= j denotes that j is satisfied by D.

A random relational structure model for S and R is a partial function P that takes an S-structure
D, over some finite domain D, and returns a probability distribution P(D) : ModD(R) ! [0, 1]
over the R-structures on the same domain. As an R-structure can be seen as total assignment over
the ground R-atoms, P(D) can be seen as a joint probability distribution over these ground atoms.
An example of random relational structure model would be a function PS4 in Scenario 4 of Example 2
that receives an S-structure of neighbors and returns a joint probability distribution over ground atoms
for burglary(·), alarm(·), calls(·). In that scenario, a given configuration D of neighbors, over a given
domain D, implies a specific Bayesian network whose variables are the ground atoms for burglary(·),
alarm(·), calls(·), which encodes a joint probability distribution, PS4(D), over these variables. If D
is the configuration of neighbors from Scenario 4 of Example 2, PS4(D) would be captured by the
Bayesian network in Figure 2.

Relational Bayesian networks provide a way to compactly represent random relational structure
models. This is achieved by mapping each S-structure into a ground Bayesian network that encodes
a probability distribution over R-structures. To begin, this ground Bayesian network has nodes
representing r(t) (ground atoms), for each r 2 R and t 2 Dk, where k is the arity of r. Thus, given
the domain D of the input S-structure, the nodes in the corresponding Bayesian network are already
determined. To define the arcs and parameters of the Bayesian network associated with an arbitrary
S-structure, relational Bayesian networks employ their central notion of probability formula.

Probability formulas are syntactical constructions intended to link the probability of a ground atom
r(t) to the probabilities of other ground atoms r0(t0), according to the S-structure. Once an R-structure
and an S-structure are fixed, then for elements t1, . . . , tk in the domain D, a probability formula
F(t1, . . . , tk) should evaluate to a number in [0, 1].

The definition of probability formulas makes use of combination functions, which are functions
from finite multi-sets over the interval [0, 1] to numbers in the same interval. We use {|·|} to
denote multi-sets. For instance, NOISYOR is a combination function such that, if c1, . . . , cn 2 [0, 1],

NOISYOR{|c1, . . . , cn|} = 1 �
n
’
i=1

(1 � ci).

Definition 1. Given disjoint sets S and R of relation symbols and a tuple x of k variables, F(x) is
a (S,R)-probability formula if:

• (constants) F(x) = c for a c 2 [0, 1] ;
• (indicator functions) F(x) = r(x) for an r 2 R with arity k;

Entropy 2018, 20, 229 7 of 24

• (convex combinations) F(x) = F1(x)F2(x) + (1 � F1(x))F3(x), where F1(x), F2(x), F3(x) are
probability formulas, or;

• (combination functions) F(x) = comb{|F1(x, y), . . . , Fm(x, y)|y; j(x, y)|}, where comb is a combination
function, F1(x, y), . . . , Fm(x, y) are probability formulas, y is a tuple of variables and j(x, y) is an
S-formula.

Relational Bayesian networks associate a probability formula Fr?(x) to each probabilistic relation
r? 2 R, where x is a tuple of k variables, with k the arity of r?:

Definition 2. Given disjoint sets of relation symbols S and R, the predefined and probabilistic relations,
a relational Bayesian network is a set F = {Fr(x) | r 2 R}, where each Fr(x) is a (S,R)-probability formula.

To have an idea of how probability formulas work, consider a fixed S-structure DS over a domain
D. Then, an R-structure DR over D entails a numeric value for each ground probability formula Fr?(t),
denoted by Fr?(t)[DR], where t is tuple of elements in D. This is done inductively, by initially defining
r(t)[DR] = 1 if DR |= r(t), and r(t)[DR] = 0 otherwise, for each r(t), for all r 2 R. If Fr?(x) = c, then
Fr?(t)[DR] = c, for any tuple t. The numeric value of Fr?(t)[DR] for probability formulas that are
convex combinations or combination function will require the evaluation of its subformulas Fi, which
recursively end at the evaluation of ground atoms r(t) or constants c. As the set of ground atoms
whose evaluation is needed to compute Fr?(t)[DR] depends only on the S-structure DS, and not on
DR, it is denoted by a(Fr?(x), t,DS) and can be defined recursively:

• a(c, t,DS) = ?;
• a(r(x), t,DS) = {r(t)};

• a(F1(x)F2(x) + (1 � F1(x))F3(x), t,DS) =
3S

i=1
a(Fi(x), t,DS);

• a(comb{|F1(x, y), . . . , Fm(x, y)|y; j(x, y)|}, t,DS) is given by:

[

t0 s.t. DS |=j(t,t0)

m[

i=1
a(Fi(x, y), (t, t0),DS).

Here, (t, t0) denotes the concatenation of the tuples t and t0.

For a given S-structure DS, we can define a dependency relation between the nodes r(t) and
r0(t0) in the Bayesian network via the probability formulas Fr and Fr0 by employing the corresponding
a(·, ·, ·). Intuitively, a(Fr(x), t,DS) contains the ground atoms r0(t0) whose truth value in a structure
DR determines the value of Fr(t), which is meant to be the probability of r(t). That is, a(Fr(x), t,DS)
contains the parents of r(t).

Definition 3. Relation �, over ground R-atoms, is defined as follows:

r(t) � r0(t0) iff r0(t0) 2 a(Fr(x), t,DS).

When this relation is acyclic, a relational Bayesian network F = {Fr | r 2 R} defines, for a given
S-structure DS over a finite domain D, a probability distribution over the R-structures DR over D via:

PF
DS

(DR) = ’
r2R

’
t,DR |=r(t)

Fr(t)[DR] ’
t,DR 6|=r(t)

(1 � Fr(t)[DR])

Example 4. Scenario 4 of Example 2: We can define a relational Bayesian network that returns the
corresponding Bayesian network for each number and configuration of neighbors. Let S = {neighbor(·, ·)}
and R = {burglary(·), alarm(·), calls(·)}. We assume that the relation neighbor is reflexive and symmetrical.
For each relation in R, we associate a probability formula, forming the relational Bayesian network F:

Entropy 2018, 20, 229 8 of 24

• F
burglary

(x) = 0.001; a constant;
• F

alarm

(x) = 0.9burglary(x) + 0.01(1 � burglary(x)); a convex combination;
• F

call

(x) = NOISYOR{|alarm(y) | y; neighbor(x, y)|}; a combination function.

Note that, if F1(x) and F2(x) are probability formulas, then 1 � F1(x) and F1(x)F2(x) are convex
combinations and, thus, probability formulas. As the inputs of the NOISYOR above are in {0, 1}, the combination
function actually works like a disjunction.

Given an S-structure DS over a domain D, F determines a joint probability distribution over the ground
R-atoms, via a Bayesian network. If we take an S-structure DS over a domain D = {d1, d2, d3} such that
DS |= neighbor(d1, d2) ^ neighbor(d2, d3), but DS 6|= neighbor(d1, d3), the resulting PF

DS
is the model for

Scenario 3 in Example 2, whose Bayesian network is given in Figure 2.

3. The Coherence Problem for RBNs

It may happen for a relational Bayesian network F that some S-structures yield a cyclic
dependency relation �. When the relation � is cyclic for an S-structure, no probability distribution is
defined over the R-structures. In such a case, we say F is incoherent for that S-structure. This notion
can be generalized to a class of S-structures S , so that we say that F is coherent for S iff the resulting
relation � is acyclic for each S-structure in S . To know whether a relational Bayesian network is
coherent for a given class of S-structures is precisely one of the problems we are interested in this work.

In order to reason about the relation between a class of S-structures and the coherence of
a relational Bayesian network F for it, we need to formally represent these concepts. To define
a class of S-structures, note that they can be seen as first-order structures over which S-formulas are
interpreted. That is, an S-formula defines the set of S-structures satisfying it. If j is a closed S-formula
(without free variables), we say that [[j]] is the set of S-structures DS such that DS |= j. We denote by
qS an S-formula satisfied exactly by the S-structures in a given class S ; that is, [[qS]] = S .

To encode the coherence of F, we need to encode the acyclicity of the dependency relation �
resulting from an S-structure. Ideally, we would like to have a (first-order) S-formula, say yF, that
would be true only for S-structures yielding acyclic dependency relations �. If that formula were
available, a decision about the coherence of F for the class S would be reduced to a decision about
the validity of the first-order formula qS ! yF: When the formula is valid, then every S-structure in
the class S guarantees that the resulting dependency relation � for F is acyclic; hence, F is coherent
for S ; otherwise, there is an S-structure in S yielding a cyclic dependency relation � for F. Note that
for S-formulas, only S-structures matter, and we could ignore any relation not in S. To be precise,
if a first-order structure D falsifies qS ! yF, then there is an S-structure DS (formed by ignoring non-S
relations) falsifying it.

