
International Journal of Approximate Reasoning 58 (2015) 57–70
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Probabilistic satisfiability and coherence checking through

integer programming

Fabio G. Cozman ∗, Lucas Fargoni di Ianni

Universidade de São Paulo, Av. Prof. Mello Moraes, 2231, São Paulo, SP, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 May 2014
Received in revised form 1 September 2014
Accepted 11 September 2014
Available online 18 September 2014

Keywords:
Probabilistic logic
Probabilistic satisfiability
Coherence
Integer programming
Phase transitions

This paper presents algorithms, both for probabilistic satisfiability and for coherence
checking, that rely on reduction to integer programming. That is, we verify whether
probabilistic assessments can be satisfied by standard probability measures (Kolmogorovian
setting) or by full conditional probabilities (de Finettian coherence setting), and in both
cases verify satisfiability or coherence using integer programming techniques. We present
an empirical evaluation of our method, the results of which show evidence of phase
transitions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The analysis of arguments that combine propositions and probabilities has deserved attention for quite some time. For
instance, in Boole’s work we find interesting examples such as:

The probability that it thunders upon a given day is p, the probability that it both thunders and hails is q, but of the
connexion of the two phenomena of thunder and hail, nothing further is supposed to be known. Required the probability
that it hails on the proposed day. [13, Chapter XVIII, Ex. 1]

Here we have propositions A and B , assessments P(A) = p and P(A ∧ B) = q. Boole asks for P(B) and obtains the tight
interval [q, 1 − (p − q)]. There is a probability measure that satisfies the assessments; for this reason, they are coherent.

Suppose we have atomic propositions {A j}n
j=1 and propositional sentences {φi}M

i=1 involving those atomic propositions.
We may associate one or more of these sentences with probabilities, writing for instance P(φi) = αi . As detailed later,
to establish semantics for these assessments we consider a probability measure over the set of truth assignments. The
Probabilistic Satisfiability (PSAT) problem is to determine whether it is possible to find a probability measure over truth
assignments such that all assessments are satisfied [25,28,31,33,34,37]. When assessments involve conditional probabilities
such as P(A|B) = α, there are two paths to follow. Kolmogorovian probability theory reduces such assessments to ratios of
probabilities. The other path is to use de Finetti’s theory of coherent probabilities, where full conditional probabilities are
used to interpret conditional assessments [19,23,58]. The Coherence Checking (CCHECK) problem is to determine whether it
is possible to find a full conditional probability that satisfies all assessments, without requiring that assessments are over
an algebra or any other structure [5,6]. Coherence checking has been explored in a variety of settings; a typical example is:

* Corresponding author.
http://dx.doi.org/10.1016/j.ijar.2014.09.002
0888-613X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2014.09.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://dx.doi.org/10.1016/j.ijar.2014.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2014.09.002&domain=pdf

58 F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70
A doctor considers three possible diagnoses, H1 (ileum), H2 (peritonitis), and H3 (appendicitis with local peritonitis),
with the logical condition that H3 → (¬H1) ∧ H2, and assessments P(H1) = 1/2, P(H2) = 1/5, and P(H3) = 1/8. Note
that diagnoses do not constitute a partition of the certain event. The assessments are coherent in that they are satisfied
by at least a probability measure. The doctor now considers E (no pain in abdomen), notes that H3 → ¬E , and declares
P(E|H2) = 2/5 and P(E|¬H2) = 1/8. Now the whole set of assessments fails to be coherent.1

Probabilistic satisfiability and coherence checking are central problems in reasoning under uncertainty. They serve not
only as a foundation for logical and probabilistic inference, but as a basis for probabilistic rules [50], and as an initial
necessary step in the understanding of combinations of first-order logic and probabilities [35,46,51].

The most direct way to solve a PSAT problem is to write it down as a linear feasibility problem [33]. The difficulty is
that the resulting linear program may be too large; for n propositions, we must build a matrix with up to 2n columns.
When conditional probabilities are present, coherence checking may require sequences of such linear programs. To avoid
dealing with exponentially many columns, one may resort to column generation techniques [40], to inference rules that
capture probabilistic relationships [6], or even to combinations of column generation and inference rules [38]. There is also
a different approach to probabilistic satisfiability that reduces it to logical satisfiability [4,26]. Overall, results in the literature
save computations by applying increasingly complicated methods.

In this paper we present another approach to probabilistic satisfiability and coherence checking, where these problems
are turned into integer programs. Our basic algorithm for PSAT is rather concise and easy to implement when a linear
solver is available. In fact, our goal is to present methods that can be applied to medium sized problems, with say some
20 to 200 atomic propositions, by exploiting the fact that integer programming technology has improved dramatically in
recent years. So, instead of explicitly resorting to inference rules and column generation, our methods simply outsource such
schemes to the linear solver, as top solvers do apply sophisticated heuristics and numerical stabilization internally. We show
that our techniques can be easily extended to expectation assessments, and describe ways to reduce coherence checking to
(sequences of) integer linear programs.

As our experiments show, integer programming techniques are not yet capable of beating the fastest methods in the
literature for large problems, but they offer a robust basis for PSAT and CCHECK. Using our implementation we study the
issue of phase transition in probabilistic satisfiability, showing evidence of interesting phenomena in PSAT.

Section 2 summarizes necessary background in satisfiability and probability satisfiability. Our basic algorithm for prob-
abilistic satisfiability is described in Section 3. We consider extensions of probabilistic satisfiability in Section 4, and then
study coherence checking in Section 5. Implementation and experiments, with a discussion of phase transitions, are pre-
sented in Section 6.

2. SAT and PSAT

Consider n atomic propositions A j and M sentences φi in propositional logic involving those atomic propositions. A truth
assignment is an assignment of truth values (True or False) to each atomic proposition, that induces an assignment of
truth values for all sentences involving the atomic propositions. If a truth assignment ω is such that sentence φ is True,
write ω |� φ. The Satisfiability (SAT) problem is to determine whether or not there exists a truth assignment to all atomic
propositions such that all sentences evaluate to True [18,30].

If every sentence φi is a conjunction of clauses, then we have a SAT problem in Conjunctive Normal Form (CNF). A SAT
problem in CNF is a k-SAT problem when each clause has k literals (note that literals may appear more than once in a clause,
so in fact we can have up to k distinct literals). The 2-SAT problem has a polynomial solution, while k-SAT is NP-complete
for k > 2.

For a fixed n, m and k, one may generate a random k-SAT with n propositions and m clauses, as follows. For each one
of the m clauses: select k propositions at random, and for each proposition produce a literal that may be negated or not,
with probability half. There has been intense study of phase transition phenomena in random k-SAT; that is, the observed
fact that for small values of m/n the probability that a random k-SAT is satisfiable tends to one as n grows (at fixed m/n),
while for large values of m/n the probability that a random k-SAT is satisfiable tends to zero as n grows [30]. Moreover, in
the regions where satisfiability has probability approaching zero or one we observe that generated random k-SAT problems
can be easily solved, while in the transition between the two regions we find hard problems.

Suppose that some sentences, say φ1 to φq , for q ≤ M , are associated with probabilities through assessments of the
form P(φi) �� αi , where �� is one of ≥, =, ≤. The semantics of such an assessment is as follows. Take the set of 2n truth
assignments that can be generated for the n propositions. A probability measure P over this set satisfies the assessments if,
for each assessment P(φi) �� αi ,∑

ω|�φi

P(ω) �� αi . (1)

1 The example is due to Coletti and Scozzafava [21, Example 1], and appears edited here. Failure of coherence can be verified as follows. We must have
P(H2) = 1/5 = P(H2 ∧ E) +P(H2 ∧ ¬E) ≥ P(H2 ∧ E) +P(H2 ∧ ¬E ∧ (¬H1 ∧ H3)); but P(H2 ∧ E) = 2/25 (multiplying P(H2) = 1/5 and P(E|H2) = 2/5) and
P(H2 ∧ ¬E ∧ (¬H1 ∧ H3)) = P(H3) = 1/8 (because H2 ∧ ¬E ∧ (¬H1 ∧ H3) is equivalent to H3 as H3 → (¬H1) ∧ H2 and H3 → ¬E).

