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Abstract

Kuznetsov independence of variables X and Y means that, for any pair of
bounded functions f(X) and g(Y ), E [f(X)g(Y )] = E [f(X)] � E [g(Y )], where
E [·] denotes interval-valued expectation and � denotes interval multiplication.
We present properties of Kuznetsov independence for several variables, and con-
nect it with other concepts of independence in the literature; in particular we
show that strong extensions are always included in sets of probability distri-
butions whose lower and upper expectations satisfy Kuznetsov independence.
We introduce an algorithm that computes lower expectations subject to judg-
ments of Kuznetsov independence by mixing column generation techniques with
nonlinear programming. Finally, we define a concept of conditional Kuznetsov
independence, and study its graphoid properties.

Key words: Sets of probability distributions, lower expectations, probability
and expectation intervals, independence concepts, graphoids.

1. Introduction

A considerable number of theories of inference and decision, in various fields,
allow probability values and expectations to be imprecise or indeterminate.
Statisticians have long used sets of probability distributions to represent both
prior uncertainty [3, 39] or imprecise likelihoods [34, 38], or even lack of identifi-
ability [50]. Economics has also been a prolific source of theories that deal with
imprecision and indeterminacy in probabilities and expectations, often under
the banner of Knightian uncertainty [25, 35, 41, 54]. Statisticians, economists,
psychologists and philosophers have paid regular attention to axioms of “ratio-
nal” behavior that accommodate partially ordered preferences through interval-
valued expectations and sets of probability distributions; sometimes this is done
to attend to descriptive concerns [7, 37, 60], while often the move to sets of prob-
abilities is normative [26, 46, 55, 58, 63]. There are also several fields that, while
perhaps not adopting sets of probability distributions as primitive concepts, do
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manipulate them explicitly — for example, information theory routinely deals
with geometric properties of sets of probability distributions [10, 22].

Research on artificial intelligence has given attention to interval-valued ex-
pectations and sets of probability distributions in a variety of forms. Early rep-
resentation schemes have explored probability intervals [29], multivalued map-
pings [20, 59], possibility measures [64], random sets [42, 53]. Sets of probability
distributions and interval-valued expectations are central elements of most prob-
ability logics [31, 32, 36], including some recent logics geared towards ontology
management [48, 49]. Sets of probability distributions have also been used to
encode abstractions of complex statistical models [27, 30].

An important ingredient of standard probability theory is the concept of in-
dependence. In modeling languages such as Bayesian and Markov networks, one
uses assumptions of stochastic independence to drastically reduce the number
of parameters needed to specify a model [56]. Here stochastic independence of
events A and B means that P (A ∩B) = P (A)P (B). Stochastic independence
of (random) variables {Xi}ni=1 means that E[

∏n
i=1 fi(Xi)] =

∏n
i=1E[fi(Xi)] for

all bounded functions fi(Xi).
There is currently no unique concept of independence associated with sets of

probability distributions and interval-valued expectations; several concepts have
received attention in the literature [9, 16, 18]. A quite compelling proposal, due
to V. P. Kuznetsov [43], is to say that two variables X and Y are independent
if, for any two bounded functions f(X) and g(Y ), we have

E [f(X)g(Y )] = E [f(X)] � E [g(Y )] , (1)

where E [·] denotes interval-valued expectation, and the product � is understood
as interval multiplication. Recall:

[a, b] � [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]. (2)

Unfortunately, relatively little is known about this concept of independence.
The concept was introduced in a book only available in Russian [43], and
discussed in a few of Kuznetsov’s short publications [44, 45]. The death of
Kuznetsov in 1998 stopped work in the concept for a while, and for some time
there was discussion in the research community about the relationship between
Kuznetsov’s ideas and other concepts of independence in the literature. Some
of these questions were solved by the first author of the present paper in 2001
[13]. In a subsequent paper the same author studied properties of a conditional
version of Kuznetsov independence [14]. Only recently the study of Kuznetsov
independence was picked up again by De Cooman, Miranda and Zaffalon [19];
these authors defined Kuznetsov independence for a finite set of variables, intro-
duced several other related concepts of independence, and presented significant
results for all of them.

In this paper we present new results for Kuznetsov independence and re-
lated concepts of independence. Our contributions are divided in three parts of
somewhat different character, presented after some necessary background (Sec-
tion 2).
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Section 3 summarizes what is known about Kuznetsov independence and
related concepts, and shows that a closed convex set of probability distributions
whose lower and upper expectations satisfy Kuznetsov independence must con-
tain the strong extension of its marginals (and containment can be strict). This
result closes several questions left open by De Cooman et al. in their substantial
work.

Section 4 examines the computation of lower expectations under judgments
of Kuznetsov independence. We derive the optimization problem that must be
solved, analyze its properties, and introduce an algorithm that solves it. We
also report experiments with our implementation.

Finally, Section 5 proposes a conditional version of Kuznetsov independence,
and examines its graphoid properties.

2. Background: Credal sets, lower expectations, extensions

In this paper all variables are assumed to have finitely many values, and all
functions are real-valued; therefore, all functions are bounded (we remove the
qualifier “bounded” whenever possible). A probability mass function for variable
X is denoted by p(X); a probability mass function simply assigns probability
p(x) to any value x of X, and it completely specifies an induced probability
distribution for X. Given a function f(X), Ep[f(X)] denotes the expectation
of function f(X) with respect to p(X). Stochastic independence of variables X
and Y obtains when p(X,Y ) = p(X) p(Y ).

A set of probability distributions is called a credal set [46]. In this pa-
per we mostly focus on credal sets that are closed and convex; we take the
topology induced by Euclidean distance throughout. A credal set defined by
a collection of mass functions p(X) is denoted by K(X). We also use K(X)
to denote a set of probability mass functions p(X). Given a credal set K(X)
and a function f(X), the lower and upper expectations of f(X) are defined re-
spectively as E[f ] = infp(X)∈K(X)Ep[f ] and E[f ] = supp(X)∈K(X)Ep[f ]; hence

E[f ] = −E[−f ]. A closed credal set and its convex hull produce the same
lower and upper expectations. A lower expectation functional maps every func-
tion to its lower expectation; an upper expectation functional maps every func-
tion to its upper expectation. The lower probability and the upper proba-
bility of event A are defined respectively as P (A) = infp(X)∈K(X) P (A) and

P (A) = supp(X)∈K(X) P (A). For any function f(X), a credal set induces an

expectation interval E [f ] =
[
E[f ] , E[f ]

]
. Likewise, a probability interval is

induced for any event.
A closed convex credal set can be mapped to a unique lower expectation

functional and vice-versa [63, Section 3.6.1]. Thus closed convex credal sets and
interval-valued expectations have identical expressivity.

Assessments of lower/upper expectations can be viewed as constraints on
probability values. An extension of a set of assessments is a credal set that
satisfies all such constraints. In general we are interested in the largest extension
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of some given assessments. The largest extension is often referred to as the
natural extension of the assessments (following terminology by Walley [63]).

A closed convex credal set K(X) is finitely generated when it is a polytope in
the space of probability distributions for X; that is, the intersection of finitely
many closed halfspaces. A closed halfspace is a set {p ∈ Rd : f ·p ≥ α} for f 6= 0.
A closed halfspace is defined by a hyperplane; that is, a set {p ∈ Rd : f · p = α}
for f 6= 0 (f is the normal vector to the hyperplane). A function f can be
viewed as a vector in Rd; to simplify notation, we use the same letter (f , for
instance) to denote a function, a vector, or a normal.

Given a probability mass p(X), the conditional probability mass p(X|A) is
obtained by the usual Bayes rule whenever P (A) > 0. One may be interested in
the set of conditional probability distributions such that P (A) > 0 [62], defined
as

K>(X|A) = {P (·|A) : P ∈ K(X) and P (A) > 0} whenever P (A) > 0.

If K(X) is convex, then K>(X|A) is convex whenever P (A) > 0 [46]; more-
over, if K(X) is finitely generated and P (A) > 0, then K>(X|A) is finitely
generated (hence closed). In general, K>(X|A) is not closed, as the next exam-
ple demonstrates.