Alas, to encode cycles in a graph, one needs to encode the notion of path, which is the transitive
closure of a relation encoding arcs. It is a well-known fact that first-order logic cannot express
transitivity. To circumvent that, we can add a (strict) transitive closure operator to the logic, arriving at
the so-called transitive closure logics, as described for instance in [25].

This approach was first proposed by Jaeger [23], who assumed one could write down the
S-formula yF by employing a transitive closure operator. He conjectured that with some restrictions
on the arity of the relations in S and R, one could hope to obtain a formula qS ! yF that is decidable.
Nevertheless, no hint was provided as to how to construct such a formula, or as to its general shape.
A major difficulty is that, if an S-structure D satisfying qS has domain D = {d1, . . . , dn}, the size of
the resulting Bayesian network is typically greater than n, with one node per ground atom, so a cycle
can also contain more nodes than n. There seems to be no direct way of employing the transitive
closure operator to devise a formula ¬yF that encodes cycles with more than n nodes and that is to be
satisfied by some structures D over a domain with only n elements. In the next sections, we review
a technique (introduced by the authors in [24]) to encode yF for an augmented domain, through
an auxiliary formula whose satisfying structures will represent both the S-structure and the resulting
ground Bayesian network. Afterwards, we adapt the formula qS accordingly.

Entropy 2018, 20, 229 9 of 24

3.1. Encoding the Structure of the Ground Bayesian Network

Our idea to construct a formula yF, for a given relational Bayesian network F, is first to find
a first-order V-formula BF, for some vocabulary V containing S, that is satisfiable only by V-structures
that encode both an S-structure DS and the structure of the ground Bayesian network resulting from it.
These V-structures should contain, besides an S-structure DS, an element for each node in the ground
Bayesian network and a relation capturing its arcs. Then, we can use a transitive closure operator to
define the existence of paths (and cycles) via arcs, for enforcing acyclicity by negating the existence of
a cycle.

Suppose we have two disjoint vocabularies S and R = {r1, . . . , rm} of predefined and probabilistic
relations, respectively. We use a(v) to denote the arity of a relation v. Consider a relational Bayesian
network F = {Fr(x) | r 2 R}, where each Fr(x) is a (S,R)-probability formula. Let D be a V-structure
satisfying BF. We want D to be defined over a bipartite domain D = DS [DB, where DS is used
to represent an S-structure DS and DB = D \ DS is the domain where the structure of the resulting
ground Bayesian network is encoded. We overload names by including in V a unary predicate DS(·)
that shall be true for all and only the elements in DS. The structure D shall represent the structure of
the ground Bayesian network BF(DS), over the elements of DB, that is induced by the S-structure DS
codified in DS. In order to accomplish that, D must have an element in DB for each ground atom over
the domain DS. Furthermore, the V-structure D must interpret a relation, say Parent(·, ·), over DB
according to the arcs of the Bayesian network BF(DS).

Firstly, we need to define a vocabulary V that includes the predefined relations in S and contains
the unary predicate DS (recall that the equality symbol (=) is included in S). Furthermore, V must
contain a binary relation Parent to represent the arcs of the ground Bayesian network. As auxiliary
relations for defining Parent, we will need a relation Depj

i , for each pair ri, rj 2 R, whose arity is
a(ri) + a(rj). For elements in DB to represent ground atoms r(t1, . . . , tn), we use relations to associate
elements in DB to relations r and to tuples ht1, . . . , tni. For each relation ri 2 R, we have a unary
relation r̄i 2 V, where r̄i(x) is intended to mean that the element x 2 DB represents a ground atom
of the form ri(·). As for the tuples, recall that each ti represents an element in the set DS over which
the S-structure DS is codified. Hence, we insert in V binary relations ti for every 1 i maxi a(ri),
such that ti(x, y) should be true iff the element x 2 DB corresponds to a ground atom r(t1, . . . , tk)
where ti = y, for a y 2 DS and some r 2 R.

To save notation, we use Ri(x, y1, . . . , yk) to denote r̄i(x) ^ t1(x, y1) ^ · · · ^ tk(x, yk) henceforth,
meaning the element x in the domain represents the ground atom ri(y1, . . . , yk), where a(ri) = k.

Now, we proceed to list, step-by-step, the set of conjuncts required in yF, together with their
meaning, for the V-structure D in [[yF]] to hold the desired properties. To illustrate the construction,
each set of conjuncts is followed by an example based on the RBN in Example 4, possibly given in
an equivalent form for clarity.

We have to ensure that the elements in DB correspond exactly to the ground atoms in the ground
Bayesian network BF(DS).

• Each element in DB = D \ DS should correspond to a ground atom for some ri 2 R. Hence,
we have the formula:

8x¬DS(x) !
m_

i=1
r̄i(x). (2)

8x¬DS(x) ! burglary(x) _ alarm(x) _ calls(x).

• No element may correspond to ground atoms for two different ri 2 R. Therefore, the formula
below is introduced:

8x
i 6= ĵ

1i,jm
(¬r̄i(x) _ ¬r̄j(x)). (3)

8x(¬burglary(x) _ ¬alarm(x)) ^ (¬burglary(x) _ ¬calls(x)) ^ (¬alarm(x) _ ¬calls(x)).

Entropy 2018, 20, 229 10 of 24

• Each element corresponding to a ground atom should correspond to exactly one tuple. To achieve
that, let k = maxja(rj), and introduce the formula below:

8x8y8z
k̂

j=1
(tj(x, y) ^ tj(x, z) ! y = z). (4)

8x8y8z(t1(x, y) ^ t1(x, z) ! y = z.

• Each element corresponding to a ground atom for a ri 2 R should be linked a to tuple with arity
a(ri). Thus, let k = maxja(rj), and introduce the formula below for each ri 2 R:

8xr̄i(x) ! (9y1 . . . 9ya(ri)Ri(x, y1, . . . , ya(ri)) ^ 8z¬ta(ri)+1(x, z) ^ · · · ^ ¬tk(x, z)). (5)

8xburglary(x) ! (9yt1(x, y)); 8xalarm(x) ! (9yt1(x, y)); 8xcalls(x) ! (9yt1(x, y)).

• Only elements in DB = D \ DS should correspond to ground atoms. This is enforced by the
following formula, where k = maxia(ri):

8yDS(y) ! (
m̂

i=1
¬r̄i(y) ^ 8x

k̂

j=1
¬tj(y, x)). (6)

8yDS(y) ! (¬burglary(y) ^ ¬alarm(y) ^ ¬calls(y) ^ 8x¬t1(y, x)).

• Each ground atom must be represented by at least one element (in DB = D \ DS). Therefore, for
each ri 2 R, with a(ri) = k, we need a formula:

8y1 . . . 8ykDS(y1) ^ · · · ^ DS(yk) ! 9xRi(x, y1, . . . , yk). (7)

8yDS(y) ! (9x1burglary(x1) ^ t1(y, x1)); same for alarm and calls.

These formulas enforce that each ground atom r(t) is represented by an element x that is in DB,
due to the formula (6).

• No ground atom can be represented by two different elements. Hence, for each ri 2 R, with
a(ri) = k, we introduce a formula:

8y1, . . . 8yk8x8zRi(x, y1, . . . , yk) ^ Ri(z, y1, . . . , yk) ! x = z. (8)

8y8x8zburglary(x) ^ t1(y, x) ^ burglary(z) ^ t1(z, y) ! x = z; same for alarm and calls.

The conjunction of all formulas in (2)–(8) is satisfied only by structures D over the domain
D = DS [DB such that there is a bijection between DB and the set of all possible ground atoms {r(t) |
for some r 2 R and t 2 Da(r)

S }. Now, we can put the arcs over these nodes to complete the structure of
the ground Bayesian network BF(DS).

The binary relation Parent must hold only between elements in the domain D representing ground
atoms r(t) and r0(t0) such that r(t) � r0(t0). Recall that the dependency relation � is determined by
the S-structure DS. While the ground atoms represented in DB, for a fixed R, are determined by the
size of DS by itself, the relation Parent between them depends also on the S-formulas that hold for the
S-structure DS. We want these S-structures to be specified by D over DS only, not over DB. To ensure
this, we use the following group of formulas:

• For all s 2 S, consider the formula below, where a(s) = k:

8y1 . . . 8yk s(y1, . . . , yk) ! DS(y1) ^ · · · ^ DS(yk). (9)

8y18y2 neighbor(y1, y2) ! DS(y1) ^ DS(y2).

Entropy 2018, 20, 229 11 of 24

The formula above forces that s(t), for any s 2 S, can be true only for tuples t 2 Da(s)
S .