F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70 59
The Probabilistic Satisfiability (PSAT) problem is to determine whether a given set of sentences and probabilistic assessments
can be satisfied. That is, to determine whether there is a probability measure over the possible truth assignments, such that
all assessments are satisfied by this probability measure. The k-PSAT problem is a PSAT problem where each sentence is in
CNF and where each clause has k literals. The k-PSAT is NP-complete for all values of k > 1; note that even for k = 2 we
obtain NP-completeness [37]. A few polynomial special cases of PSAT are known [2].

There are many algorithms for PSAT. The most obvious one is to write down M constraints of the form (1), one for each
sentence. Some sentences are associated with assignments P(φi) �� αi . If a sentence φi is not associated with a probabilistic
assessment, just add P(φi) = 1 to the assessments. Then each constraint can be written as

2n∑
j=1

Iφi (ω j)P(ω j) �� αi, where Iφi (ω j) =
{

1 if ω j |� φi
0 otherwise,

(2)

while truth assignments ω j are ordered from 1 to 2n (say by the n-bit binary number obtained by writing 0 for False
and 1 for True as assigned to A1, . . . , An). Add to these M linear constraints the necessary constraints

∑
j P(ω j) = 1 and

P(ω j) ≥ 0 for all ω j . Probabilistic Satisfiability is then obtained when the resulting set of linear constraints has a solution.
The challenge is that we have 2n truth assignments, so the size of the linear constraints is exponential in the input.

The most efficient algorithms for PSAT combine linear programming techniques and inference rules to simplify the prob-
lem [38]. These algorithms use the fact that a PSAT problem is satisfiable if and only if there is a probability measure that
assigns positive probability mass to (M + 1) truth assignments; all other truth assignments get zero probability mass [31].
Hence we can write down an (M + 1) × (M + 1) matrix C and write the PSAT problem as feasibility of Cp �� α, where
α denotes a vector of values αi and �� refers to ≥, = or ≤ as appropriate. Each row of C corresponds to an assessment,
except one row that corresponds to the constraint

∑
j P(ω j) = 1. Each column of C corresponds to a truth assignment;

the challenge is to select (M + 1) truth assignments. This is usually done by column generation techniques from linear
programming [7]. Initially a set of (M + 1) columns is selected, and then pivoting operations exchange columns until the
problem is determined to be satisfiable or not. At each pivoting operation, a column is removed from C, and the choice
of the column to enter C happens through an auxiliary optimization problem (there are several possible formulations for
this auxiliary problem) [37,38]. Performance improvements are obtained if column generation is preceded by application of
inference rules.2 This combination has produced the best results so far, being able to solve PSAT problems with hundreds
of atomic propositions and hundreds of assessments. Variations on such techniques have been applied successfully even to
probabilistic description logics, in problems with hundreds of propositions and clauses [41]. A different approach to PSAT is
to reduce it to SAT [4,26]. For instance, the method by Finger and De Bona [26] reduces the selection of columns of C to a
SAT problem.

The resulting methods are fairly sophisticated and require numerical care. Moreover, the extension of such methods to
conditional probabilities in de Finetti’s coherency framework is difficult, and existing methods require sequences of linear
programs (Section 5).

A PSAT is in Normal Form if a single sentence φ is given, and each probabilistic assessment is an equality associated with
a single proposition (that is, every probabilistic assessment is of the form P(Ai) = αi) [26]. Even though this form may seem
restrictive, every PSAT can be brought to it with polynomial effort: basically, for each assessment P(φi) �� αi , introduce if
necessary fresh atomic propositions to transform the assessment into P(φ′

i) = αi ; then introduce a new proposition A′
i and

exchange the original assessment by a sentence A′
i ⇔ φ′

i and an assessment P(A′
i) = αi ; finally, generate a single sentence φ

that is a conjunction of all previous sentences. Such a sentence φ can be turned into CNF in polynomial time, for instance
using Tseitsin’s transformation [18]. Thus every k-PSAT for k > 2 can be reduced to Normal Form with q assessments
P(Ai) = αi plus one sentence φ in CNF where each clause has exactly 3 literals.

3. Probabilistic satisfiability and integer programming techniques

Assume our PSAT problem is in Normal Form with assessments {P(A j) = α j}q
j=1 and a sentence φ in CNF with m clauses,

each clause with k literals. So our problem is parameterized by the number of propositions n, the number of assessments q,
the number of clauses m, and the number of literals per clause k. Such a parameterized Normal Form neatly separates the
probabilistic and the propositional aspects of Probabilistic Satisfiability.

Our problem is: find the (q + 1) columns of C, each one corresponding to a truth assignment ω such that ω |� φ, in such
a way that Cp = α.

Hence we have (q + 1)2 optimization variables (elements of C to look for); all of them are binary with values 0 and 1.
As noted previously, the method by Finger and De Bona [26] reduces PSAT to SAT, and in doing so it encodes the search for
optimization variables as a SAT problem. We instead find C by solving an integer program.

Consider looking for the jth column of C; denote it by C j . Such a column corresponds to a truth assignment that satis-
fies φ. We explore the well known connection between SAT and integer programming to find such a truth assignment [18].

2 An example of an inference rule [38]: if P(A1) ∈ [α1,α1] and P(¬A1 ∨ A2) ∈ [α1,α2] for α1 + α2 ≥ 1, then P(A2) ∈ [max(0, α1 + α2 − 1), min(1,α2)].
There are many inference rules in the literature, but not always generating sound inferences [27].

60 F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70
Algorithm 1 PSAT solution based on integer linear program.

1: procedure PSAT-IP(propositions {A j}n
j=1, assessments {P(Ai) = αi}q

i=1, sentence φ in CNF with m clauses)
Comment: ai, j are binary; bi, j , p j are real-valued in [0, 1].

2: for j ∈ {1, . . . , q + 1} and each clause (
∨k′

l′=1 Ail′) ∨ (
∨k′′

l′′=1 ¬Ail′′) of φ do

3: Generate constraint (
∑k′

l′=1 ail′ , j) + (
∑k′′

l′′=1(1 − ail′′ , j)) ≥ 1.

4: for i ∈ {1, . . . , q} do
5: Generate constraint

∑q+1
j=1 bi, j = αi .

6: for j ∈ {1, . . . , q + 1} do
7: Generate constraints 0 ≤ bi, j ≤ ai, j , ai, j − 1 + p j ≤ bi, j ≤ p j .

8: Generate constraint
∑q+1

j=1 p j = 1.

9: return
{

Satisfiable if constraints have a solution,
Unsatisfiable otherwise.

Start by generating a vector a j with n binary variables {ai, j}n
i=1, all with values 0 and 1. Now take one clause of φ; suppose

it is written as(
k′∨

l′=1

Ail′

)
∨

(
k′′∨

l′′=1

¬Ail′′

)
.

For this clause, generate the linear inequality:(
k′∑

l′=1

ail′ , j

)
+

(
k′′∑

l′′=1

(1 − ail′′ , j)

)
≥ 1. (3)

Consider the m inequalities generated this way (one per clause). A vector a j that satisfies these m inequalities yields a
truth assignment for φ by assigning True to Ai when ai, j is one, and assigning False to Ai when ai, j is zero. Note that the
elements of C j are exactly a1, j to aq, j .

We generate the whole matrix C by generating (q + 1) sets of variables a j and their related inequalities. We now have
inequalities for all elements of C, and we need to solve Cp = α. To do so, note that each row of C represents an equality as
follows:

q+1∑
j=1

ai, j p j = αi, (4)

where p j denotes the jth element of p. We must handle the bilinear term ai, j p j ; we do that by introducing a fresh new
variable bi, j and the linear constraints:

0 ≤ bi, j ≤ ai, j and ai, j − 1 + p j ≤ bi, j ≤ p j . (5)

Note that if ai, j = 0, then bi, j = 0; and if ai, j = 1, then bi, j = p j .
The whole algorithm is presented in Algorithm 1; it basically collects constraints from Expressions (3), (4), and (5). The

algorithm produces an integer linear program that has a solution if and only if the original PSAT problem is satisfiable.
As noted before, we have (q + 1)2 optimization variables that encode C. However, we have introduced n(q + 1) binary
optimization variables ai, j , and these integer variables do demand effort by the linear solver. We have m(q + 1) linear
constraints that encode clauses, plus 2q(q + 1) linear constraints that encode products ai, j p j .

