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ABSTRACT

This article investigates the computation of posterior upper expectations in-
duced by imprecise probabilities, with emphasis on the effects of irrelevance and
independence judgements. Algorithms that handle imprecise priors and imprecise
likelihoods are reviewed, and a new result on the limiting divergence of posterior
upper probabilities is presented. Algorithms that handle irrelevance and indepen-
dence relations in multivariate models are analyzed through graphical representa-
tions, inspired by the popular Bayesian network model.

1. INTRODUCTION

This article focuses on the calculation of posterior upper expectations in-
duced by imprecise probabilities. Emphasis is placed on the consequences
of irrelevance and independence judgements. In this article, imprecision
in probability assessments is modeled through closed convex sets of proba-
bility measures (Section 2). From this perspective, posterior upper expec-
tations are obtained by maximization of linear fractional functionals over
convex sets, a problem that finds ramifications in operations research and
artificial intelligence.

Several special cases and existing algorithms for posterior upper expecta-
tions are mentioned and improved upon in Section 3. Sequences of indepen-
dent measurements are then analyzed, and a surprising new result on the
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limiting divergence of posterior upper expectations is presented. Section
5 investigates graphical representations for multivariate models, similar to
the popular Bayesian network representation used in artificial intelligence.
The challenges posed by such graphical structures, and several inference
algorithms for them, are also discussed in Section 5.

2. CREDAL SETS

A number of theories of inference advocate closed convex sets of prob-
ability measures as an accurate representation for imprecise beliefs. For
example, the quasi-Bayesian theory of Giron and Rios [19], Levi’s convex
Bayesian theory [26], the theory of intervalism described by Kyburg [22],
and the somewhat difuse collection of ideas adopted by researchers in ro-
bust Bayesian methods [3]. Several other theories employ special types of
convex sets of probability measures; for example, the theory of lower prob-
ability [4, 17] and the theory of inner/outer measures [20, 33, 40]. The
theory of coherent lower previsions put forward by Walley is an example
of a complete theory of inference that can be viewed as a theory of sets
of probability measures, even though it is entirely based on the concept of
lower previsions [43]. There are also theories of inference that add impreci-
sion in utility judgements to the modeling process; for example, the general
theory of Seidenfeld et al [36]. This article emphasizes an interpretation of
imprecise probabilities that relies on convex sets of probability measures,
similar to the quasi-Bayesian theory of Giron and Rios. The mathemat-
ical results used in this article are mostly taken from Walley’s theory of
inference.

Following Levi [26], the term credal set refers to closed convex sets of
probability measures. To simplify terminology, credal sets also refer to sets
of probability distributions or masses. A credal set containing joint proba-
bility measures is called a joint credal set. A credal set with a finite number
of vertices is termed finitely generated [43]. There are several types of credal
sets commonly employed in the literature of statistics and artificial intelli-
gence; for example, density ratio families [15] or two-monotone capacities
(e-contaminated measures, total variation families, density bounded fami-
lies, belief functions) [45].

For random variables X and Y, p(X) denotes the probability density of
X, P(X = z) denotes the probability of the event {X = z}, p(X|y) denotes
the conditional density of X given the event {Y =y}, P(X = z|y) denotes
the conditional probability of the event {X = z} given the event {Y =y},
f(X) denotes a measurable, bounded function of X, E,[f(X)] denotes the
expectation of f(X) taken with respect to p(X) and E,[f(X)|y] denotes
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the expectation of f(X) taken with respect to p(X|y). A credal set defined
by a collection of densities p(X) is denoted by K (X).

Given a credal set K(X) and a function f(X), the lower expectation
and the upper expectation of f(X) are defined respectively as E[f(X)] =
minp(X)eK(X) Ep[f(X)] and E[f(X)] = maxp(X)EK(X) Ep[f(X)] Lower ex-
pectations can be obtained from upper expectations through the expression
E[f(X)] = —E[-f(X)]. A credal set defines a unique lower expectation
for every bounded function. There is also a one-to-one correspondence
between a credal set and a collection of coherent lower expectations (the
definition of coherence for lower expectations has been proposed by Walley
43)).