For a known S-structure DS, it is straightforward to determine which ground atoms r0(t0) are
the parents of r(t) in the ground Bayesian network BF(DS). One can use recursively the definition
of the set of parents a(Fr(x), t,DS) given in Section 2. Nonetheless, with an unknown S-structure
DS specified in D over DS, the situation is a bit trickier. The idea is to construct, for each pair ri(t)
and rj(t0), an S-formula Depj

i(t, t0) that is true iff ri(t) � rj(t0) for the DS encoded in D. To define

Depj
i(t, t0), we employ auxiliary formulas Cr0(t0)

F(t) , for a ground probability formula F(t) and a ground

atom r0(t0), that will be an S-formula that is satisfied by D iff r0(t0) 2 a(F(x), t,S). We define Cr0(t0)
F(t)

recursively, starting from the base cases.

• If F(t) = c, for a c 2 [0, 1], then Cr0(t0)
F(t) = ?; e.g., Calarm(t0)

F
burglary

(t) = ?.

• If F(t) = r00(t), then Cr0(t0)
F(t) = (t0 = t) if r0 = r00; and Cr0(t0)

F(t) = ? otherwise;

e.g., Cburglary(t0)
F
burglary

(t) = (t = t0) and Ccalls(t0)
F
burglary

(t) = ?.

Above, (t0 = t) is a short form for (t01 = t1) ^ · · · ^ (t0k = tk), where k is the arity of t. These base
cases are in line with the recursive definition of a(F(x), t,S) presented in Section 2. The third case is
also straightforward:

• If F(t) = F1(t)F2(t) + (1 � F1(t))F3(t), then Cr0(t0)
F(t) =

3W

i=1
Cr0(t0)

Fi(t)
.

Cburglary(t0)
F
alarm

(t) = Cburglary(t0)
F
burglary

(t) _ Cburglary(t0)
0.9 _ Cburglary(t0)

0.01 = (t = t0) _? _?

In other words, the computation of F(t)[DR] depends on r0(t0)[DR], for some DR, if the
computation of some Fi(t)[DR], for 1 i 3, depends on r0(t0)[DR].

The more elaborated case happens when F(x) is a combination function, for which there is an
S-formula involved. Recall that if F(x) = comb{|F1(x, y), . . . , Fm(x, y)|y; j(x, y)|}, then the parents

of F(t) are given by
S

t0 ,DS |=j(t,t0)

mS

i=1
a(Fi(x, y), (t, t0),DS). Thus, to recursively define Cr0(t0)

F(t) , we need

an S-formula that is satisfied by an S-structure DS iff:

r0(t0) 2
[

t? ,DS |=j(t,t?)

m[

i=1
a(Fi(x, y), (t, t?),DS).

The inner union is analogous to the definition of Cr0(t0)
F(t) for convex combinations. However, to

cope with any t? such that DS |= j(t, t?), we need an existential quantification:

• If F(x) = comb{|F1(x, y), . . . , Fm(x, y)|y; j(x, y)|}, then we have that:

Cr0(t0)
F(t) = 9t?j(t, t?) ^

m_

i=1
Cr0(t0)

Fi(t,t?)
.

Calarm(t0)
F
calls

(t) = 9t?neighbor(t, t?) ^ Calarm(t0)
F
alarm

(t?) = 9t?neighbor(t, t?) ^ (t? = t0)

Now, we can employ the formulas Cr0(t0)
F(t) to define the truth value of the ground relation Depj

i(t, t0),
that codifies when ri(t) � rj(t0).

• For each pair ri, rj 2 R, with a(ri) = k and a(rj) = k0, we have the formula:

8x1 . . . 8xk8y1 . . . 8yk0Depj
i(x1, . . . , xk, y1, . . . , yk0) $ C

rj(y1,...,yk0)

Fri (x1,...,xk)
. (10)

8x8yDepalarm
calls

(x, y) $ 9zneighbor(x, z) ^ (z = y); 8x8yDepburglary
alarm

(x, y) $ (x = y).

Entropy 2018, 20, 229 12 of 24

In the formula above, C
rj(y1,...,yk0)

Fri (x1,...,xk)
has free variables x1, . . . , xk, y1, . . . , yk0 and is built according to

the four recursive rules that define Cr0(t0)
F(t) , replacing the tuples t and t0 by x and y. We point out that

such construction depends only on probability formulas in the relational Bayesian network F, and

not on any S-structure. To build each C
rj(y)
Fri (x), one just starts from the probability formula Fri (x) and

follows the recursion rules until reaching the base cases, when C
rj(y)
Fri (x) will be formed by subformulas

like >,?, S-formulas j(·) and equalities (· = ·), possibly quantified on variables appearing in j.
The relation Parent(·, ·) is defined now over elements that represent ground atoms ri(t) and rj(t0)

such that Depj
i(t, t0), meaning that ri(t) � rj(t0). This can be achieved in two parts: ensuring that each

ri(t) � rj(t0) implies Parent(t, t0); and guaranteeing that Parent(t, t0) is true only if ri(t) � rj(t0) for
a pair of relations ri, rj.

• For each pair ri, rj 2 R, with a(ri) = k and a(rj) = k0, let y and y0 denote y1, . . . , yk and y01, . . . , y0k0 ,
respectively:

8x8x08y1 . . . 8yk8y01 . . . 8y0k0Ri(x, y) ^ Rj(x0, y0) ^ Depj
i(y, y0) ! Parent(x, x0). (11)

8x8x08y8y0calls(x) ^ t1(y, x) ^ alarm(x0) ^ t1(y0, x) ^ Depalarm
calls

(y, y0) ! Parent(x, x0).

• Let k = maxja(rj) be the maximum arity in R, and let y and y denote the tuples y1, . . . , ya(ri) and
y01, . . . , y0a(rj)

, respectively:

8x8x0Parent(x, x0) ! 9y1 . . . 9yk9y01 . . . 9y0k
_

1i,jm
Ri(x, yri) ^ Rj(x0, y0rj

) ^ Depj
i(yri , y0rj

). (12)

Definition 4. Given disjoint sets of relations S and R and a relational Bayesian network F = {Fri | ri 2 R},
the formula BF is the conjunction of all formulas in (2)–(12).

For some fixed relational Bayesian networks F, the formula BF is satisfied only by V-structures
D over a bipartite domain DS [DB such that:

• the relations in S are interpreted in DS, forming an S-structure DS;
• there is a bijection b between the domain DB = D \ DS and set of all ground R-atoms formed by

the tuples in DS;
• each x 2 DB is linked exactly to one ri 2 R, via the predicate r̄i(x), and exactly k = a(ri) elements

in DS, via the relations t1(x, .), . . . tk(x, .), and no ground atom is represented through these
links twice;

• the relation Parent(·, ·) is interpreted as arcs in DB in such a way that hDB, Parenti form a directed
graph that is the structure of the ground Bayesian network BF(DS).

3.2. Encoding Coherence via Acyclicity

The original formula yF was intended to capture the coherence of the relational Bayesian network
F. Our idea is to check the coherence by looking for cycles in the ground Bayesian network BF(DS)
encoded in any V-structure satisfying BF. Hence, we replace yF by an implication BF ! y0, which is
to be satisfied only by V-structures D such that, if D represents an S-structure DS and the resulting
ground Bayesian network BF(DS), then BF(DS) is acyclic. Thus, y0 should avoid cycles of the relation
Parent in the V-structures satisfying it.

There is a cycle with Parent-arcs in a V-structure D over a domain D iff there exists a x 2 D such
that there is a path of Parent-arcs from x to itself. Consequently, detecting Parent-cycles reduces to
computing Parent-paths or Parent-reachability. We say y is Parent-reachable from x, in a V-structure
D, if there are z0, . . . , zk 2 D such that x = z0, y = zk, and D |= V

1ik Parent(zi�1, zi). Thus, for each

Entropy 2018, 20, 229 13 of 24

k, we can define reachability through k Parent-arcs: ParentPathk(x, y) = 9z0 . . . 9zk(z0 = x) ^ (zk =
y)^V

1ik Parent(zi�1, zi). Unfortunately, the size of the path (k) is unbounded a priori, as the domain D
can be arbitrarily large. Therefore, there is no means in the first-order logic language to encode reachability,
via arbitrarily large paths, with a finite number of formulas. In order to circumvent this situation, we
can resort to a transitive closure logic.

Transitive closure logics enhance first-order logics with a transitive closure operator TC that we
assume to be strict [25]. If j(x, y) is a first-order formula, TC(j)(x, y) means that y is j-reachable from
x, with a non-empty path. Accordingly, a V-structure D, over a domain D, satisfies TC(j)(x, y) iff
there is a k 2 N and there are z0, . . . , zk 2 D such that x = z0, y = zk and D |= V

1ik j(zi�1, zi).
Employing the transitive closure operator, the existence of a Parent-path from a node x to itself (a

cycle) is encoded directly by TC(Parent)(x, x); similarly, the absence of a Parent-cycle is enforced by
y0 = 8x¬TC(Parent)(x, x).

