
Probabilistic Logic with Independence

Fabio Gagliardi Cozman a, Cassio Polpo de Campos b,

José Carlos Ferreira da Rocha c

aEscola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
bEscola de Artes, Ciências e Humanidades, USP Leste

Universidade de São Paulo, São Paulo, SP, Brazil
cUniversidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil

Abstract

This paper investigates probabilistic logics endowed with independence relations.
We review propositional probabilistic languages without and with independence. We
then consider graph-theoretic representations for propositional probabilistic logic
with independence; complexity is analyzed, algorithms are derived, and examples
are discussed. Finally, we examine a restricted first-order probabilistic logic that
generalizes relational Bayesian networks.

Key words: Probabilistic Logic, Graph-theoretic Models, Sets of Probability
Distributions, Linear and Multilinear Programming

1 Introduction

In this paper we discuss formalisms that combine probabilistic and logical
reasoning. This promising mixture has old roots and has been rediscovered a
few times. Pioneering efforts by Boole [4] and by de Finetti [23] were later
generalized [33] and then surfaced in the artificial intelligence literature [55].
First-order probabilistic logics have received contributions from several fields,
ranging from philosophy of science to knowledge representation [2,34,39,55];
in particular, significant attention has been devoted to relational probabilistic
languages in artificial intelligence research [30,42,58].

Email addresses: fgcozman@usp.br (Fabio Gagliardi Cozman),
cassiopc@usp.br (Cassio Polpo de Campos), jrocha@uepg.br (José Carlos
Ferreira da Rocha).

Preprint submitted to Elsevier Science 14 June 2007

We can divide these probabilistic logics in two groups. In one group, probabil-
ity assessments are rather flexible and independence relations have a subsidiary
status In the second group, probabilistic assessments are required to specify
a unique distribution and independence is an essential concept. In this paper
we explore probabilistic logics where independence is a central character and
assessments are not tied to uniqueness concerns.

In Section 2 we review relevant literature on propositional probabilistic logic,
hopefully presenting matters from a perspective that may be of interest, as
we include discussions on inferential vacuity, on phase transitions, on indepen-
dence, and on zero probabilities. We then propose graph-theoretic representa-
tions inspired by Bayesian networks, derive new complexity results and present
algorithms and examples (Sections 3, 4 and 5). In Section 6 we consider exten-
sions of relational Bayesian networks [42]. Such networks combine fragments
of first-order logic and graphs to obtain a reasonably flexible language.

This paper progresses through a hopefully cogent sequence of languages. Even
though we are most interested in languages with enough power to represent
practical problems, we start from the most unassuming one, propositional
probabilistic logic without independence, and move slowly to more expressive
languages. This gradually accelerating pace is deliberate, as we hope to present
convincing arguments for our basic “design” choices.

2 Satisfiability, inferential vacuity, and independence

Consider first propositional probabilistic logic (an excellent historical and tech-
nical review is given by Hansen and Jaumard [36]). We have propositions and
Boolean operators (conjunction, disjunction, negation). A truth assignment is
a vector assigning either true or false to each proposition (assignments are
often called possible worlds [55]). Satisfaction of a formula φ by a truth as-
signment ω is denoted by ω |= φ.

Probabilities are defined over truth assignments, and P(φ) is understood as∑
ω:ω|=φ P(w) [29,36]. Our problem, referred to as probabilistic satisfiability, is

to find whether or not there is a probability distribution satisfying a set of m
assessments

P(φi ∧ ϕi) ≥ αiP(ϕi), with φi and ϕi formulas in n propositions. (1)

Note that Expression (1) is similar to P(φi|ϕi) ≥ αi; however, the former is
valid regardless of whether P(ϕi) = 0 or not, while the latter is usually left
undefined when P(ϕi) = 0. We avoid issues of zero probability in essence by

2

assuming that all assessments are unconditional (Section 2.3 offers additional
references on this issue).

2.1 Satisfiability and inference

If there is a distribution satisfying assessments in Expression (1), then the
assessments are satisfiable. Obtaining the minimum/maximum value for a
probability P(φ), subject to satisfiable assessments, is an inference. Given
our assumptions, inferences are solved by linear programming. If instead we
wish to produce conditional inferences, that is, minimum/maximum values
for a conditional probability P(φ|ϕ), we must resort to linear fractional pro-
gramming (note that linear fractional programs can be transformed into linear
programs [10,36]).

Example 1 Consider the following hypothetical facts, inspired by Jaeger’s ex-
ample on birds [41]. (Note: in all examples, assessments are expressed through
conditional probabilities, even though they should be understood as Expression
(1); we also use material implication to express constraints that can be easily
transformed to conjunctive normal form.) We have:
AntarcticBird → Bird, FlyingBird → Bird, Penguin → Bird, FlyingBird → Flies,
Penguin → ¬Flies, P(FlyingBird|Bird) = 0.95, P(AntarcticBird|Bird) = 0.01,
P(Bird) ≥ 0.2, P(FlyingBird∨Penguin|AntarcticBird) ≥ 0.2, P(Flies|Bird) ≥ 0.8.
Using fractional linear programming, we obtain P(Penguin|¬AntarcticBird) ∈
[0.000, 0.050] and P(FlyingBird|Bird ∧ ¬AntarcticBird) ∈ [0.949, 0.960].

The best exact algorithms for probabilistic satisfiability are based on the re-
vised simplex algorithm; problems with (n, m) up to (200, 1000) have been
solved exactly, and many approximations have been proposed [36,37,44]. One
might hope that phase transitions would be present in probabilistic satisfia-
bility, much as they are present in SAT problems [49], so that hard problems
would be concentrated in narrow regions. However, even a preliminary exper-
iment reveals that phase transitions, if they exist at all, do not follow here the
easy-hard-easy pattern observed in SAT. The graphs in Figure 1 show time
(wall-clock) to solve random probabilistic satisfiability problems. A problem
was generated by fixing the number of propositions n, the ratio r = m/n (m
is the number of assessments), and the number of literals per clause k. Each
literal in each clause is positive or negative with probability 1/2 [49], and each
clause was associated with a randomly selected probability in [0, 1]. For each
combination of n, r and k, 30 problems were generated and a revised simplex
(with column generation based on auxiliary 0/1 programs) was applied [36].
The rightmost graph deals with problems that are known to be satisfiable
(the logical part is satisfiable and the probabilistic assessments were gener-
ated from a distribution over propositions). Overall, the pattern of all graphs

3

0 5 10 15r
0

0,5

1

1,5

t

n=40, k=3
n=40, k=4
n=40, k=5

0 5 10 15r
0

0,5
1

1,5
2

2,5
3

t

n=50, k=3
n=50, k=4
n=50, k=5

0 5 10 15 20r
0

50

100

150

t

n=18, k=3

Fig. 1. Left and middle: time (seconds) to check satisfiability of random problems.
Right: time (seconds) to check satisfiability of satisfiable random problems (note
that these problems required more effort).

in Figure 1 suggests that the larger the problem, the harder it is to check its
satisfiability.

Some intuition on the easy-hard pattern displayed in Figure 1 can be derived
from related results in the literature. Note first that the solution of proba-
bilistic satisfiability with the revised simplex algorithm requires the solution
of an auxiliary maximum weighted satisfiability problem at each iteration of
the simplex procedure [36]. It has been reported that maximum weighted
satisfiability has an easy-hard pattern rather than an easy-hard-easy pattern
[5,72]. Thus it is not entirely surprising that probabilistic satisfiability fails
the easy-hard-easy pattern that is so attractive in (usual) satisfiability.

