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1. Introduction

As even a cursory look at the literature reveals, there are many ways to mix probabilities and propositional
logic. Indeed, propositional probabilistic logics appear in several fields, from philosophy to economics and
artificial intelligence, with real applications from material discovery [14] to model checking [2]. However,
there are relatively few proposals for the classification of propositional probabilistic logics based on their
expressivity [10,18,36,39].

In this paper we examine two aspects of propositional probabilistic logics that can be used to classify
them. First, we examine the nesting of probabilistic operators, which we identify not only as a major
syntactic decision, but also as a decision that drives the semantics. Second, we investigate the expressivity
of probabilistic assessments, a topic that has received scant attention in the literature but that has interesting
consequences.

We restrict our study to propositional probabilistic logics that adopt classical propositional logic as a
starting point; we also assume that all models have a finite number of possible worlds, so that issues of count-
able additivity are irrelevant. Finally, we only deal with “unconditional” probabilities, leaving conditional
assessments to future work.1
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1 We consider some logics that can make statements constraining the value of P (φ∧ θ)/P (θ), given P (θ) > 0, in Section 4.3; but
this is not the same as constraining the value of P (φ|θ) in the general case (in which P (θ) may be 0).
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After a brief review of relevant concepts in Section 2, we focus on the nesting of probabilistic opera-
tors and its semantic consequences in Section 3. That is, we examine the meaning of expressions such as
P (P (φ) = 0.5) = 0.7, understood as the “probability of the probability of a propositional formula φ be-
ing 0.5 is 0.7”. We contribute with a novel analysis of the relationship between nesting and semantics. In
Section 4 we discuss ways to specify probability assessments; we call it the probabilistic expressivity of a
logic. For instance, a particular logic may allow one to state P (φ) = 1/2, while another logic may allow
P (φ1)2 +2P (φ2) � q where φ1 and φ2 are propositional formulas and q is restricted to be a rational number.
The extent to which one can express probabilistic appraisals strongly affects expressivity and complexity of
the whole logic in question.

Some decisions one can take when mixing probabilities and propositions may not have much effect on
expressivity and complexity; other decisions can have dramatic effect. Based on our results, we sketch a
scheme for classification of propositional probabilistic logics in Section 5.

2. Preliminaries

In this section we offer a brief review of propositional logic and probabilistic satisfiability, so as to fix
notation and terminology.

First, we define a logic as a satisfaction system, as it is done in [3]:

Definition 1. Let L be a non-empty set (a language) and M be a non-empty class (of models). A logic is a
tuple (L,M, |=) in which |= ⊆ M × L is a relation.

2.1. The propositional language and its semantics

The language of propositional logic consists of a set of formulas formed by propositions combined with
logical connectives, possibly with punctuation elements. We assume a countably infinite set of symbols
X = {x1, x2, x3, . . .} corresponding to atomic propositions. We have the unary connective ¬ (negation) and
the binary connectives ∨ (disjunction), ∧ (conjunction) and → (implication), plus parentheses (dropped
whenever possible). Every proposition is a formula; moreover, if φ is a formula, then ¬φ is a formula; if φ1
and φ2 are formulas, then (φ1 ∨ φ2), (φ1 ∧ φ2) and (φ1 → φ2) are formulas. The set of all formulas built
using only these guidelines is the language of propositional logic, denoted by LPL. Additionally, φ1 ↔ φ2
(bi-implication) denotes (φ1 → φ2) ∧ (φ2 → φ1), and � denotes xi ∨ ¬xi for some xi.

Each atomic proposition can assume a truth value, either true or false, represented respectively by 1
and 0. A truth assignment, or valuation, is a function v : X → {0, 1} that takes atomic propositions to truth
values. Valuations may have their domain extended to all of LPL, as follows. Let φ1 and φ2 be formulas
from the propositional language; then: v(φ1 ∧φ2) = 1 if and only if v(φ1) = 1 and v(φ2) = 1; v(φ1 ∨φ2) = 1
if and only if v(φ1) = 1 or v(φ2) = 1; v(¬φ1) = 1 if and only if v(φ) = 0; v(φ1 → φ2) = 1 if and only if
v(φ1) = 0 or v(φ2) = 1. Let V be the set of all valuations over X. The classical propositional logic LPL is the
tuple (LPL, V, |=) where |= ⊆ V ×LPL is a relation such that v |= φ iff v(φ) = 1 for every (v, φ) ∈ V ×LPL.
A propositional formula φ is satisfiable when it is possible to find a valuation v such that v |= φ.

We will identify a logical formula φ with a set of possible worlds, to be suitably defined later. Such a set
is denoted by �φ�. In this paper we always have, for the logics and semantics we define, that �¬φ� = �φ�,
�φ1 ∨ φ2� = �φ1� ∪ �φ2�, and �φ1 ∧ φ2� = �φ1� ∩ �φ2�.

2.2. Probability theory and probabilistic satisfiability

A probability measure attaches real numbers to events that are subsets of a set Ω, the possibility space. All
probability spaces in this paper are finite, hence we can take that any subset of Ω is an event. A probability
measure P is such that P (Ω) = 1, P (A) � 0 for any event A, and P (A∪B) = P (A)+P (B) for any disjoint
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events A and B. A function from elements of Ω to the interval [0, 1], that adds up to one, is a probability
mass over Ω; a probability mass induces a probability measure.

Probability values may be interpreted as relative frequencies, propensities, objective or subjective degrees
of belief, betting rates [32,18,25]; we are not concerned with the interpretation of probability values in this
paper.

By P (φ), where φ is a formula, one typically means the probability of the set �φ� of possible worlds in
which φ is true. This is indeed the sort of semantics we adopt throughout. Given a probability mass π over
the set of possible worlds, Pπ(·) denotes the induced probability measure on formulas by Pπ(φ) = π(�φ�).
For classical propositional logic, we can equate possible worlds with valuations, and we obtain:

Pπ(φ) = π
(

�φ�
)

=
∑{

π(vi)
∣∣vi(φ) = 1

}
. (1)

Note that alternative approaches to semantics of probabilistic assessments are possible, as can be found for
instance in the work of Haenni et al. [19].

We now formalize the notion of a probabilistic assessment. Call elementary probabilistic formula an
expression such as P (φ) � q, where φ is a propositional formula and q is a rational number. Suppose one
has a set of elementary probabilistic formulas; we say that these assessments are consistent if there is a
probability measure Pπ(·) on LPL such that Pπ(φi) � qi for each formula P (φi) � qi.

The problem of verifying consistency of a set of elementary probabilistic formulas is the probabilistic
satisfiability (PSAT) problem [17]. If there are n atomic propositions in the formulas considered, one must
find a probability mass π(.) over the 2n possible worlds that induces the measure Pπ(.). We say an instance
of PSAT problem is satisfiable if there is such probability mass π, and it is unsatisfiable otherwise.

PSAT has been rediscovered several times, and an analytic version was actually proposed by Boole [4].
Hailperin [20], Bruno and Gilio [5], and Nilsson [33] suggested a linear programming approach. Consider the
problem of deciding the consistency of a set of elementary probabilistic formulas {P (φi) � qi|1 � i � m},
where φ are propositions involving n atoms. Let A be an (m× 2n)-matrix whose elements are aij = vj(φi),
let q be the (m × 1)-vector [q1, . . . , qm]′. The problem is satisfiable iff there is a (2n × 1)-vector π that is
solution to Aπ = q, π � 0 and

∑
π = 1. Intuitively, in the matrix A we have a column for each valuation and

a row for each formula. The vector π is a probability mass over the valuations. If there is a feasible solution
for π, then there is a probability mass π that satisfies the problem; otherwise, the problem is unsatisfiable.

PSAT is an NP-complete problem [17]; if there is a solution, there is a solution with only m + 1 valu-
ations (columns) receiving positive probability. Kavvadias and Papadimitriou [29] and Jaumard et al. [28]
have shown how column generation methods can handle large problems, and several approaches have since
appeared [30,13,24,8]. Note that this linear programming approach can be applied to other probabilistic
logics, as discussed by Andersen and Hooker [1] and Jaumard et al. [27].

3. To nest, or not to nest

The simplest class of propositional probabilistic logics, discussed in Section 3.1, is one where nesting is
not allowed, and where the semantics is given by a probability measure over the set of valuations. Section 3.2
considers another class of propositional probabilistic logics, where nesting is allowed but the semantics is
still based on a probability measure over valuations. The main result of this section is that this second class
collapses into the first one. This fact was noted by Ognjanovic and Raškovic [35] for first-order probability
logics, even though no formal result on this was given.

A third class of propositional probabilistic logics, discussed in Section 3.3, allows nesting and takes each
possible world to be associated with a valuation and with a probability measure over valuations. Here
nesting truly increases expressivity. Finally, a fourth class is contemplated in Section 3.4, where nesting is
not allowed and the semantics takes each possible world to be associated with a valuation and a probability
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Table 1
List of most important definitions and symbols.

Concept/symbol Explanation
LPL the usual propositional language over X = {x1, x2, . . .}
elementary probabilistic formula a formula like P (φ) � q, with q ∈ Q and φ ∈ LPL
basic probabilistic formula any probabilistic assessment like f(P (φ1), . . . , P (φm)) �� q
LBPF the set of all basic probabilistic formulas with φi ∈ LPL
LPPL a language formed by the Boolean closure of LBPF
LPPL a logic over LPPL with standard probabilistic semantics
LNPL a language: LPPL plus nesting of probabilistic operators
LPN a logic over LNPL with models for higher-order probability
Fr(n) the set {0, 1/n, 2/n, . . . , (n − 1)/n, 1}
L��S sublogics of LPPL with assignments restricted to P (φ) �� q, q ∈ S
L′

��S sublogics of LNP with assignments restricted to P (φ) �� q, q ∈ S

measure over valuations. It is hard to imagine useful applications for any such logic; indeed, we have not
been able to find any representative of this fourth class in the literature.