Example 1. Consider two binary variables X and Y and the closed convex
credal set K(X,Y ) defined by constraints

p00 ≤ p10, p00 ≥ (p01 − 1/2)2 + (p11 − 1/2)2,

where pxy = P ({X = x} ∩ {Y = y}). We then have P (X = 0|Y = 0) ∈ (0, 1/2]
whenever P (Y = 0) > 0. The value p00 = 0 is only obtained by a single prob-
ability distribution for which P (Y = 0) = 0, hence P (X = 0|Y = 0) = 0 is not
possible within K>(X|Y = 0). 2

We can define a functional as follows: for any f(X),

E>[f |A] = inf
p(·|A)∈K>(X|A)

Ep(·|A)[f |A] whenever P (A) > 0;

additionally, define E
>

[f |A] = −E>[−f |A] whenever P (A) > 0.
Whenever P (A) > 0, we have [15, Lemma 1]:

E>[f(X)|A] = sup (λ : E[(f(X)− λ)IA(X)] ≥ 0) , (3)

where IA(X) is the indicator function of A (that is, IA(x) = 1 if x ∈ A, and 0
otherwise).

The functional E> is often called the regular extension of given assessments
[63, Appendix J]. Such a functional can be understood as providing a definition
of conditioning, even though a range of possible conditioning values can be
defined when lower probabilities are equal to zero, as discussed by Miranda
[52]. A popular alternative scheme is to consider the set all all conditional mass
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functions that are coherent with the credal set K(X); in this case one obtains
the natural extension of given assessments [63]. In this paper we do not adopt
any specific definition of conditioning; we use E> whenever needed to prove
mathematical results.

There are several concepts of independence that can be applied to credal
sets [9, 16, 18]. Two concepts that have an intuitive appeal and interesting
properties are epistemic independence and strong independence.

Epistemic independence is based on the concept of epistemic irrelevance;
this concept initially appeared in the work of Keynes [40] and was later applied
to imprecise probabilities by Walley [63, Chapter 9]: Variable Y is epistemically
irrelevant to X if E[f(X)|Y = y] = E[f(X)] for any function f(X) and any pos-
sible value y of Y (recall that Walley adopts conditioning even on events of zero
probability). We then have: Variables X and Y are epistemically independent
if X is irrelevant to Y and Y is irrelevant to X.

The epistemic extension of “marginal” credal sets K(X) and K(Y ) is the
largest joint credal set that satisfies epistemic independence with marginals
K(X) and K(Y ) (this has been called independent natural extension [19, 63];
we use “epistemic extension” here to emphasize that it adopts epistemic in-
dependence). De Cooman et al. have studied similar notions of epistemic in-
dependence and epistemic extensions for sets of variables in great generality
[19].

Strong independence focuses instead on factorization of probability distri-
butions: Variables X and Y are strongly independent when K(X,Y ) is the
convex hull of a set of distributions where each distribution satisfies p(X,Y ) =
p(X) p(Y ). The generalization for n variables should be clear: their credal set
must be the convex hull of a set where each joint distribution factorizes accord-
ing to stochastic independence.

The strong extension of marginal credal setsK(X1) , . . . ,K(Xn) is the largest
joint credal set that satisfies strong independence with marginals K(Xi) [9, 12].
The strong extension is intuitively the “product” of the marginal credal sets:
Every extreme point of K(Xi) is combined with (multiplied by) every extreme
point of K(Xj) (for i 6= j) [19, Proposition 8(ii)].

3. Kuznetsov independence and Kuznetsov extensions

Following De Cooman et al. [19], say thatX1, . . . , Xn are Kuznetsov indepen-
dent, and that credal set K(X1, . . . , Xn) is Kuznetsov, when, for any functions
f1(X1), . . . , fn(Xn),

E

[
n∏
i=1

fi

]
= �ni=1E [fi] . (4)

If X and Y are Kuznetsov independent, then for any f(X), g(Y ),

E[fg] = min
(
E[f ]E[g] , E[f ]E[g] , E[f ]E[g] , E[f ]E[g]

)
; (5)

a similar expression can be written for the upper expectation E[fg] using Ex-
pression (2).

5



Also, say that K(X1, . . . , Xn) is factorizing when Expression (4) holds, but,
for each set of functions {f1(X1), . . . , fn(Xn)}, only one function fj can take
negative values, and all other fk for k 6= j must be non-negative; consequently:

E

[
n∏
i=1

fi

]
= min

E[fj ]
∏
k 6=j

E[fk] , E[fj ]
∏
k 6=j

E[fk]

 ,

E

[
n∏
i=1

fi

]
= max

E[fj ]
∏
k 6=j

E[fk] , E[fj ]
∏
k 6=j

E[fk]

 .

Suppose credal sets K1(X1, . . . , Xn) and K2(X1, . . . , Xn), both with identi-
cal marginal credal sets K(Xi), are both Kuznetsov. Clearly, their union is also
Kuznetsov. Moreover, any K(X1, . . . , Xn) with the same marginal credal sets
K(Xi) and such that K1 ⊆ K ⊆ K2 is clearly Kuznetsov [19, Proposition 31].
The same statements are true if “Kuznetsov” is replaced by “factorizing”.

We are often interested in the largest credal set that is Kuznetsov and that
satisfies all given assessments; we call this credal set the Kuznetsov extension
of the assessments. Consider separately specified credal sets K(X1) , . . . ,K(Xn)
(that is, there is no assessment that involves elements of two distinct marginal
credal sets). Their strong extension satisfies Expression (4); hence, their strong
extension is contained in their Kuznetsov extension [19, Proposition 8(iv)]. As a
consequence, the Kuznetsov extension of separately specifiedK(X1) , . . . ,K(Xn)
must satisfy external additivity: for any functions f1(X1), . . . , fn(Xn),

E

[
n∑
i=1

fi

]
= �ni=1E [fi] ,

where � denotes interval addition ([a, b]� [c, d] = [a+ c, b+ d]). External addi-
tivity holds because we always have E[

∑n
i=1 fi] ≥

∑n
i=1E[fi] and E[

∑n
i=1 fi] ≤∑n

i=1E[fi], and the strong extension guarantees equalities. The name “external
additivity” is due to De Cooman et al. [19], who proved external additivity of
Kuznetsov extensions of separately specified marginal credal sets. De Cooman
et al. also studied a related concept of strong external additivity.

We now set out to prove that any closed convex credal set K(X1, . . . , Xn)
that is factorizing must contain the strong extension of its marginal credal sets
K(X1) , . . . ,K(Xn). Hence any closed convex credal set K(X1, . . . , Xn) that
is Kuznetsov must contain the strong extension of its marginal credal sets.
Consequently any closed convex credal set that is factorizing, and any closed
convex credal set that is Kuznetsov, satisfy external additivity. These questions
were left open by De Cooman et al. in their investigation [19, Section 9].

We start by examining relationships between factorizing credal sets and con-
ditional expectations. Consider variables X1, . . . , Xn and a factorizing credal
set K(X1, . . . , Xn). Take any Xj and any function fj(Xj), and any set of events
{Ai}i 6=j where each Ai is a set of values of Xi. Using Expression (3) and the
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p(0, 0) p(0, 1) p(1, 0) p(1, 1)
p1 1/4 1/4 1/4 1/4
p2 9/25 6/25 6/25 4/25
p3 3/10 3/10 1/5 1/5
p4 3/10 1/5 3/10 1/5
p5 1/3 2/9 2/9 2/9
p6 3/11 3/11 3/11 2/11

Table 1: The mass functions p1(X,Y ) to p6(X,Y ) for the epistemic extension of P (X = 1) ∈
[2/5, 1/2] and P (Y = 1) ∈ [2/5, 1/2].

fact that K(X1, . . . , Xn) is factorizing: whenever P (∩i 6=jAi) > 0,

E>[fj(Xj)| ∩i 6=j Ai] = sup

(
λ : min

(
E[fj − λ]P (∩i 6=jAi) ,
E[fj − λ]P (∩i 6=jAi)

)
≥ 0

)
.

If λ ≤ E[fj ], then the condition in the supremum is satisfied; if λ > E[fj ],
then the condition in the supremum is not satisfied. Thus λ = E[fj ] is the
supremum; hence,

E>[fj | ∩i 6=j Ai] = E[fj ] whenever P (∩i 6=jAi) > 0. (6)

De Cooman et al. proved a result similar to Expression (6), showing that a
factorizing credal set is a many-to-one independent product [19, Section 7].