2.2 Inferential vacuity and independence

Computational complexity is not the only reason for concern in probabilistic
logic. Another difficulty is inferential vacuity — the concern that, due to the
flexibility of the language, it is too easy to obtain vacuous inferences. A simple
example of inferential vacuity is as follows. Suppose events A and B have no
logical relation and P(A) = 1/2, P(B) = 1/2. Then bounds on P(A ∧ B) are
rather vacuous: P(A ∧B) ∈ [0, 1/2]. This imprecision vanishes if A and B are
independent; then P(A ∧ B) = 1/4. In fact, standard statistical models typi-
cally avoid inferential vacuity by assuming independence relations. We should
likewise obtain compact and modular descriptions by adding independence
relations to probabilistic logic.

Hence consider a three-place relation that denotes independence of φ and ξ
given ϕ, where φ, ξ and ϕ are propositional formulas. The relation is de-
noted by (φ⊥⊥ξ |ϕ). We again form 2n truth assignments for the n propo-
sitions of interest, and take probability measures over this set of truth as-
signments. An assessment P(φ) ≥ α is interpreted as before, and a relation
(φ⊥⊥ξ |ϕ) now asserts independence among sets of truth assignments. We in-
terpret conditional independence of φ and ξ given ϕ to mean the constraint
P(φ ∧ ξ|ϕ) = P(φ|ϕ)P(ξ|ϕ) whenever P(ϕ) > 0 over all distributions that

4

satisfy additional assessments. (We note that several other concepts of inde-
pendence have been proposed in the literature for situations where several
distributions may satisfy assessments [8,11,16,21,50,69,70].)

We again transform constraints on conditional probabilities into constraints on
unconditional probabilities; thus the judgement of conditional independence
(φ⊥⊥ξ |ϕ) is written as the nonlinear constraint:


 ∑

ω|=φ∧ξ∧ϕ

P(ω)


×


 ∑

ω|=ϕ

P(ω)


 =


 ∑

ω|=φ∧ϕ

P(ω)


×


 ∑

ω|=ξ∧ϕ

P(ω)


 . (2)

To compute a tight upper bound on P(θ) for a propositional formula θ, we
must find max

∑
ω|=θ P(ω) subject to assessments and independence relations.

We can deal with conditional inferences such as max P(θ|ϑ) by computing
max P(θ ∧ ϑ)/P(ϑ) subject to linear and nonlinear constraints. For this pro-
cedure to be meaningful, we must first verify through nonlinear programming
that min P(ϑ) > 0. In this paper we leave max P(θ|ϑ) undefined whenever
min P(ϑ) is equal to zero (Section 2.3 comments on this).

In practice, it may be useful to rewrite expressions so as to eliminate ratios
(similarly to the Charnes-Cooper transformation [10,36]). To do so, introduce
a function q such that q(ω) = t P(ω) where t P(ϑ) = 1; to simplify notation,
we use q(φ) =

∑
ω|=φ q(ω) for any formula φ. We have to find max (t P(θ ∧ ϑ)),

or rather

max
q

q(θ ∧ ϑ), subject to: (3)

(1) m linear constraints q(φi ∧ ϕi) − αiq(ϕi) ≥ 0, (Expression (1));
(2) r multilinear constraints on q(ω) (multiplying Expression (2) by t2);
(3) constraints q(ω) ≥ 0 for all ω and q(ϑ) = 1;
(4) constraint

∑
ω q(ω) = t.

Program (3) takes us to nonconvex optimization; more precisely, to problems
that can be expressed as multilinear programs. We have employed Sherali and
Adams’ algorithm for multilinear programming in our tests [66], because this
algorithm iterates over a sequence of linear programs, and can thus benefit
from column generation techniques in large problems [36].

Example 2 Consider the constraints and assessments in Example 1, and
suppose that AntarcticBird and FlyingBird are independent (ability to fly does
not depend on origin). Then P(Penguin|¬AntarcticBird) ∈ [0.000, 0.050] and
P(FlyingBird|Bird ∧ ¬AntarcticBird) ∈ [0.950, 0.958].

Independence relations yield powerful constraints that reduce inferential vacu-

5

ity. However, ”unstructured” independence relations lead to difficult problems:
there are 2n truth assignments to handle, and additional nonlinear constraints.
The techniques discussed so far cannot be directly applied.

2.3 Conditioning and zero probabilities

In this short section we comment on our strategy regarding conditioning on
events of zero probability. Readers who are comfortable with Expressions (1)
and (3) may skip this section.

The strategy we have adopted is to avoid conditioning on events of zero prob-
ability by interpreting conditional assessments as unconditional constraints.
A perhaps more elegant strategy would be to take conditional probability as a
primitive notion, thus allowing conditioning on events of zero probability and
allowing a direct interpretation of conditional assessments. Theories that take
conditional probability as primitive have been advocated by de Finetti [23],
Renyi [62], Popper [60], and many other researchers [7,31,38,61,71]. Inference
then goes beyond linear programming [7,12,71]. Despite the added complex-
ity of these algorithms, we could have relied on them in this paper. However,
matters are not so simple when we move to the definition of independence.

When conditional probability is a primitive notion, a constraint such as Ex-
pression (3) does not fully capture the meaning of (φ⊥⊥ξ |ϕ), as Expression
(3) can be satisfied even when P(φ|ξ ∧ ϕ) 6= P(φ|ϕ) (this can happen if
P(ξ ∧ ϕ) = 0). More stringent definitions have been considered in important
work [17,35,67,68]. A difficulty here is that these more stringent definitions
of independence fail properties that are important in our present setting; in
particular, some of the graphoid properties that are the basis of Bayesian net-
work theory [15,67]. Dealing with this issue, in any case a still controversial
matter, would take us too far away from our interests in this paper.

When we deal with sets of probability measures, we must take into account
an additional feature of conditioning. In producing the conditional probability
P(θ|ϑ), we may find that some possible measures have P(ϑ) = 0 while others
have P(ϑ) > 0. In this paper we have taken a somewhat extreme, but safe,
strategy: a conditional probability P(θ|ϑ) is defined only if P(ϑ) > 0 for ev-
ery satisfying probability measure. A theory where conditional probability is
primitive would not need such precautions. However, even within the confines
of the “standard” theory we might contemplate alternatives. For instance, we
might take P(θ|ϑ) to belong to the set {P(θ ∧ ϑ)/P(ϑ) : P(ϑ) > 0} when-
ever this set is nonempty (this solution is similar to Walley’s regular extension
[70]). In fact, Program (3) does produce valid answers under this definition of
conditioning; however we do not explore this path further in this paper.

6

3 Graph-theoretic representations: PPL networks

As noted in the previous section, the flexibility of propositional probabilistic
logic comes at a price in computational complexity. Besides, a language that
is too unstructured may in fact overwhelm its users. In this section we explore
ways to attach “structure” to assessments using graph-theoretic tools.

3.1 PPL networks

Consider a set X = {X1, . . . , Xn} of binary variables, each representing a
proposition; X̂i denotes the corresponding literal. A directed acyclic graph G
is associated with X: each variable is a node in G. If edge X → Y belongs
to G, then X is a parent of Y ; parents of Y are denoted by pa(Y). Nodes
that can be reached from X through directed edges are descendants of X. We
assume the graph to be endowed with the following Markov condition, taken
literally from the theory of Bayesian networks [9,57,51]: Xi is conditionally
independent from its nondescendants nonparents given its parents. This leads
to the unique factorization P(X) =

∏
i P(Xi|pa(Xi)) for every distribution

satisfying the Markov condition.