This integer program is rather orderly built: each value of j corresponds to a SAT problem with identical clauses; in
fact each j corresponds to a column that would be produced by a column generation method. Hence we have a block of
constraints for each j, and such regularity must be exploited by the linear solver. If in addition the constraints are specified
in some organized fashion, say because they are expressed through graphs or other regular language [29], then there will
be additional structure to be exploited by the solver.

We present tests with the PSAT-IP algorithm in Section 6; before we examine those results, we discuss more general
assessments and conditional probabilities, both in Kolmogorovian and de Finettian settings, in Sections 4 and 5.

4. Variations on a theme

An obvious change to PSAT-IP is to allow assessments such as P(Ai) �� αi . This introduces no difficulty: simply change
the corresponding constraint in Line 5 of the algorithm either to ≥ or ≤ as appropriate.

Another possible change to the input of PSAT-IP is to depart a little from the Normal Form, allowing for instance as-
sessments of the form P(φi) �� αi where φi is a propositional sentence. Of course we can simply return to Normal Form by
introducing a fresh proposition A and turning the sentence A ⇔ φi into CNF, perhaps using Tseitsin’s transformation where
clauses are generated with the addition of fresh atomic propositions [18]. However, it is interesting to deal directly with the

F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70 61
Algorithm 2 ESAT solution based on integer linear program.
1: procedure ESAT-IP(propositions {A j}n

j=1, assessments

{∑ri
k=1 βi,kP(Ai(k)) = αi}q

i=1, sentence φ in CNF with m clauses)
Comment: ai, j are binary; bi, j , b′

i, j , p j are real-valued in [0, 1].
2: for j ∈ {1, . . . , q + 1} and each clause (

∨k′
l′=1 Ail′) ∨ (

∨k′′
l′′=1 ¬Ail′′) of φ do

3: Generate constraint (
∑k′

l′=1 ail′ , j) + (
∑k′′

l′′=1(1 − ail′′ , j)) ≥ 1.

4: for i ∈ {1, . . . , q} do
5: Generate constraint

∑q+1
j=1 bi, j = αi .

6: for j ∈ {1, . . . , q + 1} do
7: Generate constraint bi, j = ∑

k βi,kb′
i(k), j

8: for each b′
i(k), j that is used in the previous line, do

9: generate constraints 0 ≤ b′
i(k), j ≤ ai(k), j , ai(k), j − 1 + p j ≤ b′

i(k), j ≤ p j .

10: Generate constraint
∑q+1

j=1 p j = 1.

11: return
{

Satisfiable if constraints have a solution,
Unsatisfiable otherwise.

sentence φ without introducing atomic propositions, as each atomic proposition will lead to several integer variables within
the PSAT-IP algorithm. We will use as example the case where φi consists of a single clause, as this case has been used in
the past to test PSAT algorithms [38,40].

Suppose then that we have, for some i, the assessment

P

((
k′∨

l′=1

Ail′

)
∨

(
k′′∨

l′′=1

¬Ail′′

))
= αi . (6)

We follow Algorithm 1, with a change in Line 7. We must now generate the following linear constraints:

ail′ , j − 1 + p j ≤ bi, j ≤ p j, for l′ ∈ {
1, . . . ,k′}; (7)

(1 − ail′′ , j) − 1 + p j ≤ bi, j ≤ p j, for l′′ ∈ {
1, . . . ,k′′}; (8)

0 ≤ bi, j ≤
(

k′∑
l′=1

ail′ , j

)
+

(
k′′∑

l′′=1

(1 − ail′′ , j)

)
. (9)

And again, the set of linear constraints has a solution if and only if the PSAT problem if satisfiable.
Suppose, to extend the example further, that φi is a conjunction φ′

i ∧ φ′′
i where φ′

i and φ′′
i are clauses. Then we must

introduce two variables b′
i, j and b′′

i, j and add the constraints b′
i, j + b′′

i, j ≤ bi, j + 1, b′
i, j ≥ bi, j and b′′

i, j ≥ bi, j . These constraints
force bi, j to behave as a conjunction. We now recurse by adding constraints on b′

i, j and b′′
i, j as required by φ′

i and φ′′
i

respectively. This sort of recursive procedure can be applied to any propositional sentence φi .
Another extension that does not introduce conceptual challenges, even though it may introduce some computational

burden, is to allow expectations in assessments. That is, instead of just considering assessments such as P(φi) �� αi , we
also take assessments such as E[f i] �� αi , where f i is a real-valued function of truth assignments, and where E[f i] =∑

ω f i(ω)P(ω). We denote by ESAT (Expectation Satisfiability) the problem of determining whether a set of expectation
assessments can be satisfied by at least one probability measure over truth assignments.

Expectation assessments are quite powerful as they can uniquely characterize any closed convex set of probability
measures [48,57,61]. Such sets, often referred to as credal sets [45], offer a flexible and general language for uncertainty
representation, encompassing many other formalisms such as belief functions, random sets, Choquet capacities, possibility
measures, and p-boxes [3].

Without loss of generality, we assume that any function f i is given as a linear combination of indicator functions; that
is,

f i(ω) =
ri∑

k=1

βi,kIAi(k)
(ω);

we abuse notation by using i(k) to refer to the function that returns the index of an atomic proposition. Hence E[f i] =∑
k βi,kP(Ai(k)).
An algorithm for ESAT, based on integer linear programming, is presented in Algorithm 2. Note that an assessment such

as E[f i] ≥ αi can be dealt with easily; the only change is to use ≥ instead of = in the corresponding constraint in Line 5 of
the algorithm. Again, there are n(q + 1) binary optimization variables, plus a set of m(q + 1) linear constraints that encode
clauses, and a polynomially large set of linear constraints that encode products ai, j p j (the number of constraints depends
on the number of terms in each function f i).

62 F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70
Yet another variation on PSAT is obtained when we contemplate assessments of conditional probability within a Kol-
mogorovian framework. That is, suppose that a conditional assessment P(φ′

i |φ′′
i) = αi is given. In the Kolmogorovian setting,

this assessment means that

P(φ′
i ∧ φ′′

i)

P(φ′′
i)

= αi whenever P(φ′′
i) > 0.

This holds if and only if

P(φ′
i ∧ φ′′

i) − αiP(φ′′
i) = 0;

that is, if and only if

E[Iφ′
i∧φ′′

i
− αiIφ′′

i
] = 0. (10)

The only change from “unconditional” PSAT is that each element of the matrix C is now a linear expression (an expectation).
Thus we can apply the ESAT-IP algorithm to this problem. There are few changes if instead of an assessment P(φ′ |φ′′) = αi ,
we have E[f i |φ′′] = αi for f i = ∑ri

k=1 βi,kIAi(k)
. We simply have to transform the latter assessment into

E[f iIφ′′ − αiIφ′′] = 0;
that is,

E

[(ri∑
k=1

βi,kIAi(k)∧φ′′

)
− αiIφ′′

]
= 0. (11)

Again, ESAT-IP can be used directly.
Matters are considerably simpler for a conditional assessment that only involves atomic propositions; that is, P(A′

i |A′′
i) =

αi . Then the element Ci, j is given by the nonlinear expression a′
i, ja

′′
i, j − αia′′

i, j , where a′
i, j and a′′

i, j are binary variables
corresponding to propositions A′

i and A′′
i respectively. To handle this, the only change that must be made to the PSAT-IP

algorithm is that the constraints in its Line 5 must be replaced by
∑q+1

j=1(b′
i, j − αib′′

i, j) = 0, and constraints in Line 7 must
be replaced by

0 ≤ b′
i, j ≤ a′

i, j, 0 ≤ b′
i, j ≤ a′′

i, j, a′
i, j + a′′

i, j − 2 + p j ≤ b′
i, j ≤ p j, (12)

0 ≤ b′′
i, j ≤ a′′

i, j, a′′
i, j − 1 + p j ≤ b′′

i, j ≤ p j . (13)

To summarize the previous comments:

1. The most general algorithm is ESAT-IP. To handle constraints such as E[f i] �� αi , just replace = by �� in Line 5. To
handle conditional probabilities and conditional expectations, use Expressions (10) and (11) respectively.