A lower expectation defines a constraint on probability values; for ex-
ample, for a discrete variable X, the lower expectation E[f(X)] = ~ is
equivalent to the linear inequality

> f@)p(x) > . (1)
X

For any event A, the lower probability P(A) is obtained by taking the
lower expectation of the indicator function I4(X), which is one if X € A
and zero otherwise: P(A) = miny x)ex(x) Ep[la(X)]. Similarly, the upper
probability P(A) is the upper expectation of I4(X).

Conditional probability measures are used to represent the beliefs held by
a decision-maker given an event. A conditional credal set K (X|y) contains
densities p(X|y) for random variables X and V. If P(Y =y) = 0, then
K (X|y) is subject to whatever constraints are imposed on p(X|y).

For two variables X and Y, the symbol K (X|Y) denotes the collection
of credal sets defined for all values of Y:

K(X|Y) = {K(Xly):ye ¥},

where Y is the collection of values of Y. To simplify terminology, the
collection K (X|Y) is also termed a conditional credal set.

A separately specified conditional credal set K(X|Y') is one where densi-
ties can be selected from K (X|y;) without any connection with K (X |ys2)
when y; # y2. For example, this is obtained when K (X|y;) is defined
through a collection of lower expectations E[f;(X)|y1] and K(X|y2) is de-
fined through a collection of lower expectations E[f;(X)|y2] [43].

Inference is performed by applying Bayes rule to each measure in a credal
set; the posterior credal set is the union of all posterior probability mea-
sures. To obtain a posterior credal set, one has to apply Bayes rule only
to the vertices of a joint credal set and then take the convex hull of the
resulting posterior probability measures [19, 26].

The concept of independence, central to standard probability theory, is
somewhat controversial in the theory of convex sets of probability measures
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[2, 9, 14]. A promising approach is proposed by Walley [43, Chapter 9],
based on irrelevance and independence concepts that can be justified in
terms of preferences and beliefs.

DEFINITION 2.1.  Variable Y is irrelevant to X given Z if K(X|z) and
K(Xly, z) have the same convex hull for all possible values of Y and Z.
Equivalently, variable Y is irrelevant to X given Z if E[f(X)|y, 2] is equal
to E[f(X)|z] for any bounded function f(X) and for all possible values of
Y and Z.

Note that Z may be omitted (“unconditional” irrelevance). The defini-
tion can also be extended to collections of variables by requiring equivalence
of the relevant conditional credal sets.

DEFINITION 2.2. Variables X and Y are independent given Z if X is
irrelevant to Y given Z and Y is irrelevant to X given Z.

3. THE GENERALIZED BAYES RULE AND ITS SOLUTION

Given a credal set K(X), a function f(X) and an event A defined through
X, such that P(A) > 0, the value of E[f(X)|A] can be computed by the
generalized Bayes rule (first proposed by Walley [43, Section 6.4.1]):

E[f(X)|A4] is the unique value of u such that
E[(f(X) = p) Ia(X)] = 0. (2)

Suppose that the credal set K (X) is specified by a finite list of vertices.
Then the computation of E[f(X)|A] requires only that E,[f(X)|A] be com-
puted for each vertex p(X): the value of E[f(X)|A] is the maximum of the
various values of E,[f(X)|A] (Section 2).

There are two other problems that may be of interest:!

Problem A The credal set K (X) is specified by a finite collection of linear
inequalities. This type of specification has a convenient interpretation
in terms of a finite collection of lower expectations (Expression (1)).

Problem B The credal set K(X) has some property that yields simple
algorithms for the computation of upper expectations. For example,

IThis classification of problems, and the fact that Lavine’s algorithm can use
f(X)I4(X), rather than f(X), to compute its starting point, were suggested to me
by Peter Walley.
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upper expectations can be easily computed for credal sets generated
by two-monotone capacities [43].