For the purposes of probabilistic logic, it makes sense to separate the graph
and its Markov condition from the probabilistic assessments and logical con-
straints. The directed acyclic graph simply indicates independence relations
amongst variables; assessments need not directly specify the probabilities
P(Xi|pa(Xi)). However, the following is required. Every assessment is either
a logical formula φj that is asserted to be true, or an assessment P(φj ∧ϕj) ∈
[αjP(ϕj), βjP(ϕj)], where φj and ϕj are propositional formulas in conjunctive
normal form (CNF) containing only variables in the graph. The reason why
we restrict formulas to CNF is discussed in Section 4 and in the proofs of
lemmas and theorems.

To understand the advantage of this graph-theoretic framework, consider the
size of the multilinear program that must be solved for satisfiability and infer-
ence. While “unstructured” probabilistic logic requires manipulation of proba-
bilities for 2n truth assignments, a graph-theoretic model must only deal with
the probabilities in the decomposition

∏
i P(Xi|pa(Xi)).

Example 3 Consider Example 1 and take the graph G in Figure 2 (one might
adopt a different graph; a possible alternative is also shown in Figure 2).
This graph and its Markov condition imply independence relations; for in-
stance, FlyingBird and Penguin are independent given any conjunction of lit-

erals ̂AntarcticBird and B̂ird. Multilinear programming, subject to these inde-
pendence assumptions and previous assessments, produces P(FlyingBird|Bird∧

7

�

��
FB �

��
AB �

��
P

�

��
F

�

��
B

?
-�

@@R ��	

@@R��	
�

��
FB �

��
AB �

��
P

�

��
F�

��
B

?
-�

@@R ��	
�����)��	

�

��
FB �

��
AB �

��
P

�

��
F

�

��
B

@@ ��

@@��

Fig. 2. From left to right: graph G in Example 3; an alternative graph; constraint
network for the first graph (G). Nodes contain only the capital letters of variable
names.

¬AntarcticBird) ∈ [0.949, 0.960] and P(Penguin|¬AntarcticBird) = 0. Note:
the conditional independence of FlyingBird and Penguin stated in the network
may seem at first to clash with the logical dependence between these propo-
sitions (we must have ¬(FlyingBird ∧ Penguin)). But the network is satisfi-
able: either P(FlyingBird|AntarcticBird) = 0 or P(Penguin|AntarcticBird) = 0
or both. If these conclusions seem inadequate, then an edge must be included
between FlyingBird and Penguin, thus removing multilinear constraints. Sim-
ilarly, if we had assessments such that P(FlyingBird|AntarcticBird) > 0 and
P(Penguin|AntarcticBird) > 0, the network would be unsatisfiable and would
have to be modified. So a PPL network is not a finished collection of truths; it
is a tool that lets assessments and constraints be critically evaluated through
inference.

In short, we have the following model, where assessments follow the pattern
of Expression (1).

Definition 4 A Propositional Probabilistic Logic (PPL) network consists of
a triple (G,L,A), where G is a directed acyclic graph with n nodes, each one
identified with a variable; L is a list of formulas; A is a list of assessments
αjP(ϕj) ≤ P(φj ∧ ϕj) ≤ βjP(ϕj), where φj and ϕj are formulas; all formulas
are in CNF containing variables in G.

We will always assume the Markov condition to be imposed on a PPL network.
That is, a PPL network defines a set of probability distributions (over its
variables) that must satisfy A, L, and all independence relations imposed by
its graph. The formulas of A and L are kept separate as this leads to important
simplications when assessing complexity and developing algorithms (Sections
4 and 5). In a PPL network assessments may be (i) unsatisfiable; (ii) satisfiable
by a single distribution; (iii) satisfiable by a set of distributions.

3.2 Brief comments on two related graphical languages

The previous work that is closest to this paper is undoubtely Andersen and
Hooker’s “Bayesian logic” [1]. Indeed several ideas presented here are already
stated by Andersen and Hooker; in particular, the need to combine prob-
abilistic satisfiability (where independence is usually ignored) and Bayesian

8

networks (where a single joint probability distribution is always assumed),
and the need to resort to nonlinear programming for inference. Their lan-
guage stays slightly closer to the standard Bayesian network scheme, in that
they propose encoding deterministic constraints through probabilities. We in-
stead separate formulas into sets A and L, so as to obtain sharper complexity
results; we also note that the complexity analysis in this paper is new as An-
dersen and Hooker do not focus on this aspect of their model. An addditional,
and significant, difference between the present paper and previous efforts by
Andersen and Hooker is the inference framework we propose in Section 5.
While Andersen and Hooker strive to retain the linear programming flavor
of probabilistic satisfiability, we directly employ results from multilinear pro-
gramming and variable elimination, in order to produce better elimination
orderings during inference. In any case, we are clearly indebted to the seminal
ideas advanced by Andersen and Hooker.

There are several languages in the literature that combine (propositional)
constraints and probabilistic assessments, and yet guarantee satisfiability by
a unique distribution [6,26,46,57]. We present here a very brief summary of a
representative proposal, to indicate the main conceptual differences from PPL
networks.

The formalism we wish to discuss is Dechter and Mateescu’s mixed networks
[26]. A mixed network consists of a Bayesian network over X, whose joint
distribution is denoted by PB, and a list of logical constraints whose set of valid
truth assignments is denoted by Γ. The logical constraints are represented by
an undirected graph: two variables are connected if they appear together in a
logical constraint (Figure 2 shows the constraint network for Example 3; clearly
such constraint networks can be used to describe L in PPL networks). Dechter
and Mateescu combine the Bayesian network and the constraint network to
produce a single probability distribution over the truth assignments in Γ:

P(X = x) =





∏
i PB(Xi = xi|(pa(Xi) = πi) ∧ (x ∈ Γ)) if x ∈ Γ,

0 if x 6∈ Γ.

Now, a mixed network is not a tool that combines logical and probabilistic
data with equal status; what we have is a Bayesian network and an elaborate
description of a conditioning event Γ. We are not, in any sense, enforcing
P(Γ) = 1. Perhaps what should be stressed is this: an inference conditional
on event Γ is not the same as an inference under the logical constraint that Γ
obtains.

Example 5 Consider two variables X and Y , a directed acyclic graph X →
Y , and the constraint X ∨ ¬Y . Suppose we have P(X = 1) ≤ 1/2, P(Y =
1|X = 1) ≥ 1/2, P(Y = 1|X = 0) ≤ 1/2. Then max P(Y = 1|X ∨ ¬Y) = 2/3.

9

However, max P (Y = 1) = 1/2 when subject to probabilistic assessments and
to X ∨ ¬Y being true. (Note: if we had a Bayesian network X → Y with
P(X = 1) = P(Y = 1|X = 1) = P(Y = 1|X = 0) = 1/2, then P(X ∨ ¬Y) =
3/4, inconsistent with logical constraint X ∨ ¬Y .)

4 The complexity of PPL networks

In this section we present results on the complexity of PPL networks. We
will use in this section results from the theory of strong extensions of credal
networks [13]. A credal network consists of a directed acyclic graph where
each node is associated with a variable Xi and with constraints on conditional
distributions; these constraints define sets of probability measures (such sets
are referred to as credal sets). The usual Markov condition then creates the
network’s strong extension: a set of Bayesian networks sharing the same graph.
We also need a more formal statement of our decision problem. Given a PPL
network, an inference computes the lower (or upper) probability P(φ|ϕ) (or
P(φ|ϕ)) for formula φ given the formula ϕ. The decision problem is:

Definition 6 Given a PPL network N = (G,L,A), PPL-inference is the
problem of deciding whether there is a probability distribution d (for the node
set of G) satisfying all constraints in L and A.

