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tThis paper presents an overview of graphi
al models that 
an handle impre
ision inprobability values. The paper �rst reviews basi
 
on
epts and presents a brief his-tori
al a

ount of the �eld. The main 
hara
teristi
s of the 
redal network model arethen dis
ussed, as this model has re
eived 
onsiderable attention in the literature.Key words: Impre
ise probabilities, sets of probability distributions, graphi
almodels, 
redal networks1 Introdu
tionGeographi
, biologi
, e
onomi
, and many other kinds of relations are rou-tinely depi
ted with graphs. Consequently it should not be surprising thatgraphs are also employed to represent intera
tions among random variables:for example, Bayesian networks and Markov random �elds use graph-theoreti

on
epts to represent 
omplex statisti
al situations. Perhaps the most pro-found 
ontribution of graph-theoreti
 (\graphi
al") methods in probabilisti
modeling has been a way of thinking that emphasizes lo
ality of intera
tionsas the key to 
ompa
tness and eÆ
ien
y. Graphs form a language; this lan-guage is visually pleasant and 
omputationally eÆ
ient. What else 
ould beasked for?Resear
hers interested in non probabilisti
 
al
uli have not dismissed the su
-
ess of graphi
al models. Impre
ise probabilities and graphs have been marriedquite a few times, either be
ause one wishes to extend the su

ess of standardgraphi
al models to the realm of impre
ise probabilities, or be
ause one thinksthat standard graphi
al models are unrealisti
 unless they 
an handle impre-
ision in probability values. This paper o�ers an overview of graphi
al modelsaimed at impre
ise probabilities, with the primary intent to be introdu
toryPreprint submitted to Elsevier S
ien
e 14 September 2004



and dida
ti
 | at the expense of formality and te
hni
al detail. Some his-tori
al perspe
tive is provided in Se
tion 3, but no 
omprehensive review isattempted. The strategy here is to fo
us on a parti
ular type of model, 
redalnetworks, and to use this model to 
onvey the 
entral 
hallenges and promisesof graphi
al te
hniques.2 Graphi
al models for pre
ise probabilitiesThe purpose of this se
tion is to �x key terminology and to indi
ate the s
opeof the paper. A graph is an obje
t 
onsisting of a set of nodes and a set ofedges 
onne
ting nodes [7℄. In this paper we fo
us on graphi
al models thathave nodes/edges asso
iated with statisti
al obje
ts.A Bayesian network 
onsists of a dire
ted a
y
li
 graph where ea
h nodeis asso
iated with a random variable and with 
onditional probability dis-tributions [79℄. (Note that here we start using \node" and \variable" inter-
hangeably.) Edges indi
ate dire
t dependen
y, and are often embodied with a
ausal interpretation: an edge fromX to Y suggests that X somehow 
auses Y[80,95℄. An in
uen
e diagram is similar to a Bayesian network, but is equippedwith de
ision and value nodes; the purpose of an in
uen
e diagram is to repre-sent sequential de
ision problems in 
ompa
t form [24,63℄. A Markov random�eld 
onsists of an undire
ted graph where ea
h 
lique (
ompletely 
onne
tedgroup of nodes) is asso
iated with a non-negative fun
tion, 
alled a poten-tial [67℄. Other models 
ombine dire
ted, undire
ted, bidire
tional and dottededges [27,28,70,80,95℄. In Markov De
ision Pro
esses, ea
h node represents astate, and the pro
ess 
an transit from a state to the next state by a numberof paths (the edges) [11,82℄. Typi
ally these graphi
al models are used eitherto produ
e inferen
es (the 
omputation of the posterior probability for oneor more events) or to produ
e 
on�gurations of variables that maximize someappropriate quantity.Central to all these graphi
al models are Markov properties. A Markov prop-erty relates graphi
al entities to probabilisti
 independen
e relations. For ex-ample, take the graph in Figure 1. What is the \Bayesian network" inter-pretation for this graph? The answer is given by the Markov property forBayesian networks: the nondes
endant nonparents of a node are independentof the node 
onditional on the node's parents. For instan
e, the graph in Fig-ure 1 imposes independen
e of X and Z 
onditional on Y . Markov random�elds, Markov De
ision Pro
esses, and other graphi
al models display di�erentMarkov properties.In short, we have that: (1) Graphs provide a 
ompa
t and eÆ
ient languageto represent multivariate statisti
al models; and (2) The interpretation of a2