The remainder of this section analyzes the solution of these problems.
Other more specific problems have been analyzed in the literature; for ex-
ample, credal sets represented by two-monotone capacities and bounded
ratio families have closed-form expressions for upper posterior probabili-
ties [8, 15, 42].

Lavine’s algorithm is a bracketing scheme applied to the generalized
Bayes rule, whose objective is to compute posterior upper expectations [24].
Define p, = inf f(X)I4(X) and 1y = sup f(X)Ia(X). Define M(u) =
E[(f(X) — w)Ia(X)]; note that M (x) must be zero in the interval [, Fio]-
Now bracket this interval by repeating (for ¢ > 0):

1. Stop if |; — Hi| < e for some positive value €; or

2. Choose p; in [p, 11;] and, if M(u;) > 0, take Py = i and 7; ., = 7i;;
if M(,LLZ) < 0, take HH—I = Ht and ﬁi—i—l = ;.

The next theorem demonstrates that M (u;) can also provide information
on when to stop the bracketing iteration.

THEOREM 1.  For an event A such that P(A) > 0, if |M(u)| < eP(A),
then |u— E[f(X)|A]]| <e.

[
&

Proof Suppose —eP(A) < M(u) <
eP(4) > —E[(f(X)— NIa(X)] - B[~
ized Bayes rule, p — A > 0 and E[(f( =0, s0pu—X<
eP(A) /(=E[~14(X)]) = e. Suppose now eP(A) > M(u) > 0. We have
E[(f(X) —wIa(X)+ E[f(X)— p|A] (=14(X))] = 0 by the generalized
Bayes rule; consequently, M (u) — E[f(X) — pu|A] E[Ia(X)] > 0. Then
eP(4) > B[f(X) — p|A] E[L4(X)] and then ¢ > E[f(X)]A] — . n
Lavine’s algorithm is straightforward for Problem A (in case the variables
are discrete) and for Problem B. In the first case, upper expectations can
be obtained either by a sequence of linear programs (one for each value of
;) [25] or by a single parametric linear program with parameter p.
Lavine’s algorithm can be easily adapted to models with a prior credal set
K (Y) and a single likelihood function L, (Y) = p(z|Y'), as the computation
of E[f(Y)|x] employs M (u) = E[(f(Y) — p)L.(Y)] in this case [43].
Another iteration scheme, also based on the generalized Bayes rule, has
been proposed by Walley [43, Note 6.4.1]; in this scheme, E[f(X)|A] is
obtained by iterating piy1 = pi + 2E[(f(X) — pi)Ia(X)] /(E[Ia(X)] +
E[I4(X)]). Walley’s algorithm can be easily applied to Problem B; the
algorithm was in fact designed for this particular situation [43, Note 6.4.1]

0 A [f(X)]A4]; then
(b —AN)I4(X)]. By the general-
X) X)]



Walley proved that his algorithm displays linear convergence: €;11 = d¢;,
where § = (P(A)—P(A))/(P(A)+P(A)) and ¢; is the error at step i. Note
that Lavine’s algorithm also has linear convergence (if bisection is used,
€i+1 = (1/2)€;). For Problem B, Walley’s algorithm is a better choice than
Lavine’s when § < 1/2; that is, when 3P(A) > P(A).

Problem B is best viewed as a numeric search for the unique solution
of equation (2). From this point of view, it is apparent that linear con-
vergence is not the best that can be obtained. Well-known schemes such
as the secant or regula falsi methods, or the more sophisticated Brent’s
method, can be used to obtain super-linear convergence [32]. There is lit-
tle hope for quadratic convergence, because quadratic convergence usually
demands knowledge of derivatives — and upper expectations cannot be
easily differentiated due to the maximization operation.

The previous discussion can be summarized as follows.