Let N = (G,L,A) be a PPL network. The auxiliary Boolean credal network
N ′ = (G ′,K′) of N is produced as follows:

• G ′ ⊇ G and has a new node Cij for each non-unitary clause appearing in a
formula φj of A (both for conditioned and conditioning formulas). Each Cij

is connected with new arcs from the variables it contains.
• Constraints of A are inserted in K′ as follows: A ∈ A is inserted into K′

iff A defines an interval of probabilities for a single variable of G ′ given a
conjunction of its parents, that is, A ≡ αjP(ϕj) ≤ P(φj ∧ ϕj) ≤ βjP(ϕj),

where φj is a single literal X̂ and ϕj is a conjunction of X’s parents in G.
• CPTs encoding the truth tables of new Cij clauses are inserted into K′

associating these nodes and their parents.

An auxiliary network can be formed in polynomial time: it keeps the nodes of
the original PPL network N and adds a node per non-unitary clause in A. As
formulas are in CNF, clauses are disjunctions of literals. Truth tables of these
clauses are therefore easy to encode (zero only when all literals are negated and
one elsewhere). An important quantity is the treewidth [64,65] of the auxiliary
network, because constraints in A may imply new relations between variables
that are expressed by new Cij nodes in the auxiliary network (the treewidth of
a network is the treewidth of its underlying graph). If each clause appearing in

10

A is restricted to a variable and its parents, then all constraints in A may be
encoded in the local credal sets K′ of the auxiliary network, and the treewidth
of the PPL network is the same as the treewidth of its auxiliary network. We
now present a sequence of results that employ these concepts; proofs of all
lemmas and theorems are in Appendix A.

Lemma 7 The treewidth of a PPL network N = (G,L,A) is equal to the tree-
width of its auxiliary network N ′ = (G ′,K′) if all clauses in all constraints of
A are restricted to variables of N and their parents in G.

We classify a PPL network either as bounded treewidth or multi-connected:

Definition 8 A PPL network N has bounded treewidth (BTW) if its auxiliary
network has treewidth smaller than O(log(S)), where S is the input size needed
to specify N ; otherwise N is multi-connected.

Logical constraints and assessments can be tested in time similar to Bayesian
network inference:

Lemma 9 Given a BTW (respectively multi-connected) PPL network N =
(G,L,A) and a constraint φj ∈ L, deciding whether a given probability dis-
tribution d (for the node set of G) satisfies φj is in P (respectively in PP).

Lemma 10 Given a BTW (respectively multi-connected) PPL network N =
(G,L,A) and a assessment Aj ∈ A, deciding whether a given probability dis-
tribution d (for the node set of G) satisfies Aj is in P (respectively in PP).

Now, our main theorem:

Theorem 11 PPL-inference is NP-Complete for BTW PPL networks and
NP

PP-Complete for multi-connected PPL networks.

The following consequence of our results deserves attention. Note that com-
plexity of inferences depends on the treewidth of the auxiliary network (proof
of Theorem 11), and this treewidth does not depend on the number/size of
constraints in L (by construction). Thus, purely logical constraints do not
increase complexity of inferences, regardless of the treewidth of their corre-
sponding constraint network. However, note that this observation is valid only
for the logical constraints in L, not for probabilistic assessments involving for-
mulas in A (as they may increase the treewidth of the auxiliary network).
Another observation is this. The CNF-SAT problem (satisfiability restricted to
CNF formulas) is already NP-Complete; thus if we include probabilistic as-
sessments into a CNF-SAT problem using a BTW credal network, our results
show that complexity does not increase.

11

5 A framework for inferences in PPL networks

One can obtain lower/upper probabilities in a PPL network by multilinear
programming. A “naive” solution is to write down linear and multilinear con-
straints for the 2n truth assignments for variables in the network. In this
section we propose a better strategy to compute inferences, where we exploit
the factorization

∏
i P(Xi|pa(Xi)) expressed by a PPL network. Instead of fo-

cusing on a single algorithm, we present a framework that can be combined
with, and benefit from, any Bayesian network inference algorithm.

The basic idea is to run a Bayesian network inference algorithm to produce a
compact description of a multilinear program — a program where the prob-
ability values P(Xi|pa(Xi)) in the auxiliary network appear as optimization
variables. This idea is borrowed from the literature of credal networks [19].

At first, the auxiliary network of the given PPL network is created. This net-
work is in fact a credal network (with Boolean variables) that encodes the
dependence structure of the original model. A multilinear program is gener-
ated where the optimization variables are probabilities P(Xi|pa(Xi)) of the
auxiliary network. The challenge is how to handle probabilities over formulas
(more precisely: how to generate the expressions connecting these probabili-
ties to probabilities P(Xi|pa(Xi)) that constitute the factorization). To do so,
each constraint in L is treated as a query in N ′. These queries are in fact joint
queries in N ′ (see proof of Lemma 9 for details). Each assessment of A either
was inserted into N ′ (during its construction) as a constraint on local credal
sets, or it is also treated as a query in N ′. Again, these queries are joint queries
in N ′, because each Aj ∈ A deals with clauses that have become nodes in the
construction of the auxiliary network (see proof of Lemma 10 for details).

As we finish these computations, we have a credal network N ′ (with Boolean
variables) and a set of queries. The only, but important, difference between
this setting and a simple belief updating in a credal network is that we must
simultaneously satisfy all queries. But we still have a multilinear program:
we have only joint queries, and each such joint query is a multilinear function∑

X\XQ

∏
i P(Xi|pa(Xi)) over the optimization variables and restricted to some

rational interval.

A particularly simple algorithm that computes queries in Bayesian networks,
and that can be applied here, is variable elimination [25,73]. The purpose of
variable elimination is to efficiently compute a summation of products such
as

∑
X

∏
i P(Xi|pa(Xi)). In our setting, we must write down symbolically the

factorization produced by variable elimination. Every time a summation can
be interchanged with a multiplication, we introduce new optimization vari-
ables to simplify the expression (similarly to the algorithm in [19]). Applying

12

this idea several times, the initial multilinear function is transformed into
a set of smaller multilinear constraints. The drawback is that we introduce
new artificial optimization variables that will be part of the final multilinear
programming problem.

Here is a step-by-step description of how to generate the multilinear program
and make the inference:

• First, construct the auxiliary Boolean credal network N ′ from N and insert
into a multilinear program all constraints defined in N ′ by its credal sets.

• For each φj ∈ L, we must have P (φj) = 1. We know that φj =
∧

i Cij, as

φj is in CNF. Moreover, each clause Cij is a disjunction of literals ∨kX̂ijk,
where Xijk appears in the auxiliary network. Thus,

P(
∧

i

Cij) = 1 ⇐⇒ ∀i P(¬Cij) = 0 ⇐⇒ ∀i P(
∧

k

¬X̂ijk) = 0.

Note that this last assertion is just a joint query in the auxiliary network.
So we insert this assertion into the multilinear program and constraints to
define these joint queries as factorized probability measures of N ′. This is
done by running the symbolic procedure mentioned before. Any inference
algorithm (adapted to run symbolically) can be used.