There are two related classification schemes in the literature. In the classification scheme of Ognjanovic et
al. [36], the first category above corresponds to logic LPP2, while their logic LPP1 allows nesting and adopts
possible worlds endowed with probability measures. Ikodinovic et al. [26] have refined the classification of
LPP2 based on the probabilistic expressivity, what we discuss in Section 4.3.

A different classification is proposed by Williamson [39], who distinguishes “internal” and “external”
logics. Such classification scheme is also explored by Demey et al. [10]; we comment on it in Section 3.5 and
indicate why we prefer our scheme based on nesting and its semantics.

In the following sections, we introduce and use several definitions and symbols; the most important are
listed in Table 1 with a short explanation.

3.1. No nesting

Consider a logic that does not allow nesting, and where the semantics is based on a probability measure
over the set of valuations (similar to PSAT problems). A possible world is simply a valuation. In such logics,
each propositional formula is true or false in each possible world, but each probabilistic assessment is true
or false in a pair consisting of the set of possible worlds and a probability measure over them.

PSAT problems are defined within a rather simple language that consists of conjunctions of elementary
probabilistic formulas. There are two dimensions to generalize here; first, we might consider more elaborate
probabilistic assessments; second, we might consider Boolean operators among probabilistic assessments.

Call basic probabilistic formula an expression such as f(P (φ1), . . . , P (φn)) �� q, where f : [0, 1]n → R is
a function, q ∈ Q is a rational number, �� ∈{<,>,�,�,=}, and φ1, . . . , φn are formulas in the language of
interest. In this section each φi is a propositional formula. We discuss in more detail the specification of f , ��
and q in Section 4, in which constraints on f , �� and q (and the relationship among them) are investigated.
For instance, both P (x1) � 0.2 and P (x1)P (x2)− 2P (x3) < 0 are basic probabilistic formulas, but the first
one is an elementary probabilistic formula as well. The set of basic probabilistic formulas with φi ∈ LPL,
for all i, is denoted by LBPF .

A model for basic probabilistic formulas is defined below:

Definition 2. A PPL-model is a structure M = (W,π) where W is a finite set of possible worlds (identified
with valuations) and π is a probability distribution over W .

Let MPPL be the set of all such models.2 If a formula θ is equal to f(P (φ1), . . . , P (φn)) �� q, then we
say that a structure M models θ, written M |= θ, if f(Pπ(φ1), . . . , Pπ(φn)) �� q. Here f , �� and q appear

2 Note that we restrict a model to have a finite set of worlds W by relying on the fact that, within the semantics adopted, if a
formula has a model, then it has a model with finite W [36]. This result holds for the more general logic in Section 3.3.
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both as elements of θ and as elements of a mathematical expression; the function f applied to numbers
Pπ(φ1), . . . , Pπ(φn) returns a number that must be related to q through ��.

We can now consider conjunctions of basic probabilistic formulas, but also we can consider disjunctions
and negations of them. That is, we can define the language L∧ as follows: if φ ∈ LBPF , then φ ∈ L∧; and if
φ1, φ2 ∈ L∧, then (φ1 ∧ φ2) ∈ L∧. The definition of M |= θ1 ∧ θ2, for θ2, θ2 ∈ L∧, is simply: M |= φ1 and
M |= φ2. Similarly, we can define the language L∧,∨ by adding disjunction; in such a language one could
easily express assessments such as P (φ) ∈ [0, 0.2] ∪ [0.3, 0.4].3 However, we have not found in the literature
any logic that allows for conjunction and disjunction of basic probabilistic formulas, and does not allow for
negation of basic probabilistic formulas. Hence we define the language LPPL by adding ¬ and ∨ to L∧:

• if φ ∈ LBPF , then φ ∈ LPPL;
• if φ1, φ2 ∈ LPPL, then (φ1 ∧ φ2), (φ1 ∨ φ2) ∈ LPPL;
• if φ ∈ LPPL, then ¬φ ∈ LPPL.

And then we add to the semantics of L∧: M |= φ1 ∨ φ2 iff M |= φ1 or M |= φ2; M |= ¬φ iff M �|= φ. The
logic LPPL is then the tuple (LPPL,MPPL, |=).

As an example of a logic that instantiates LPPL, note that De Bona et al. [9] propose a disjunctive linear
programming approach for the satisfiability problem of a logic that allows for conjunction, disjunction and
negation of elementary probabilistic formulas. As another example, Fagin et al. [12] describe a language
where each basic probabilistic formula can only use linear combinations of probabilities, and where all
Boolean operators can be used to combine these restricted basic probabilistic formulas. They prove that the
satisfiability problem for that language is NP-complete.

We will return to propositional probabilistic logics without nesting in Section 3.4, after we examine some
properties of nesting.

3.2. Nesting, but not quite

Now suppose we allow probabilistic operators to be within the scope of other probabilistic operators. For
instance, consider the following syntax for a language LNPL that extends LPPL with nesting:

• Every atomic proposition is in LNPL;
• If φ ∈ LNPL, then ¬φ ∈ LNPL;
• If φ1, φ2 ∈ LNPL, then (φ1 ∨ φ2), (φ1 ∧ φ2), (φ1 → φ2) are in LNPL.
• If φ1, φ2, . . . , φn ∈ LNPL, then f(P (φ1), . . . , P (φn)) �� q ∈ LNPL.

Suppose also that we wish to keep each valuation as a possible world, and to define satisfiability in
terms of a probability measure over valuations. We cannot resort to a semantics based on the expression
Pπ(φ) =

∑
{π(w)|w |= φ}, because φ may itself be a probabilistic formula that does not have truth value

at any particular valuation. We need some adjustments to the semantics.
One could change slightly the semantics, as follows. Say (M, w) |= f(P (φ1), . . . , P (φn)) �� q iff M |=

f(P (φ1), . . . , P (φn)) �� q. Note that we use (M, w) |= φ instead of w |= φ as the probability distribution
π ∈ M may be used to compute the truth value of φ. This implies that a basic probabilistic formula has
the same truth value in all possible worlds (having probability 1 or 0). This sort of semantics captures the
assumption that “if one knows a probability, this probability is known with probability one” (also known
as the lifting principle), discussed for instance by Uchii [38].

3 Note that the same assessment can be produced using a basic probabilistic formula such as (P (φ) − 0)(P (φ) − 0.2)(P (φ) −
0.3)(P (φ) − 0.4) � 0. This illustrates the importance of taking into account the expressivity of assessments, as we discuss in
Section 4.
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As formulas are evaluated in a single possible world, there is no problem with formulas outside the scope
of a basic probabilistic subformulas, like x1 in x1∧P (x2) = 0.5, because worlds are propositional valuations.
As probabilistic formulas are syntactically introduced at the same level of pure propositional formulas, the
Boolean operators (disjunction, conjunction, negation) are all inherited from classical propositional logic.

Semantically, the formulas of LNPL are interpreted in a structure M = (W,π), in which W is a finite set
of possible worlds (valuations) and π is a probability measure over them. We say a pair (M, wj) models a
formula φ ∈ LNPL, denoting by (M, wj) |= θ, if (for φ1, φ2, . . . , φn ∈ LNPL):

• θ is an atomic proposition xi and wj(xi) = 1;
• θ = (φ1 ∧ φ2), (M, wj) |= φ1 and (M, wj) |= φ2;
• θ = ¬φ1 and (M, wj) �|= φ;
• θ = f(P (φ1), . . . , P (φn)) �� q and f(Pπ(φ1), . . . , Pπ(φn)) �� q.

Here again f , �� ∈ {<,>,�,�,=} and q ∈ Q are used in two different contexts, as part of a logical formula,
and with their usual mathematical meaning. Let MPPL′ be the set of all pairs (M, w). The logic LNNQ is
the tuple (LNPL,MPPL′ , |=).

As an example, De Bona et al. [9] discuss a logic that is a restriction of LNNQ; in that logic, assessments are
restricted to elementary probabilistic formulas. Another example is the propositional fragment of Halpern’s
[21] first-order logic with probabilities on possible worlds, in which nesting of probabilistic operators is
allowed, but models have only a single probability measure.

We now show that, under this semantics, LNPL has a normal form whose syntax dispenses with nesting;
that is, any formula in LNPL can be polynomially rewritten with nesting elimination. The conclusion we
wish to suggest is that a logic that adopts nesting, but whose semantics is based on a probability measure
over valuations, does not add any real expressivity to the logics described in Section 3.1.

Formally, we say a formula φ ∈ LNPL is in normal form if φ ∈ LPPL. The following theorem4 shows
that every formula φ ∈ LNPL can be transformed (in polynomial time) into a formula θ ∈ LPPL, preserving
satisfiability. As fresh atoms are added in this procedure, φ and θ are not logically equivalent, but from a
model for one we can recover a model for the other.

Theorem 1. For every φ ∈ LNPL, there exists θ ∈ LPPL (computed in polynomial time) such that φ is
satisfiable if, and only if, θ is. Furthermore, (M, w) |= θ implies (M, w′) |= φ for some w′.

These results indicates that one does not gain expressivity by allowing for syntactic higher-order prob-
abilities in a semantic framework that is based on a single probability distribution. In the next section we
examine a different semantics that lends useful meaning to nesting.

3.3. Proper nesting

Given the results in the previous section, we might look for semantics that associate with each possible
world a probability measure over the possible worlds, as follows [11].

Consider the syntax of LNPL as described in Section 3.2. Take the formulas to be interpreted in the
following a structure:

Definition 3. A PN-model is a structure M = (W,Π, v), where W is a finite set of possible worlds wi,
Π = {π1, . . . , π|W |} is a set of probability distributions over the possible worlds, where πi is associated with
wi, and v is a function that assigns a valuation v(w) to each world w.