REMARK 3.1. The best approach to Problem B is to use a super-linear
root finding scheme on the generalized Bayes rule; for example Brent’s
method, using Lavine’s or Walley’s algorithm (depending on the value of
0) to reach a vicinity of the solution.

Consider now Problem A for discrete variables (the next paragraphs
summarize the results in [13]). Suppose a prior credal set K (Y") is specified
by linear constraints represented as

A[PY =y1)...P(Y =y,)]" <B,

where A is a matrix and B is a vector of appropriate dimensions. Define the
vectors a by a; = P(Y = y;), B by 8; = P(X = z|y;), and f by fi = f(y:),
and the matrix C = A — B1 (where 1 is a row vector of ones). Then:

E[f(Y)|r] = max [%] , subject to Ca <0, Zai =1,0; > 0.
@ 3 ki i
(3)

Lavine’s algorithm is quite popular to solve this problem, but the work
of White III [46] and Snow [39] has produced an algorithm for imprecise
priors and precise likelihood functions that depends on a single, direct linear
program. The algorithm can be understood as a change of variables that
“linearizes” the original problem [13].

A more profitable approach to Problem A is to reduce it to linear frac-
tional programming, as Expression (3) is a linear fractional program [34].
Recent references point to linear fractional programming techniques as suit-
able ones for the computation of upper expectations [16, 23, 27, 29]. There
are two well-known algorithms to solve a linear fractional program such as
Expression (3): The first, called Dinkelbach or Jagannatham algorithm, is
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virtually identical to Lavine’s algorithm; the second, called the Charnes—
Cooper method, is similar to the White-Snow algorithm (these methods
are discussed and compared in [13]).

Only a few authors consider the possibility of prior and likelihood im-
precision [24, 31, 43]. The next theorem proves that algorithms can re-
strict attention to the maxima and minima of likelihood when dealing
with sets of likelihood functions. The theorem uses the concepts of lower
and upper likelihoods. For a given collection of credal sets K (XY, the
lower likelihood L,(Y") is a function defined as L,(y) = P(X =zly) =
miny x|, ex(x|y) P(X = z|y), and the upper likelihood U,(Y) is a function

defined as U, (y) = P(X = z|y) = maxyx|y)ek(x|y) P(X = z|y).

THEOREM 2 (Walley [43, Section 8.5.3]) Take a bounded function f(Y)
and suppose that K(X|Y) and K(X) are separately specified credal sets.
If P(X =) > 0, then E[f(Y)|z] is the unique value of ju such that
E[(f(Y) = 1) pu(2|Y)] = 0, where py(z|y) is equal to Us(y) if f(y) > p
and is equal to L (y) if f(y) < w.

The theorem demonstrates that

E[f(Y)|z] = max (Ep[f (Y)pu (z[Y)] /Ep[pu(Y)]) ,

(for P(X =) > 0), where the maximization is with respect to both
() o € finf f(V)L(X),5up F(V)L(X)], and (i) p(Y) € K(V). A pos
sible approach is to apply a bracketing scheme much like Lavine’s algo-
rithm, using a “likelihood” p,(z|Y’) that varies at each iteration of the
algorithm. Each step of the algorithm involves computation of M (u) =
E[(f(Y) — u)pu(2|Y)]. Unfortunately, these operations do not yield a di-
rect parametric linear program.

A satisfactory method for the computation of posterior upper expecta-
tions E[f(Y)|x], given separately specified, finitely generated K(Y) and
K(X]Y), can still be produced as follows.? First define two vectors, o
and ', each with the same length as a. Now define the following linear
fractional program:

- — max Ez (szx(yz)a; + fiUm(yi)a;I)
E[f(Y)|.’L'] - a’,aa” Ej (Lz(yg)a; + Uz(yg)ay)

subject to: C (o +a”") <0, Y ,(af + i) =1, a; >0, o > 0.