• For each Aj ∈ A, we must have αjP (ϕj) ≤ P (φj ∧ ϕj) ≤ βjP (ϕj), where
φj =

∧
i Cij, with Cij clause of φj and ϕj =

∧
i Dij, with Dij clause of

ϕj (formulas φj and ϕj are in CNF too). By construction of the auxiliary
network, clauses Cij and Dij are already represented by nodes in N ′. So,
we have

αjP (
∧

i

Dij) ≤ P (
∧

i

Cij ∧
∧

i

Dij) ≤ βjP (
∧

i

Dij).

Each function P (·) of these inequalities is a joint query over variables in N ′.
So we insert those inequalities into the multilinear program and constraints
to define these joint queries as factorized probability measures of N ′. Again
we need to run the symbolic procedure mentioned before.

• In the final step, the multilinear program must be solved. Its solution de-
termines whether there is a probability distribution that satisfies all assess-
ments.

Thus, for each query, we have run a symbolic version of our preferred algo-
rithm for inference, which outputs a set of multilinear constraints. The overall
multilinear program was obtained by taking all multilinear constraints plus
the constraints already defined in N ′ by the credal sets. Using this multilinear
program, we can verify satisfiability or even evaluate the maximum/minimum
of P(φ|ϕ) (subject to all assessments and constraints).

This method can be used with a variety of inference algorithms for Bayesian

13

networks; in particular, it can be used with algorithms that exploit the pres-
ence of determinism [6,27]. Another obvious path is to explore approximation
algorithms, because exact techniques are certainly limited in the size of solv-
able problems [40]. We leave such an investigations for the future.

6 Moving to first-order: Relational networks

In this section we move beyond propositional languages, briefly looking into
elements of first-order logic. To fix terminology: in first-order logic a formula is
a combination of constants, relations, functions, Boolean operators, quantifiers
∃ and ∀, and logical variables (not to be confused with the “random” variables
Xi we associate with nodes in networks). A sentence is a formula without
free logical variables. The semantics is established using a domain (a set of
individuals). An interpretation assigns individuals to constants, relations and
functions in the domain respectively to constants, relations and functions in
the vocabulary. More details can be found in several textbooks [52].

Before we move into technical matters, we would like to mention a few notable
languages in the literature. We wish to stress the fact, already alluded to
several times, that existing languages either emphasize flexible assessments
without independence judgements, or emphasize uniqueness of probabilities
with strong assumptions on independence.

We start with Nilsson’s influential work on first-order probabilistic logic [55],
where he took assessments similar to Expression (1) but with φ and ϕ first-
order sentences. Nilsson’s logic interprets probabilities as measures over sets of
interpretations. More general languages [2,34] attach probabilities also to do-
mains, and allow quantifiers to appear “outside” of probabilistic assessments.
Several logics [32,48,56] and applications (for example, in “probabilistic” logic
programming [45,47,53]) have been studied in the last twenty years. Most such
work, typically referred to as “first-order probabilistic logic,” allows general
assessments (interval-valued, set-valued, qualitative ones), and ignores inde-
pendence relations, even when independence can be expressed in the language.
Inferential vacuity is a concern, and complexity is typically very high.

A different strategy has received attention recently. Here graph-theoretic mod-
els, such as Bayesian networks, are enhanced with elements of first-order
logic. Usually the language is relational, the domain is finite, and assumptions
of unique names are made to guarantee finiteness of propositionalized mod-
els. Often the resulting languages are called “probabilistic relational models”
[30,42,54,58]. A formalism that is worth mentioning is the language of Markov
logic [63]. Markov logic attaches grounded terms to nodes in undirected graphs;
this creates difficulties because the usual Markov conditions for undirected

14

graphs fail to induce factorization when events of zero probability are present
[9]. 1 Markov logic postulates a particular factorization, striving to guarantee
that a single probability distribution is produced by any set of allowed sen-
tences and assessments. In all of these “probabilistic relational models” and
related schemes, we obtain models that are compact and efficient; that guar-
antee satisfiability and existence of a unique probability distribution; and that
deal explicitly with independence. The drawback is that languages are often
restricted in the assessments they allow, and they require strong factorization
assumptions to guarantee uniqueness.

After this brief interlude on related work, we can return to our proposal. We
wish to focus on probabilistic logics with a balanced mix of point/interval/ set-
valued assessments and logical constraints, and with efficient graph-theoretic
representations based on independence relations. We cannot hope to address,
in this section, first-order probabilistic logics in their full generality; instead
we present a restricted language with some attractive features. The basic idea
is to extend PPL networks to relational settings using concepts in Jaeger’s
relational Bayesian networks [42,43].

Relational Bayesian networks assume a vocabulary S of relations and a finite
domain where each individual has an exclusive name. Each node of a directed
acyclic graph is associated with a relation. A relation r is then associated with
a probability expression Fr that produces the probability of r(v) for any v in
a domain D. The probability formula Fr may depend on other relations, the
parents of r in the graph. If a free variable appears in the parents of r but not
in r, then probabilities must be fused in some way. For example, suppose that
relation r(v) has parent relation s(u, v); then the probability p(r(v)|{s(u, v)})
must be specified for arbitrary sets of individuals u. Relational Bayesian net-
works employ combination functions, denoted by M{F1, . . . , Fn|u; c(u, v)}, to
combine Fi for all u that satisfy the equality constraint c(u, v). Examples of
such functions are Noisy-OR, Max, Min, and Mean. A relational Bayesian net-
work is perhaps best viewed as a first-order “template” for Bayesian networks:
given a domain, a relational Bayesian network yields a “propositionalized”
Bayesian network that can be used for inference [43].

All of this can be directly turned into a powerful (but very restricted) first-
order probabilistic logic, using ideas already tested in PPL networks.

Definition 12 A Restricted Relational Probabilistic Logic (RRPL) network
consists of a tuple (D,S,G,L,A), where D is a finite set of individuals, S is
a vocabulary with constants and relations, G is a directed acyclic graph with n

1 The same problem appears with chain graphs [9]; that is, the same failure of
factorization may happen in the presence of logical constraints. We have entertained
the use of chain graphs in probabilistic logic [14]; however, we have concluded this
not to be feasible, and reverted to a previous proposal [20].

15

�
�

�

FB(x)

�
�

�

AB(x)

�
�

�

P(x)

�
�

�

F(x)

�
�

�

B(x)

�
�

�

SS(x, y)

?
-�

@@R ��	

@@R��	

@@R

�
�

�

FB(T)

�
�

�

AB(T)

�
�

�

P(T)

�
�

�

F(T)

�
�

�

B(T)

�
�

�

SS(T,O)

?
-�

@@R ��	

@@R��	 �
�

�

FB(O)

�
�

�

AB(O)

�
�

�

P(O)

�
�

�

F(O)

�
�

�

B(O)

?
-�

@@R ��	

@@R��	

����
HHHj

Fig. 3. Left: graph G in Example 13. Right: propositionalized PPL network in Ex-
ample 13. Nodes contain only capital letters of relations and individuals.

nodes, each one identified with a relation ri in S; L is a list of sentences in
S, restricted to universally quantified conjunctions of disjunctions of possibly
negated relations; A is a list of assessments αjP(ϕj) ≤ P(φj ∧ ϕj) ≤ βjP(ϕj),
where φj and ϕj are formulas without quantifiers in S such that all logical
variables are bound to universal quantifiers “outside” of the inequalities.

We assume throughout the corresponding Markov condition, directly from the
theory of relational Bayesian networks [42]: an instantiation of a relation is
independent of instantiations of its nondescendants nonparents given instanti-
ations of its parents. Note the restriction on the form of first-order sentences:
basically, they must be universal sentences in conjunctive normal form. It is
possible to relax the restrictions on assessments by allowing expressions of the
generality considered by Jaeger [42]; we have simplified the definition due to
lack of space.