Our discussion above shows that Kuznetsov independence of X and Y im-
plies epistemic independence of X and Y whenever all lower probabilities are
positive. The reverse is not true [13, 19]. For instance, take variables X
and Y with values 0 and 1, and build the epistemic extension of assessments
P (X = 1) ∈ [2/5, 1/2] and P (Y = 1) ∈ [2/5, 1/2]; this epistemic extension
has six extreme points listed in Table 1 [63, Section 9.3.4]. For the function
f(X)g(Y ), where f(0) = −f(1) = g(0) = −g(1) = 1, we have E[fg] = −1/11
with respect to the epistemic extension, but E[fg] = 0 according to Expres-
sion (1).

We now have the tools we need to prove the main result of this section.

Theorem 1. Suppose that closed convex credal set K(X1, . . . , Xn) is factoriz-
ing. Then K(X1, . . . , Xn) contains the strong extension of its marginal credal
sets K(X1) , . . . ,K(Xn).

Proof. The proof has three parts. First we study products of strictly positive
functions. Then we reason by contradiction to establish that some extreme
points of the strong extension must be in K(X1, . . . , Xn). Finally, we extend
the reasoning to all extreme points of the strong extension.

For each i, adopt Yi = {Xj}j 6=i. For a set of functions {f1(X1), . . . , fn(Xn)},
for each i, adopt gi(Yi) =

∏
j 6=i fj(Xj).
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Part 1) Consider strictly positive functions f1(X1), . . . , fn(Xn). There must
be an extreme point p(X1, . . . , Xn) of K(X1, . . . , Xn) such that Ep[

∏n
i=1 fi] =

E[
∏n
i=1 fi]. Because the credal set K(X1, . . . , Xn) is factorizing,

Ep[figi] = Ep

[
n∏
i=1

fi

]
= E

[
n∏
i=1

fi

]
= E[fi]

∏
j 6=i

E[fj ] = E[fi]E[gi] .

If for some value yi we have p(yi) > 0, we obviously know that P (Yi = yi) > 0,
and then Ep[fi|Yi = yi] ≥ E[fi] by Expression (6). Write Ep[fi|Yi] = E[fi] +
σ(Yi) where σ(yi) ≥ 0 when p(yi) > 0. Then:

E[fi]E[gi] = Ep[figi] =
∑
Yi

∑
Xi

f(xi)g(yi)p(xi, yi)

=
∑

Yi:p(yi)>0

∑
Xi

f(xi)g(yi)p(xi|yi) p(yi)

=
∑

Yi:p(yi)>0

Ep[fi|Yi = yi] g(yi)p(yi)

=
∑

Yi:p(yi)>0

E[fi] g(yi)p(yi) +
∑

Yi:p(yi)>0

σ(yi)g(yi)p(yi)

= E[fi]Ep[gi] +
∑

Yi:p(yi)>0

σ(yi)g(yi)p(yi)

≥ E[fi]E[gi] +
∑

Yi:p(yi)>0

σ(yi)g(yi)p(yi) .

Hence
∑
Yi:p(yi)>0 σ(yi)g(yi)p(yi) ≤ 0 and this is only possible if σ(Yi) is zero

whenever p(yi) > 0. Consequently, Ep[fi|Yi = yi] = E[fi] whenever p(yi) > 0.
Part 2) Suppose that an extreme point

∏n
i=1 qi(Xi) of the strong extension

does not belong to K(X1, . . . , Xn). Moreover, assume that each qi is an ex-
posed point of its corresponding (closed and convex) marginal credal set K(Xi).
Thus for each K(Xi) we find a function fi(Xi) such that Eqi [fi] = E[fi] and
Eq′i [fi] > E[fi] for any other q′i(Xi) ∈ K(Xi). As we can add any positive quan-
tity to fi while maintaining these equalities and inequalities, we can assume
each fi to be strictly positive. For this selection of strictly positive functions
f1(X1), . . . , fn(Xn), take an extreme point ofK(X1, . . . , Xn), a probability mass
function p(X1, . . . , Xn) such that Ep[

∏n
i=1 fi] = E[

∏n
i=1 fi]. Using the first

part of the proof: Ep[fi|Yi = yi] = E[fi] whenever p(yi) > 0. Now consider
p(Xi|Yi = yi) for yi such that p(yi) > 0. The closed convex credal set K(Xi) is
completely characterized by the constraints E[f(Xi)] ≥ E[f(Xi)]; using Expres-
sion (6), we have that p(Xi|Yi = yi) must satisfy (at least) the same constraints.
And within all probability mass functions that satisfy these constraints, only
qi(Xi) is such that E[fi] = E[fi]. So, we must have p(Xi|Yi = yi) = qi(Xi)
whenever p(yi) > 0. This implies that p(X1, . . . , Xn) =

∏n
i=1 qi(Xi), but this

contradicts the fact that
∏n
i=1 qi(Xi) is not in K(X1, . . . , Xn). Hence every
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extreme point of the strong extension that is the product of exposed points of
marginal credal sets K(Xi) is in K(X1, . . . , Xn).

Part 3) Suppose that an extreme point
∏n
i=1 qi(Xi) of the strong extension

does not belong to K(X1, . . . , Xn), and for this extreme point we have that
some of the qi are not exposed points. (Note that an extreme point may fail
to be an exposed point [57, Chapter 18].) Because K(X1, . . . , Xn) is closed,
there must be a ball Bδ of radius δ > 0, centered at

∏n
i=1 qi(Xi), lying outside

of K(X1, . . . , Xn). We now construct a joint mass function
∏n
i=1 q

′
i(Xi) that

belongs to Bδ and that is a product of exposed points of K(Xi). To construct∏n
i=1 q

′
i(Xi), we use the fact that the set of exposed points is dense in the set of

extreme points [57, Theorem 18.6]: there must be an exposed point q′i of K(Xi)
such that ||q′i − qi|| ≤ ε for any ε > 0 (recall we are using Euclidean norm).
Then max |q′i − qi| ≤ ε and, by taking ε < 1,

max

∣∣∣∣∣
n∏
i=1

q′i(Xi)−
n∏
i=1

qi(Xi)

∣∣∣∣∣ ≤ max

∣∣∣∣∣
n∏
i=1

(qi(Xi) + ε)−
n∏
i=1

qi(Xi)

∣∣∣∣∣
≤ (1 + ε)n − 1

=

n∑
k=1

(
n
k

)
εk

≤ ε

n∑
k=1

(
n
k

)
= ε(2n − 1).

Hence ||
∏n
i=1 q

′
i(Xi)−

∏n
i=1 qi(Xi)|| ≤ ε2n

√
d, where d is the number of values

of (X1, . . . , Xn). Now by taking ε = δ/(2n
√
d), we have that

∏n
i=1 q

′
i(Xi) must

belong to Bδ, and so it cannot belong to K(X1, . . . , Xn). Note that
∏n
i=1 q

′
i(Xi)

must be an extreme point of the strong extension of K(X1) , . . . ,K(Xn). For
suppose not; then

∏n
i=1 q

′
i(Xi) = α

∏n
i=1 ri(Xi) + (1− α)

∏n
i=1 si(Xi) for some

α ∈ (0, 1) and mass functions ri and si; now marginalize to obtain q′i(Xi) =
αri(Xi) + (1 − α)si(Xi) for any Xi, a contradiction because q′i is an exposed
point of K(Xi). The fact that

∏n
i=1 q

′
i(Xi) is an extreme point of the strong

extension contradicts the fact that it belongs to Bδ (using the second part of
the proof), thus showing that

∏n
i=1 qi(Xi) must belong to K(X1, . . . , Xn). 2

We thus have, easily:

Corollary 1. Suppose that closed convex credal set K(X1, . . . , Xn) is factoriz-
ing. Then K(X1, . . . , Xn) satisfies external additivity.

Corollary 2. Suppose that closed convex credal set K(X1, . . . , Xn) is Kuznetsov.
Then K(X1, . . . , Xn) contains the strong extension of its marginal credal sets
K(X1) , . . . ,K(Xn), and satisfies external additivity.

A natural question is whether the Kuznetsov and the strong extensions of
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separately specified marginal credal sets are in fact identical. This can be an-
swered positively when variables are binary:1

Proposition 1. Take binary variables X and Y and separately specified closed
convex credal sets K(X) and K(Y ). The strong and the Kuznetsov extensions
of K(X) and K(Y ) are identical.