4 The proofs of all theorems have been placed in a separate appendix at the end of the paper.
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Note that different worlds w and w′ may be associated with the same valuation, while they may be
associated with different probability distributions – that is the reason why valuations are not identified
with possible worlds anymore. To save notation, when v is clear from context, we say w(xi) = 1 when
v(w)(xi) = 1.

We then say a pair (M, wj) models a formula φ ∈ LNPL, denoting it by (M, wj) |= φ, if, for φ1, φ2 ∈ LNPL:

• φ is an atomic proposition xi and wj(xi) = 1;
• φ = φ1 ∧ φ2, (M, wj) |= φ1 and (M, wj) |= φ2;
• φ = ¬φ1 and (M, wj) �|= φ;
• φ = f(P (φ1), . . . , P (φn)) �� q and f(Pπj

(φ1), . . . , Pπj
(φn)) �� q.

Here Pπj
(φ) denotes

∑
{πj(wi)|(M, wi) |= φ}. Denote by MPN the set of all pairs (M, w) to define the

logic LPN = (LNPL,MPN , |=).
When every particular world is measurable, this semantics builds a modified Kripke structure in which

the accessibility relation arcs from each particular possible world are labeled with non-negative numbers
that add up to one. Note that if all possible worlds are always associated with identical measures, then the
semantics of Section 3.2 is recovered. When M = (W,Π, v) is such that all probability measures are equal
to π, a structure M = (W,π) with the semantic rules from Section 3.2 satisfies the same formulas at the
same valuations.

An even more general semantics would be produced if each possible world might be associated with more
than a probability measure, perhaps each one of them corresponding to distinct agents. For instance, one
might pursue such a scheme to encode actions in stochastic processes [11]. Here we focus on the single-agent
scenario, and restrict our semantics to a probability measure per possible world.

3.4. No nesting, again

We have so far considered three classes of propositional probabilistic logics. The first one does not allows
nesting, while the third allows nesting and provides a rich semantics for it. Our contribution has been to
indicate that the second class, where one uses the syntax of the third class but the semantics basically
belongs to the first class, is not an interesting class with respect to expressivity.

One might consider a fourth class, where nesting is not allowed, but one adopts the semantics of the
third class; namely, each possible world is associated with a probability measure over possible worlds. As
far as we could find, there has been no proposal in the literature for such a logic. In fact, this particular
combination of syntax and semantics does not seem sensible. Suppose we have a formula φ ∈ LPPL, without
nesting. Consider a structure M = (W,Π, v). To assess the truth value of φ in a pair (M, wi), every basic
probabilistic formula f(P (φ1), . . . , P (φn)) �� q that is a subformula of φ must have its truth value computed
using the probability distribution πi, associated with the world wi. Therefore, the truth value of φ in (M, wi)
is independent of probability measures in Π other than πi. That is, if there is a model for φ, there is a
model in which all probability distributions in Π are the same.

3.5. Internal and external probabilistic logics

We have seen that propositional probabilistic logics can be divided into two groups depending on whether
they allow nesting or not, and that each group can be most naturally associated with one type of seman-
tics. A different classification has been proposed by Williamson [39]; he divides propositional probabilistic
logics into external and internal ones. In an external logic, “probabilities are attached to sentences of a
logical language,” while in an internal logic, “sentences incorporate statements about probabilities.” The
PSAT problem represents a situation where the probabilistic language is external to propositional logic.
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In an internal probabilistic logic, the language incorporates probabilities, and formulas possibly contain
probabilistic assessments on subformulas.

Such distinction between external and internal is interesting, but artificial; any external probabilistic logic
can be transformed into an internal logic that belongs to the first class discussed previously, and indeed
this was done in Section 3.1 as we moved from PSAT to L∧. Additionally, every logic that allows nesting
must include probabilistic operators in the language, and thus qualifies as internal for Williamson [39];
hence, the logics discussed in Sections 3.2–3.3 are all internal, despite their semantic difference. Altogether,
the classification proposed here seems to capture interesting features that escape the external/internal
dichotomy.

4. The probabilistic expressivity

In this section we analyze the construction of basic probabilistic formulas with respect to identifying
the format restrictions relevant to the expressivity/complexity trade-off. From here on we consider just
two classes of propositional probabilistic logics: with no nesting (Section 3.1) and with proper nesting
(Section 3.3).

A basic probabilistic formula has the form f(P (φ1), . . . , P (φn)) �� q. Varying the constraints on f , ��
and q may lead to different classes of logical systems, but just some of these choices are relevant. With no
constraints on f , restricting q and �� has no impact on complexity. So, we shall study the effectiveness of
limiting the domain of q and �� according to a class of functions for f . Based on the common approaches
found in the literature to assign probabilities to logical formulas, we focus on four classes of functions
F1 ⊂ F2 ⊂ F3 ⊂ F4:

• F1 contains only the identity function;
• F2 is the class of linear combinations with rational coefficients, that is f(P (φ1), . . . , P (φn)) =∑n

i=1 aiP (φi), with ai ∈ Q;
• F3 is the class of all polynomials over the reals with rational coefficients, for all arities n ∈ N;
• F4 is the class of all computable functions.

We say a basic probabilistic formula f(P (φ1), . . . , P (φn)) �� q is in Fi when f ∈ Fi; and we say a logic is in
Fi when all its basic probabilistic formulas are in Fi.

The concept of probability assertion defined by Scott and Krauss [37], when limited to the propositional
case, can be viewed as a Boolean combination of basic probabilistic formulas in F3 with minor differences,
such as integer coefficients. However, such definition does not capture some probabilistic operators found in
the literature, as we shall see in Section 4.3, reason why we introduce the more general class F4.

4.1. The relation ��

For each class Fi, we can investigate whether the choice of �� is important or not. It is a well known fact
that expressions like a = b, a < b and a > b can be replaced by suitable logical combinations of a � b (or
a � b). With no restrictions on q, f(P (φ1), . . . , P (φn)) � q is equivalent to −f(P (φ1), . . . , P (φn)) � −q, and
if f ∈ Fi, for i ∈ {2, 3, 4}, then f ′(P (φ1), . . . , P (φn)) = −f(P (φ1), . . . , P (φn)) ∈ Fi. When f ∈ F1, P (φ) � q

can be replaced by P (¬φ) � 1−q. Second, if the syntax allows for conjunction of basic probabilistic formulas,
then f(P (φ1), . . . , P (φn)) = q can be replaced by (f(P (φ1), . . . , P (φn)) � q) ∧ (f(P (φ1), . . . , P (φn)) � q),
for any f . Furthermore, when a basic probabilistic formula can be negated, f(P (φ1), . . . , P (φn)) < q can
be replaced by ¬(f(P (φ1), . . . , P (φn)) � q). We trivially conclude that any �� ∈ {<,>,�,�} can simulate
all �� ∈ {<,>,�,�,=}, provided negation and conjunction of basic probabilistic formulas and free choice
of q. Less trivial is the fact that = can simulate any �� ∈ {<,>,�,�} in probability assignments with
f ∈ F1. Finger and De Bona [13] presented a normal form for the probabilistic satisfiability problem
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(PSAT), from the logic system of Nilsson [33], in which assignments of the form P (φ) � q are replaced
by P (x) = q and P (x → φ) = 1, where x is a fresh atom. By a similar argument, if f ∈ F2, then
f(P (φ1), . . . , P (φn)) =

∑n
i=1 aiP (φi) � q can be simulated by a conjunction of basic probabilistic formulas

with �� ∈ {=} and f ∈ F2. Therefore, at least while f ∈ F2, one can fix a �� ∈ {<,>,�,�,=} without
losing expressivity, if conjunction and negation can be applied to basic probabilistic formulas.

Even when we cannot negate basic probabilistic formulas, in some cases assignments like P (φ) > q

can be replaced by P (φ) � q + ε preserving satisfiability, if we properly choose ε > 0. As PSAT can be
formulated as a linear programming problem involving a {0, 1}-matrix [29], the right value for ε in order
to preserve satisfiability can be obtained by upper bounding this matrix determinant using a Hadamard’s
result from [16]. This holds for any probabilistic logics (with or without nesting) whose basic probabilistic
formulas are in F2.

4.2. The number q

Now we turn our attention to the number q at the right-hand side of a basic probabilistic formula. When
the function f ∈ F3,4, the independent term of f , a rational number, can overcome any constraint on the
values q can take. If f is restricted to F2, the coefficients in the left-hand side of the basic probabilistic formula
are arbitrary rational numbers, and an independent term a0 can be inserted with a0P (�). However, if f ∈ F1,
then the expressivity becomes sensitive to the domain of q. We start the investigation by constraining q to
a single value in basic probabilistic formulas in F1, P (φ) �� q.

In the simplest and most common case, f ∈ F1 (f is the identity function), and probability assignments
are of the form P (φ) �� q. This can be denoted as a unary operator P��q applied to a proposition φ.
For a finite number of possible worlds, a probability 1 is equivalent to necessity, and P��q can be viewed
as a generalization of the modal operators � and �, when interpreted as necessity and possibility, since
�φ = P=1φ and �φ = ¬P=1¬φ = P>0φ. In order to keep these operators, a single value for q, either 0, or 1,
is needed. From any of the operators P�0, P=0, P�1, P=1, the others are trivially recovered, as P (φ) � 1 is
equivalent to P (¬φ) � 0.

If we fix P��q with q /∈ {0, 1}, the language may have no power to represent the absolute truth or falsity,
then becoming subclassical. For instance, suppose we have only the operator P�0.5. It is not clear how one
could posit that a proposition φ is the case. For a logic with no nesting, all purely propositional formulas
would be in the scope of P�0.5 and nothing can be known for sure. In the case with proper nesting, a
propositional formula φ distinguishes a set of possible worlds �φ� in which it is true in a model M, but
it may be the case that (M, w) |= φ ∧ P (φ) = 0.5 for all w ∈ �φ�. Again, P�0.5 is useless to ascribe
which proposition is certainly true. The polynomial reduction from SAT to PSAT is such that φ1, . . . , φm is
(Boolean) satisfiable iff P=1φ1, . . . , P=1φm is (probabilistically) satisfiable, indicating that an operator P=1
recovers the representation power from classical propositional logic.