2. As stated, ESAT-IP does not collapse to PSAT-IP when all assessments are of the form P(Ai) = αi ; however, the change
that must be made to guarantee this collapse is trivial. It is enough to change Lines 7 and 8 of ESAT-IP, so that an
assessment P(Ai) = αi does not generate any b′

i(k), j ; instead, bi, j is then directly used in Line 9.
3. In addition, when an additional check in Line 7 detects that an assessment is of the form P(A′

i |A′′
i) = αi , then ESAT-IP

should not generate any b′
i(k), j ; instead b′

i, j and b′′
i, j as in Expressions (12) and (13) should be directly used in Line 9.

In our presentation we have decided not to include the checks for assessments P(Ai) = αi and P(A′
i |A′′

i) = αi in ESAT-IP, to
make it more readable.

To finish this section, we note that both PSAT-IP and ESAT-IP can be used to compute the maximum (or minimum) value
of a probability, subject to all other assessments. Suppose that we have a set of assessments and a sentence in CNF as
before, and we wish to know the maximum possible value of P(Ai∗), where i∗ is a fixed index in {1, . . . , n}. To do so, we
adapt existing techniques that have been applied to PSAT [6,40].

We start by writing P(Ai∗) as the summation
∑q+1

j=1 bi∗, j , where the bi∗, j are new optimization variables (real-valued in
[0, 1]). We must then equate each bi∗, j with the product ai∗, j p j ; we do so by introducing the constraints

0 ≤ bi∗, j ≤ ai∗, j and ai∗, j − 1 + p j ≤ bi∗, j ≤ p j . (14)

Finally, we compute max
∑q+1

j=1 bi∗, j subject to constraints (14) for each j ∈ {1, . . . , q + 1}, and to all constraints generated
by PSAT-IP (or ESAT-IP). The maximum is exactly maxP(Ai∗), as desired.

5. Coherence checking and integer programming techniques

In this section we consider assessments of conditional probability from a different light; that is, here we interpret
such assessments within de Finetti’s theory of coherence. Both PSAT and Coherence Checking (CCHECK) are identical when

F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70 63
all probabilities are unconditional. There are however significant conceptual differences when conditional assessments are
present, particularly when some conditioning propositions have probability zero.

Most existing algorithms for CCHECK build a sequence of linear programs whose solution yields the desired coherence
check. In particular, a CCHECK problem can be reduced to a sequence of PSAT problems [8,10]. Indeed, our later Algorithm 4
is nothing but Biazzo et al.’s [8,10] solution for the CCHECK problem, and if the reader is familiar with that method, the text
up to Algorithm 4 can be skipped. We have included this text because, first, our presentation emphasizes connections to
linear programming and duality; second, and more importantly, this particular path allows us to find alternative algorithms
that resort to disjunctive programming.

We first review some basic and known results concerning coherence checking (Section 5.1). We then examine the reduc-
tion of CCHECK to disjunctive programming and to sequences of PSAT problems (Section 5.2).

5.1. Coherence and full conditional probabilities

Consider a set of assessments {P(Ai) = αi}q
i=1 and a sentence φ that must hold. That is, every truth assignment ω we

consider must be such that ω |� φ. In coherence checking one often ignores φ for the sake of simplicity, leaving it implicit
that truth assignments must satisfy this background set of logical constraints. We will leave φ implicit in this section.

The assessments are coherent if, for any set of real numbers λi , there is always a truth assignment ω such that [19,23]:

q∑
i=1

λi
(
IAi (ω) − αi

) ≥ 0. (15)

Obviously, if coherence fails, there is a set of λi such that for all ω, we have
∑q

i=1 λi(IAi (ω) − αi) < 0. That is, there is a
linear combination of accepted assessments that leads to a sure loss.

A slightly more general version of coherence, variously called g-coherence [8] or sure-loss-avoidance [57], assumes that
assessments are of the form P(Ai) ≥ αi . Such assessments are quite general; for instance we can represent the assessment
P(Ai) ≤ βi through A′

i ⇔ ¬Ai and P(A′
i) ≥ 1 − βi . Assessments are g-coherent if, for any set of non-negative real numbers λi ,

there is always a truth assignment ω such that Expression (15) obtains.
That is, g-coherence obtains if and only if the maximum value of μ is zero in the following program (note: if g-coherence

fails, the maximum is infinite):

maxμ s.t. ∀i : λi ≥ 0, ∀ j :
∑

i

λi
(
IAi (ω j) − αi

) + μ ≤ 0.

The dual of this program gives us a PSAT problem [15]:

min 0 s.t. ∀i :
∑

j

(
IAi (ω j) − αi

)
p j ≥ 0; ∀ j : p j ≥ 0;

∑
j

p j = 1.

Now consider conditional assessments {P(Ai |Bi) ≥ αi}q
i=1. Note that to simplify matters, we only consider assessments

over a pair of propositions Ai and Bi ; we leave to the background constraint φ any logical relation between these proposi-
tions. Note also that if a particular Bi is logically equivalent to a tautology, the corresponding assessment is unconditional.
There are two ways to specify a suitable concept of g-coherence.

First, take g-coherence to mean that the set of constraints

∀ j :
∑

i

λi IBi (ω j)
((
IAi (ω j) − αi

) + ε
) ≤ 0 (16)

has no solution for ε > 0 and λi ≥ 0 such that
∑

i λi > 0. Such a concept of coherence was first proposed by Williams
[61,62], and later studied in detail by Walley [57]. The advantages of this formulation of g-coherence are explored by
Wagner [56]. The motivation here is simple: if such a condition fails, so that the constraints have a solution, one can
produce a sure loss from a linear combination of acceptable assessments (even more acceptable as we are throwing in a
positive amount ε).

Now if g-coherence holds, for any set {λi}q
i=1 of non-negative numbers, there is always ω |� ∨

i:λi>0 Bi such that

q∑
i=1

λiGi(ω) ≥ 0, (17)

where Gi(ω) = IBi (ω)(IAi (ω) − αi). Conversely, if assessments are such that there is no ω |� ∨
i:λi>0 Bi satisfying Expres-

sion (17), then for every ω |� ∨
i:λi>0 Bi we have

∑
i λiGi(ω) < 0, and for some ε > 0 we obtain the inequality in the

definition of g-coherence.
Hence g-coherence can be defined as: for any set {λi}q

i=1 of non-negative numbers, there is always ω |� ∨
i:λi>0 Bi such

that
∑q

i=1 λiGi(ω) ≥ 0. This concept is directly based on suggestions by de Finetti [23,43] that were later expanded [39,44,
54] and then adapted to assessments based on inequalities [8,20].

64 F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70
One can instead consider assessments of conditional expectations such as {E[f i |Bi] ≥ αi}q
i=1, where f i is a real-valued

function of truth assignments. In fact this is the strategy adopted by Williams [61,62] and by Walley [57]. To simplify the
presentation, we keep the focus on probability assessments, but computations do not change substantially if we move to
expectations on functions f i = ∑

k βi,kIAi(k)
.