Proof. Suppose X and Y have values 0 and 1. Suppose K(X) has two distinct
extreme points p1(X) and p2(X) such that p1(0) < p2(0); hence K(X) is spec-
ified by inequalities

∑
X fi(X)p(X) ≥ 0 for i = {1, 2}, where f1(0) = 1− p1(0)

and f1(1) = −p1(0), f2(0) = p2(0) − 1 and f2(1) = p2(0). Likewise, suppose
K(Y ) has two distinct extreme points q1(Y ) and q2(Y ) such that q1(0) < q2(0);
hence K(Y ) is specified by inequalities

∑
Y gi(Y )p(Y ) ≥ 0 for i = {1, 2}.

The four extreme points of the strong extension are p11 = p1q1, p12 = p1q2,
p21 = p2q1, p22 = p2q2. Each one of the four hyperplanes that define the strong
extension goes through three extreme points plus the origin: hyperplane H1 con-
tains p11, p12, p21; hyperplane H2 contains p11, p12, p22; hyperplane H3 contains
p11, p21, p22; hyperplane H4 contains p12, p21, p22. Now note that H1 is defined
by equality

∑
X,Y h(x, y)p(x, y) = 0 for some h(X,Y ); a simple verification

shows that
∑
X,Y f1(x)g1(y)p(x, y) = 0 goes through p11, p12, p21 and therefore

H1 is specified by the decomposable function f1(x)g1(y). Likewise, H2 must be
specified by f1g2; H3 must be specified by f2g1; H4 must be specified by f2g2.
These decomposable functions define hyperplanes that must also support the
Kuznetsov extension; hence the Kuznetsov extension cannot be larger than the
strong extension. As the latter must be contained in the former, both are equal.
Now suppose that K(X) is actually a singleton containing only p1(X). Pick up
a point p2(X) such that p1(0) < p2(0), construct the hyperplanes H1, . . . ,H4 as
before. Now take the hyperplane H5 given by

∑
X,Y (−f1(x))p(x, y) ≥ 0; this

hyperplane imposes P (X = 0) ≤ p1(0). Take the intersection of the halfspaces
defined by these five hyperplanes, each one of them defined by a decomposable
function. The intersection has extreme points p1q1 and p1q2; hence it is exactly
the original strong extension, and the previous reasoning applies. (The only
difficulty here is if p1(0) = 1; then take p2(X) such that p2(0) < 1, and rename
p1 and p2.) The same argument works for the case where K(X) contains two
distinct extreme points but K(Y ) is a singleton, simply by renaming extreme
points. Finally, if both K(X) and K(Y ) are singletons, both the strong and the
Kuznetsov extensions are subject to the same constraint p(X,Y ) = p(X) p(Y ).
2

The proof of Proposition 1 uses the fact that Kuznetsov independence only
deals with decomposable functions. A geometric picture of the situation is that
we must carve a region of the unitary simplex with a special chisel, one that can
only deal with decomposable hyperplanes. In fact, given separately specified

1This result and Example 2 appeared in preliminary form in Ref. [13]; improved versions
are presented in this paper.
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Extreme points
of K(X)

Inward normals
of facets of
K(X)

Extreme points
of K(Y )

Inward normals
of facets of
K(Y )

[1/5, 3/10, 1/2] [1/4, 3/2,−1] [3/10, 3/10, 2/5] [2/3, 2/3,−1]
[2/5, 1/5, 2/5] [−1/6, 7/3,−1] [1/5, 7/10, 1/10] [4,−1,−1]

[7/10, 1/5, 1/10] [−7/3, 23/3, 1] [1/5, 2/5, 2/5] [−2/3, 1/21, 1]
[3/5, 3/20, 1/4] [7/17,−33/17, 1] [2/5, 7/20, 1/4] [−13/3, 17/3,−1]

Table 2: Extreme points and inward normals of facets for Example 2.

Figure 1: Credal sets in Example 2 in the unitary simplex, viewed from the point [1, 1, 1].

credal sets K(X) and K(Y ), we can make a mental picture of the Kuznetsov
extension K(X,Y ): it is the smallest set that “wraps” the strong extension with
decomposable supporting hyperplanes.

The following example shows that strong extensions can in fact be strictly
contained in corresponding Kuznetsov extensions.

Example 2. Consider ternary variables X and Y , and credal sets K(X) and
K(Y ) with extreme points and facets in Table 2. Figure 1 shows these marginal
sets in the same unitary simplex. The strong extension has 16 extreme points
and 24 facets (the software lrs [1] was used to obtain facets); however, some
of these facets cannot be specified using decomposable functions. For example,
the hyperplane

[434,−301,−21,−2836, 1154, 1734, 1164,−96,−1116] · (7)

[p00, p01, p02, p10, p11, p12, p20, p21, p22] = 0,

where pij = p(xi, yj), supports the strong extension, but it cannot be written
as
∑
X,Y h(x, y)p(x, y) = 0 for some h(X,Y ) = f(X)g(Y ) + α, where α is a

constant. (Note that if the function cannot be written as f(X)g(Y )+α for any α,
then it cannot specify a hyperplane that supports the Kuznetsov extension.) In
fact, the lower expectation of the function in Expression (7) is zero with respect
to the strong extension, and -14.5 with respect to the Kuznetsov extension (value
obtained with the algorithm in the next section). 2
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We now examine two other concepts introduced by De Cooman et al. [19].
Say that K(X1, . . . , Xn) is strongly Kuznetsov when, for any functions f(W)
and g(Z), where W and Z are disjoint subsets of {X1, . . . , Xn}, we have

E [f(W)g(Z)] = E [f(W)] � E [g(Z)] .

Say that K(X1, . . . , Xn) is strongly factorizing when the same definition holds,
but f(W) is restricted to be non-negative.

The strong extension of marginal credal setsK(Xi) clearly satisfies these con-
straints and is therefore strongly Kuznetsov/factorizing [19, Proposition 8(iv)].

Clearly if K(X1, . . . , Xn) is strongly Kuznetsov, it is Kuznetsov; and if
K(X1, . . . , Xn) is strongly factorizing, it is factorizing. Hence any closed convex
K(X1, . . . , Xn) that is strongly Kuznetsov/factorizing must contain the strong
extension of its marginal credal sets K(Xi), and must be externally additive.
This closes a few questions left open by De Cooman et al. [19]; the only is-
sue we do not settle here is whether the definitions of Kuznetsov and strongly
Kuznetsov independence are equivalent or not.

It seems that any justification one might find for Kuznetsov independence
should be a justification for strong Kuznetsov independence as well. However,
their computational implications seem to be rather different when n grows, as
discussed in the next section.

To conclude this section, we note that one might think that any credal set
satisfying strong independence also satisfies Kuznetsov independence. This is
not true; a simple example can be constructed by taking a credal set that is
the convex hull of probability mass functions p1(X,Y ) and p2(X,Y ) in Table 1.
This credal set is smaller than the strong extension of its marginals,2 and it is
not Kuznetsov: for functions f(X) and g(Y ) such that f(0) = 3f(1) = 3 and
2g(0) = g(1) = 2, E[fg] = 77/25 < 33/10 = E[f ]E[g].

4. Computing lower expectations

Suppose we have two variables X and Y , each with finitely many values.
Suppose also we have separately specified closed convex credal sets K(X) and
K(Y ). We have a function h(X,Y ) and we wish to compute E[h(X,Y )] with
respect to the Kuznetsov extension of K(X) and K(Y ). How can we do it?

We must solve the following optimization problem:

inf
p(X,Y )

∑
X,Y

h(x, y)p(x, y) , (8)

subject to: ∀x, y : p(x, y) ≥ 0,∑
X,Y

p(x, y) = 1,

∀f(X), g(Y ) : Ep[fg] ≥ efg,

2The credal set satisfies the repetition independence concept of Couso et al. [9]: each
extreme point of the credal set is the repeated product of a probability mass function.
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where efg is the lower bound of the interval E [f ] � E [g] (Expression (5)). As
the strong extension of the marginal credal sets belongs to the feasible region,
the last set of inequalities suffice to guarantee the equality constraints imposed
by Expression (5). We thus have that the feasible region of Optimization prob-
lem (8) is the intersection of closed halfspaces, and therefore it is a closed set.