At this point, the V-structures D over a domain D satisfying BF ! y0 have the following format:

• either it encodes an S-structure in DS ✓ D (the part of the domain satisfying DS(·)) and the
corresponding acyclic ground Bayesian network BF(DS) in DB = D \ DS.

• or it is not the case that D encodes both an S-structure in DS ✓ D and the corresponding ground
Bayesian network BF(DS) in DB = D \ DS;

Back to the coherence-checking problem, we need to decide, for a fixed relational Bayesian
network F, whether or not a given class S of S-structures ensures the acyclicity of the resulting ground
Bayesian network BF(DS). Recall that the class S must be defined via a (first-order) S-formula qS .
As we are already employing the transitive closure operator in y0, we can also allow its use in qS ,
which is useful to express S-structures without cycles, for instance.

To check the coherence of F for a class S , we cannot just check the validity of:

qS ! (BF ! y0), (13)

because qS specifies S-structures over D, while BF ! y0 presupposes that the S-structure is given only
over DS = {d 2 D | D |= DS(d)} (D. To see the kind of problem that might occur, think of the class
S of all S-structures D where each d 2 D is such that si(d) holds, for some unary predefined relation
si 2 S. Consider an S-structure D 2 S (D |= qS), over a domain D. The formula BF cannot be satisfied
by D, for DS(x) must hold for all x 2 D, because of the formulas in (9), so no x 2 D can represent
ground formulas, due to the formulas in (6), contradicting the restrictions in (7) that require all ground
atoms to be represented. Hence, this D satisfies qS without encoding the ground Bayesian network,
thus falsifying BF and satisfying BF ! y0, yielding the satisfaction of Formula (13). Consequently,
Formula (13) is valid for this specific class S , no matter what the relational Bayesian network F looks
like. Nonetheless, it is not hard to think of a F that is trivially incoherent for any class of S-structures,
like F = {Fr(x) = r(x)}, with S = ? and R = {r}, where the probability formula associated with the
relation r 2 R is the indicator function r(x), yielding a cyclic dependency relation �.

In order to address the aforementioned issue, we need to adapt qS , constructing q0S to represent
the class S in the extended, bipartite domain D = DS [DB. The unary predicate DS(·) is what delimits
the portion of D that is dedicated to define the S-structure. Actually, we can define DS as the set
{x 2 D | D |= DS(x)} ✓ D. Therefore, we must construct a V-formula q0S such that the V-structure D
satisfies q0S iff the S-structure DS, formed by DS ✓ D and the interpretation of the S relations, satisfies
qS . That is, the S-formulas that hold in an S-structure D0 2 S must hold for the subset of a V-structure
D defined over the part of its domain that satisfies DS(·). This can be performed by inserting guards in
the quantifiers inside qS .

Definition 5. Given a (closed) S-formula qS , q0S is the formula resulting from applying the following
substitutions to qS :

• Replace each 9xj(x) in qS by 9xDS(x) ^ j(x);

Entropy 2018, 20, 229 14 of 24

• Replace each 8xj(x) in qS by 8xDS(x) ! j(x).

Finally, we can define the formula that encodes the coherence of a relational Bayesian network F
for a class of S-structures S :

Definition 6. For disjoint sets of relations S and R, a given relational Bayesian network F and a class
of S-structures defined by qS , CF,S = q0S ! (BF ! y0).

Putting all those arguments together, we obtain the translation of the coherence-checking problem
to the validity of a formula from the transitive closure logic:

Theorem 1 (De Bona and Cozman [24]). For disjoint sets of relations S and R, a given relational Bayesian
network F and a class of S-structures S defined by qS , F is coherent for S iff CF,S is valid.

As first-order logic in general is already well-known to be undecidable, adding a transitive closure
operator clearly does not make things easier. Nevertheless, decidability remains an open problem,
even restricting the relations in R to be unary and assuming a decidable qS (even though there are some
decidable fragments of first-order logic with transitive closure operators [25,26]). Similarly, a proof of
general undecidability remains elusive.

3.3. A Weaker Form of Coherence

Jaeger introduced the coherence problem for RBNs as checking whether every input structure in
a given class yields a probability distribution via an acyclic ground Bayesian network. Alternatively,
we might define the coherence of an RBN as the existence of at least one input structure, out of a given
class, resulting in an acyclic ground Bayesian network. This is closer to the satisfiability-like notion of
coherence discussed by de Finetti and closer to work on probabilistic logic [27,28].

In this section, we show that, if one is interested in a logical encoding for this type of coherence
for RBNs, the transitive closure operator can be dispensed with.

Suppose we have an RBN F and class S of input structures codified via a first-order formula
qS and we want to decide whether F is coherent for some structure in S . This problem can be
reduced to checking the satisfiability of a first-order formula, using the machinery introduced above,
with the bipartite domain. This formula can be easily built as q0S ^ BF ^ y0. By construction, this
formula is satisfiable iff there is a structure D over a bipartite domain D = DS [DB where DS encodes
an S-structure in S (D |= q0S), DB encodes the corresponding ground Bayesian network (D |= BF)
and the latter is acyclic (D |= y0). Nonetheless, since now we are interested in satisfiability instead of
validity, we can replace y0 by a formula y00 that does not employ the transitive closure operator.

The idea to construct y00 is to use a binary relation Parent0(·, ·) and to force it to extend, or to
contain, the transitive closure of Parent(·, ·). The formula y00 then also requires Parent0(·, ·) to be
irreflexive. If there is such Parent0(·, ·), then Parent(·, ·) must be acyclic. Conversely, if Parent(·, ·) is
acyclic, then Parent0(·, ·) can be interpreted as its transitive closure, being irreflexive. In other words,
we want a structure to satisfy y00 iff it interprets a relation Parent0(·, ·) that both is irreflexive and
extends the transitive closure of Parent(·, ·).

In order to build y0, the vocabulary V is augmented with the binary relation Parent0. Now, we
can define y00 as the conjunction of two parts:

• 8x8y8z
�

Parent(x, y) ! Parent0(x, y)
�
^
�

Parent0(x, y) ^ Parent0(y, z) ! Parent0(x, z)
�
, forcing

Parent0 to extend the transitive closure of Parent;
• 8x¬Parent0(x, x), requiring Parent0 to be irreflexive.

By construction, one can verify the following result:

Entropy 2018, 20, 229 15 of 24

Theorem 2. For disjoint sets of relations S and R, a given relational Bayesian network F and a class of
S-structures S defined by qS , F is coherent for some structure in S iff q0S ^ BF ^ y00 is satisfiable.

The fact that q0S ^ BF ^ y00 does not use the transitive closure operator makes its satisfiability
decidable for any decidable fragment of first-order logic.

4. Probabilistic Relational Models

In this section, we introduce the machinery of PRMs by following the terminology by
Getoor et al. [19], focusing on the simple case where uncertainty is restricted to descriptive attributes,
which are assumed to be binary. We also review the coherence problem for PRMs and the proposed
solutions in the literature. In the next section, we show how this coherence problem can also be tackled
via logic, as the coherence of RBNs.

4.1. Syntax and Semantics of PRMs

To define a PRM, illustrated in Example 5, we need a relational model, with classes associated
with descriptive attributes and reference slots that behave like foreign keys. Intuitively, each object
in a class is described by the values of its descriptive attributes, and reference slots link different
objects. Formally, a relational schema is described by a set of classes X = {X1, . . . , Xn}, each of
which associated with a set of descriptive attributes A(Xi) and a set of reference slots R(Xi). We assume
descriptive attributes take values in {0, 1}. A reference slot r in a class X (denoted X.r) is a reference to
an object of the class Range[r] (its range type) specified in the schema. The domain type of r, Dom[r], is
X. We can view this reference slot r as a function fr taking objects in Dom[r] and returning singletons
of objects in Range[r]. That is, fr(x) = {y} is equivalent to x.r = y.

For any reference slot r, there is an inverse slot r�1 such that Range[r�1] = Dom[r] and Dom[r�1] =
Range[r]. The corresponding function, fr�1 takes an object x from the class Range[r] and returns the set
of objects {y | fr(y) = {x}} from the class Dom[r]. A sequence of slots (inverted or not) K = r1, . . . , rk
is called a slot chain if Range[ri] = Dom[ri+1] for all i. The function corresponding to a slot chain
K = r1, r2, fK, is a type of composition of the functions fr1 , fr2 , taking an object x from Range[r1] and
returning a set objects {z | 9y : y 2 fr1(x) ^ z 2 fr2(y)} from Range[r2]. The corresponding function
can be obtained by applying this type of composition two-by-two. We write y 2 x.K when y 2 fK(x).