����X ����Y ����Z- -Fig. 1. A simple dire
ted a
y
li
 graph.graphi
al model is given by a Markov property.3 Graphi
al models for impre
ise probabilitiesProbabilities are often stated through assessments su
h as P (A) � 1=2, P (B) =3=10, P (A [ B) � 4=5, for events A and B. One of the re
urring problems inprobability theory is how to handle a 
olle
tion of assessments that 
an be sat-is�ed by more than one probability measure. The answer already arti
ulatedby Boole [10℄ is that the assessments imply probability intervals over events.For example, P (A) � 1=2 and P (A [ B) � 4=5 imply P (B) 2 [3=10; 1℄. Su
h aformulation has been revisited and re�ned by many resear
hers, among whi
hde Finetti [43℄ and other statisti
ians of the \de Finettian s
hool" [13℄, andHailperin [58℄ and Nilsson (who gave it the name probabilisti
 logi
) [77℄. Therules of probabilisti
 logi
 have often been depi
ted through graph fragments[47℄; however these graph fragments have fun
tioned only as visual represen-tations. A similar situation has o

urred in expert systems like MYCIN [94℄ orINFERNO [83℄, where rules requiring manipulation of impre
ise beliefs havebeen often represented graphi
ally, but have not inherited any semanti
s fromthe graphi
al forms.The development of Bayesian networks during the eighties suggested newways to 
ombine un
ertain reasoning with graphs. Algorithms for inferen
ein polytree-shaped Bayesian networks [79℄ inspired a number of in
uential pa-pers on hierar
hi
al hypothesis spa
es. To understand the idea, 
onsider Figure2, whi
h presents a pie
e of medi
al knowledge dis
ussed by Gordon and Short-li�e [55℄. Ea
h node in this �gure represents an event that is de
omposed intoits 
hildren nodes. A degree of support 
an be attributed to any node, indi
at-ing how mu
h that node is believed to be true. Gordon and Shortli�e proposeda representation of interval-valued degrees of support based on belief fun
-tions, and a me
hanism for 
ombining belief fun
tions based on Dempster rule.Shafer, Shenoy and 
o-workers have developed message-passing algorithms for
ombination of belief fun
tions in hierar
hi
al hypotheses spa
es [89{93℄, andthe framework has been gradually extended in various dire
tions [3,68℄.Several other graphi
al models for impre
ise probabilities surfa
ed around1990. Fertig and Breese derived approximate inferen
e algorithms for in
u-en
e diagrams asso
iated with lower bounds on probability values [12,46℄.Van der Gaag started from a di�erent mix: instead of dire
ted a
y
li
 graphs3



����J����I ����EHHHj��������H ����C��R��	 ����G ����P��R��	 J : Jaundi
eI: Intrahepati
E: Extrahepati
H: HepatitisC: CirrosisG: Gall-stoneP : Pan
reati
-
an
erFig. 2. Graphi
al model dis
ussed by Gordon and Shortli�e [55℄; nodes representevents, and leaves are exhaustive and mutually ex
lusive.and probability intervals, she adopted undire
ted models and general linear
onstraints on probability values [99℄ | the result of these 
hoi
es is a lin-ear programming algorithm that 
an eÆ
iently produ
e inferen
es. A di�erents
heme was proposed by Wellman: instead of probability values, one shoulduse qualitative notions su
h as \o