Constraint
∑
X,Y p(x, y) = 1 is redundant: just take both pairs f(X) =

g(Y ) = 1 and f(X) = −g(Y ) = 1 to obtain it. Additionally, note that we
can impose the following additional constraints on functions f(X) and g(Y ), to
better condition Optimization problem (8) without changing its result:

∀f(X) : ∀x : f(x) ∈ [−1, 1], ∀g(Y ) : ∀y : g(y) ∈ [−1, 1]. (9)

Denote by F the set of all functions with values in [−1, 1]. Condition (9) is
simply: f(X) ∈ F , g(Y ) ∈ F .

Hence we can rewrite our optimization problem as follows:

min
p(X,Y )

∑
X,Y

h(x, y)p(x, y) , (10)

subject to: ∀x, y : p(x, y) ≥ 0,

∀f(X) ∈ F ,∀g(Y ) ∈ F :
∑
X,Y

f(x)g(y)p(x, y) ≥ efg.

This optimization problem is a semi-infinite linear program [28, 47], with
infinitely many constraints indexed by f and g. We refer to this problem as the
primal problem; it can be associated with the following (Haar) dual problem,
where λfg denotes the optimization variable associated with the pair (f, g), and
λ is the set of all such dual optimization variables:

max
λ

∑
f,g

efgλfg, (11)

subject to: ∀f ∈ F , g ∈ F : λfg ≥ 0,

∀x, y :
∑
f,g

f(x)g(y)λfg ≤ h(x, y),

with the constraint that only finitely many optimization variables can be posi-
tive.

We now generalize to variables X1, . . . , Xn. Suppose we have separately
specified closed convex marginal credal sets K(X1) , . . . ,K(Xn) and we take
K(X1, . . . , Xn) to be Kuznetsov. The strong extension of separately specified
closed convex credal sets again satisfies all constraints. Therefore, to obtain
E[h(X1, . . . , Xn)], we must solve:

min
p(X1,...,Xn)

∑
X1,...,Xn

h(x1, . . . , xn)p(x1, . . . , xn) , (12)

subject to: ∀x1, . . . , xn : p(x1, . . . , xn) ≥ 0

∀fi(Xi) ∈ F :
∑

X1,...,Xn

(
n∏
i=1

fi(xi)

)
p(x1, . . . , xn) ≥ ef1,...,fn ,
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where ef1,...,fn is the lower bound of the interval �ni=1E [fi]. The dual problem
is then:

max
λ

∑
f1,...,fn

ef1,...,fnλf1,...,fn , (13)

subject to: ∀fi(Xi) ∈ F : λf1,...,fn ≥ 0,

∀x1, . . . , xn :
∑

f1,...,fn

(∏
i

fi(x)

)
λf1,...,fn ≤ h(x1, . . . , xn),

with the constraint that only finitely many optimization variables can be posi-
tive.

The following theorem collects facts about our primal and dual problems.
Some terminology is needed [47]. First, the duality gap is the difference between
the minimum of the primal problem and the maximum of the dual problem.
Second, a grid T is a finite set of constraints of the primal problem. A problem
is weakly discretizable if there is a sequence of grids Tk such that the optimal
value subject to constraints in the grid Tk goes to the optimal value of the
original problem as k → ∞. A problem is discretizable if for every sequence of
grids Tk such that the supremum of the distance between constraints goes to
zero (precisely: supf,g minf ′,g′ ||(f, g), (f ′, g′)|| → 0), the optimal value subject
to constraints in the grid Tk goes to the optimal value of the original problem
as k →∞. Finally, a problem is finitely reducible if there is a grid T such that
the optimal value subject to constraints in T is equal to the optimal value of
the original problem. The fact that a problem is finitely reducible does not
mean that its feasible set is finitely generated; it simply means that, given an
objective function, one can build an approximate feasible set with finitely many
constraints, such that the optimal value is obtained.

Theorem 2. Optimization problem (12) has a nonempty, bounded, closed and
convex feasible region; it is discretizable and finitely reducible; the dual Opti-
mization problem (13) is solvable and the duality gap is zero.

Proof. The feasible region contains the (nonempty) strong extension and be-
longs to the unitary simplex (so it is not the entire space); it is closed and convex
because it is the intersection of closed halfspaces. The dual is always solvable be-
cause we can build a feasible λ as follows. For each non-zero h(x1, . . . , xn), con-
sider a function (h(x1, . . . , xn)/|h(x1, . . . , xn)|)

∏n
i=1 Ixi

(Xi), associated with an
element of λ equal to |h(x1, . . . , xn)|; set all other values of λ to zero, thus pro-
ducing a feasible λ. Now consider the set M = cone {

∏
i fi,∀f1, . . . , fn}, called

the first-moment cone of the primal problem. We have that M is equal to
the whole space; hence the relative interior of M is the whole space, and con-
sequently the duality gap is zero [47, Theorem 4(v)]. And then the primal is
finitely reducible and weakly discretizable [47, Theorem 7(a)]. Now note that all
constraints that depend on fi are continuous functions of fi as they are products
and minima over summations involving products of fi and elements of K(Xi)
with each other. Other than the finitely many constraints p(x1, . . . , xn) ≥ 0,
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the constraints are indexed by a vector [f1, . . . , fn] whose values belong to a
closed and convex subset of an Euclidean space (hence a compact set, and con-
sequently a compact Hausdorff topological space). Consequently the primal is
discretizable [47, Corollary 1]. 2

Note that if we do not constrain fi to be in F , all results in the theorem hold
except that the primal problem is weakly discretizable instead of discretizable
(using the same proof, except for the fact that the index set of constraints is
not a compact set).

The literature on semi-infinite linear programming offers a number of schemes
to tackle our primal and dual problems — as we have a discretizable primal,
we might use several discretization or exchange methods [47]. The gist of these
methods is to solve the dual and then to verify whether the primal is satisfied by
the obtained solution; if yes, stop, if not, then select a primal constraint so as to
add a column to the dual problem. The focus on dual methods is partially mo-
tivated by the empirical observation that problems with many columns tend to
be more efficiently solved than problems with many constraints [6, Chapter 4].
More importantly, the dual problem leads to column generation methods [4, 21]
that come with a host of techniques for speeding-up and bounding solutions. In
this paper we emphasize the dual problem and column generation.

We can write down the constraints of the dual problem as Aλ ≤ h, where A
is a matrix with infinitely many columns and h is a vector with D elements en-
coding the function h(X1, . . . , Xn). To solve this problem, we must find finitely
many tuples (f1, . . . , fn) that construct a suitable sub-matrix of A (each tuple
corresponds to a column of A). In fact, we do not ever need more than D
columns at once, where D is the number of tuples (x1, . . . , xn). To generate the
columns that matter at the solution of the optimization problem, one must start
up with D columns that define a dual feasible solution (for instance, the feasi-
ble solution described in the proof of Theorem 2), and must iterate by selecting
new columns to be added to the pool of columns. When a column is added,
the corresponding dual variable λf1,...,fn for some other column goes to zero (we
can use any linear programming scheme for column removal, as implemented
in a linear solver of choice); for improved performance, that column could be
removed from the pool of columns.

A column that enters into the pool of columns in a particular iteration
must be a column whose associated reduced cost is positive (our problem is a
maximization); if there is no such column, the maximum of the dual has been
found. The reduced cost of a column is given by

ef1,...,fn −
∑

X1,...,Xn

(
n∏
i=1

fi(xi)

)
p(x1, . . . , xn) , (14)

where p(X1, . . . , Xn) denotes the current primal solution, fixed during each it-
eration as the algorithm looks for a positive reduced cost. Note that usually
a linear programming solver can return the current primal feasible point when
solving the dual problem.
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Now note that we do not need to explicitly write down the expression of
ef1,...,fn while we look for a positive reduced cost. Rather, we can create an
optimization problem, starting from Expression (14), as follows:

max
ρ,f1,...,fn

ρ−
∑

X1,...,Xn

(
n∏
i=1

fi(xi)

)
p(x1, . . . , xn) , (15)

subject to: ∀qi(Xi) ∈ K(Xi) : ρ ≤
∑

X1,...,Xn

(
n∏
i=1

fi(xi)qi(xi)

)
.