Similarly to relational Bayesian networks, a RRPL network is a template for
PPL networks: given a finite domain, we can produce a PPL network for
inferences.

Example 13 Consider Example 3. The example is perhaps more accurately
viewed as an ontology expressing facts about individuals in some domain. Sup-
pose a RRPL network is defined by the graph in Figure 3, and sentences and
assessments: ∀x : AntarcticBird(x) → Bird(x), ∀x : FlyingBird(x) → Bird(x),
∀x : Penguin(x) → Bird(x), ∀x : FlyingBird(x) → Flies(x), ∀x : Penguin(x) →
¬Flies(x); ∀x : P(FlyingBird(x)|Bird(x)) = 0.95, ∀x : P(AntarcticBird(x)|Bird(x)) =
0.01, ∀x : P(Bird(x)) ≥ 0.2, ∀x : P(FlyingBird(x) ∨ Penguin|AntarcticBird(x)) ≥
0.2, ∀x : P(Flies|Bird) ≥ 0.8; finally, ∀x, y : P(SameSpecies(x, y)|AntarcticBird(x)∧
AntarcticBird(y)) ≥ 0.7. This last assessment ties together individuals in the
domain (note: the assessment is not required to “follow” the direction of
edges; we could have assessed a different expression for the probability of
SameSpecies). Now suppose we have two individuals, Tweety and Opus. The
propositionalized PPL network for this domain is presented in Figure 3. Using
the framework in Section 5 with the variable elimination algorithm, we ob-
tain P(SameSpecies(Tweety ,Opus)|Penguin(Tweety) ∧ AntarcticBird(Opus)) ∈
[0.7, 1.0]. Note that this probability is “inherited” from the conditioning on
AntarcticBird(x)∧AntarcticBird(y) in the last assessment (as P(¬AntarcticBird(x)∧
Penguin(x)) = 0 for all x).

16

In Example 13 we have point-valued and interval-valued assessments; we could
also have qualitative and ordinal assessments. More importantly in the context
of RRPL networks, we need not adopt any artificially “standardized” way to
combine expressions (such as the Noisy-OR function).

Example 14 Consider assessments, constraints, and graph G in Example 13.
Suppose another relation, Sick, is introduced to represent illnesses spreading
amongst members of the same species. Suppose the node for Sick is added
to graph G as a child of SameSpecies and Flies, and the following probability
expression is available: ∀x, y : P(Sick(x)|Flies(y) ∧ SameSpecies(x, y)) = 0.9.
This assessment can be taken literally: as y ranges over the domain, we obtain
a number of separate constraints and there is no need to combine them through
Noisy-OR — there is no obstacle to us using Noisy-OR or any other function
if we judge that to be reasonable, but a combination is not mandated by the
language.

We have discussed inference in RRPL networks through propositionalization;
the relevant complexity results and algorithms are inherited from the theory
of PPL networks, presented in previous sections. An alternative and most
promising idea is to conduct lifted inference; that is, to do calculations, to
the extend that it is possible, with parameterized probabilities and first-order
formulas [24,59]. Several algorithms for lifted inference in relational Bayesian
networks may be subject to the framework described in Section 5: lifted infer-
ence is run “symbolically” (perhaps a few times), thus generating a multilinear
program that is subsequently solved. We leave for the future an investigation
of the practical feasibility of this idea.

7 Conclusion

Probabilistic logics must accommodate independence relations, both to reduce
inferential vacuity and to organize assessments. We have introduced graph-
theoretic models for probabilistic logics with independence, using elements of
Bayesian network theory; we then investigated their complexity and presented
inference algorithms. We have tried to stay close to one of the main tenets of
probabilistic logic: constraints and assessments hold equal status, and verifying
their consistency is an important task.

The networks we propose in this paper try to balance the flexibility of tradi-
tional probabilistic logic and the efficiency of probabilistic relational models.
In fact, while the former is “too loose” and leads to computational challenges
and inferential vacuity, the latter are “too strict” in what they assume and de-
mand. Our proposals accept that some structure is necessary in practice, thus
adopting graph-theoretic tools; however our proposals do not assume as many

17

independence relations and structural conditions as needed to obtain a single
probability distribution. In fact, once we move to sets of distributions, we can
also handle many other types of assessments, such as qualitative, interval-
valued, set-valued, and ordinal ones [20].

Two final points should be emphasized. First, our results show that complexity
of inferences grows basically as the treewidth of assessments in A, and not
with the treewidth of a constraint network representing L. The second point
to emphasize is the unifying character of credal networks in the framework we
have built.

We have explicitly left several topics for future work: an investigation of phase
transitions, a proper account of conditioning on events of zero probability, a
study of approximate algorithms. Concerning algorithms, it would be particu-
larly useful to develop techniques that exploit logical constraints during infer-
ence. We note that there has already been work on the detection of “entailment
separation” in structured constraint networks [18]. It is perhaps unrewarding
to list all possible future work on probabilistic logic with independence — one
might investigate more expressive first-order languages, applications, connec-
tions to other fields. Clearly this section closes just the beginning of a longer
journey.

Acknowledgements

The work has received partial support from CNPq (grant 3000183/98-4) and
FAPESP (grant 04/09568-0). We acknowledge partial support from HP Brazil
R&D. We thank Barbara Vantaggi for advice on the topic of zero probabilities,
and Thomas Lukasiewicz for important technical help and for encouraging us
to produce the paper. We thank Paulo Sérgio Souza Andrade for his excellent
implementation of inference algorithms used in Section 2.

A Proofs

Proof of Lemma 7. Suppose G has treewidth k and this value can be
achieved by an elimination order X1, . . . , Xn of its nodes. Take the moral
graph of G ′ and a variable elimination order for it that begins with the vari-
ables C1j , C2j, . . . , Cmj (related to all clauses appearing on formulas Aj in A)
followed by X1, . . . , Xn. After eliminating all Cij, the moral graph of G ′ be-
comes exactly the moral graph of G, because the parents of each Cij were
already connected in the moral graph of G (we have supposed in this lemma
that each clause involves only a variable and its parents). Thus the width of

18

this elimination order in G ′ is equal to the width of X1, . . . , Xn in G, that is, k.
An alternative path to prove this lemma is to realize that the size of maximum
clique of the moral graph of G ′ is the same as in graph G, because each Cij

is only connected to variables of G that already form a clique, and nodes Cij

have no arcs among each other. 2

Proof of Lemma 9. First, construct the auxiliary Boolean credal network N ′

from N . Deciding whether φj is satisfied by d is exactly the question whether
d leads to Pd(φj) = 1, with φj =

∧
i Cij and Cij a clause (as long as φj is

in CNF). Because formulas are in CNF, each Cij is a disjunction of literals

Cij = ∨kX̂ijk, where X̂ijk is a literal in N ′. Thus, P(Cij) = 1 ⇐⇒ P(¬Cij) =

0 ⇐⇒ P(
∧

k ¬X̂ijk) = 0. Note that this last assertion is just a joint query
in N ′. For a fixed probability distribution d, N ′ is a Bayesian network (a
single conditional distribution is selected from each credal set). So we just
need to evaluate whether d leads to Pd(

∧
k ¬X̂ijk) = 0 for all clauses of φj.