For each i, a maximizing ' and a maximizing o have either o} = 0 or
af = 0 for each i, automatically selecting the correct upper or lower likeli-
hood values. Now the Charnes—Cooper transformation can be applied and

; (4)

2A number of computer programs for computation of upper expectations through
linear fractional programming is publicly available in the Internet at the address
www.cs.cmu.edu/~gbayes/RobustInferences/Matlab/.
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the upper expectation can be obtained through a linear program (a discus-
sion of the complete algorithm with examples is given by Cozman [13])

REMARK 3.2. The best approach to Problem A is to use the techniques
of linear fractional programming in the form described by Expression (4).

4. SEQUENCES OF INDEPENDENT MEASUREMENTS

Suppose now that a sequence of measurements X, ..., X,, is given, and
the measurements are all taken to be independent and modeled by identical
sets K (X|©) of likelihood functions. Various definitions of independence
in the literature (including Walley’s) lead to the following simple result [13]:

THEOREM 3. For a sequence of independent measurements, the upper and
lower likelihoods are respectively given by Ux, . x,(0) = [Ii—; Ux,(©)
and Lx,,..x,(0) = [[}=; Lx,(©).

This result, combined with the algorithms described previously, demon-
strates how to perform the most common types of statistical computations
in the context of credal sets.

Limiting properties of sequences of observations are of central importance
in statistics. It is a well-known fact that the effect of prior differences in
probabilistic models tends to vanish as more and more data are collected
through a single likelihood function [35]. However, this “consensus of opin-
ions” is not guaranteed to occur in the context of credal sets.

ExampLE 4.1. Consider a discrete variable ® with N possible val-
ues. A group of experts establishes a prior credal set K(©) such that
P(© =0;) > 0for all §;. Another group of experts establishes a separately
specified collection of credal sets K (X;|®) for a measurement X}, with a
finite number of possible values. The experts agree that all measurements
are independent and satisfy the same model K(X|©). Also, the experts
note that P(X|0;) > P(X|0;) > 0 for all §;, and P(X|0;) > P(Xx|0;)
for all j # 4. A third group of experts then collects a sequence of observa-
tions Xj. To their dismay, they note that P(8;]Xy,...,X,) tends to one
and P(6;|X1,...,X,) tends to zero as more information is collected.

Despite the somewhat stringent conditions on K (X|0;) and K (©), there
are many easily constructed credal sets that can be chosen by the experts



and that conform to these conditions. But this seems to be an extremely
surprising situation, as the third group of experts loses whatever degree of
consensus was attained by the first two groups of experts!

THEOREM 4. Under the conditions of Exzample 1,

n—o0

Proof Define l;;; = (P(Xy|6;) /P(Xk|6;)) (note that I;;, < 1 for all k,
i # 7). Take a measure in K(0©) and define 3;; = P(© =46;) /P(© =6;)
and ; = max; 3;;. The independence of observations and the fact that like-
lihoods are defined separately guarantees that the value of /;; is attained

by some density and then P(8;| X1, ..., X,) > (1 + 32 Bii [lim lijk)
Note that for any given 6 > 0, there is m such that for all n > m the
value of [],_, lijr is smaller than 6/(3;(N — 1)) for all j, and, for these

-1
n, POi|X1,. .., Xn) > (1 + 30,0 Biid (Bi(N — 1))) > > 1-6. As
P(6;|X1,...,X,) cannot be larger than 1, its limit as n — oo is 1. ]
The theory of credal sets contains other examples with similar properties.
For example, conditioning may increase probability bounds, a phenomenon
called dilation [37]; Theorem 4 presents a situation where dilation occurs at
every measurement. The results of Walley and Fine [44] on the divergence
of relative frequencies obtained from imprecise likelihoods are also close in
spirit to Example 1; the difference is that Walley and Fine are interested in
quite general situations where relative frequencies are confined to the inter-
val between lower and upper likelihoods. Example 1 employs much stronger
assumptions to illustrate a much stronger type of divergence, one in which
lower and upper probability bounds become zero and one respectively.