The key here is that the maximum of Optimization problem (15) is indeed
attained when ρ is equal to ef1,...,fn . So, we obtain another semi-infinite op-
timization program, one where the objective function and the constraints are
multilinear functions of optimization variables {fi(Xi)}, and constraints are in-
dexed by {qi(Xi)}. Direct analysis of this optimization problem does not seem
trivial; we now introduce an assumption that substantially simplifies the opti-
mization. Suppose K(Xi) are finitely generated, so that we have their extreme
points; our optimization problem is now finite:

max
ρ,f1,...,fn

ρ−
∑

X1,...,Xn

(
n∏
i=1

fi(xi)

)
p(x1, . . . , xn) ,

subject to: ∀qi(Xi) ∈ extK(Xi) : ρ ≤
∑

X1,...,Xn

(
n∏
i=1

fi(xi)qi(xi)

)
,

where extS is the set of extreme points of a set S. Clearly, the computational
cost comes from the exponential blow up in the number of combinations of
extreme points to be analyzed in these auxiliary problems.

In short, the column generation method proceeds by solving auxiliary mul-
tilinear optimization problems. At each iteration we must find a column by
maximizing reduced cost, exchange columns in and out of the pool of columns,
and run a linear optimizer to obtain new dual variables. At any step, if there
is no positive reduced cost, we stop as E[h] has been found. At any step, if the
reduced cost is positive, we have a lower bound for E[h].

Due to numeric error (recall that constraints may be infinitely close), we
may face difficulties if we wish to run this process until we have the exact
minimum. Using column generation techniques we can find heuristic arguments
concerning early stopping. We now describe some heuristics we have used in
our implementation.
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Note first that our primal problem is equivalent to:

min
p(X1,...,Xn)

∑
X1,...,Xn

h(x1, . . . , xn)p(x1, . . . , xn) ,

subject to: ∀x1, . . . , xn : p(x1, . . . , xn) ≥ 0∑
X1,...,Xn

p(x1, . . . , xn) ≤ 1,

∀fi(Xi) ∈ F :∑
X1,...,Xn

(
2 +

n∏
i=1

fi(xi)

)
p(x1, . . . , xn) ≥ 2 + ef1,...,fn .

This is true because by selecting fi(Xi) = 0 for some Xi, we obtain the con-
straint

∑
X1,...,Xn

2p(x1, . . . , xn) ≥ 2, as needed. Now consider the following
modified problem, where γ is a large positive constant:

min
q,p(X1,...,Xn)

γq +
∑

X1,...,Xn

h(X1, . . . , Xn)p(X1, . . . , Xn) , (16)

subject to: q ≥ 0, ∀x1, . . . , xn : p(x1, . . . , xn) ≥ 0∑
X1,...,Xn

p(X1, . . . , Xn) ≤ 1 + q,

∀fi(Xi) ∈ F :∑
X1,...,Xn

(
2 +

n∏
i=1

fi(xi)

)
p(x1, . . . , xn) ≥ 2 + ef1,...,fn .

The large penalty introduced by γ forces the unitary constraint to hold, at least
approximately. Optimization problem (16) has a larger feasible region than the
original primal problem; hence the feasible region is nonempty (yet different
from the entire space). The relative interior of the first-moment cone M used in
the proof of Theorem 2 is again the whole space; hence the duality gap is zero
[47, Theorem 4(v)]. This leads us to the following dual problem:

max
w,λ

−w +
∑

f1,...,fn

(2 + ef1,...,fn)λf1,...,fn , (17)

subject to: w ≥ 0, ∀fi(Xi) ∈ F : λf1,...,fn ≥ 0,

w ≤ γ,
∀x1, . . . , xn :∑

f1,...,fn

(
2 +

∏
i

fi(xi)

)
λf1,...,fn ≤ w + h(x1, . . . , xn),

with the constraint that only finitely many optimization variables can be posi-
tive.

Suppose we fix γ, and solve the dual problem using column generation. If
we reach the optimal value and the primal problem satisfies q = 0, we have
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clearly reached the optimum of the original problem. If we are still exchanging
columns, we can quantify the error incurred by Optimization problem (17) at
that iteration, by exploring properties of linear programs [21, Section 2.1]. The
reduced cost is the change in the objective function per unit increase in the
lower bound of the variable. Hence if we have the value ζ for the current (dual)
feasible point, and the maximum reduced cost η > 0, and an upper bound S
on the summation w +

∑
f1,...,fn

λf1,...,fn , we know that ζ∗ ≤ ζ + η × S, where
ζ∗ is the maximum in Optimization problem (17) (the dual objective function
cannot increase more than η×S from the current feasible point). To apply this
result, use the fact that, for each (x1, . . . , xn),

w +
∑

f1,...,fn

λf1,...,fn ≤ w +
∑

f1,...,fn

(
2 +

∏
i

fi(xi)

)
λf1,...,fn

≤ w + w + h(x1, . . . , xn).

Consequently,

w +
∑

f1,...,fn

λf1,...,fn ≤ 2γ + min
x1,...,xn

h(x1, . . . , xn),

and, for Optimization problem (17),

ζ ≤ ζ∗ ≤ ζ + η ×
(

2γ + min
x1,...,xn

h(x1, . . . , xn)

)
.

If, at an iteration of column generation, the constraint w ≤ γ is satisfied with
equality, we simply increase γ (in doing so we stress the unitary constraint, so
moving closer to the original problem). Indeed, there must be a large value of
γ that forces q to be zero, given that the duality gap is zero.

In our tests, we normalized h(X1, . . . , Xn) such that its values belong to the
interval [0, 1], and we always started by selecting γ = 1; we always observed
exact satisfaction of the primal constraint

∑
X1,...,Xn

p(x1, . . . , xn) = 1 without
ever increasing γ from its initial value.

As the maximum reduced cost η comes from a nonlinear program, it is impor-
tant to use a global solver that gives guaranteed upper bounds for the optimal
η and guaranteed lower bounds for E[h]. If the number of variables and states
is relatively small, global optimizers such as Couenne [2] are quite effective. In
our implementation we have coded the algorithm above with AMPL, using the
CPLEX program as the linear optimizer and Couenne [2] as the nonlinear opti-
mizer. We now report some experiments with this implementation. Additional
comments on theoretical complexity of our problem can be found at the end of
the next section.

First, consider again Example 2. Denote by h(X,Y ) the function in Expres-
sion (7). We used the algorithm above to obtain E[h] as reported in Example
2. Suppose we vary the value of h(x, y) for x = 0 and y = 0; at h(0, 0) = 434
we have the results reported in Example 2. Figure 2 shows the lower expec-
tation of h for varying values of h(0, 0). The result for the strong extension is
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Figure 2: Differences between the lower expectations with respect to strong extension and
with respect to Kuznetsov extension using h from Example 2, but varying h(0, 0) from 300 to
1000. The vertical line indicates the value of h(0, 0) used in Example 2.

shown exactly with dotted-dashed lines. We note that there is nothing special
with respect to our choice of varying the value h(0, 0); similar figures would be
obtained if we allowed other values of h to vary. We also note that only finitely
many extreme points of the extensions seem to matter; however we have not
been able to theoretically determine whether or not the Kuznetsov extensions
of finitely generated marginal credal sets are themselves finitely generated. In
all experiments, we stopped iterations when bounds for the dual problem were
smaller than 10−4, always at points where

∑
X1,...,Xn

p(x1, . . . , xn) = 1.
Second, Table 3 depicts the computational effort for randomly generated

credal sets K(X) and K(Y ) (always separately specified and finitely generated).
The number of values for variables X and Y are respectively dX and dY ; the
number of extreme points of K(X) and K(Y ) are respectively vX and vY . Each
row of the table presents the mean of time spent (in seconds) and number of
generated columns over 20 randomly generated problems. The vast majority of
resources are spent by the (linear and nonlinear) solvers themselves.