Suppose we are allowed to assign probability 1 to a formula, and our basic probabilistic formula has the
form P (φ) � q (denoted by P�qφ). If we allow for a value for q different from 1 or 0, then other probability
assignments can be made by adding new atoms, using conjunction of basic probabilistic formulas. For
example, if we have only the operator P�0.8, an assignment P�0.6φ could be simulated by P�0.8y1∧P�0.8y2∧
P�1(y1 ∧ y2 ↔ φ), in which yi are new atoms. From Kolmogorov’s axioms, we know that P (y1) + P (y2) =
P (y1 ∨ y2) + P (y1 ∧ y2) and P (y1 ∨ y2) � 1, so we can conclude that P (y1 ∧ y2) � 0.6. As y1 ∧ y2 ↔ φ

is true in every world with positive probability, we must have P (φ) = P (y1 ∧ y2) � 0.6 in any model for
P�0.8y1∧P�0.8y2∧P�1(y1∧y2 ↔ φ). We generalize this result for propositional probabilistic logics without
nesting, to later extend it to logics with nesting. First, some definitions.

Definition 4. Let S be a subset of [0, 1] and let �� ∈ {<,>,�,�,=} be a relation. We say that L��S is the
class of languages L ⊂ LPPL in which the basic probabilistic formulas have the form P (φ) �� q, for some
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q ∈ S and φ ∈ LPL, and whose syntax allows (at least) for the conjunction of them. Then L��S is the class
of logics (L,MPPL, |=) with L ∈ L��S and |= from Section 3.1.

The language of logics in L={0.5,1}, for instance, contains basic probabilistic formulas like P (φ1) = 1
and P (φ2) = 0.5, that can be combined with conjunction (and optionally negation and disjunction). For
an n ∈ N>0 (a positive natural number), we denote by Fr(n) the set of proper fractions { i

n |0 � i � n}.
The language of a logic in the class L=Fr(7) would contain basic probabilistic formulas like P (φ1) = 2/7 or
P (φ2) = 6/7, for φi ∈ LPL.

Theorem 2. Let m/n be an irreducible proper fraction. For every logic LA = (LA,MPPL, |=) ∈ L�Fr(n) there
is a logic LB = (LB ,MPPL, |=) ∈ L={m/n,1}, such that for every formula θ ∈ LA there is a formula θ′ ∈ LB

such that θ′ is satisfiable iff θ is; furthermore, (W,π) |= θ′ implies (W,π) |= θ. The syntax of LB differs
from that of LA only in the formation of basic probabilistic formulas.

We can generalize the theorem above to simulate any logics in L��Fr(n), for �� ∈ {<,>,�,�,=}, as we
have argued for the indifference of the �� choice, at least when basic probabilistic formulas can be negated.

Corollary 1. Let m/n be an irreducible proper fraction. For every logic LA = (LA,MPPL, |=) ∈ L��Fr(n), for
�� ∈ {<,>,�,�,=}, there is a logic LB = (LB ,MPPL, |=) ∈ L={m/n,1}, such that for every formula θ ∈ LA

there is a formula θ′ ∈ LB such that θ′ is satisfiable iff θ is; furthermore, (W,π) |= θ′ implies (W,π) |= θ.

These results indicate that a single value for q, besides 1, can be used to assign arbitrary probabilities
with limited precision to basic probabilistic formulas in F1. Of course, the precision is closely related to
the denominator in q, and a logic with a single probabilistic operator like P�1/2 (that can simulate P�1/2
and P=1/2) loses considerable representation power. In practice, the number of decimals used to assess
a probability is usually bounded naturally by the uncertainty inherent to human reasoning, for subjective
probabilities, and physical experiments and measurements, for objective ones. A single probabilistic operator
like P=501/1000 could be used to represent any probability assignment with 3 decimals of precision, for
example.

One drawback of using only one value for q, except from 1, in basic probabilistic formulas in F1 is related
to computational complexity. By the method used in the proof of Theorem 2, if one wants to assess the
probability P (φ) � 15/32 using only an operator P=1/32, around 3 × 15 basic probabilistic formulas are
needed, together with 2 × 15 fresh atoms. For a general P (φ) � i/n to be simulated by a single operator
P=1/n, O(i) assignments and fresh atoms are necessary. This asymptotic upper bound can be improved to
O(log i), if we use P=k to obtain P=2k for the induction in the part (II) of the proof of Theorem 2. Generally,
for approximating an arbitrary assignment P (φ) �� q with precision 1/n, using a logic in L={1/n,1}, a total of
O(logn) basic probabilistic formulas, and fresh atoms, has to be used. If it is not an intractable explosion for
computing, it certainly is for human readability – which suggests the use of arbitrary P��q as abbreviations.

What would happen if q could be irrational? An irrational value, with infinite precision, may find ap-
plication for instance in the subjective probability a rational agent assigns to the event of a random point
in a square to be inside the inscribed circle. However, this is quite debatable for at least two reasons. On
the one hand, the best bounds known to any irrational value (like π) are rational; on the other hand, the
precision of physical experiments and measurements is naturally limited.

The impact of allowing q to be any real number in [0, 1] is not in our scope, due to issues related to
(un)decidability and uncountable languages. We just investigate the expressivity of a logic in L={q,1}, for
an irrational q denoted in a formula by a special symbol, keeping the language countable.

If the language syntax of a logic L ∈ L={q,1} has only conjunction of basic probabilistic formulas, it is
straightforward to see that L is decidable. Using the linear programming techniques shown in [23], we can
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substitute a parameter q′ for the occurrences of q in a given formula and find the (rational) upper and lower
bounds for the values of q′ that keep the consistency of the set of probabilistic assignments. The formula
is satisfiable iff q lies in between these bounds. This procedure works for the set of feasible points for q′

is a single closed interval – what is not necessarily the case when negation and disjunction can be applied
to basic probabilistic formulas. To cope with the general case, one can use a disjunctive normal form and
check the satisfiability of each conjunct separately using the former procedure. Negated assignments like
¬P (φ) = q can be replaced by P (φ) � q + ε ∨ P (φ) � q − ε, for a suitably chosen ε > 0, as commented in
Section 4.1.

A result from [31] allows us to use the same techniques from the first parts of the proof of Theorem 2 to
show how it is possible to approximate any basic probabilistic formula in F1 with arbitrary precision using
a single irrational value. The following fact is a particular case from that result, sufficient for our needs.

Fact 1. (See [31].) If x is irrational, the sequence of fractional parts of x, 2x, 3x, . . . is dense in [0, 1].

For logics in L�Fr(n), we have shown how to construct formulas preserving satisfiability in logics in
L={m/n,1}. Now, with a logic in L={q,1}, for irrational q, we can only approximate arbitrary basic proba-
bilistic formulas with q ∈ [0, 1] ∩Q. This notion is formalized below.

Definition 5. Let LA = (LA,MPPL, |=) (or LA = (LA,MPN , |=)) be a propositional probabilistic logic with
|= from Section 3.1 (or Section 3.3) such that all basic probabilistic formulas in LA are in F1. We say a logic
LB simulates LA with arbitrary precision if for every ε > 0 and every formula θ in LA, there is a formula
θε in LA and a formula θ′ε in LB such that:

• θε is formed from θ replacing each P (φ) �� q by P (φ) �� q′, such that |q − q′| < ε;
• θε is satisfiable iff θ′ε is;
• every model of θ′ε is a model of θε.

We can now prove the next result:

Theorem 3. Let q ∈ [0, 1] be an irrational number. For every logic LA = (LA,MPPL, |=) ∈ L�[0,1]∩Q there is
a logic LB = (LB ,MPPL, |=) ∈ L={q,1}, such that LB simulates LA with arbitrary precision. The syntax of
LB only differs from LA in the formation of basic probabilistic formulas.

Analogously to Theorem 2, Lemma 3 has the following corollary:

Corollary 2. Let q ∈ [0, 1] be an irrational number. For every logic LA = (LA,MPPL, |=) ∈ L��[0,1], for
�� ∈ {<,>,�,�,=}, there is a logic LB = (LB ,MPPL, |=) ∈ L={q,1}, such that LB simulates LA with
arbitrary precision. The syntax of LB only differs from LA in the formation of basic probabilistic formulas.

It seems that a unique value (like 1/π) is enough to assign any probability to a formula with the desired
precision. Nevertheless, the complexity conveys the burden. To illustrate that, suppose we are left with a
single operator P=q, in which q ∈ (0.49999, 0.5) is an irrational number. To approximate an operator like
P=0.1 with a coarse precision of ε = 0.05, the proof of Theorem 3 requires the use of roughly 104 basic
probabilistic formulas and fresh atoms. We are not in a position to bound this quantity in function of q
and ε, but this case exemplifies how the size of formulas can grow.

The results above were proved for logics with no nesting, where there is no higher-order probability and
a model has just a single probability distribution over possible worlds. Both theorems, and their corollaries,
can be extended to propositional probabilistic logics with proper nesting, changing only parts (III) and (IV)
of the proof of Theorem 2.
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Definition 6. Let S be a subset of [0, 1] and let �� ∈ {<,>,�,�,=} be a relation. We say that L′
��S is the

class of languages L ⊂ LNPL in which the basic probabilistic formulas have the form P (φ) �� q, for some
q ∈ S and φ ∈ LPL. Then L′

��S is the class of logics (L,MPN , |=) with L ∈ L′
��S and |= from Section 3.3.