5. MULTIVARIATE AND GRAPHICAL MODELS

Many multivariate models in statistics, economics and artificial intelli-
gence are constructed by joining collections of statistical statements. For
example, in probabilistic logic a collection of statements is assumed over a
large number of boolean variables [21, 28]. In practice, most multivariate
models make use of conditional probabilities and judgements of conditional
independence [47]. The foremost example of this approach is the popular
theory of Bayesian networks [30].

A Bayesian network is a directed acyclic graph where each node is asso-
ciated with a random variable X; and a conditional density p(X;|pa(X;))
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(the symbol pa(X;) indicates the parents of X; in the graph). The central
assumption in a Bayesian network is that each variable is independent of
all its nondescendants non-parents, given its parents; consequently, every
Bayesian network represents a unique joint probability distribution:

p(X) = Hp(Xilpa(Xi)) : (5)

Given a Bayesian network, typically one is interested in posterior quan-
tities. For example, one may ask, What is the probability of variable
X being true given that Y is true and Z is false? Computations with
Bayesian networks can be simplified because independence relations can be
detected by a polynomial-time algorithm based on the concept of graphical
d-separation [18].

It seems reasonable to seek graphical structures for multivariate models
associated with credal sets. But how does the theory of credal sets fare
with respect to graphical models and their related algorithms? An imme-
diate difficulty is the current lack of agreement regarding the concept of
independence. This has led to graphical structures that cannot be easily
interpreted in terms of conditional preferences or beliefs: some of these
structures employ Dempster’s rule [38], whereas others employ “strong ex-
tensions” (described later in this section) to combine conditional credal sets
[7, 41] These difficulties can be eased with the adoption of Walley’s con-
cepts of irrelevance and independence, as these concepts are directly based
on conditional beliefs, one of the basic entities in the theory of credal sets.

Starting from Walley’s concepts of irrelevance and independence, a the-
ory of credal or quasi-Bayesian networks can be built (there is no standard
terminology to refer to such entities). A credal network is a directed acyclic
graph where each node is associated with a variable X; and a conditional
credal set K (X;|pa(X;)) [10, 11, 16]. Given a credal network, any joint
credal set whose conditional credal sets equal K (X;|pa(X;)) is called an
extension of the network. Some important properties of credal networks
and their extensions have received little attention, despite their potential
effect on algorithms.

For example, take the “semi-graphoid” axioms. A semi-graphoid is a
ternary relation, denoted by XY | Z, that verifies a set of five axioms
[30], which aims to capture the concept “Y" is independent from X given
Z” . Bayesian networks are prone to several computational simplifications
because probabilistic independence satisfies the semi-graphoid axioms [30].
But Walley’s concepts of irrelevance and independence do not satisfy all
the semi-graphoid axioms [12]; an open question is how to use the available
graphoid properties to simplify computation of posterior upper quantities.

Another example of challenging differences between Bayesian and credal
networks is the non-uniqueness of inferences given a network. A Bayesian
network represents the unique joint density specified by Expression (5).
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What is the joint credal set represented by a credal network? Is there
a unique such credal set? No satisfactory answer has been given to this
question yet. It seems appropriate to admit that a credal network may
have several extensions — the choice of an extension is left to the decision-
maker specifying the network. Consider the following two extensions of a
credal network:

The strong extension is the joint credal set containing all joint mea-
sures that satisfy Expression (5) when each density p(X;|pa(X;)) is
arbitrarily chosen within the conditional credal set K (X;|pa(X;)).

The natural extension is the joint credal set containing all joint mea-
sures that (i) have conditional densities p(X;|pa(X;)) in the corre-
sponding conditional credal sets K (X;|pa(X;)); and that (ii) satisfy
any additional irrelevance relations in the network. Note that a credal
network may have several types of natural extensions, depending on
the particular irrelevance relations that are imposed on the network.