Thus, for a BTW PPL network, each such evaluation takes polynomial time
in S (as a BTW Bayesian network belief updating is in P), and because of the
polynomial number of clauses, the total amount of time is polynomial in S too.
For a multi-connected network, each evaluation is in PP (the complexity class
for general belief updating in Bayesian networks). Because PP is closed under
truth-table reductions [28], we can make all the PP evaluations “in parallel”
and answer yes if and only if each one answered yes. This completes the proof.
2

Proof of Lemma 10. Here we proceed similarly to Lemma 9. First, construct
the auxiliary Boolean credal network N ′ from N . Deciding whether Aj is
satisfied by d is the same as deciding whether αjPd(ϕj) ≤ Pd(φj ∧ ϕj) ≤
βjPd(ϕj), where φj =

∧
i Cij, with Cij clause of φj and ϕj =

∧
i Dij, with

Dij clause of ϕj (this holds because formulas are in CNF). By construction of
auxiliary networks, clauses Cij and Dij are already represented by nodes in N ′

encoding their truth tables. Thus, we just need to evaluate p1 = Pd(
∧

i Cij ∧∧
i Dij) and p2 = Pd(

∧
i Dij), and test whether p1 is in the interval [αjp2, βjp2].

Note that evaluation of p1 and p2 are just joint queries in N ′. For a fixed
probability distribution d, N ′ is a Bayesian network. Thus, for a BTW PPL
network, both evaluations take polynomial time in S and the total time is
polynomial. For a multi-connected network, each evaluation is in PP, and we
need two adaptive evaluations (as to decide whether p1 is in that interval we

need to previously compute p2). Because PP equals PPP[log n] (that is, O(log n)
adaptive queries to PP is still in PP) [3,28], the lemma follows. 2

Proof of Theorem 11. Consider first BTW networks. Pertinence is achieved
by Lemmas 9 and 10: given a probability distribution d, verifying satisfaction
of each constraint/assessment in L and A takes polynomial time in the size of
the input. We show hardness with a polynomial time reduction from CNF-SAT:
given a CNF Boolean formula ξ with clauses C1, . . . , Cm in the variables X,

19

is there an instantiation of X that satisfies ξ? Construct a PPL network N =
(G,L,A) with no arcs in G and nodes X, empty A and L containing only the
formula ξ. It is clear that there is a probability distribution d that satisfies the
PPL-inference in N if and only if there is an instantiation that satisfies the
CNF-SAT problem, because we verify in the PPL-inference whether P(¬Cj) =∏

i P(¬X̂ij) = 0 for all 1 ≤ j ≤ m, where X̂ij are the literals appearing in Cj.
Note that the topology of G used here is even simpler than a polytree (there
are no arcs and every node is independent from each other). So, even in this
case the PPL-inference is NP-Complete.

Now consider multi-connected networks. Again, pertinence is achieved by Lem-
mas 9 and 10. Given a probability distribution d, deciding whether each con-
straint in L and each assessment in A is satisfied is in PP. Because PP is closed
under truth-table reductions [28], we can make all the PP evaluations (for all
formulas in A and L) “in parallel” and answer yes if and only if each one

answered yes. PPL-inference is NPPP-Hard because a PPL network is an ob-
vious generalization of a Boolean credal network. The belief updating problem
in a Boolean credal network is to decide whether P(X̂q) ≥ r, where X̂q is the
query and r is a rational number. To polynomially reduce this problem to
a PPL-inference, we just have to encode the local credal sets of the credal
network as assessments in A (this is trivial, as assessments in A are more
general than local credal sets) and insert an additional assessment specifying
that rP(ϕ) ≤ P(φ ∧ ϕ) ≤ P(ϕ), with φ = X̂q and ϕ as a tautology. Now the
theorem is immediate. A solution to the PPL-inference solves belief updating
in a Boolean credal network. 2

References

[1] K. A. Andersen and J. N. Hooker. Bayesian logic. Decision Support Systems,
11:191–210, 1994.

[2] F. Bacchus. Representing and Reasoning with Probabilistic Knowledge: A
Logical Approach. MIT Press, Cambridge, 1990.

[3] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection.
Journal of Computer and System Science, 50(2):191-2002, 1995.

[4] G. Boole. The Laws of Thought. Dover edition, 1958.

[5] B. Borchers, J. Mitchell, and S. Joy. A branch-and-cut algorithm for MAX-
SAT and weighted MAX-SAT. In D. Du, J. Gu, and P. Pardalos, editors,
Satisfiability Problem: Theory and Applications, Vol. 35 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 519-536, AMS,
1997.

20

[6] M. Chavira and A. Darwiche. Compiling Bayesian networks with local structure.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence, 2005.

[7] G. Coletti and R. Scozzafava. Probabilistic Logic in a Coherent Setting. Trends
in logic, 15. Kluwer, Dordrecht, 2002.

[8] I. Couso, S. Moral, and P. Walley. A survey of concepts of independence for
imprecise probabilities. Risk, Decision and Policy, 5:165–181, 2000.

[9] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic
Networks and Expert Systems. Springer-Verlag, New York, 1999.

[10] F. G. Cozman. Calculation of posterior bounds given convex sets of prior
probability measures and likelihood functions. Journal of Computational and
Graphical Statistics, 8(4):824–838, 1999.

[11] F. G. Cozman. Constructing sets of probability measures through Kuznetsov’s
independence condition. In Proc. of the Second Int. Symp. on Imprecise
Probabilities and Their Applications, pages 104–111, Ithaca, New York, 2001.

[12] F. G. Cozman. Algorithms for conditioning on events of zero lower probability.
Int. Florida Artificial Intelligence Research Society Conference, pages 248-252,
Pensacola, Florida, 2002.

[13] F. G. Cozman. Graphical models for imprecise probabilities. Int. Journal of
Approximate Reasoning, 39(2-3):167–184, 2005.

[14] F. G. Cozman, C. P. de Campos, and J. C. Ferreira da Rocha. Probabilistic
logic with strong independence. In Brazilian Symp. on Artificial Intelligence,
2006.

[15] F. G. Cozman, and T. Seidenfeld. Independence for Full Conditional Measures,
Graphoids and Bayesian Networks. Technical report PMR, Escola Politécnica,
Universidade de São Paulo, São Paulo, Brazil, 2007.

[16] F. G. Cozman and P. Walley. Graphoid properties of epistemic irrelevance and
independence. Annals of Mathematics and Artificial Intelligence, 45:173–195,
2005.

[17] L. Crisma. The notion of stochastic independence in the theory of coherent
probability. Quad. Dip. Mat. Appl. Sci. Ec. St. Att. B. de Finetti, 8/91, 1999.

[18] A. Darwiche. A logical notion of conditional independence: Properties and
application. Artificial Intelligence, 97(1-2):45–82, 1997.

[19] C. P. de Campos and F. G. Cozman. Inference in credal networks using
multilinear programming. In E. Onaindia and S. Staab, editors, Proc. of the
Second Starting AI Researchers’ Symp. (STAIRS), pages 50–61, Amsterdam,
The Netherlands, 2004. IOS Press.

[20] C. P. de Campos and F. G. Cozman. Belief updating and learning in semi-
qualitative probabilistic networks. In F. Bacchus and T. Jaakkola, editors, Conf.
on Uncertainty in Artificial Intelligence (UAI), Edinburgh, Scotland, 2005.

21

[21] C. P. de Campos and F. G. Cozman. Computing lower and upper
expectations under epistemic independence. In Fourth Int. Symp. on Imprecise
Probabilities and Their Applications (ISIPTA), pages 78–87, Dulles, Virginia,
2005. Brightdoc.

[22] C. P. de Campos and F. G. Cozman. The inferential complexity of Bayesian and
credal networks. In Int. Joint Conf. on Artificial Intelligence (IJCAI), pages
1313–1318, Edinburgh, United Kingdom, 2005.