An instance I of a relational schema populates the classes with objects, associating values with
the descriptive attributes and reference slots. Formally, I is an interpretation specifying for each class
X 2 X : a set of objects I(X); a value A.x 2 {0, 1} for each descriptive attribute in A 2 A(X) and
each object x 2 I(X); and an object x.r 2 I(Range[r]) for each reference slot r 2 R(X) and object
x 2 I(X). Note that, if x.r = y, fr(x) = {y}. We use Ix.A and Ix.r to denote the value of x.A and
x.r in I .

Given a relational schema, a PRM defines a probability distribution over its instances. In the
simplest form, on which we focus, objects and the relations between them are given as input, and there
is uncertainty only over the descriptive attributes values. A relational skeleton sr is a partial specification
of an instance that specifies a set of objects sr(Xi) for each class Xi in the schema besides the relation
holding between these objects: sr

x.r for each x 2 sr(Xi) and r 2 R(Xi). A completion of a relational
skeleton sr is an instance I such that, for each class Xi 2 X : I(Xi) = sr(Xi) and, for each x 2 I(Xi)
and r 2 R(Xi), Ix.r = sr

x.r. We can see a PRM as a function taking relational skeletons and returning
probability distributions over the completions of these partial instances, which can be seen as joint
probability distributions for the random variables formed by the descriptive attributes of each object.

The format of a PRM resembles that of a Bayesian network: for each attribute X.A, we have a set
of parents Pa(X.A) and the corresponding parameters P(X.A | Pa(X.A)). The parent relation forms
a direct graph, as usual, called the dependency graph; and the set of parameters define the conditional
probability tables. The attributes in Pa(X.A) are called formal parents, as they will be instantiated for
each object x in X according to the relational skeleton. There two types of formal parents: X.A can

Entropy 2018, 20, 229 16 of 24

depend either on another attribute X.B of the same object or on an attribute X.K.B of other objects,
where K is a slot chain.

In general, for an object x, x.K.B is a multiset {y.B | y 2 x.K}, whose size is defined by the
relational skeleton. To compactly represent the conditional probability distribution when X.K.B 2
Pa(X.A), the notion of aggregation is used. The attribute x.A will depend on some aggregate function
g of this multiset, like its mean value, mode, maximum or minimum, and so on; that is, g(X.K.B) will
be a formal parent of X.A.

Definition 7. A probabilistic Relational model P for a relational schema R is defined as a pair
hPS , Pqi where:

• PS defines, for each class X 2 X and each descriptive attribute A 2 A(X), a set of formal parents
Pa(X.A) = {U1, . . . , Ul}, where each Ui has the form X.B or g(X.K.B);

• Pq is the set of parameters defining legal Conditional Probability Distributions (CPDs) P(X.A |
Pa(X.A)) for each descriptive attribute A 2 A(X) of each class X 2 X .

The semantics of a PRM is given by the ground Bayesian network induced by a relational skeleton,
where the descriptive attributes of each object are the random variables.

Definition 8. A PRM P = hPS , Pqi and a relational skeleton sr define a ground Bayesian
network where:

• There is a node representing each attribute x.A, for all x 2 sr(Xi), A 2 A(Xi) and Xi 2 X ;
• For each Xi 2 X , each x 2 sr(Xi) and each A 2 A(Xi), there is a node representing g(x.K.B) for

each g(Xi.K.B) 2 Pa(Xi.A);
• Each x.A depends on parents x.B, for formal parents X.B 2 Pa(X.A), and on parents g(x.K.B),

for formal parents g(X.K.B) 2 Pa(X.A), according to PS ;
• Each g(x.K.B) depends on parents y.B with y 2 x.K;
• The CPD for P(x.A | Pa(x.A)) is P(X.A | Pa(X.A)), according to Pq .
• The CPD for P(g(x.K.B) | Pa(g(x.K.B))) is computed through the aggregation function g.

The joint probability distribution over the descriptive attributes can be factored as usual to
compute the probability of a specific instance I that is a completion of the skeleton sr. If we delete each
g(x.K.B) from the ground Bayesian network, making its children depend directly on the nodes y.B
with y 2 x.K (defining a new parent relation Pa0) and updating the CPDs accordingly, we can construct
a simplified ground Bayesian network. The latter can be employed to factor the joint probability
distribution over the descriptive attributes:

P(I | sr, P) = ’
x2sr

’
A2A(x)

P(Ix.A | IPa0(x.A))

= ’
Xi

’
x2sr(Xi)

’
A2A(x)

P(Ix.A | IPa0(x.A)).

Viewing P as a function from skeletons to probability distributions over instances, we use P(sr)
to denote the probability distribution P(I | sr, P) over the completions I of sr.

Example 5. Recall again Scenario 4 in Example 2. We can define a PRM that returns the corresponding
Bayesian network for each number and configuration of neighbors. In our relational schema, we have a class
Person, whose set of descriptive attributes is A(Person) = {burglary, alarm, calls}. Furthermore, to capture
multiple neighbors, we also need a class Neighborhood, with two reference slots, R(Neighborhood) =
{neighbor1, neighbor2}, whose domain is Person. For instance, to denote that Alice and Bob are neighbors, we
would have an object, say nAB, in the class Neighborhood, whose reference slots would be nAB.neighbor1 =
Alice and nAB.neighbor2 = Bob.

Entropy 2018, 20, 229 17 of 24

We assume that the relation neighbor is reflexive (that is, for each Person x, there is always
a Neighborhood nx with nx.neighbor1 = nx.neighbor2 = x) and symmetrical (if x 2
y.neighbor1�1.neighbor2, we also have y 2 x.neighbor1�1.neighbor2).

For each descriptive attribute in our relational schema, we associate a set of formal parents and a conditional
probability table, forming the following PRM P to encode Scenario 4:

• Pa(Person.burglary) = ?; P(Person.burglary) = 0.001;
• Pa(Person.alarm) = {burglary}; P(Person.alarm | burglary) = 0.9 and P(Person.alarm |

¬burglary) = 0.1;
• Pa(Person.calls) = {or(Person.neighbor1�1.neighbor2)};

P(Person.calls | or(Person.neighbor1�1.neighbor2) = c) = c, for c 2 {0, 1}.

Given a relational skeleton sr with persons and neighbors, P determines a joint probability distribution over
the the descriptive attributes, via a Bayesian network. Consider a skeleton sr with sr(Person) = {x1, x2, x3}
and n12, n23 2 sr(Neighborhood), with sr

nij.neighbor1 = xi and sr
nij.neighbor2 = xj, for each nij 2

sr(Neighborhood), but such that no n 2 sr(Neighborhood) has n.neighbor1 = x1 and n.neighbor2 = x3.
Then, the resulting probability distribution is the model of Scenario 3 in Example 2, whose Bayesian network is
given in Figure 2.

4.2. Coherence via Colored Dependency Graphs

As with RBNs, for the model to be coherent, one needs to guarantee that the ground Bayesian
network is acyclic. Getoor et al. [19] focused on guaranteeing that a PRM yields acyclic ground
Bayesian networks for all possible relational skeletons. To achieve that, possible cycles are detected in
the class dependency graph.

Definition 9. Given a PRM P, the class dependency graph GP is a directed graph with a node for each
descriptive attribute X.A and the following arcs:

• Type I arcs: hX.B, X.Ai, where X.B is a formal parent of X.A;
• Type II arcs: hY.B, X.Ai, where g(X.K.B) is a formal parent of X.A and Y = Range[X.K].

When the class dependency graph is acyclic, so is the ground Bayesian network for any relational
skeleton. Nevertheless, it may be the case that, even for cyclic class dependency graphs, any relational
skeleton occurring in practice leads to a coherent model. In other words, there might be classes of
skeletons for which the PRM is coherent. To easily recognize some of these classes, Getoor et al. [19]
put forward an approach based on identifying slot chains that are acyclic in practice. A set of slot
chains Kga = {K1, . . . , Km} is guaranteed acyclic if we are guaranteed that, for any possible relational
skeleton sr, there is a partial ordering � over its objects such that, for each Ki 2 Kga, x � y for any pair
x and y 2 x.Ki (we use x � y to denote x � y and x 6= y).

Definition 10. Given a PRM P and a set of guaranteed acyclic slot chains Kga, the colored class
dependency graph GP is a directed graph with a node for each descriptive attribute X.A and the
following arcs:

• Yellow arcs: hX.B, X.Ai, where X.B is a formal parent of X.A;
• Green arcs: hY.B, X.Ai, where g(X.K.B) is a formal parent of X.A, Y = Range[X.K] and K 2 Kga;
• Red arcs: hY.B, X.Ai, where g(X.K.B) is a formal parent of X.A, Y = Range[X.K] and K /2 Kga.

Intuitively, yellow cycles in the colored class dependency graph correspond to attributes of the
same object, yielding a cycle in the ground Bayesian network. If we add some green arcs to such
a cycle, then it is guaranteed that, departing from a node x.A in the ground Bayesian network, these
arcs form a path to y.A, where x � y, since � is transitive. Hence, x is different from y, and there is no
cycle. If there is a red arc in a cycle, however, one may have a skeleton that produces a cycle.