The non-trivial result about g-coherence is that a set of assessments is g-coherent if and only if there exists a Boolean
algebra B such that the assessments can be extended to a full conditional probability on B.3 To explain this, recall that a
full conditional probability P : B × (B\∅) → �, where B is a Boolean algebra of events (with ∅ denoting the bottom element)
over a set Ω , is a two-place set-function such that for every event C �= ∅ [24]:

• P(C |C) = 1 and P(A|C) ≥ 0 for all A;
• P(A ∨ B|C) = P(A|C) + P(B|C) when A ∧ B = ∅;
• P(A ∧ B|C) = P(A|B ∧ C)P(B|C) when B ∧ C �= ∅.

There are other names for full conditional probabilities in the literature, such as conditional probability measures [42]; and
complete conditional probability systems [49]. Full conditional probabilities have been applied in economics [36,49], philosophy
[1,47], and artificial intelligence [16].

Full conditional probabilities behave differently from (Kolmogorovian-style) probability measures with respect to condi-
tioning: a set of assessments may be g-coherent even if P(B) = 0 and P(A|B) = α > 0.

5.2. Checking coherence

In this section we discuss algorithms that can be used to check coherence of a set of conditional probability assessments.
As will be clear, there is considerable literature on this topic, most of which starts from the second definition of g-coherence
(Expression (17)) to generate a sequence of dual linear programs that are in essence PSAT problems. An exception is the
work of Walley, Pelessoni and Vicig [58], where the first definition (Expression (16)) is directly used to derive algorithms.
Here we start from the first definition and later move towards the second.

One naive approach might be to fix a very small ε > 0 and check whether constraints in Expression (16) are consistent.
This may lead to numerical instability problems when ε is very small. Another naive approach is to check feasibility sym-
bolically by leaving ε as a parameter in an implementation of the simplex method. This may work for very small problems,
but it will not scale easily as it requires manipulating polynomials in ε .

To move to more numerically robust methods, we note that g-coherence fails if and only if the following (disjunctive)
linear constraints are feasible:

∀i : λi ≥ 0,
∑

i

λi ≥ 1, ∀ j :
∑

i

λiGi(ω j) +
∑

i

τiIBi (ω j) ≤ 0, (18)

∀i : τi ∈ {0,1}, ∀i : ((λi = 0) ∨ (τi = 1)
)
. (19)

To prove that failure of g-coherence is equivalent to feasibility of Expressions (18) and (19), reason as follows.4 First,
suppose there are {λi}q

i=1 satisfying Expressions (18) and (19). Then the assessments fail to be g-coherent: we have for all
ω,

∑
i:λi>0 λi(Gi(ω) + (1/λi)IBi (ω)) ≤ 0 and then Expression (16) has a solution with ε = min(1/λi : λi > 0). Conversely,

suppose the assessments fail to be g-coherent; that is, we have
∑

i λiGi(ω) +ε
∑

i IBi (ω) ≤ 0 for all ω, for some λi ≥ 0 such
that

∑
i λi > 0, and some ε > 0. Note that we can assume that ε < 1; if there is a solution with ε ≥ 1, there is always a

solution with smaller ε . Now if λi > 0, impose τi = 1; if λi = 0, impose τi = 0; then
∑

i λ
′
iGi(ω) + ∑

i τiIBi (ω) ≤ 0 for all ω,
where λ′

i = λi/(ε min(λi : λi > 0)). Note that as we can take ε < 1, this guarantees that
∑

i λ
′
i ≥ 1. Hence Expressions (18)

and (19) are satisfied.
The feasibility problem encoded by Expressions (18) and (19) can be solved with currently available linear solvers as

their solution uses techniques from integer linear programming [59,60] (an example is the CPLEX package mentioned later).
The solutions presented so far in this section consider up to 2n constraints in linear programs, hence they can only

be used with relatively small problems. We wish to move towards compact programs as built by the PSAT-IP algorithm;
to do so, we follow the approach by Walley et al. [58]. They build a procedure that iteratively enforces the constraints
(τi = 0) → (λi = 0), by solving the program

max
∑

i

τi s.t. ∀i : λi ≥ 0, ∀i : τi ∈ [0,1],

∀ j :
∑

i

λiGi(ω j) +
∑

i

τiIBi (ω j) ≤ 0. (20)

3 This result can be found in the work of Williams [61,62] or Walley [57]; it can also be constructed from a combination of results by Coletti [20,
Theorem 2.3] or Biazzo and Gilio [8] and by Holzer [39, Theorem 4.4]; for the propositional language we deal with, the latter results are basically settled
already by Lehman [44, Theorem 4]. The matter is also discussed by Coletti and Scozzafava [19, Chapter 11].

4 This reasoning uses an argument that is due to Walley, Pelessoni and Vicig in the discussion of their Algorithm 2 [58].

F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70 65
Algorithm 3 Coherence checking by Walley et al. [58, Algorithm 2].

1. Start with assessments {P(Ai |Bi) ≥ αi}q
i=1, and solve program (20).

2. If τi = 1 for all assessments, then g-coherence fails. Otherwise, discard the assessments P(Ai |Bi) ≥ αi such that τi = 0. If the remaining set of
assessments is empty, then g-coherence holds; otherwise, renumber the remaining assessments, and return to the first step.

Algorithm 4 Coherence checking by sequence of PSAT problems.

1. Given assessments {P(Ai |Bi) ≥ αi}q
i=1, verify feasibility of

∀ j : p j ≥ 0,
∑

j

p j = 1, ∀i :
∑

j

IBi (ω j)
(
IAi (ω j) − αi

) ≥ 0,

where j is restricted to values such that ω j |� ∨
i Bi . If this conditional PSAT problem is unsatisfiable, assessments fail to be g-coherent (announce it

and stop).
2. For each Bi , determine whether there is {p j} j such that ∑ j IBi (ω j)p j is strictly larger than zero. Discard each such Bi . If all assessments are discarded,

then original assessments are g-coherent (announce it and stop).
3. Collect the remaining assessments, renumber them, and return to the first step.

Their algorithm is presented in Algorithm 3. As shown by Walley et al. [58], Algorithm 3 works because if there is any
τi > 0 that satisfies the constraints of program (20), then the optimal solution of this program has τi = 1. Intuitively, this is
true because we can always increase the values of λi , so if it is possible to have τi > 0, it is possible to have τi = 1.

Some additional insight can be gained by examining the dual of program (20):

min
∑

i

qi s.t. ∀ j : p j ≥ 0, ∀i : qi ≥ 0,

∀i :
∑

j

Gi(ω j)p j ≥ 0, ∀i :
∑

j

IBi (ω j)p j ≥ 1 − qi . (21)

By the complementary slackness property [14, Section 4.5], we have τi < 1 implies qi = 0. But note that if τi < 1, then
τi = 0 [58]. Also, if qi ≥ 1, then it must be that qi = 1; and because

∑
i τi = ∑

i qi by strong duality, we obtain that τi = 1 if
and only if qi = 1. Hence we can interpret the algorithm by Walley et al. [58] as a method that verifies whether assessments
satisfy a PSAT problem and whether P(Bi) can be positive for each Bi ; if P(Bi) > 0 for some Bi , then this Bi is discarded,
and the analysis iterates only with the remaining Bi .

Hence we have reached, by a different route, an existing algorithm for coherence checking [8,10] that is presented in
Algorithm 4. The second step of Algorithm 4 asks for an “inference” where the maximum of

∑
j IBi (ω j)p j is computed

subject to the constraints in the PSAT problem described in the first step (this can be computed using the method at the
end of Section 4). If this maximum is strictly larger than zero, Bi is discarded. So, the whole coherence checking procedure
is a sequence of PSAT-like problems, and each one of them can be dealt with by the PSAT-IP algorithm. To save computation,
after each PSAT problem is solved within an iteration of the algorithm, we should discard every Bi that is associated with a
positive p j (that is, p j > 0 and ω j ∈ Bi). Obviously, in practice one need not build a series of linear programs from scratch,
as most linear solvers have facilities to change objective functions and even to add/remove constraints.