We can extend Theorem 2 to propositional probabilistic logics with proper nesting.

Theorem 4. Let m/n be an irreducible proper fraction. For every logic L′
A = (LA,MPN , |=) ∈ L′

��Fr(n), for
�� ∈ {<,>,�,�,=} there is a logic L′

B = (LB ,MPN , |=) ∈ L′
={m/n,1}, such that for every formula θ ∈ LA

there is a formula θ′ ∈ LB such that θ′ is satisfiable iff θ is; furthermore, (M, wi) |= θ′ implies (M, wi) |= θ.

Combining Theorem 3 with Theorem 4, one could also prove the following result.

Theorem 5. Let q ∈ [0, 1] be an irrational number. For every logic L′
A = (LA,MPN , |=) ∈ L′�[0,1]∩Q there

is a logic L′
B = (LB ,MPN , |=) ∈ L′

={q,1}, such that LB simulates LA with arbitrary precision.

After all this discussion, we can conclude that restrictions on the value of q for basic probabilistic formulas
in F1 can constrain the expressivity of the logical system by limiting the precision of the probability
assignment. This limitation becomes severe when q is a fraction with a small denominator. An operator P�0.5
by itself cannot simulate anything different from P (φ) �� 0.5, at least using the methods we presented. The
fractional ξ systems from [6] use an operator “probable” to state P (φ) > ξ for a fixed rational 0.5 � ξ < 1.
It is important to note that this kind of limitation in the expressivity is not accompanied by a gain in
the efficiency of the decision procedures inherent to the logic. If a probability 1, or absolute truth, can be
expressed, then the classical propositional logic is there embedded, whose satisfiability problem is known to
be NP-complete, same class of PSAT.

4.3. The function f

Constraints on the function f can have the most impact over the construction of basic probabilistic
formulas. As we have seen, only in F1 the choice of q is important. Although assignments in F1 are by far
the most common and intuitive, F2-like constructions appear in the literature as well. The non-linearity of
F3 makes things difficult to compute, but we shall see applications in conditional probabilities. The class
F4 is just the whole class of computable functions, and almost all probabilistic logics ever described fall into
the former classes.

Typically, probabilistic logics allow only for basic probabilistic formulas in F1, with some undesirable
limitations. For instance, it may be the case that there is no numerical estimate for a probability, but
only the relation between probabilities is known, like P (φ1) � P (φ2). This is the scenario of qualitative
probabilities, in which one can just state that a proposition is more probable than another – instantiated
in [15]. The corresponding basic probabilistic formula, P (φ1)−P (φ2) � 0, is an example of the applicability
of a function f ∈ F2.

Recall that a basic probabilistic formula in F2 has the form
∑n

i=1 aiP (φi), with ai ∈ Q. Thus, it is possible
to assert that “event φ1 is at least twice as probable as φ2”, formally P (φ1) − 2P (φ2) � 0. As Hansen and
Jaumard [23] have shown, the linear programming approach to PSAT, and to the corresponding entailment
problem, can be straightforwardly applied to decide the consistency of a set of basic probabilistic formulas
in F2, when the subformulas φ are all purely propositional (without nesting). Moreover, the propositional
probabilistic logic with no nesting of Fagin et al. [12] permits linear combination of probabilities in its
basic probabilistic formulas, possibly combined with conjunction, disjunction and negation; and it is shown
that the satisfiability problem is still NP-complete, as SAT and PSAT, although the linear programming
formulation is not applicable in this case.
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For probabilistic logics with proper nesting, it is not known how the computational complexity is affected
when f moves from F1 to F2. Fagin and Halpern [11] presented a probabilistic logic with proper nesting and
linear combination of probabilities and proved its satisfiability problem to be PSPACE-complete. Ognjanovic
et al. [36] use this fact to show that the satisfiability problem of LPP1, a probabilistic logic with proper
nesting and basic probabilistic formulas in F1, is in PSPACE, but only an NP lower bound is shown. Using
reasonable assumptions to constrain the probability distributions for each possible world, Fagin and Halpern
[11] showed their logic stays in NP.

The similar complexity of basic probabilistic formulas for F2 and F1 suggests that logical systems with
formulas in both classes could be classified together. However, there remain two reasons for treating F1 and
F2 separately: on the one hand, logics with basic probabilistic formulas in F2 are strictly more expressive
than those in F1; on the other hand, all limitations imposed on the value of q just affect the representation
power of the latter.

As we move from F2 to F3, we can use any polynomial over probabilities to construct a basic prob-
abilistic formula. Non-linear terms in probability assessments allow expressing independence and linear
combination of conditional probabilities. A way to express the independence of φ1 and φ2 is to as-
sert P (φ1 ∧ φ2) − P (φ1)P (φ2) = 0, which is a basic probabilistic formula in F3. Furthermore, since
P (φ1|φ2) = P (φ1 ∧ φ2)/P (φ2), given P (φ2) > 0, a linear combination of conditional probabilities yields
a polynomial when one clears the denominators. When all conditioning events in a linear combination are
the same, the expression

∑m
i=1 aiP (φi|θi) � q remains in F2 when denominators are cleared; in general, how-

ever, for m different conditioning events θi, such a basic probabilistic formula has an f that is a polynomial
of degree m.

For a satisfiability problem to be in NP, there ought to be a model whose size is polynomial in relation
to the formula size. Basic probabilistic formulas like P (φ)2 = 0.5 may require models with probabilities
that are large in “length”, as noted by Fagin et al. [12]. The authors have shown a procedure in PSPACE
to solve the satisfiability problem of their logic (without nesting) with basic probabilistic formulas in F3.
The logic LQU,×

n in [22] is a logic in F3 with proper nesting whose satisfiability problem is claimed to be
still PSPACE-complete. Such differences in expressivity and computational complexity makes the boundary
between F2 and F3 a good guide to classify probabilistic logics.

When f /∈ F3, it is difficult to find an application that pays the associated complexity cost. A possible
use of basic probabilistic formulas with f /∈ F3 would be in information theory. As the entropy of an event φ
is computed as −P (φ) logP (φ)−P (¬φ) logP (¬φ), the expression −P (φ1) logP (φ1)−P (¬φ1) logP (¬φ1) �
−m(P (φ2) logP (φ2)+P (¬φ2) logP (¬φ2)) means that φ1 conveys at least m times more information than φ2.
Computing functions like the logarithm requires a computational cost that depends on the precision wanted,
since we are generally approximating irrational numbers. This incapacity of giving upper bounds for the
time to compute functions f /∈ F3 is a reason to classify all of them in F4. It is not clear that this kind of
basic probabilistic formula is useful in real applications, and this is another reason we do not distinguish
among functions f /∈ F3.

Ognjanovic and Raskovic [34] proposed logics without nesting and with a probabilistic operator QF , in
which F is a set from a family O of recursive subsets of [0, 1] ∩ Q. The authors show that these operators
cannot simulate, nor be simulated by, finite combination of operators P�q, for rational q. Ikodinovic et
al. [26] introduced a hierarchy for such probability logics based on the family O, while we classify them
all together. As F is recursive, there is a function IF that returns 1 iff a given number is in F . This is
represented by the basic probabilistic formula IF (P (φ)) = 1 in F4.

Out of the four main classes of propositional probabilistic logics F1, F2, F3 and F4, the first three have
a definite computational complexity class for the satisfiability problem of propositional probabilistic logics
with no nesting: respectively NP-complete, NP-complete and PSPACE; the fourth class has no bound. For
propositional probabilistic logics with proper nesting, the three first classes are PSPACE, PSPACE-complete
and PSPACE-complete. The power to represent knowledge also increases. Note that, in F1 an entire spec-
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Table 2
Proposed logics in the literature, without nesting, and with a semantics where satisfiability is based on
a single probability measure over valuations.

Conjunction only Conjunction, negation and disjunction
F1 Georgakopoulos et al. [17], Nilsson [33] De Bona et al. [9], Ognjanovic et al. [36]
F2 Hansen and Jaumard [23] Fagin et al. [12]
F3 Cozman et al. [7] Fagin et al. [12]
F4 Ognjanovic and Raskovic [34]

Table 3
Proposed logics in the literature, with nesting, and with a semantics where
each possible world is associated with a probability measure.

F1 with fixed q Burgess [6]
F1 Ognjanovic et al. [36]
F2 Fagin and Halpern [11], Gärdenfors [15]
F3 Halpern [22]
F4

trum of subclasses may be derived from the restriction of q in P (φ) = q. For q = 1/2, q = 1/3, q = 1/4, etc.,
we have logical systems with different expressivity but the same computational complexity for the related
satisfiability problem, in logics with and without nesting.

5. Conclusion

We have analyzed features of propositional probabilistic logics, with the goal of better understanding and
classifying them. We have focused on two issues; namely, nesting of probabilistic operators, and expressivity
of probabilistic assessments.

It seems that there are two classes of propositional probabilistic logics that must be differentiated; one
does not allow nesting, and adopts a semantics where satisfiability is decided with a single probability
measure over valuations; the other class allows nesting and adopts a semantics that associates a probability
measure with each possible world. Within the first group, one can find various proposals in the literature,
with various forms of probabilistic formulas, each variously adopting only conjunctions of probabilistic
formulas, or full Boolean combinations of probabilistic formulas.

Several classes can be considered when we examine the expressivity of probabilistic assessments. The way
probability is added to the classical propositional logic is central to determine the representation power of
the resulting logic, and also the computational complexity of inference.

Tables 2 and 3 indicate relevant references in the literature.

Appendix A. Proofs of theorems and corollaries

Theorem 1. For every φ ∈ LNPL, there exists θ ∈ LPPL (computed in polynomial time) such that φ is
satisfiable if, and only if, θ is. Furthermore, (M, w) |= θ implies (M, w′) |= φ for some w′.