Entropy 2018, 20, 229 18 of 24

A colored class dependency graph is stratified if every cycle contains at least one green arc and no
red arc. Then:

Theorem 3 (Getoor et al. [19]). Given a PRM P and a set of guaranteed acyclic slot chains Kga, if the
colored class dependency graph GP is stratified, then the ground Bayesian network is acyclic for any possible
relational skeleton.

In the result above and in the definition of guaranteed acyclic slot chains, “possible relational
skeleton” refers to the class of skeletons that can occur in practice. The user must detect the guaranteed
acyclic slot chains, taking advantage of his a priori knowledge on the possible skeletons in practice.
For instance, consider a slot chain motherOf linking objects of the same class Person (Example 3).
A genetic attribute, like Person.blueEyes, might depend on Person.motherOf.blueEyes. Mathematically,
we can conceive of a skeleton with a cyclic relation motherOf, resulting in a red cycle in the colored
class dependency graph. Nonetheless, being aware of the intended meaning of motherOf, we know
that such skeletons are not possible in practice, so the cycle is green, and coherence is guaranteed.

Identifying guaranteed acyclic slot chains is by no means trivial. In fact, Getoor et al. [19] also
define guaranteed acyclic (g.a.) reference slots and g.a. slot chains are defined as those formed only by
g.a. reference slots. Still, these maneuvers miss the cases where two possible reference slots cannot
be g.a. according to the same �, but combine to form a g.a. slot chain. Getoor et al. [19] mention
the possibility of assuming different partial orders to define different sets of g.a. slot chains: in that
case, each ordering would correspond to a shade of green in the colored class dependency graph, and
coherence would not be ensured if there were two shades of green in a cycle.

5. Logic-Based Approach to the Coherence of PRMs

The simplest approach to the coherence of PRMs, via the non-colored class dependency graph,
is intrinsically incomplete, in the sense that some skeletons might yield a coherent ground Bayesian
network even for cyclic graphs. The approach via colored class dependency graph allows some cyclic
graphs (the stratified ones) to guarantee consistency for the class of all possible skeletons. However,
this method depends on a pre-specified set of guaranteed acyclic slot chains, and the colored class
dependency graph being stratified for this set is only a sufficient, not a necessary condition for
coherence. Therefore, the colored class dependency graph method is incomplete, as well. Even using
different sets of g.a. slot chains (corresponding to shades of green) to eventually capture all of them, it is
still possible that a cycle with red arcs cannot entail incoherence in practice. Besides being incomplete,
the graph-based method is not easily applicable to an arbitrary class of skeletons. Given a class of
skeletons as input, the user would have to detect somehow which slot chains are guaranteed acyclic for
that specific class; this can be considerably more difficult than ensuring acyclicity in the general case.

To address these issues, thus obtaining a general, complete method for checking the coherence of
PRMs for a given class of skeletons, we can resort to the logic-based approach we introduced for the
RBNs in previous sections. The goal of this section is to adapt the logic-basic techniques to PRMs.

PRMs can be viewed as RBNs, as conditional probability tables of the former can be embedded
into combination functions of the latter. This translation is out of our scope though, and it suffices for
our purposes to represent PRMs as random relational structures, taking S-structures to probability
distributions on R-structures. While the S-vocabulary is used to specify classes of objects and relations
between them (that is, the relational skeleton), the R-vocabulary expresses the descriptive attributes of
the objects. Employing this logical encoding of PRMs, we can apply the approach from Section 3.1 to
the coherence problem for PRMs.

To follow this strategy, we first show how a PRM can be seen as a random relational structure
described by a logical language.

Entropy 2018, 20, 229 19 of 24

5.1. PRMs as Random Relational Structures

Consider a PRM P = hPS , Pqi over a relational schema described by a set of classes
X = {X1, . . . Xn}, each associated with a set of descriptive attributes A(Xi) and a set of reference
slots R(Xi). Given a skeleton sr, which is formed by objects and relations holding between them,
the PRM P yields a ground Bayesian network over the descriptive attributes of these objects, defining
a probability distribution P(sr) over the completions of sr. Hence, if the relational skeleton is given
as a first-order S-structure over a set of objects and a set of unary relations R denotes their attributes,
the PRM becomes a random relational structure.

We need to represent a skeleton sr as a first-order S-structure S. Objects in sr can be seen as the
elements of the domain D of S. Note that PRMs are typed, with each object belonging to specific class
Xi 2 X. Thus, we use unary relations X1, . . . , Xn in the vocabulary S to denote the class of each object.
Accordingly, for each x 2 D, Xi(x) holds in S iff x 2 sr(Xi). As each object belongs to exactly one
class in the relational skeleton, the class of possible first-order structures is restricted to those where
the relations X1, . . . , Xn form a partition of the domain.

The first-order S-structure S must also encode the relations holding between the objects in the
skeleton that are specified via the values of the reference slots. To capture these, we assume they have
unique names and consider, for each reference slot Xi.r 2 R(Xi) with Range[r] = Xj, a binary relation
Sr. In S, Sr(x, y) holds iff sr

x.r = y. Naturally, Sr(x, y) should imply Xi(x) and Xj(y). Now, S encodes,
through the vocabulary S, all objects of a given class, as well as the relations between them specified in
the reference slots. In other words, there is a computable function bS from relational skeletons sr to
S-structures S = bS(s

r). For bS to be a bijection, we make its codomain equal to its range.
The probabilistic vocabulary of the random relational structure corresponding to a PRM is formed

by the descriptive attributes of every class in the relational schema. We assume that attributes in
different classes have different names, as well, in order to define the vocabulary of unary relations
R = {A 2 A(Xi) | Xi 2 X}. If Aj is an attribute of Xi, x.Aj = 1 (resp. x.Aj = 0) in the PRM is
mirrored by the ground R-atom Aj(x) being true (resp. false) in the random relational structure. Thus,
as a completion I corresponds to a value assignment to descriptive attributes of objects x1, . . . , xm
from a relational skeleton sr, it also corresponds to an R-structure DI over a domain D = {x1, . . . , xm}
in the following way: DI |= Ai(xj) iff xj.Ai = 1. Note that we assume that for DI to correspond
to a completion I of sr, DI 6|= Ai(xj) whenever Ai is not an attribute of the class X 2 X such
that xj 2 sr(X). Let bR denote the function taking instances I and returning the corresponding
R-structures DI = bR(I). As we cannot recover the skeleton sr from the R-structure DI = bR(I),
bR is not a bijection. Nevertheless, fixing a skeleton sr, there is a unique I such that bR(I) = DI .

Now, we can define a random relational structure PP that corresponds to the PRM P. For every
relational skeleton sr over a domain D, let PP(bS(s

r)) : ModR(D) ! [0, 1] be a probability distribution
over R-structures such that PP(bS(s

r))(DR) = P(sr)(IR), if DR = bR(IR), for a completion IR of sr,
and PP(bS)(DR) = 0 otherwise.

5.2. Encoding the Ground Bayesian Network and its Acyclicity

The probability distribution PP(bS(s
r)) can be represented by a ground Bayesian network

BPP(bS(s
r)), where nodes represent the ground R-atoms. The structure of this network is isomorphic

to the simplified ground Bayesian network yielded by P for the skeleton sr, if we ignore the isolated
nodes representing the spurious Ai(xj) = 0, when Ai is not an attribute of the class to which xj belongs.
The coherence of P(sr) depends on the acyclicity of the corresponding ground Bayesian network
BP(sr), which is acyclic iff BPP(s

r) is so. Therefore, we can encode the coherence of a PRM P for
a skeleton sr via the acyclicity of BPP(bs(sr)) by applying the techniques from Section 3.

We want to construct a formula that is satisfied only by those S-structures bS(s
r) such that P(sr)

is coherent. Again, we consider an extended, bipartite domain D = DS [DB, with bS(s
r) encoded

over DS and the structure of BPP(s
r) encoded in DB. We want to build a formula BP that is satisfied by

Entropy 2018, 20, 229 20 of 24

structures D over D = DS [DB such that, if D encodes bS(s
r) over DS, then D encodes the structure

of BPP(bS(s
r)) over DB. The nodes are encoded exactly as shown in Section 3.1.