[23] B. de Finetti. Theory of probability, vol. 1-2. Wiley, New York, 1974.

[24] R. de S. Braz, E. Amir, and D. Roth. MPE and partial inversion in lifted
probabilistic variable elimination. In National Conf. on Artificial Intelligence
(AAAI), 2006.

[25] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1-2):41–85, 1999.

[26] R. Dechter and D. Larkin. Hybrid processing of beliefs and constraints. In
Conf. on Uncertainty in Artificial Intelligence, 2001.

[27] R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistic networks
and their AND/OR search space. In M. Chickering and J. Halpern, editors,
Conf. on Uncertainty in Artificial Intelligence, pages 120–129. AUAI Press,
2004.

[28] L. Fortnow, and N. Reingold. PP is closed under truth-table reductions.
Structure in Complexity Theory Conference, pages 13-15, 1991.

[29] G. Georgakopoulos, D. Kavvadias, and C. H. Papadimitriou. Probabilistic
satisfiability. Journal of Complexity, 4:1–11, 1988.

[30] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models
of relational structure. In Int. Conf. on Machine Learning, pages 170–177, 2001.

[31] A. Gilio and R. Scozzafava. Conditional events in probability assessment and
revision. IEEE Trans. on Systems, Man and Cybernetics, 24(12):1741–1746,
1994.

[32] R. Giugno and T. Lukasiewicz. P-SHOQ(D): A probabilistic extension of
SHOQ(D) for probabilistic ontologies in the semantic web. In S. Flesca,
S. Greco, N. Leone, and G. Ianni, editors, Proc. of the 8th European Conf. on
Logics in Artificial Intelligence (JELIA), volume 2424, pages 86–97, Cosenza,
Italy, September 2002. Lecture Notes in Artificial Intelligence, Springer.

[33] T. Hailperin. Best possible inequalities for the probability of a logical function
of events. American Mathematical Monthly, 72:343–359, 1965.

[34] J. Y. Halpern. Reasoning about Uncertainty. MIT Press, Cambridge,
Massachusetts, 2003.

[35] P. J. Hammond. Elementary non-Archimedean representation of probability for
decision theory and games. In P. Humphreys, editor, Patrick Suppes: Scientific
Philosopher Volume 1, pages 25-59, Kluwer, Dordrecht, The Netherlands, 1994.

22

[36] P. Hansen and B. Jaumard. Probabilistic satisfiability. Report G-96-31, Les
Cahiers du GERAD, École Polytechique de Montréal, 1996.

[37] P. Hansen and S. Perron. Merging the local and global approaches to
probabilistic satisfiability. Report, Cahier du GERAD G-2004-48, 2004.

[38] S. Holzer. On coherence and conditional prevision. Boll. Un. Mat. Ital. Serie
VI, 1:441–460, 1985.

[39] C. Howson and P. Urbach. Scientific reasoning: the Bayesian approach. Open
Court Publishing Company, Chicago, Illinois, 1993.

[40] J. S. Ide and F. G. Cozman. IPE and L2U: Approximate algorithms for credal
networks. In Second Starting AI Researcher Symposium (STAIRS), pages 118–
127. IOS Press, 2004.

[41] M. Jaeger. Probabilistic reasoning in terminological logics. In Principles of
Knowledge Representation (KR), pages 461–472, 1994.

[42] M. Jaeger. Relational Bayesian networks. In D. Geiger and P. P. Shenoy, editors,
Conf. on Uncertainty in Artificial Intelligence, pages 266–273, San Francisco,
California, 1997. Morgan Kaufmann.

[43] M. Jaeger. Complex probabilistic modeling with recursive relational Bayesian
networks. Annals of Mathematics and Artificial Intelligence, 32:179–220, 2001.

[44] D. Jovanović, N. Mladenović, and Z. Ognjanović. Variable neighborhood search
for the probabilistic satisfiability problem. In Proc. of the 6th Metaheuristics
Int. Conf. (MIC 2005), Vienna, Austria, 2005.

[45] L. V. S. Lakshmanan and F. Sadri. Probabilistic deductive databases. In Symp.
on Logic Programming, pages 254–268, 1994.

[46] D. Larkin and R. Dechter. Bayesian inference in the presence of determinism.
In AI and Statistics (AI-STAT), 2003.

[47] T. Lukasiewicz. Probabilistic logic programming. In European Conf. on
Artificial Intelligence, pages 388–392, 1998.

[48] T. Lukasiewicz. Probabilistic logic programming with conditional constraints.
ACM Trans. on Computational Logic, 2(3):289–339, 2001.

[49] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of
SAT problems. In Proc. of the Tenth National Conf. on Artificial Intelligence
(AAAI), pages 459–465, San Jose, California, July 1992.

[50] S. Moral. Epistemic irrelevance on sets of desirable gambles. Annals of
Mathematics and Artificial Intelligence, 45(1-2):197–214, October 2005.

[51] R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

[52] A. Nerode and R. A. Shore. Logic for Applications (2nd ed.). Springer-Verlag,
New York, 1997.

23

[53] R. Ng and V. S. Subrahmanian. Probabilistic logic programming. Information
and Computation, 101(2):150–201, 1992.

[54] L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171(1–2):147–177, 1997.

[55] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.

[56] Z. Ognjanović. Discrete linear-time probabilistic logics: Completeness,
decidability and complexity. Journal of Logic Computation, 16(2):257–285,
2006.

[57] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, California, 1988.

[58] D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial
Intelligence, 64:81–129, 1993.

[59] D. Poole. First-order probabilistic inference. In Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 985–991, 2003.

[60] K. R. Popper. The logic of Scientific Discovery. Hutchinson, London, 1975.

[61] E. Regazzini. Finitely additive conditional probability. Rend. Sem. Mat. Fis.,
55:69–89, 1985.

[62] A. Renyi. On a new axiomatic theory of probability. Acta Math. Acad. Sci.
Hungarian, 6:285–335, 1955.

[63] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, 2006.

[64] N. Robertson and P. D. Seymour. Graph minors – II. Algorithmic aspects of
tree-width. J. Algorithms, 7:309–322, 1986.

[65] N. Robertson and P.D. Seymour. Graph minors – I. Excluding a forest. J.
Combinatorial Theory Series B, 35:39–61, 1983.

[66] H.D. Sherali and W.P. Adams. A Reformulation-Linearization Technique
for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic
Publishers, 1999.

[67] B. Vantaggi. Graphical models for conditional independence structures. In
Second Int. Symp. on Imprecise Probabilities and Their Applications, pages
332–341. Shaker, 2001.

[68] B. Vantaggi. Graphical representation of asymmetric graphoid structures. In
Third Int. Symp. on Imprecise Probabilities and Their Applications, pages 560–
574. Carleton Scientific, 2003.

[69] P. Vicig. Epistemic independence for imprecise probabilities. Int. Journal of
Approximate Reasoning, 24:235–250, 2000.

[70] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and
Hall, London, 1991.

24

[71] P. Walley, R. Pelessoni, and P. Vicig. Direct algorithms for checking consistency
and making inferences from conditional probability assessments. Journal of
Statistical Planning and Inference, 126(1):119–151, 2004.

[72] W. Zhang. Transitions and backbones of 3-SAT and maximum 3-SAT. Int.
Conf. on Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science, Vol 2239, pages 153-167, Springer, 2001.

[73] N. L. Zhang and D. Poole. Exploiting causal independence in Bayesian network
inference. Journal of Artificial Intelligence Research, pages 301–328, 1996.

25