Proof. The proof of this theorem can be split into Lemmas 1 and 2. Putting them together, one has a
procedure to transform a formula into the normal form, preserving satisfiability and the relation between the
models, that is the desired proof for the theorem. Note that in such lemmas, M = (W,π), and (M, w) |= φ

follows the semantics from Section 3.1. �
Lemma 1. For every φ ∈ LNPL, there exists a θ ∈ LNPL in which all purely propositional subformulas are
subformulas of a basic probabilistic formulas, such that φ is satisfiable if, and only if, θ is. Furthermore,
θ is computed in linear time and (M, wi) |= θ implies that there is a wj within the same structure M such
that (M, wj) |= φ.
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Proof. We assume that φ has n atomic propositions x1, . . . , xn. Let I be the set of indexes of all atomic
propositions xi occurring in φ outside the scope of a probability assignment. To build θ, for all i ∈ I,
substitute P (yi) � 1, where yi is a fresh atomic proposition, for all occurrences of xi out of the scope of a
basic probabilistic formula; this is done in linear time in the size of φ. We now to prove that θ is satisfiable
iff φ is.

(←) Suppose φ is satisfied by a pair (M, wj∗), with M = (W,π). Create a structure M′ = (W ′, π′),
where for each wj ∈ W there exists a w′

j ∈ W ′ such that wj(xi) = 1 iff w′
j(xi) = 1 for all 1 � i � n. Make

w′
j(yi) = 1 iff w′

j∗(xi) = 1 and π(wj) = π′(w′
j), for all i ∈ I and 1 � j � |W |. Clearly, (M′, w′

j∗) |= P (yi) � 1
iff (M, wj∗) |= xi, for all i ∈ I, so (M′, w′

j∗) |= θ.
(→) Suppose now that (M, wj∗) |= θ, with M = (W,π). There is a world wk∗ ∈ W such that (M, wk∗) |=

xi iff (M, wj∗) |= P (yi) � 1. By the construction of θ from φ, (M, wk∗) |= φ. �
Lemma 2. For every φ ∈ LNPL, there exists a θ ∈ LPPL in which all basic probabilistic formulas are not
subformulas of another basic probabilistic formulas, such that φ is satisfiable if, and only if, θ is. Furthermore,
θ is computed in polynomial time and (M, w) |= θ implies (M, w) |= φ.

Proof. To prove by induction, we show how to decrease the number of nested probabilities, keeping the
satisfiability and the connection between the models. Given a formula φ with nested probabilities, construct
φ′ by substituting a new atomic proposition y for a basic probabilistic formula f(P (ψ1), . . . , P (ψn)) �� q

that is subformula of another basic probabilistic formula. Define φ′′ = φ′ ∧ ((P (y) � 1) ∨ (P (y) � 0)) ∧
(¬(P (y) � 1) ∨ (f(P (ψ1), . . . , P (ψn)) �� q)) ∧ ((P (y) � 1) ∨ ¬(f(P (ψ1), . . . , P (ψn)) �� q)). Clearly, this can
be done in polynomial time. Now we need to prove that φ′′ is satisfiable iff φ is.

(←) Suppose (M, wj∗) |= φ, with M = (W,π). We can change M to satisfy φ′′. For each wj ∈ W ,
make wj |= y iff (M, wj∗) |= f(P (ψ1), . . . , P (ψn)) �� q to form W ′. Create a structure M′ = (W ′, π). If
(M, wj∗) |= f(P (ψ1), . . . , P (ψn)) �� q, then (M′, wj) |= y for all wj ∈ W ′ and (M′, wj∗) |= P (y) � 1.
Else, (M′, wj) |= ¬y for all wj ∈ W ′, and (M′, wj∗) |= P (y) � 0. Anyway, (M′, wj∗) |= ((P (y) � 1)
∨ (P (y) � 0)) ∧ (¬(P (y) � 1) ∨ (f(P (ψ1), . . . , P (ψn)) �� q)) ∧ ((P (y) � 1) ∨ ¬(f(P (ψ1), . . . , P (ψn)) �� q)).
Hence, (M′, wj∗) |= φ′′.

(→) Note that the last two clauses in φ′′ state that P (y) � 1 ↔ f(P (ψ1), . . . , P (ψn)) �� q. Therefore,
if (M, wi∗) |= φ′′, (M, wi∗) |= P (y) � 1 iff (M, wi∗) |= f(P (ψ1), . . . , P (ψn)) �� q. But (M, wi∗) |=
P (y) � 1 iff (M, wi) |= P (y) � 1 for every wi ∈ W ; and (M, wi∗) |= f(P (ψ1), . . . , P (ψn)) �� q iff
(M, wi) |= f(P (ψ1), . . . , P (ψn)) �� q for every wi ∈ W . Hence, for every wi ∈ W , (M, wi) |= P (y) � 1
iff (M, wi) |= f(P (ψ1), . . . , P (ψn)) �� q. Then, due to the clause ((P (y) � 1) ∨ P (y) � 0), (M, wi) |= y

iff (M, wi) |= f(P (ψ1), . . . , P (ψn)) �� q for every wi such that π(wi) > 0. Finally, as (M, wi∗) |= φ′′,
(M, wi∗) |= φ.

By iterating the process of building φ′′, a formula θ without nested probabilities is reached. As the number
of nested probabilities has a linear the upper bound in the size of φ, and each iteration takes no more than
linear polynomial in the size of φ, the whole process of building θ is polynomial in time. �
Theorem 2. Let m/n be an irreducible proper fraction. For every logic LA = (LA,MPPL, |=) ∈ L�Fr(n) there
is a logic LB = (LB ,MPPL, |=) ∈ L={m/n,1}, such that for every formula θ ∈ LA there is a formula θ′ ∈ LB

such that θ′ is satisfiable iff θ is; furthermore, (W,π) |= θ′ implies (W,π) |= θ. The syntax of LB differs
from that of LA only in the formation of basic probabilistic formulas.

Proof. We start the proof by choosing a logic LB = (LB ,MPPL, |=) ∈ L={m/n,1} such that differs LB from
LA only in the syntax of the basic probabilistic formula (preserving the presence/absence of negation and
disjunction). We will construct θ′ from θ by eliminating all basic probabilistic formulas P (φ) � i/n with
i /∈ {m, 1}, while preserving satisfiability and a relation between the models. In the proof, we say a formula
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θ′ in LB simulates a formula θ in LA if two conditions hold: θ′ is satisfiable iff θ is, and every model of θ′
is a model of θ.

We split the proof into four parts: (I) we simulate an assignment P (φ) = 1/n in LB ; (II) we simulate any
assignment P (φ) = i/n in LB ; (III) we show how to substitute any P (φ) � i/n with i /∈ {m, 1} in θ using
the former results; (IV) it is proven that θ′ is satisfiable iff θ is, and every model of θ′ is a model of θ.

(I) Let θ be the formula P (φ) = 1/n in LA. As m/n is proper and irreducible, the greatest common divisor
of m and n is 1, hence there exist x ∈ N>0 such that xm ≡ 1(mod n) (xm leaves rest 1 when divided by n).
We start θ′ in LB with x atomic propositions y1, y2, . . . , yx (not occurring in φ), assigning probabilities to
them,

∧x
j=1 P (yj) = m/n. At this point, we have Pπ(y1) + Pπ(y2) + · · · + Pπ(yx) = xm/n, for every (W,π)

satisfying θ′. Let Y be the set {y1, y2, . . . , yx} and let CkY denote the formula
∨
{yi1 ∧yi2 ∧· · ·∧yik|1 � i1 <

i2 < · · · < ik � x}, that is, CkY is the disjunction of all possible conjuncts with k distinct formulas from
the set Y = {y1, y2, . . . , yx}. A variation of the inclusion/exclusion principle states that P (y1) + P (y2) +
· · · + P (yx) = P (C1Y ) + P (C2Y ) + · · · + P (CxY ). So, every model of θ′ has Pπ(C1Y ) + Pπ(C2Y ) + · · · +
Pπ(CxY ) = mx/n. Let j∗ be the smallest integer greater than mx/n, and assign the probability P (Cj) = 0
(abbreviation of P (¬Cj) = 1), for j∗ + 1 � j � x. Now θ′ =

∧x
j=1 P (yj) = m/n

∧x
j=j∗+1 P (¬CjY ) = 1.

It is the case that Pπ(C1Y ) + Pπ(C2Y ) + · · · + Pπ(Cj∗Y ) = mx/n in all models of θ′. Note that mx =
(j∗−1)n+1. So Pπ(C1Y )+Pπ(C2Y )+· · ·+Pπ(Cj∗Y ) = (j∗−1)+1/n yields Pπ(Cj∗Y ) � 1/n. If we impose
Pπ(CjY ) = 1 for 1 � j � j∗ − 1, with θ′ =

∧x
j=1 P (yj) = m/n

∧x
j=j∗+1 P (¬CjY ) = 1

∧j∗−1
j=1 P (CjY ) = 1,

then Pπ(Cj∗Y ) = 1/n. To achieve Pπ(φ) � 1/n in every model of θ′ we add to it P (Cj∗Y → Cj∗Y ) = 1,
obtaining θ′ = P (Cj∗Y → φ) = 1

∧x
j=1 P (yj) = m/n

∧x
j=j∗+1 P (¬CjY ) = 1

∧j∗−1
j=1 P (CjY ) = 1. As

desired, for every model (W,π) of θ′ is also a model of θ = P (φ) � 1/n. In parts (II) and (III), we
denote such θ′ in LB as P1/nφ, and each occurrence of it will have fresh auxiliary atoms yi. We now
show that