Algorithm 4 appeared in the work of Biazzo and Gilio [8], as an upgrade on previous algorithms for de Finettian coher-
ence checking [32]. Later the relationship with PSAT was explored, together with important results on complexity [12] and
on connections with default reasoning [11]. Variants on this algorithm emphasize other calculations [20,55]. For instance,
it is possible to exploit the fact that several values of p j can be assigned zero at any given iteration so as to simplify
computations locally [16,17]. Local rules of inference that help in computations have been explored intensely for coherence
checking [4,6,9]. Finally, it should be noted that coherence checking algorithms, in particular Walley et al.’s algorithms [58],
have been extended to structures that generalize full conditional probabilities [22,52,53].

To summarize, we can check coherence by

• verifying the feasibility of disjunctive linear constraints (18) and (19); or by
• running Algorithm 4, using the PSAT-IP algorithm whenever necessary.

6. Implementation, experiments, and phase transition

We have coded our PSAT method using the Java language with calls to CPLEX version 12, and run experiments in iMac
computers with 4 GB of memory. The PSAT-IP algorithm is very compact, using only 45 lines of code (basically a direct
translation of Algorithm 1 into CPLEX calls). We then produced an extended version that directly handles probability assess-
ments over clauses as in Expression (6), using Expressions (7), (8), and (9). It might be interesting to consider conditional
or expectation assessments, but to keep the number of controlled parameters manageable, we decided to focus on Normal
Form PSAT problems, with a few variants.

66 F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70
Fig. 1. Experiments with random 2-PSAT in Normal Form (each point averages over 50 randomly generated problems). Top left graph shows phase transition
for q = 30, n = 1000, and m varying from 0 to 1500; the solid line shows the percentage of satisfiable problems (note that for small m/n we have close to
100% satisfiable problems, while for large m/n we have close to 0% satisfiable problems), while the dotted line shows the mean time spent in solving each
problem (note that computational effort grows around the transition region). Bottom left graphs display the same information for n = 100 (note the change
in the transition). Right: as q varies, the transition region changes (here n = 1000 and m goes from 0 to 2000).

We focused on two values of k, namely, 2 and 3. We investigated k = 2 because 2-SAT is polynomial and 2-PSAT is
NP-complete, a property not shared by any other k-PSAT. And we investigated k = 3 because any PSAT problem can be
polynomially reduced to a 3-PSAT problem; in fact, Finger and De Bona pay attention to 3-PSAT for this reason [26].

Additionally, we were particularly interested in investigating phase transition phenomena. Until the work of Baioletti et
al. [5], and Finger and De Bona [26], there was no evidence of phase transition in the literature; their work indicates that
at fixed values of q, variation of the ratio m/n does lead to a qualitative change in the percentage of satisfiable problems
(apparently, for small and large values of m/n most problems are respectively satisfiable and unsatisfiable). Moreover, at
the transition between satisfiable/unsatisfiable regions, the computational effort to determine satisfiability markedly grows.
Consequently it makes more sense at this stage to examine the behavior of PSAT for various values of n, m and q, rather
than to randomly try out large problems that may in the end be easy. For the data in all of our graphs, we set a time
limit of 10 min per problem; some of the more difficult problems did not finish within this time limit, but it should be
noted that all such problems occur within the transition region; consequently, the average computational effort during the
transition is even larger than shown in the graphs.

We start by describing experiments with randomly generated PSAT problems in Normal Form.
Fig. 1 summarizes a number of experiments for k = 2. In all of them, PSAT problems were randomly generated from

parameters n, m, q and k: m clauses with k literals each were randomly generated by selecting propositions randomly out
of the n propositions; each literal was negated or not with probability 1/2; finally, the first q propositions were associated
with probabilities randomly selected in the interval [0, 1] (always equality; that is, assessments are P(Ai) = αi). Each point
in each graph conveys mean values for 50 different random PSAT problems.

The left graphs in Fig. 1 show typical behavior for random 2-PSAT: the solid line indicates the percentage of satisfiable
problems, and the dotted line indicates mean time spent in their solution (mean of 50 distinct random PSAT problems). The
top graph deals with 2-PSAT problems with 1000 variables and up to 1500 clauses, keeping q = 30; these are rather large
problems and the phase transition phenomenon is clear (note that we are using larger values of q than in the previous

F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70 67
Fig. 2. Experiments with random 3-PSAT in Normal Form (each point averages over 50 randomly generated problems). Left graph shows phase transition
for q = 10, n = 40, and m varying from 0 to 200; solid and dotted lines as in Fig. 1. Right: as q varies, the transition region changes (here n = 50 and m
goes from 0 to 300).

Table 1
Experiments with 2-PSAT and 3-PSAT, first part.

n q m 2-PSAT, mean time sec.
(standard deviation)

3-PSAT, mean time sec.
(standard deviation)

500 25 500 3.02 (8.25) 1.68 (1.07)

500 25 750 0.13 (0.01) 2.15 (1.19)

500 25 1000 0.16 (0.01) 13.49 (5.09)

500 50 500 1.72 (8.67) 20.12 (9.96)

500 50 750 0.29 (0.02) 30.09 (13.86)

500 50 1000 0.35 (0.03) 191.37 (52.45)

750 25 500 4.2 (6.24) 1.78 (1.07)

750 25 750 5.09 (12.19) 1.47 (0.65)

750 25 1000 0.18 (0.01) 1.85 (0.96)

750 50 500 1.72 (10.15) 20.12 (10.76)

Table 2
Experiments with 2-PSAT and 3-PSAT, second part.

n q m 2-PSAT, mean time sec.
(standard deviation)

3-PSAT, mean time sec.
(standard deviation)

750 50 750 0.39 (0.14) 16.95 (7.14)

750 50 1000 0.39 (0.04) 21.49 (11.88)

1000 25 500 1.93 (1.46) 1.93 (1.13)

1000 25 750 1.40 (1.39) 1.80 (0.90)

1000 25 1000 0.62 (1.04) 1.66 (0.85)

1000 25 1500 0.27 (0.06) 2.22 (1.88)

1000 25 2000 0.35 (0.03) 27.33 (6.31)

1000 50 500 2.92 (3.31) 19.68 (9.10)

1000 50 750 1.44 (2.50) 20.18 (7.59)

1000 50 1000 0.44 (0.12) 22.04 (11.27)

investigation by Finger and De Bona [26]). The lower graph conveys the same information, but now for q = 30 and n =
100. The main point to note is that the phase transition seems to occur for much smaller m/n. Indeed the presence of
probabilities seems to create relationships among n, q and m in ways that are not observed in 2-SAT (where the phase
transition occurs at m/n = 1). An interesting display of this phenomenon can be found in the right graph, where one can
see that the phase transition is affected by q as m varies and n is fixed at 1000.

Similar results are displayed in Fig. 2 for 3-PSAT. In the left graph we see typical phase transition behavior, now centered
around m/n ≈ 3. The reason we show this particular graph (with n = 40, q = 4) is that the same experiment is reported by
Finger and De Bona [26]. The right graph shows the change in the location of phase transition as q varies, similarly to what
happens with 2-PSAT, for n = 50.

To give a better feel of the times involved in solving PSAT problems with our method, Tables 1 and 2 summarize a
large variety of tests; each entry is the mean of 50 distinct PSAT problems. Time was measured using the CPLEX facility (in
nanoseconds). Note that we are only generating PSAT problems in Normal Form. Also note that it is not correct to expect

68 F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70
Fig. 3. Experiments with variations on Normal Form (each point averages over 50 randomly generated problems). Top graph shows phase transition for
random problems generated as before but with assessments P(Ai) ≥ αi , for n = 40. Bottom graphs show phase transition for assessments over clauses, both
assessments with equality (left) and inequality (right), for n = 40.

that the larger the problem, the more time it takes; due to phase transition, some large problems may be easy, while some
apparently small problems may be hard. For 2-PSAT problems, we have observed phase transition at values of m/n close to
one, decreasing with increasing q. For 3-PSAT, the phase transition region tends to be more spread out, as m/n ranges from
about 2 to 4. Note that standard deviations usually grow with mean time; that is, within the transition regions we do not
find that all problems become harder; rather, some problems are easy while others are much harder than the mean time
suggests.