To encode the arcs, we employ once more a relation Parent(·, ·). Parent(y, y0) must hold only
if x, y 2 DB denote ground R-atoms Ai(x) and Aj(x0) such that x0.Aj 2 Pa0(x.Ai) in the simplified
ground Bayesian network, which is captured by the formula Depj

i(x, x0), as in Section 3.1. The only
difference here is that now Depj

i(x, x0) can be defined directly. We use Depj
i(x, x0) here to denote

a formula recursively defined, not an atom over the binary relation Depj
i(·, ·). For each pair Ai, Aj 2 R,

we can simply look at PS to see the conditions on which x0.Aj is a parent of x.Ai in the simplified
ground Bayesian network (x0.Aj 2 Pa0(x.Ai)), in which case Aj(x0) will be a parent of Ai(x) in
BPp (bS(s

r)). If X.Aj 2 Pa(X.Ai), then Depj
i(x, x0) should be true whenever x = x0. If g(X.K.Aj) 2

Pa(X.Ai), for a slot chain K, then x.K.Aj ✓ Pa0(x.Ai) and Depj
i(x, x0) should be true whenever x0 is

related to x via K = r1, . . . , rk. This is the case if:

9y1, 9y2 . . . 9yk�1Sr1(x, y1) ^ Sr2(y1, y2) ^ · · · ^ Srk (yk�1, x0)

is true. If K = r, this formula is simply Sr(x, x0).
Note that it is possible that both X.Aj and g(X.K.Aj) are formal parents of X.Ai, and there can even

be different parents g(X.K.Aj), for different K. Thus, we define Depj
i(x, x0) algorithmically. Initially,

make Depj
i(x, x0) = ?. If X.Aj 2 Pa(X.Ai) for some Aj, make Depj

i(x, x0) = Depj
i(x, x0) _ (x = x0).

Finally, for each g(X.K.Aj) in Pa(X.Ai), for a slot chain K = r1, . . . , rk, make:

Depj
i(x, x0) = Depj

i(x, x0) _ 9y1, 9y2 . . . 9yk�1Sr1(x, y1) ^ Sr2(y1, y2) ^ · · · ^ Srk (yk�1, x0),

using fresh y1, . . . , yk�1.
Analogously to Section 3.1, we have a formula BP, for a fixed PRM P, that is satisfied only

by structures D over a bipartite domain DS [DB where the Parent(·, ·) relation over DB brings the
structure of the ground Bayesian network BPP(S) corresponding to the S-structure S encoded in
DS. Again, acyclicity can be captured via a transitive closure operator: yP = 8x¬TC(Parent)(x, x).
The PRM P is coherent for a skeleton sr if, for every structure D over a bipartite domain DS [DB
encoding bS(s

r) in DS, we have D |= BP ! yF.
Consider now a class S of skeletons sr such that {bS(s

r) | sr 2 S} is the set of S-structures
satisfying a first-order formula qS . To check whether the PRM P is coherent for the class S , we construct
q0S by inserting guards to the quantifiers, as explained in Definition 5. Finally, the PRM P is coherent
for a class S of relational skeletons iff q0S ! (BP ! yP) is valid.

We have thus succeeded in turning coherence checking for PRMs into a logical inference, by
adapting techniques we developed for RBNs. In the next section, we travel, in a sense, the reverse
route: we show how to adapt the existing graph-based techniques for coherence checking of PRMs to
coherence checking of RBNs.

6. Graph-Based Approach to the Coherence of RBNs

The logic-based approach to the coherence problem for RBNs can be applied to an arbitrary
class of input structures, as long as the class can be described by a first-order formula, possibly with
a transitive closure operator. Given any class of input structures S , via the formula qS , we can verify
the coherence of a RBN F via the validity of q0S ! (BF ! y0), as explained in Section 3. Furthermore,
this method is complete, as F is coherent for S if and only if such a formula is valid. Nonetheless,
completeness and flexibility regarding the input class come at a very high price, as deciding the
validity of this first-order formula involving a transitive closure operator may be computationally hard,
if at all decidable. Therefore, RBNs users can benefit from the ideas introduced by Getoor et al. [19]
for the coherence of PRMs, using the (colored) dependency graphs. While Jaeger [23] proposes to

Entropy 2018, 20, 229 21 of 24

investigate the coherence for a given class of models described by a logical formula, Getoor et al. [19]
are interested in a single class of inputs: the skeletons that are possible in practice. With a priori
knowledge, the RBN user perhaps can attest to the acyclicity of the resulting ground Bayesian network
for all possible inputs.

Any arc hr0(t0), r(t)i in the output ground Bayesian network BF(DS), for an RBN F and input
DS reflects that the probability formula Fr(x), when x = t, depends on r(t0). Hence, possible arcs in
this network can be anticipated by looking into the probability formulas Fr(x), for the probabilistic
relations r 2 R, in the definition of F. In other words, by inspecting the probability formula Fr(x),
we can detect those r0 2 R for which an arc hr0(t0), r(t)i can possibly occur in the ground Bayesian
network. Similarly to the class dependency graph for PRMs, we can construct a high-level dependency
graph for RBNs that brings the possible arcs, and thus cycles, in the ground Bayesian network.

Definition 11. Given an RBN F, the R-dependency graph GF is a directed graph with a node for each
probabilistic relation r 2 R and the following arcs:

• Type I arcs: hr0, ri, where r0(x) occurs in Fr(x) outside the scope of a combination function;
• Type II arcs: hr0, ri, where r0(y) occurs in Fr(x) inside the scope of a combination function.

Intuitively, a Type I arc hr0, ri in the R-dependency graph of an RBN F means that, for any input
structure DS over D and any tuple t 2 Da(r), Fr(t) depends on r0(t) in the ground Bayesian network
BF(DS); formally, r0(t) 2 a(Fr(x), t,DS). For instance, if Fr1(x) = mean({|r2(y) | y; S(x, y)|})(1 �
r3(x)), then, given any S-structure, Fr1(t) depends on r3(t) for any t. Type II arcs capture dependencies
that are contingent on the S-relations holding in the input structure. In other words, a Type II arc
hr0, ri means that Fr(t) will depend on r0(t0) if some S-formula j holds in the input structure DS;
DS |= j. For instance, if Fr1(x) = (mean({|r2(y) | y; S(x, y)|})(1 � r3(x)), r1(t) depends on r2(t0)
(for t, t0 in the domain D) in the output ground Bayesian network iff the input DS is such that
DS |= S(t, t0). If combination functions are nested, the corresponding S-formula might be fairly
complicated. Nevertheless, the point here is simply noting that, given a Type II arc hr0, ri, the conditions
on which r(t) is actually a child of r0(t) in the ground Bayesian network can be expressed with
an S-formula parametrized by t, t0, which will be denoted by jr,r0

S (t, t0). Consequently, for t, t0 2 D,
DS |= jr,r0

S (t, t0) iff r0(t0) 2 a(Fr(x), t,DS), i.e., r(t) depends on r0(t0) in BF(DS).
As each arc in the ground Bayesian network corresponds to an arc on the R-dependency graph,

when the latter is acyclic, so will be the former, for any input structure. As it happens with class
dependency graphs and PRMs, though, a cycle in the R-dependency graph does not entail a cycle
in the ground Bayesian network if a Type II arc is involved. It might well be the case that the input
structures DS found in practice do not cause cycles to occur. This can be captured via a colored version
of the R-dependency graph.

In the same way that Type I arcs in the class dependency graph of a PRM relate to attributes of
different objects, in the R-dependency graph of an RBN, these arcs encode the dependency between
relations r, r0 2 R to be grounded with (possibly) different tuples. For a PRM, the ground Bayesian
network can never reflect a cycle with green arcs, but no red one, in the class dependency graph, for
a sequence of green arcs guarantees different objects, according to a partial ordering. Analogously,
with domain knowledge, the user can identify Type II arcs in the R-dependency graph whose sequence
will prevent cycles in the ground Bayesian network, via a partial ordering over the tuples.

For a vocabulary S of predefined relations, let TD =
S{Da | a 2 N} denote the set of all

tuples with elements of D. We say a set Aga = {hr0i , rii | 1 i n} of Type II arcs is guaranteed
acyclic if, for any possible input structure DS over D, there is a partial ordering � over TD such that,
if DS |= jr,r0

S (t, t0) for some t, t0 2 TD, then t � t0. Here, again, “possible” means “possible in practice”.

Entropy 2018, 20, 229 22 of 24

Definition 12. Given the R-dependency graph of an RBN F and a set Aga of guaranteed acyclic
type II arcs, the colored R-dependency graph GP is a directed graph with a node for each r 2 R and
the followin arcs:

• Yellow arcs: Type I arcs in the R-dependency graph;
• Green arcs: Type II arcs hr0, ri in the R-dependency graph such that hr0, ri 2 Aga;
• Red arcs: The remaining (Type II) arcs in the R-dependency graph.

Again, yellow cycles in the colored R-dependency graph correspond to relations r 2 R grounded
with the same tuple t, yielding a cycle in the ground Bayesian network. If green arcs are added to
a cycle, then it is guaranteed that, departing from a node r(t) in the ground Bayesian network, these
arcs form a path to r(t0), where t � t0 for a partial ordering �, and there is no cycle. Once more, red
arcs in cycles may cause t = t0, and coherence is not ensured. Calling stratified a R-dependency graph
whose every cycle contains at least one green arc and no red arc, we have:

Theorem 4. Given the R-dependency graph of an RBN F and a set Aga of guaranteed acyclic Type II arcs, if the
colored class dependency graph GF is stratified, then the ground Bayesian network is acyclic for any possible
input structure.