∧x
j=1 P (yj) = m/n

∧x
j=j∗+1 P (¬CjY ) = 1

∧j∗−1
j=1 P (CjY ) = 1 has a model (Wy, πy) such that

it can be extended to satisfy any P1/nz1, in which z1 is a fresh atom. Consider a set of n possible worlds
Wy = {w1, . . . , wn} and a probability distribution over them πy(wi) = 1/n, for 1 � i � n. Let 〈x〉
denote the fractional part of a number x. Define wi(yj) = 1 iff 〈(j − 1)m/n〉 < i/n � 〈jm/n〉 or it is
the case that 〈jm/n〉 < i/n � 〈jm/n〉. Note that, Pπy

(yj) =
∑

{πy(wi)|wi(yj)} = m/n for every yj . As
mx = (j∗−1)n+1, each world wi, for 2 � i � n, satisfies exactly j∗−1 atoms yj , and w1 satisfies j∗ atoms,
so that no world satisfy j∗ + 1 atoms. Hence, (Wy, πy) |=

∧x
j=j∗+1 P (¬CjY ) = 1

∧j∗−1
j=1 P (CjY ) = 1 and

(Wy, πy) |=
∧x

j=1 P (yj) = m/n
∧x

j=j∗+1 P (¬CjY ) = 1
∧j∗−1

j=1 P (CjY ) = 1. For a fresh atom z1, we extend
Wy in such a manner that wi(z1) = 1 iff i = 1, assuring Pπy

(z1) = 1/n and satisfying Pi/nz1.
(II) Let V denote the set such that i ∈ V iff we can simulate P (φ) = i/n in LB . Initially we only know

that 1,m, n ∈ V , and in the this part of the proof we show, by induction, that i ∈ V , for all i ∈ {1, . . . , n}.
The basis of the induction is done in part (I), and 1 ∈ V . Suppose now that k ∈ V for a 1 � k � n − 1,
so there is a formula in LB that simulates P (φ) = k/n, which we denote by Pk/nφ. We want to simulate
P (φ) = (k + 1)/n. Start θ′ assigning probabilities to fresh atomic propositions zk and z′k: P1/nz

′
k ∧ Pk/nzk.

Since 1 + k � n, we can consistently add P (zk ∧ z′k) = 0, obtaining θ′ = P1/nz
′
k ∧ Pk/nzk ∧ P (zk ∧ z′k) = 0.

As Pπ(zk) + Pπ(z′k) = Pπ(zk ∨ z′k) + Pπ(zk ∧ z′k) = (1 + k)/n, for every π, all models (W,π) of θ′ are such
that Pπ(zk∨z′k) = (1+k)/n. So, with P (φ ↔ zk∨z′k) = 1 in θ′, one simulates P (φ) = (k+1)/n. Finally, we
have θ′ = P1/nz

′
k ∧ Pk/nzk ∧ P (zk ∧ z′k) � 0∧ P (φ ↔ zk ∨ z′k) = 1, and k + 1 ∈ V . By induction on k, i ∈ V

for all i ∈ {1, . . . , n}. We denote by Pi/nφ the formula in LB simulating P (φ) = i/n in LA. Now, lets show a
model for Pi/nφ, providing that φ is satisfiable. Initially, we need a model (Wz, πz) such that πz(z′j) = 1/n,
πz(zj) = j/n, for 1 � j � i − 1, and z1, z

′
1, z

′
2, . . . , z

′
i−1 are all two by two disjoint atoms. Consider a set

of i + 1 possible worlds Wz = {w0, w1, . . . , wi} such that wj(zk) = 1 iff j < k, wj(z′k) = 1 iff k = j, and
wi(zk) = wi(z′k) = 0, for all 0 � j � i−1 and 1 � k � i−1. Let πz be a probability distribution over Wz such
that πz(wj) = 1/n, if j < i, and πz(wi) = (n− i)/n. Note that (Wz, πz) |= P (zk ∨ z′k ↔ zk+1) = 1 for every
1 � k � i− 2 and (Wz, πz) |= P (zk ∧ z′k) = 0 for every 1 � k � i− 1. Furthermore, (Wz, πz) |= P (zk) = k/n

and (Wz, πz) |= P (z′k) = 1/n for every 1 � k � i−1. Now, to model P1/nz
′
1, it is required the combination of
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the models (Wz, πz) and (Wy, πy) to form (Wz,y, πz,y). Start forming Wz,y by collapsing the worlds w1 ∈ Wz

and w1 ∈ Wy in a new possible world w1,1 such that w1,1(φ) = 1 iff w1(φ) = 1, for w1 ∈ Wz or w1 ∈ Wy. For
each world wj ∈ Wz \ {w1} and wk ∈ Wy \ {w1}, create a new world wj,k in Wz,y such that wj,k(φ) = 1 iff
wj(φ) = 1 or wk(φ) = 1. Make πz,y(w1,1) = 1/n and distribute the remaining probabilities proportionally,
πz,y(wj,k) = (1 − πz,y(w1,1)) πz(wj)

1−πz(w1)
πy(wk)

1−πy(w1,1) . It is the case that πz,y(yi) = πy(yi), πz,y(zi) = πz(zi) and
πz,y(z′i) = πz(z′i). As Pπz,y

(z′1) = πz,y(w1,1) = 1/n, (Wz,y, πz,y) |= P1/nz
′
1. To satisfy another formula P1/nz

(z is an atom), we add fresh atoms y and repeat the process of combining models, merging Wz,y with a new
disjoint Wy. Observe that now there is a set of worlds {wj,k ∈ Wz,y|wj,k(z) = 1} that will be collapsed with
w1 ∈ Wy to build worlds wj,k,1, each with probability πz,y(wj,k), such that wj,k,1(x) = 1 iff wj,k(x) = 1 or
w1(x) = 1 (w1 ∈ Wy), for any atom x. By iterating this procedure, one reaches a model for Pi/nzi, in which
zi is an atom, defining w(zi) = 1 iff w(zi−1 ∨ z′i−1) = 1. We denote by (Wzi,y, πzi,y) such a model of Pi/nzi.

(III) Let θ be an arbitrary formula in LA, possibly with disjunction and negation. The basic idea to form
θ′ is to substitute Pi/nzi ∧ P (zi → φ) = 1 for every P (φ) � i/n with i /∈ {m, 1} in θ, but when there is
negation in the second level of the syntax, there are some subtleties. Suppose θ = ¬P (φ) � i/n. Since θ′

and θ are not logically equivalent, due to the fresh atoms, θ′ = ¬(Pi/nzi ∧ P (zi ← φ) = 1) may be satisfied
by a model (W,π) such that Pπ(φ) � i/n, not satisfying θ. Note that this only happens when there is
negation or disjunction in the syntax, otherwise a model must satisfy all basic probabilistic formulas. If
there is conjunction or negation in the syntax of LA (and then in LB), do the following: for every basic
probabilistic formula P (φ) � i/n in θ, replace it by P (zi → φ) = 1, and then make θ′ be the conjunction
of θ with Pi/nzi ∧ (P (zi → φ) = 1 ∨ P (φ → zi) = 1) for every basic probabilistic formula replaced. Note
that, if LB has negation and conjunction over basic probabilistic formulas in its syntax, disjunction can be
simulated, so that Pi/nzi ∧ (P (zi → φ) = 1 ∨ P (φ → zi) = 1) is a well-formed formula.

(IV) When P (zi → φ) = 1 and θ′ are satisfied in a model (W,π), Pi/nzi forces that Pπ(φ) � i/n, as
desired. But with negation in LB , it is possible that (W,π) |= θ′ and (W,π) �|= P (zi → φ) = 1. Then the
clause (P (zi → φ) = 1 ∨ P (φ → zi) = 1) implies (W,π) |= P (φ → zi) = 1, and we have Pπ(φ) < i/n, for
Pπ(zi ∧ ¬φ) > 0; thus (W,π) |= θ. Hence, if θ′ is satisfiable, θ also is. Now, from a model (W,π) of θ we
have to construct a model (W ′, π′) of θ′. Firstly, we need to change W , forming W ′, assigning suitable truth
values to the fresh atoms. For each world in wi ∈ W , there is a set w′

i ⊂ W ′ such that wi(xk) = w′(xk) for
every w′ ∈ w′

i and atomic proposition xk occurring in θ. Let �φ� be the set {w ∈ W |w(φ) = 1}. Suppose
that there were h basic probabilistic formulas to be replaced in θ. Each formula P (φ) = i/n in θ has a
corresponding Pi/nzi in θ′ built from the set of fresh variables Zg ∪Yg, in which Yg contains the fresh atoms
y used to construct P1/n in part (I) and Zg contains the fresh atoms z used in parts (II) and (III). Each
formula Pi/nzi is satisfiable by a model (Wzi,y, πzi,y). Let’s replace the basic probabilistic formulas one by
one, starting from θ0 = θ and constructing θi+1 from θi, while showing a model of the former based on a
model of the later. From θ, we substitute P (zi → φ) = 1 for a formula P (φ) � i/n (with i /∈ {m, 1}) and
make θ1 = θ∧Pi/nzi∧ (P (zi → φ) = 1∨P (φ → zi) = 1). If there is only conjunction in LA and LB , then θ1
is built from θ simply substituting P (zi → φ) = 1∧Pi/nzi for P (φ) � i/n. To construct a model (W1, π1) to
θ1 from a model (W,π) of θ0 = θ there exist two cases to be analyzed: (a) when Pπ(φ) � i/n; and (b) when
Pπ(φ) < i/n. We point out that (b) does not make sense if there is only conjunction of basic probabilistic
formulas in LB . Consider the model (Wzi,y, π