We have also computed lower expectations with Kuznetsov independence
using more than two variables for illustrative purposes. The increase in compu-
tational effort is substantial as we move from two to three variables. Suppose we
take the same credal sets of Example 2 for the variables X and Y , plus an addi-
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dX vX dY vY Time (sec) # of Generated Columns
3 3 3 3 0.1 [0,0.2] 14.9 [10,22]
4 4 4 4 0.6 [0.2,1.3] 33.3 [17,58]
5 5 5 5 2.6 [1.3,4.8] 64.1 [40,91]
6 6 6 6 9.3 [5.3,15.4] 140.5 [78,244]
7 7 7 7 26.2 [16.1,51.8] 225.7 [138,520]
8 8 8 8 129.3 [72.5,445.8] 365.1 [192,721]
9 9 9 9 415.6 [215.7,880.2] 553.5 [274,1138]
10 10 10 10 1166.0 [683.4,2537.5] 812.5 [397,2012]
4 5 4 5 0.8 [0.3,2.9] 42.5 [25,75]
4 10 4 10 8.9 [2.9,43.8] 46.0 [25,90]
4 15 4 15 215.8 [36.2,961.4] 120.8 [36,277]
4 20 4 20 1501.4 [131.3,9119.7] 237.9 [57,753]
4 25 4 25 5505.3 [483.7,17574.1] 628.4 [83,1947]

Table 3: Time (mean time [minimum time, maximum time]) and number of generated columns
(mean number [minimum number, maximum number]) to solve the optimization problem in
random experiments with 20 runs for each scenario.

tional ternary variable Z associated with a credal set K(Z) that has the same
extreme points as K(Y ). Suppose Z has values 0, 1 and 2, and take h(X,Y, Z)
such that h(X,Y, 0) = h(X,Y ) of Example 2, and h(X,Y, 1) = h(X,Y, 2) = 1.
We obtained E[h(X,Y, Z)] = −5.21 after about an hour of processing, stopping
when the bounds indicated less than 1% error. If instead we take K(Z) to
be a singleton containing only the uniform distribution and take h(X,Y, 0) =
h(X,Y ), h(X,Y, 1) = h(X,Y, 2) = 0, we obtain -4.84 after about one our of pro-
cessing, again with bounds indicating less than 1% error (note that the value is
exactly one third of the value obtained in Example 2, as expected).

To conclude this section, we now turn to strong Kuznetsov independence. If
the credal set K(X1, . . . , Xn) is strongly Kuznetsov, then we must solve:

min
p(X1,...,Xn)

∑
X1,...,Xn

h(x1, . . . , xn)p(x1, . . . , xn) , (18)

subject to: ∀x1, . . . , xn : p(x1, . . . , xn) ≥ 0; and,

for every partition {{Xi1 . . . , Xim}, {Xim+1
, . . . , Xin}}

of {X1, . . . , Xn},
∀f(Xi1 . . . , Xim) ∈ F , g(Xim+1

, . . . , Xin) ∈ F :∑
X1,...,Xn

f(xi1 . . . , xim)g(xim+1
, . . . , xin)p(x1, . . . , xn) ≥ efg.
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The dual problem is:

max
λ

∑
f,g

ef,gλf,g, (19)

subject to: ∀f, g ∈ F : λf,g ≥ 0,

∀x, . . . , xn :
∑
f,g

fgλf,g ≤ h(x1, . . . , xn),

with the constraint that only finitely many optimization variables can be pos-
itive, and with the understanding that f and g are functions that operate on
disjoint subsets of {X1, . . . , Xn}.

The strong extension of separately specified credal sets satisfies the con-
straints in Optimization problem (18). Therefore, using the same arguments in
the proof of Theorem 2, we obtain:

Theorem 3. Optimization problem (18) has a nonempty, bounded, closed and
convex feasible region; it is discretizable and finitely reducible; the dual Opti-
mization problem (19) is solvable and the duality gap is zero.

The computational effort demanded by judgments of strong Kuznetsov inde-
pendence is highly nontrivial. To apply column generation to the dual problem,
one must face the maximization of reduced cost under constraints of Kuznetsov
independence (to obtain the value of efg, one must in general handle Kuznetsov
independence). We leave as an open problem the derivation of an actual algo-
rithm that handles strong Kuznetsov independence.

5. Conditional Kuznetsov independence and its graphoid properties

Say that two variables X and Y are conditionally Kuznetsov independent
given event A if, for functions f(X) and g(Y ),

E [fg|A] = E [f |A] � E [g|A] . (20)

The interval-valued expectations given A may be defined in several ways [52].

For instance, we might take E [f |A] to mean the interval
[
E>[f |A], E

>
[f |A]

]
whenever P (A) > 0. Alternatives would be to define conditioning even on
events of zero probability, for instance by resorting to full conditional measures
[8, 23]; or to use Bayes rule whenever P (A) > 0 and take the vacuous model
otherwise [63]. Results in this section apply as long as there is agreement on
conditioning when P (A) > 0 (because Examples 3, 4 and 5 deal with positive
lower probabilities), with the obvious assumption that, whatever conditioning
is adopted, E[·|A] is the lower expectation of some set of probability mass func-
tions.

Say that two variables X and Y are conditionally Kuznetsov independent
given variable Z if, for functions f(X) and g(Y ) and for any value of Z,

E [fg|Z = z] = E [f |Z = z] � E [g|Z = z] . (21)
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To what extent is this concept of conditional Kuznetsov independence a
sensible idea? One way to study a concept of independence is to check which
graphoid properties are satisfied by the concept. Indeed, graphoid properties
have been studied in a variety of contexts and provide an abstract framework to
study independence [17, 24, 56, 61]. A relation (X⊥⊥Y |Z) is called a graphoid
when it satisfies the following axioms [24]:

Symmetry: (X⊥⊥Y |Z)⇒ (Y ⊥⊥X |Z).

Decomposition: (X⊥⊥(W,Y ) |Z)⇒ (X⊥⊥Y |Z).

Weak union: (X⊥⊥(W,Y ) |Z)⇒ (X⊥⊥Y |(W,Z)).

Contraction: (X⊥⊥Y |Z) & (X⊥⊥W |(Y,Z))⇒ (X⊥⊥(W,Y ) |Z).

The following additional property is often considered:

Redundancy: (X⊥⊥Y |X).

Finally, the following property is sometimes discussed in connection with posi-
tive probability distributions [17, 56]:

Intersection: (X⊥⊥W |(Y,Z)) & (X⊥⊥Y |(W,Z))⇒ (X⊥⊥(W,Y ) |Z).

Conditional Kuznetsov independence clearly satisfies Symmetry. Redun-
dancy follows from

E [f(X)g(Y )|X = x] = f(x) � E [g(Y )|X = x]

= E [f(X)|X = x] � E [g(Y )|X = x]

for any f(X), g(Y ), and any x, whenever expectations are defined (note that
the first equality holds both if f(x) ≥ 0 and if f(x) < 0). Decomposition follows
from the fact that any function of Y is also a function of Y and W , so we have

E [f(X)g(Y )|Z = z] = E [f(X)|Z = z] � E [g(Y )|Z = z]

when X and (W,Y ) are conditionally Kuznetsov independent given Z, whenever
expectations are defined.

As for the other properties, we have negative results concerning Contraction
and Intersection, even when all events have positive lower probability. It is still
an open question whether or not conditional Kuznetsov independence satisfies
Weak Union.3 Consider first failure of Contraction:

Example 3. Take binary variables W , X, and Y , and a credal set K(W,X, Y )
such that each extreme point decomposes as p(W |Y ) p(X) p(Y ). That is, each

3Ref. [14] listed conditions that must be satisfied by Kuznetsov extensions (the conditions
are claimed to be sufficient, but they are not), and from there argued that Weak Union holds.
That argument is not correct and the status of Weak Union is open.
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Extreme
point Pi

Pi(W=

0|Y=0)

Pi(W=

0|Y=1)
Pi(X=0) Pi(Y=0) EPi

[f ] EPi
[h] EPi

[fh]

P1 0.7 0.4 0.2 0.2 0.8 0.34 0.272
P2 0.7 0.4 0.3 0.3 0.7 0.21 0.147
P3 0.8 0.5 0.2 0.3 0.8 0.11 0.088
P4 0.8 0.5 0.3 0.2 0.7 0.24 0.168

Table 4: Extreme points of credal set and expectations in Example 3.

extreme point satisfies stochastic independence of X and Y and stochastic inde-
pendence of X and W conditional on Y . Suppose the credal set has four extreme
points; values of P (W = 0|Y = 0), P (W = 0|Y = 1), P (X = 0) and P (Y = 0)
are given in Table 4. It can be verified that K(X,Y ) contains every product
of extreme points for P (X = 0) and P (Y = 0), so K(X,Y ) is the Kuznetsov
extension for X and Y (using Proposition 1). Likewise, K(W,X|Y = 0) is
the Kuznetsov extension of W and X given {Y = 0}, and K(W,X|Y = 1)
is the Kuznetsov extension of W and X given {Y = 1}. Thus the credal
set K(W,X, Y ) satisfies Kuznetsov independence of X and Y , and conditional
Kuznetsov independence of X and W given Y ; but it is not true that X and
(W,Y ) are Kuznetsov independent. Take the function f(X) such that f(0) = 0
and f(1) = 1, and the function h(W,Y ) such that h(0, 0) = −h(1, 1) = −1
and h(0, 1) = h(1, 0) = 0; Kuznetsov’s condition demands E[fh] = E[f ]E[h] =
0.7× 0.11 = 0.077, but E[fh] = 0.088 for K(W,X, Y ). 2