We now summarize a number of experiments conducted with variants of Normal Form. First, we considered problems
where assessments are of the form P(Ai) ≥ αi (instead of P(Ai) = αi). The top graph in Fig. 3 shows the phase transition
for such a situation; note that overall there is no change in behavior as we move from equalities to inequalities. We then
generated PSAT problems with probabilities over clauses; that is, assessments as in Expression (6). Following the procedure
used by Jaumard et al. [40], we uniformly sampled a number of literals between 1 and k for each clause. In our experiments
we used k = 4. For each generated clause, a probability value was randomly selected. The two graphs in the bottom of Fig. 3
show phase transitions with such PSAT problems; the left graph was produced with equality assessments, while the right
graph was produced with inequality assessments.

7. Conclusion

In this paper we have applied integer programming techniques to probabilistic satisfiability and coherence checking.
Given current linear solver technology, our algorithms are relatively easy to code and inherit any parallelization and nu-
merical stability techniques already implemented in solvers. Our method is quite effective for small to medium problems,
and the focus on integer programming allows one to consider other techniques such as logical constraints and disjunctive
programming. We have presented a number of variants that can benefit from integer programming, including the problem
of coherence checking. Finally, we have presented a preliminary analysis of phase transition in PSAT that refines previous
results in the literature.

F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70 69
Future work should extend the ideas in this paper to inference problems, particularly inference in the coherence setting.
It is also important to further study the phase transition phenomenon, in particular to verify the relationship between the
transition region and the value of q.

Acknowledgements

Both authors received support by CNPq grant 305395/2010-6. An initial version of this paper appeared at the ECSQARU
2013 conference; we thank the reviewers of that version for very useful suggestions, in particular for pointing us to Refs. [5]
and [6]. Thanks also to the reviewers of this version, whose comments led to several improvements to the text; one reviewer
pointed us to Refs. [28] and [29] and suggested a simplified way to compute inferences.

In our empirical analysis we employed the CPLEX Optimizer package, available for academic use; thanks to the CPLEX
developer (IBM Corporation) for its generosity (we used resources located at the web site http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/index.html).

References

[1] Ernest W. Adams, A Primer of Probability Logic, CSLI Publications, Stanford, CA, 2002.
[2] Kim Allan Andersen, Daniele Pretolani, Easy cases of probabilistic satisfiability, Ann. Math. Artif. Intell. 33 (1) (2001) 69–91.
[3] Thomas Augustin, Frank P.A. Coolen, Gert de Cooman, Matthias C.M. Troffaes, Introduction to Imprecise Probabilities, Wiley, 2014.
[4] M. Baioletti, A. Capotorti, S. Tulipani, B. Vantaggi, Elimination of Boolean variables for probabilistic coherence, Soft Comput. 4 (2000) 81–88.
[5] Marco Baioletti, Andrea Capotorti, Sauro Tulipani, An empirical complexity study for a 2CPA solver, in: B. Bouchon-Meunier, G. Coletti, R.R. Yager (Eds.),

Modern Information Processing: From Theory to Applications, Elsevier Science, 2005, pp. 73–84.
[6] Marco Baioletti, Andrea Capotorti, Sauro Tulipani, Barbara Vantaggi, Simplification rules for the coherent probability assessment problem, Ann. Math.

Artif. Intell. 35 (2002) 11–28.
[7] Dimitris Bertsimas, John N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, Belmont, Massachusetts, 1997.
[8] Veronica Biazzo, Angelo Gilio, A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments, Int. J.

Approx. Reason. 24 (2–3) (2000) 251–272.
[9] Veronica Biazzo, Angelo Gilio, On the linear structure of betting criterion and the checking of coherence, Ann. Math. Artif. Intell. 35 (2002) 83–106.

[10] Veronica Biazzo, Angelo Gilio, Thomas Lukasiewicz, Giuseppe Sanfilippo, Probabilistic logic under coherence: complexity and algorithms, in: Gert de
Cooman, Terrence L. Fine, Teddy Seidenfeld (Eds.), International Symposium on Imprecise Probabilities and Their Applications, The Netherlands, Shaker,
2001, pp. 51–61.

[11] Veronica Biazzo, Angelo Gilio, Thomas Lukasiewicz, Giuseppe Sanfilippo, Probabilistic logic under coherence, model-theoretic probabilistic logic, and
default reasoning in system P, J. Appl. Non-Class. Log. 12 (2) (2002) 189–213.

[12] Veronica Biazzo, Angelo Gilio, Thomas Lukasiewicz, Giuseppe Sanfilippo, Probabilistic logic under coherence: complexity and algorithms, Ann. Math.
Artif. Intell. 45 (1–2) (2005) 35–81.

[13] George Boole, The Laws of Thought, Dover Edition, 1958.
[14] Stephen P. Bradley, Arnoldo C. Hax, Thomas L. Magnanti, Applied Mathematical Programming, Addison–Wesley, 1977.
[15] G. Bruno, Angelo Gilio, Applicazione del metodo del simplesso al teorema fondamentale per le probabilità nella concezione soggettivistica, Statistica

40 (1980) 337–344.
[16] Andrea Capotorti, L. Galli, Barbara Vantaggi, Locally strong coherence and inference with lower–upper probabilities, Soft Comput. 7 (5) (2003) 280–287.
[17] Andrea Capotorti, Barbara Vantaggi, Locally strong coherence in inference processes, Ann. Math. Artif. Intell. 35 (2002) 125–149.
[18] Vijay Chandru, John Hooker, Optimization Methods for Logical Inference, John Wiley & Sons Inc., 1999.
[19] G. Coletti, R. Scozzafava, Probabilistic Logic in a Coherent Setting, Trends Log., vol. 15, Kluwer, Dordrecht, 2002.
[20] Giulianella Coletti, Coherent numerical and ordinal probabilistic assessments, IEEE Trans. Syst. Man Cybern. 24 (12) (1994) 1747–1753.
[21] Giulianella Coletti, Romano Scozzafava, The role of coherence in eliciting and handling imprecise probabilities and its application to medical diagnosis,

Inf. Sci. 130 (2000) 41–65.
[22] Inés Couso, Serafín Moral, Sets of desirable gambles: conditioning, representation, and precise probabilities, Int. J. Approx. Reason. 52 (2011)

1034–1055.
[23] Bruno de Finetti, Theory of Probability, vols. 1–2, Wiley, New York, 1974.
[24] Lester E. Dubins, Finitely additive conditional probability, conglomerability and disintegrations, Ann. Stat. 3 (1) (1975) 89–99.
[25] R. Fagin, J.Y. Halpern, N. Megiddo, A logic for reasoning about probabilities, Inf. Comput. 87 (1990) 78–128.
[26] Marcelo Finger, Glauber De Bona, Probabilistic satisfiability: logic-based algorithms and phase transition, in: International Joint Conference on Artificial

Intelligence, 2011, pp. 528–533.
[27] A.M. Frisch, P. Haddawy, Anytime deduction for probabilistic logic, Artif. Intell. 69 (1994) 93–122.
[28] Linda van der Gaag, On probability intervals and their updating, Technical report RUU-CS-90-22, Department of Computer Science, Utrecht University,

1990.
[29] Linda van der Gaag, Computing probability intervals under independency constraints, in: Conference on Uncertainty in Artificial Intelligence, 1990,

pp. 457–466.
[30] P. Gent, T. Walsh, The SAT phase transition, in: European Conference on Artificial Intelligence, 1994, pp. 105–109.
[31] G. Georgakopoulos, D. Kavvadias, C.H. Papadimitriou, Probabilistic satisfiability, J. Complex. 4 (1988) 1–11.
[32] Angelo Gilio, Algorithms for precise and imprecise conditional probability assessments, in: G. Coletti, D. Dubois, R. Scozzafava (Eds.), Mathematical