Of course, detecting guaranteed acyclic Type II arcs in R-dependency graphs of RBNs is even
harder than, as a generalization of, detecting guaranteed acyclic slot chains in PRMs. In any case, if the
involved relations r, r0 2 R are unary, one is in a position similar to finding acyclic slot chains, as the
arguments of r, r0 can be seen as objects, and only a partial ordering over the elements of the domain
(not tuples) is needed.

7. Conclusions

In this paper, we examined a new version of coherence checking, a central problem in the foundations
of probability as conceived by de Finetti. The simplest formulation of coherence checking takes
a set of events and their probabilities and asks whether there can be a probability measure over
an appropriate sample space [1]. This sort of problem is akin to inference in propositional probabilistic
logic [28]. Unsurprisingly, similar inference problems have been studied in connection with first-order
probabilistic logic [27]. Our focus here is on coherence checking when one has events specified by
first-order expressions, on top of which one has probability values and independence relations. Due to
the hopeless complexity of handling coherence checking for any possible set of assessments and
independence judgments, we focus on those specifications that enhance the popular language of
Bayesian networks. In doing so, we address a coherence checking problem that was discussed in the
pioneering work by Jaeger [23].

We have first examined the problem of checking the coherence of relational Bayesian networks
for a given class of input structures. We used first-order logic to encode the output ground Bayesian
network into a first-order structure, and we employed a transitive closure operator to express the
acyclicity demanded by coherence, finally reducing the coherence checking problem to that of deciding
the validity of a logical formula. We conjecture that Jaeger’s original proposal concerning the format
of the formula encoding the consistency of a relational Bayesian network F for a class S cannot be
followed as originally stated; as we have argued, the possible number of tuples built from a domain
typically outnumbers its size, so that there is no straightforward way to encode the ground Bayesian
network, whose nodes are ground atoms, into the input S-structure. Therefore, it is hard to think
of a method that translates the acyclicity of the ground Bayesian network into a formula jF to be
evaluated over an input structure in the class S (satisfying qS). Our contribution here is to present
a logical scheme that bypasses such difficulties by employing a bipartite domain, encoding both
the S-structure and the corresponding Bayesian network. We have also extended those results to

Entropy 2018, 20, 229 23 of 24

PRMs, in fact mixing the existing graph-based techniques for coherence checking with our logic-based
approach. Our results seem to be the most complete ones in the literature.

Future work includes searching for decidable instances of the formula encoding the consistency
of a relational Bayesian network for a class of input structures and exploring new applications for the
logic techniques herein developed.

Acknowledgments: GDB was supported by Fapesp, Grant 2016/25928-4. FGC was partially supported by CNPq,
Grant 308433/2014-9. The work was supported by Fapesp, Grant 2016/18841-0.

Author Contributions: Both authors have contributed to the text and read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; nor in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CPD Conditional Probability Table
g.a. guaranteed acyclic
iff if and only if
PRM Probabilistic Relational Model
PSAT Probabilistic Satisfiability
RBN Relational Bayesian Network

References

1. De Finetti, B. Theory of Probability; Wiley: New York, NY, USA, 1974; Volumes 1 and 2.
2. Coletti, G.; Scozzafava, R. Probabilistic Logic in a Coherent Setting; Trends in Logic, 15; Kluwer: Dordrecht,

The Netherlands, 2002.
3. Lad, F. Operational Subjective Statistical Methods: A Mathematical, Philosophical, and Historical, and Introduction;

John Wiley: New York, NY, USA, 1996.
4. Berger, J.O. In Defense of the Likelihood Principle: Axiomatics and Coherency. In Bayesian Statistics 2;

Bernardo, J.M., DeGroot, M.H., Lindley, D.V., Smith, A.F.M., Eds.; Elsevier Science: Amsterdam, The Netherlands,
1985; pp. 34–65.

5. Regazzini, E. De Finetti’s Coherence and Statistical Inference. Ann. Stat. 1987, 15, 845–864.
6. Shimony, A. Coherence and the Axioms of Confirmation. J. Symb. Logic 1955, 20, 1–28.
7. Skyrms, B. Strict Coherence, Sigma Coherence, and the Metaphysics of Quantity. Philos. Stud. 1995, 77, 39–55.
8. Savage, L.J. The Foundations of Statistics; Dover Publications, Inc.: New York, NY, USA, 1972.
9. Darwiche, A. Modeling and Reasoning with Bayesian Networks; Cambridge University Press: Cambridge,

UK, 2009.
10. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA,

USA, 2009.
11. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann:

San Mateo, CA, USA, 1988.
12. Getoor, L.; Taskar, B. Introduction to Statistical Relational Learning; MIT Press: Cambridge, MA, USA, 2007.
13. De Raedt, L. Logical and Relational Learning; Springer: Berlin, Heidelberg, 2008.
14. Raedt, L.D.; Kersting, K.; Natarajan, S.; Poole, D. Statistical Relational Artificial Intelligence: Logic, Probability,

and Computation; Morgan & Claypool: San Rafael, CA, USA, 2016.
15. Cozman, F.G. Languages for Probabilistic Modeling over Structured Domains. Tech. Rep. 2018, submitted.
16. Poole, D. First-order probabilistic inference. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), Acapulco, Mexico, 9–15 August 2003; pp. 985–991.
17. Gilks, W.; Thomas, A.; Spiegelhalter, D. A language and program for complex Bayesian modeling. Statistician

1993, 43, 169–178.
18. Lunn, D.; Spiegelhalter, D.; Thomas, A.; Best, N. The BUGS project: Evolution, critique and future directions.

Stat. Med. 2009, 28, 3049–3067.

Entropy 2018, 20, 229 24 of 24

19. Getoor, L.; Friedman, N.; Koller, D.; Pfeffer, A.; Taskar, B. Probabilistic relational models. In Introduction to
Statistical Relational Learning; Getoor, L., Taskar, B., Eds.; MIT Press: Cambridge, MA, USA, 2007.

20. Koller, D. Probabilistic relational models. In Proceedings of the International Conference on Inductive Logic
Programming, Bled, Solvenia, 24–27 June 1999; pp. 3–13.

21. Heckerman, D.; Meek, C.; Koller, D. Probabilistic Entity-Relationship Models, PRMs, and Plate Models.
In Introduction to Statistical Relational Learning; Getoor, L., Taskar, B., Eds.; MIT Press: Cambridge, MA, USA,
2007; pp. 201–238.

22. Jaeger, M. Relational Bayesian networks. In Proceedings of the Thirteenth Conference on Uncertainty in
Artificial Intelligence, Providence, RI, USA, 1–3 August 1997; pp. 266–273.

23. Jaeger, M. Relational Bayesian networks: A survey. Electron. Trans. Art. Intell. 2002, 6, 60.
24. De Bona, G.; Cozman, F.G. Encoding the Consistency of Relational Bayesian Networks. Available online:

http://sites.poli.usp.br/p/fabio.cozman/Publications/Article/bona-cozman-eniac2017F.pdf (accessed on
23 March 2018).

25. Alechina, N.; Immerman, N. Reachability logic: An efficient fragment of transitive closure logic. Logic J. IGPL
2000, 8, 325–337.

26. Ganzinger, H.; Meyer, C.; Veanes, M. The two-variable guarded fragment with transitive relations.
In Proceedings of the 14th IEEE Symposium on Logic in Computer Science, Trento, Italy, 2–5 July 1999;
pp. 24–34.

27. Fagin, R.; Halpern, J.Y.; Megiddo, N. A Logic for Reasoning about Probabilities. Inf. Comput. 1990, 87, 78–128.
28. Hansen, P.; Jaumard, B. Probabilistic Satisfiability; Technical Report G-96-31; Les Cahiers du GERAD;

École Polytechique de Montréal: Montreal, Canada, 1996.

c� 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://sites.poli.usp.br/p/fabio.cozman/Publications/Article/bona-cozman-eniac2017F.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Relational Bayesian Networks
	The Coherence Problem for RBNs
	Encoding the Structure of the Ground Bayesian Network
	Encoding Coherence via Acyclicity
	A Weaker Form of Coherence

	Probabilistic Relational Models
	Syntax and Semantics of PRMs
	Coherence via Colored Dependency Graphs

	Logic-Based Approach to the Coherence of PRMs
	PRMs as Random Relational Structures
	Encoding the Ground Bayesian Network and its Acyclicity

	Graph-Based Approach to the Coherence of RBNs
	Conclusions
	References