Despite the failure of Contraction for generic credal sets, some special cases
may be interesting. For instance, suppose K(X) contains a single probability
mass function p(X). Then if X and Y are Kuznetsov independent, X and W
are Kuznetsov independent given Y , and moreover if all lower probabilities are
positive, then X and (W,Y ) are Kuznetsov independent. This is true because,
using Expression (6), we have K(X|W,Y ) = {p(X)}, so

E[f(X)g(W,Y )] = min
p′

Ep′ [gEp′ [f |W,Y ]] = min
p′

E[f ]Ep′ [g] ;

thus E[fg] = E[f ]E[g] if E[f ] ≥ 0, and E[fg] = E[f ]E[g] if E[f ] < 0, as
required by Kuznetsov independence.

Now consider the Intersection property. This property fails for conditional
Kuznetsov independence even when all events have positive lower probability:

Example 4. Take binary variables W , X, and Y , and a credal set K(W,X, Y )
such that each extreme point decomposes as p(W ) p(X) p(Y ). Suppose the
credal set has four extreme points; values of P (W = 0), P (X = 0), and P (Y = 0)
are given in Table 5. It can be verified that for every w the set K(X,Y |W = w)
contains every product of extreme points of K(X) and K(Y ); likewise, for every
y the set K(W,X|Y = y) contains every product of extreme points of K(W ) and
K(X). Thus X and W are conditionally Kuznetsov independent given Y , and
X and Y are conditionally Kuznetsov independent given W (using Proposition
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Extreme
point Pi

Pi(W = 0) Pi(X = 0) Pi(Y = 0) EPi
[f ] EPi

[h] EPi
[fh]

P1 0.7 0.4 0.2 0.4 0.06 0.024
P2 0.7 0.5 0.3 0.5 0.09 0.045
P3 0.8 0.4 0.3 0.4 0.06 0.024
P4 0.8 0.5 0.2 0.5 0.04 0.020

Table 5: Extreme points of credal set and expectations in Example 4.

1), but it is not true that X and (W,Y ) are Kuznetsov independent. Take the
function f(X) such that f(0) = 1 and f(1) = 0, and the function h(W,Y ) such
that h(1, 0) = 1 and h(W,Y ) = 0 otherwise. Kuznetsov’s condition demands
E[f ]E[h] = 0.4× 0.04 = 0.016, but E[fh] = 0.020 for K(W,X, Y ). 2

Obviously, the failure of some graphoid properties should not prevent us
from considering assessments of conditional Kuznetsov independence. While we
do not have an algorithm for general sets of assessments, the following exam-
ple illustrates the matter. This example is interesting because we can exploit
Proposition 1 to obtain answers exactly.

Example 5. A credal network is a directed acyclic graph where each node is a
variable and where a Markov condition applies: every variable is independent
of its nondescendants nonparents given its parents [11]. Consider the following
graph:

X −→ Y −→ Z,

where X, Y and Z are binary variables, and adopt a version of the Markov
condition where “independent” means Kuznetsov independent. This Markov
condition implies that X and Z are Kuznetsov independent given Y . Because
X and Z are binary variables, the Kuznetsov extension of K(X|Y = y) and
K(Z|Y = y) is identical to the strong extension as these sets are separately
specified. Thus X and Z are strongly independent given Y and the Kuznetsov
extension is the largest credal set satisfying strong independence of X and Z
given Y ; that is, the Kuznetsov extension of all assessments is exactly their
strong extension. We can thus construct an exact polytope that is the Kuznetsov
extension in this case. For instance, consider the assessments:

P (X = 0) ∈ [1/10, 1/5],

P (Y = 0|X = 0) ∈ [3/5, 7/10], P (Y = 0|X = 1) ∈ [3/10, 2/5],

P (Z = 0|Y = 0) ∈ [2/5, 1/2], P (Z = 0|Y = 1) ∈ [1/2, 3/5].

Suppose we are interested in calculating P (Z = 0); by enumerating the 32 ex-
treme points of the Kuznetsov extension, we obtain P (Z = 0) = 0.454. 2

In general, inference in credal networks under Kuznetsov independence is
most likely a hard task. Such hardness comes from recent results on complex-
ity of credal networks where imprecision in probability values is restricted to
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vacuous root nodes [51]. In that case, unconditional marginal inferences in the
credal network are identical when one adopts either strong or epistemic indepen-
dence. This fact implies NP-hardness of inferences even in very simple networks
[51]. Because Kuznetsov independence leads to extensions that lie between ex-
tensions induced by these two other concepts of independence, at least when
upper probabilities are positive, the same NP-hardness result should hold for
Kuznetsov independence.

6. Conclusion

Results in this paper, together with results by De Cooman, Miranda and
Zaffalon [19], should provide the basic machinery for further investigation of
Kuznetsov independence. In this paper we have examined the connections be-
tween Kuznetsov independence and other concepts of independence (Section 3);
in particular we have proved that any credal set that is factorizing must contain
the strong extension of its marginal credal sets. Several results are derived from
this fact, some of them closing open questions in the literature. Also, we have
studied the optimization problem that must be solved when computing lower
expectations under judgments of Kuznetsov independence. We have introduced
an algorithm to calculate such lower expectations (Section 4), and presented
a summary of experiments with our implementation. Finally, we have exam-
ined the graphoid properties of a conditional version of Kuznetsov independence
(Section 5).

There are challenges left for future work. First, it is important to develop
more efficient, perhaps approximate, algorithms for calculation of lower expec-
tations, in particular when several variables interact. Second, it would be use-
ful to know whether or not conditional Kuznetsov independence satisfies the
Weak Union property, and to find ways to handle failure of graphoid properties.
Third, it would be interesting to know whether strong Kuznetsov independence
and Kuznetsov independence are equivalent or not. Finally, future work should
evaluate the merits of Kuznetsov independence during elicitation in practical
decision making problems. Applied experience would be important in deciding
whether to adopt strong, Kuznetsov or epistemic independence in any specific
decision problem.
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[51] D. D. Mauá, C. Polpo de Campos, A. Benavoli, and A. Antonucci. On
the complexity of strong and epistemic credal networks. In Ann Nichol-
son and Padhraic Smyth, editors, Conference on Uncertainty in Artificial
Intelligence, 2013.

[52] E. Miranda. Updating coherent previsions on finite spaces. Fuzzy Sets and
Systems, 160(9):1286–1307, 2009.

[53] I. Molchanov. Theory of Random Sets. Springer, 2005.

[54] S. Mukerji. A survey of some applications of the idea of ambiguity aversion
in economics. International Journal of Approximate Reasoning, 24:221–234,
2000.

29



[55] R. F. Nau. Indeterminate probabilities on finite sets. Annals of Statistics,
20(4):1737–1767, 1992.

[56] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Mateo, California, 1988.

[57] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[58] T. Seidenfeld, M. J. Schervish, and J. B. Kadane. A representation of
partially ordered preferences. Annals of Statistics, 23(6):2168–2217, 1995.

[59] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

[60] M. Smithson, T. Bartos, and K. Takemura. Human judgement under sam-
ple space ignorance. In G. de Cooman, F. G. Cozman, S. Moral, and
P. Walley, editors, First International Symposium on Imprecise Probabili-
ties and Their Applications, pages 324–332, Ghent, Belgium, 1999. Univer-
siteit Ghent.

[61] M. Studeny. Semigraphoids and structures of probabilistic conditional inde-
pendence. Annals of Mathematics and Artificial Intelligence, 21(1):71–98,
1997.

[62] K. Weichselberger. The theory of interval-probability as a unifying concept
for uncertainty. International Journal of Approximate Reasoning, 24(2-
3):149–170, 2000.

[63] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and
Hall, London, 1991.

[64] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets
and Systems, 1:3–28, 1978.

30