Models for Handling Partial Knowledge in Artificial Intelligence, 1995, pp. 231–254, New York.
[33] T. Hailperin, Best possible inequalities for the probability of a logical function of events, Am. Math. Mon. 72 (1965) 343–359.
[34] Theodore Hailperin, Boole’s Logic and Probability: A Critical Exposition from the Standpoint of Contemporary Algebra, Logic, and Probability Theory,

North-Holland, Amsterdam, 1976.
[35] Joseph Y. Halpern, Reasoning About Uncertainty, MIT Press, Cambridge, Massachusetts, 2003.
[36] Peter J. Hammond, Elementary non-Archimedean representations of probability for decision theory and games, in: P. Humphreys (Ed.), Patrick Suppes:

Scientific Philosopher, vol. 1, Kluwer, Dordrecht, The Netherlands, 1994, pp. 25–59.
[37] Pierre Hansen, Brigitte Jaumard, Probabilistic satisfiability, Technical report G-96-31, Les Cahiers du GERAD, École Polytechique de Montréal, 1996.
[38] Pierre Hansen, Sylvain Perron, Merging the local and global approaches to probabilistic satisfiability, Int. J. Approx. Reason. 47 (2008) 125–140.
[39] S. Holzer, On coherence and conditional prevision, Boll. Unione Mat. Ital., Ser. VI, Anal. Funz. Appl. IV-C (1) (1985) 441–460.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4164616D7332303032s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib416E64657273656E32303031s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib417567757374696E32303134s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4261696F6C6574746932303030s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4261696F6C6574746932303035s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4261696F6C6574746932303035s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4261696F6C6574746932303032s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4261696F6C6574746932303032s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4265727473696D61733937s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4269617A7A6F32303030s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4269617A7A6F32303030s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4269617A7A6F32303032414D4149s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4269617A7A6F32303031s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4269617A7A6F32303031s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4269617A7A6F32303031s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4269617A7A6F32303032s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4269617A7A6F32303032s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4269617A7A6F32303035414D4149s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4269617A7A6F32303035414D4149s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib426F6F6C653538s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib427261646C65793737s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4272756E6F3830s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4272756E6F3830s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4361706F746F72746932303033s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4361706F746F72746932303032s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4368616E6472753939s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib436F6C6574746932303032426F6F6Bs1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib436F6C657474693934534D43s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib436F6C65747469323030304953s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib436F6C65747469323030304953s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib436F75736F32303131s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib436F75736F32303131s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib46696E657474693734s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib447562696E733735s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib48616C7065726E3930s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib46696E67657232303131s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib46696E67657232303131s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4672697363683934s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib476161673930s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib476161673930s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib476161673930554149s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib476161673930554149s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib47656E743934s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib47656F7267616B6F706F756C6F733838s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib47696C696F393561s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib47696C696F393561s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4861696C706572696E3635s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4861696C706572696E3736s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4861696C706572696E3736s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib48616C7065726E32303033s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib48616D6D6F6E643934s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib48616D6D6F6E643934s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib48616E73656E3936s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib48616E73656E32303038s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib486F6C7A65723835s1

70 F.G. Cozman, L. Fargoni di Ianni / International Journal of Approximate Reasoning 58 (2015) 57–70
[40] B. Jaumard, P. Hansen, M.P. de Aragão, Column generation methods for probabilistic logic, ORSA J. Comput. 3 (2) (1991) 135–148.
[41] Pavel Klinov, Bijan Parsia, A hybrid method for probabilistic satisfiability, in: N. Bjorner, V. Sofronie-Stokkermans (Eds.), International Conference on

Automated Deduction, Springer-Verlag, 2011, pp. 354–368.
[42] Peter Krauss, Representation of conditional probability measures on Boolean algebras, Acta Math. Acad. Sci. Hung. 19 (3–4) (1968) 229–241.
[43] H.E. Kyburg Jr., H.E. Smokler, Studies in Subjective Probability, John Wiley & Sons Inc., New York, 1964.
[44] R. Sherman Lehman, On confirmation and rational betting, J. Symb. Log. 20 (3) (1955) 251–262.
[45] Isaac Levi, The Enterprise of Knowledge, MIT Press, Cambridge, Massachusetts, 1980.
[46] Thomas Lukasiewicz, Expressive probabilistic description logics, Artif. Intell. 172 (6–7) (April 2008) 852–883.
[47] V. McGee, Learning the impossible, in: E. Bells, B. Skyrms (Eds.), Probability and Conditionals, Cambridge University Press, 1994, pp. 179–199.
[48] Enrique Miranda, A survey of the theory of coherent lower previsions, Int. J. Approx. Reason. 48 (2) (2008) 628–658.
[49] R. Myerson, Game Theory: Analysis of Conflict, Harvard University Press, Cambridge, MA, 1991.
[50] Raymond Ng, V.S. Subrahmanian, Probabilistic logic programming, Inf. Comput. 101 (2) (1992) 150–201.
[51] N.J. Nilsson, Probabilistic logic, Artif. Intell. 28 (1986) 71–87.
[52] E. Quaeghebeur, The CONEstrip algorithm, in: Advances in Intelligent Systems and Computing, vol. 190, 2013, pp. 45–54.
[53] E. Quaeghebeur, A propositional CONEstrip algorithm, in: International Conference on Information Processing and Management of Uncertainty in

Knowledge-Based Systems, 2014, pp. 466–475.
[54] E. Regazzini, Finitely additive conditional probability, Rend. Semin. Mat. Fis. 55 (1985) 69–89.
[55] Paolo Vicig, An algorithm for imprecise conditional probability assessments in expert systems, in: International Conference on Information Processing

and Management of Uncertainty in Knowledge-Based Systems, 1996, pp. 61–66.
[56] Carl G. Wagner, The Smith–Walley interpretation of subjective probability: an appreciation, Stud. Log. 86 (2007) 343–350.
[57] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, 1991.
[58] Peter Walley, Renato Pelessoni, Paolo Vicig, Direct algorithms for checking consistency and making inferences from conditional probability assessments,

J. Stat. Plan. Inference 126 (1) (2004) 119–151.
[59] H. Paul Williams, The formulation and solution of discrete optimisation problems, in: G.M. Appa, L.S. Pitsoulis, H.P. Williams (Eds.), Handbook on

Modelling for Discrete Optimization, Springer, 2006, pp. 3–38.
[60] H. Paul Williams, Logic and Integer Programming, Springer, London, 2009.
[61] P.M. Williams, Coherence, strict coherence and zero probabilities, in: International Congress of Logic, Methodology and Philos. Sci., vol. VI, 1975,

pp. 29–30.
[62] P.M. Williams, Notes on conditional previsions, Int. J. Approx. Reason. 44 (2007) 366–383.

http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4A61756D6172643931s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4B6C696E6F7632303131s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4B6C696E6F7632303131s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4B72617573733638s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4B79627572673634s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4C65686D616E3535s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4C6576693830s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4C756B617369657769637A32303038s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4D634765653934s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4D6972616E646132303038s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4D796572736F6E3931s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4E673932s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib4E696C73736F6E3836s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib517561656768656265757232303133s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib517561656768656265757232303134s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib517561656768656265757232303134s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib526567617A7A696E693835s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib56696369673936s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib56696369673936s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib5761676E657232303037s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib57616C6C65793931s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib57616C6C657932303034s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib57616C6C657932303034s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib57696C6C69616D7332303036s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib57696C6C69616D7332303036s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib57696C6C69616D7332303039s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib57696C6C69616D733735s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib57696C6C69616D733735s1
http://refhub.elsevier.com/S0888-613X(14)00142-X/bib57696C6C69616D7332303037s1

	Probabilistic satisﬁability and coherence checking through integer programming
	1 Introduction
	2 SAT and PSAT
	3 Probabilistic satisﬁability and integer programming techniques
	4 Variations on a theme
	5 Coherence checking and integer programming techniques
	5.1 Coherence and full conditional probabilities
	5.2 Checking coherence

	6 Implementation, experiments, and phase transition
	7 Conclusion
	Acknowledgements
	References