Strong extensions are the most common sets of probability measures
associated with graphical models in the literature [1, 7, 27, 41] (note that
the name “type-1 extension” has been used in the past to refer to strong
extensions [10, 11]). The apparent similarity between strong extensions
and Bayesian networks can be formalized:

THEOREM 5 (Cozman [11]) Given a credal network where every combina-
tion of variables has positive lower probability, any graphical d-separation
relation in the credal network corresponds to a valid conditional indepen-
dence relation in the strong extension of the network.

This theorem demonstrates that the algorithms that are used to detect
independence by graphical means in a Bayesian network can also be used
to detect independence relations (in Walley’s sense) in strong extensions.

The popularity of strong extensions has led to several algorithms for the
calculation of posterior lower and upper expectations. There are algorithms
that calculate expectations for all vertices of a strong extension and max-
imize over these expectations [5, 10, 41], algorithms that use optimization
techniques to search deterministically for upper expectations [1, 10, 16],
and algorithms that perform this search stochastically [5, 6]. At the mo-
ment, there is little available experience regarding practical performance of
algorithms and no organized comparison among them.?

Much less attention has been paid to natural extensions, even though it
may be argued that they are, as the name suggests, more intuitive than

3The JavaBayes system is currently the most appropriate tool to manipulate graph-

ical models and strong extensions; the system is publicly available at the address
www.cs.cmu.edu/~javabayes.
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strong extensions. Several natural extensions can be defined for a given
credal network, depending on the irrelevance judgements assumed for the
network. Given a credal network, it is possible to create a natural extension
that enforces no irrelevance relation on the network — in a sense, this is the
“largest” joint credal set that can be represented by the network, similar to
the credal sets that are considered in probabilistic logic. Suppose that all
variables X; are categorical and all conditional credal sets K (X;|pa(X;))
are separately specified and are defined by finitely many linear inequalities
E]- a;p(X; = z;5|pa(Xi)) < 8. Then the largest possible natural extension
(no irrelevance relations enforced) is only subject to linear constraints. The
computation of any posterior upper expectation is then a linear fractional
program.

Little is known about algorithms for enforcing irrelevance relations in
natural extensions. Consider the following situation [11]. Suppose that,
for any variable X;, the nondescendants non-parents of X; are irrelevant to
X; given the parents of X;. This is true for every standard Bayesian net-
work and it seems a reasonable requirement for credal networks. Suppose
also that all credal sets K (X;|pa(X;)) are separately specified. These as-
sumptions are equivalent to the requirement that, for any bounded function
f(X3):

E[f(X0)[nd(X:)] = E[f (X;)[pa(X))], (6)
where nd(X;) denotes the nondescendants of X;. As E[f(X;)|pa(X;)] can
be computed using information in the network, the constraints indicated
by Expression (6) can be read off of the network in a relatively simple
manner. If every credal set K (X;|pa(X;)) is finitely generated, then there
is a finite collection of inequalities of the form (6) that characterizes the
natural extension of the credal network. Consequently, posterior upper
expectations can be computed by linear fractional programming [11].

6. CONCLUSION

This article concentrates on the practical problem of generating poste-
rior upper expectations given statements of imprecise probabilities. In the
theory of credal sets, the algorithmic importance of independence judge-
ments has been obscured by controversies regarding the definition of in-
dependence. This article adopts Walley’s concepts of irrelevance and in-
dependence as a solution to this difficulty. An important application of
these concepts is the analysis of independence judgements in sequences of
measurements, including the surprising possibility of complete divergence
of posteriors. A theory of credal networks, as sketched in this article, is
another important step in the understanding of imprecise probability and
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judgements of irrelevance. At this point, little is known about simplifica-
tions due to irrelevance relations, or about the practical differences among
various extensions of a credal network.

In short, there are many available algorithms, but much effort is still to
be spent before a complete collection of algorithms for imprecise probability
emerges.
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