′) of Pi/nzi and the sets of worlds �zi�, �¬zi� ⊂ Wzi,y. Take
W1 = Wzi,y × W , such that (w,w′)(x) = 1 iff w(x) = 1 or w′(x) = 1, for every atom x. In case (a), for
every w ∈ �φ� and w′ ∈ �zi�, define π1((w,w′)) = π(w)π′(w′)/Pπ(φ). For every w ∈ �φ� and w′ ∈ �¬zi�,
define π1((w,w′)) = π(w)π′(w′)(Pπ(φ) − Pπ′(zi))/(Pπ′(zi)Pπ(φ)). For every w ∈ �¬φ� and w′ ∈ �zi�, define
π1((w,w′)) = 0. For every w ∈ �¬φ� and w′ ∈ �¬zi�, define π1((w,w′)) = π(w)π′(w′)/Pπ′(¬zi). Note that
(W1, π1) |= θ ∧ P (zi → φ) = 1∧ Pi/n(zi), hence (W1, π1) |= θ1. In case (b), for every w ∈ �φ� and w′ ∈ �zi�,
define π1((w,w′)) = π(w)π′(w′)/Pπ′(zi). For every w ∈ �φ� and w′ ∈ �¬zi�, define π1((w,w′)) = 0. For
every w ∈ �¬φ� and w′ ∈ �zi�, define π1((w,w′)) = π(w)π′(w′)(Pπ′(zi) − Pπ(φ))/(Pπ′(zi)Pπ(¬φ)). For
every w ∈ �¬φ� and w′ ∈ �¬zi�, define π1((w,w′)) = π(w)π′(w′)/Pπ(¬φ). Now note that (W1, π1) |=
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θ ∧ P (φ → zi) = 1 ∧ Pi/n(zi) and (W1, π1) �|= P (zi → φ) = 1, hence (W1, π1) |= θ1. If this routine is
repeated, transforming θi into θi+1 and (Wi, πi) into (Wi+i, πi+1), until all basic probabilistic formulas in θ

are replaced, one has a model (Wh, πh) of θh = θ′ that is also a model of θ. Finally, we conclude that θ′ is
satisfiable iff θ is. �
Corollary 1. Let m/n be an irreducible proper fraction. For every logic LA = (LA,MPPL, |=) ∈ L��Fr(n), for
�� ∈ {<,>,�,�,=}, there is a logic LB = (LB ,MPPL, |=) ∈ L={m/n,1}, such that for every formula θ ∈ LA

there is a formula θ′ ∈ LB such that θ′ is satisfiable iff θ is; furthermore, (W,π) |= θ′ implies (W,π) |= θ.

Proof. Using Theorem 2, we simulate any P (φ) � i/n, thus any P (φ) � i/n, via P (¬φ) � 1 − i/n, and
hence P (φ) = i/n. With negation over the basic probabilistic formulas (possibly absent in a logic without
nesting), one recovers < and >. �
Theorem 3. Let q ∈ [0, 1] be an irrational number. For every logic LA = (LA,MPPL, |=) ∈ L�[0,1] there is
a logic LB = (LB ,MPPL, |=) ∈ L={q,1}, such that LB simulates LA with arbitrary precision. The syntax of
LB only differs from LA in the formation of basic probabilistic formulas.

Proof. It suffices to show how to simulate a basic probabilistic formula, and the rest of the proof is equivalent
to parts (III) and (IV) of Theorem 2. Suppose we want a precision ε > 0 such that we can simulate
P (φ) � r′, with |r′ − r| < ε. By Fact 1, for any ε > 0, there is an n ∈ N>0 such that, if r′ is the
fractional part of nq, then |r′ − r| < ε. We use n fresh atoms from the set Y = {y1, . . . , yn}. Recall from
the proof of Theorem 2 the definition of CkY and the equality P (y1) + P (y2) + · · · + P (yn) = P (C1Y ) +
P (C2Y ) + · · · + P (CnY ). The formula

∧n
i=1 P (yi) = q imply Pπ(C1Y ) + Pπ(C2Y ) + · · · + Pπ(CnY ) = nq

for every model (W,π) satisfying it. Let j∗ be the least integer greater than nq, and let r′ denote the
fractional part of nq, such that nq = j∗ − 1 + r′. Assigning probability zero to CjY for all j∗ + 1 � j � n

yields Pπ(C1Y ) + Pπ(C2Y ) + · · · + Pπ(Cj∗Y ) = nq in any model (W,π). Assigning P (CjY ) = 1, for
1 � j � j∗ − 1, we have P (Cj∗Y ) = r′. Finally, P (Cj∗Y → φ) = 1 entails Pπ(φ) � r′ in every model,
with |r′ − r| < ε, as desired. To construct θ′ε, if there is only conjunction in LA (and in LB), then replace
each P (φ) � r′ in θε by

∧n
i=1 P (yi) = q

∧n
j=j∗+1 P (CjY ) = 0

∧j∗−1
j=1 P (CjY ) = 1 ∧ P (Cj∗Y → φ) = 1.

If disjunction or negation are allowed, substitute P (Cj∗Y → φ) = 1 for each P (φ) � r′ in θε, and make
θ′ε = θε∧

∧n
i=1 P (yi) = q

∧n
j=j∗+1 P (CjY ) = 0

∧j∗−1
j=1 P (CjY ) = 1∧(P (Cj∗Y → φ) = 1∨P (φ → Cj∗Y ) = 1).

The rest of the proof is completely analogous to the proof of Theorem 2. �
Corollary 2. Let q ∈ [0, 1] be an irrational number. For every logic LA = (LA,MPPL, |=) ∈ L��[0,1], for
�� ∈ {<,>,�,�,=}, there is a logic LB = (LB ,MPPL, |=) ∈ L={q,1}, such that LB simulates LA with
arbitrary precision. The syntax of LB only differs from LA in the formation of basic probabilistic formulas.

Proof. Completely similar to the proof of Corollary 1. �
Theorem 4. Let m/n be an irreducible proper fraction. For every logic L′

A = (LA,MPN , |=) ∈ L′
��Fr(n), for

�� ∈ {<,>,�,�,=} there is a logic L′
B = (LB ,MPN , |=) ∈ L′

={m/n,1}, such that for every formula θ ∈ LA

there is a formula θ′ ∈ LB such that θ′ is satisfiable iff θ is; furthermore, (M, wi) |= θ′ implies (M, wi) |= θ.

Proof. We will just sketch the proof, illustrating the main ideas but not exhaustively covering the details.
Firstly, note that L′

B ∈ L′
={m/n,1} inherits negation and disjunction from propositional logic, since it is a

propositional probabilistic logic with proper nesting (from Section 3.3). Therefore, by simulating P�i/n for
any i, any P��i/n for �� ∈ {<,>,�,�,=} is easily recovered using conjunction and negation. To construct
θ′, we use parts (I) and (II) from Theorem 2, just substituting (M, wi) for (W,π) and πi for π, to obtain the
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formulas Pi/nzi in L′
B . The significant change is in part (III), where we use the formulas Pi/nzi to transform

θ into θ′. Consider initially ψ = θ. The algorithm is now iterative:

1. For each basic probabilistic formula P (φ) � i/n in ψ that is not a subformula of another basic proba-
bilistic formula in ψ, replace P (φ) � i/n by P (zi → φ) = 1;

2. For each P (φ) � i/n replaced, substitute ψ ∧ Pi/nzi ∧ (P (zi → φ) = 1 ∨ P (φ → zi) = 1) for ψ; (until
here, the procedure is the same as that from the proof of Theorem 2)

3. For each P (φ) � i/n replaced, make ψ = φ and go to step 1; if no basic probabilistic formula was
transformed, we have θ′.

The key difference from the proof of Theorem 2 is that the formula Pi/nzi∧(P (zi → φ) = 1∨P (φ → zi) = 1)
must be in the same probabilistic scope as the basic probabilistic formula being replaced. Such formula only
forces the equivalence between P (φ) � i/n and P (zi → φ) = 1 when their truth value is computed with
the same probability distribution πi of world wi. Consider the basic probabilistic formula P (φ) � i/n in
θ which is subformula of the maximum number of basic probabilistic formulas. Now let ψ be the maximal
formula containing P (φ) � i/n as subformula but with no nested probability on φ. That is, ψ is the either θ
or such that P (ψ) � j/n is a subformula of θ. The procedure above replaces P (φ) � i/n by P (zi → φ) = 1
in ψ and substitutes ψ ∧ Pi/nzi ∧ (P (zi → φ) = 1 ∨ P (φ → zi) = 1) for ψ. It is straightforward to see that
a model of the transformed ψ is still a model of ψ, by the same reasons of Theorem 2. By iterating this
process, one can note that a model of θ′ is a model of θ. To show how to construct a model for θ′ from
a model of θ takes considerably more effort, but the way is similar to that from part (IV) of the proof of
Theorem 2, just iterating for each step of the algorithm above. Suppose (M, w) |= θ, with M = (W,Π, v). It
is possible to construct a model M′ = (W ′, Π ′, v′) by replicating the whole set W for each w ∈ W , such that
|W ′| = |W | + |W |2. Start with W ′ = W . For each ordered pair (wi, wj) ∈ W , construct a wi,j ∈ W ′ such
that v′(wi,j) = v(wj), π′

i(wi,j) = πi(wj), π′
i,j(wk) = πj(wk) and give zero probability mass to other cases.

We have a two-level model for θ in which each world wi,j in the second level is such that only one world
(wi) possibly assigns a positive probability to it. We repeat this process of adding a level in W ′ according to
the highest number of basic probabilistic formulas with a common subformula. In the end, if θ has nested
probabilistic operators corresponding to l-order probabilities, we will have a model M′ = (W ′, Π ′, v′) with
|W ′| = |W |1 + |W |2 + · · ·+ |W |l+1. This “tree-like” model has the property that, except from the first level,
each world has only one “parent” possibly assigning positive probability to it. Now, starting from the basic
probabilistic formulas that are subformula of the highest number of another basic probabilistic formulas
(level l+1, with |W |l+1 worlds), one can repeat the process of part (IV) of the proof of Theorem 2 for each
world and each level of M′ to build a model for θ′, although it is not shown here. �
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