urren
e of event A in
reases the probabil-ity of event B" [106℄. The result is a qualitative Bayesian network; resear
h onthis topi
 remains strong sin
e its in
eption [8℄. Yet another proposal for rep-resentation of impre
ise probabilisti
 knowledge is the \order-of-magnitude"approa
h, where probabilities are represented up to ordinal or in�nitesimalvalues [49,96℄. Qualitative and ordinal probabilities also re
eived graphi
alformulations [40,85℄, and eli
itation pro
edures that 
an handle both quanti-tative and qualitative assessments have also generated steady interest [44,86℄.As a short digression, note that during the eighties and nineties many 
on-
epts of 
onditioning for probability intervals and 2-monotone 
apa
ities wereformulated and dis
ussed in the literature [22,60℄. Quite a few of those 
on-
epts fa
ed te
hni
al and semanti
 diÆ
ulties, and this situation probably
ontributed to delays in the theory of graphi
al models for impre
ise proba-bility. Clearly, it is diÆ
ult to 
onstru
t a graphi
al model when the underlyingun
ertainty 
al
ulus 
annot properly handle 
onditioning.The beginning of the nineties witnessed the �rst publi
ations expli
itly 
om-bining general sets of probability measures and dire
ted a
y
li
 graphs [20,97℄.At that time the �eld of robust Bayesian statisti
s was a
tively using sets ofprobability measures to represent perturbations in statisti
al models [5℄. Dif-�
ulties that plagued probability intervals and 2-monotone 
apa
ities werefound not to apply to sets of probability measures, and a rather 
ompletetheory of impre
ise probabilities, that extensively employed sets of probabil-ity measures, was published by Walley in 1991 [102℄. These developments ledto a marriage between sets of probabilities and dire
ted a
y
li
 graphs thathas been strong ever sin
e. The next se
tion dis
usses the theory of dire
teda
y
li
 graphs asso
iated with sets of probability measures | stru
tures oftenreferred to as 
redal networks.A few additional resear
h e�orts deserve mention in this brief histori
al a
-
ount, at the risk of missing some relevant 
ontributions. Chrisman [23℄ has4



presented a quite original model for undire
ted graphs asso
iated with prob-ability intervals. Lukasiewi
z [73℄, Thone et al. [98℄ and Luo et al. [74℄ havepresented graphi
al models that extend probabilisti
 logi
. Several of thosealgorithmi
 developments are dis
ussed in an overview paper by Cano andMoral [18℄; their detailed review is quite 
omplementary to the present paper.Relatively little attention has been given to graphi
al models that in
orporatede
isions and impre
ise probabilities | however there has been re
ent e�ortby Danielson et al. [39℄ to pro
ess de
ision trees and in
uen
e diagrams asso
i-ated with linear 
onstraints on probability values (the De
ideIT program hasbeen produ
ed in the 
ourse of that resear
h). A related re
ent developmentis the 
onstru
tion of 
lassi�
ation trees with sets of probabilities [1℄.Finally, the 
lass of impre
ise Markov De
ision Pro
esses should be mentioned.An impre
ise Markov De
ision Pro
ess is obtained when the probabilisti
 re-quirements on Markov De
ision Pro
esses are relaxed: the transition from 
ur-rent to next state is modeled by a set of probability measures or by probabilityintervals. Work on impre
ise Markov De
ision Pro
esses started in the seven-ties [87℄ and has been revisited a few times sin
e then [9,52,61,107,108℄. Up tonow there have not been \graphi
al impre
ise Markov De
ision Pro
esses" inthe literature.4 Credal networksA 
redal network is a graphi
al model that asso
iates nodes and variableswith sets of probability measures. An informal way to 
onvey the 
ontent ofa 
redal network is to think about it as a representation for a set of Bayesiannetworks over a �xed set of variables. Note that there is no 
ommitment as towhether one of these Bayesian networks is the \
orre
t" one.The most obvious motivation for 
redal networks is to have them as \relaxed"Bayesian networks. In a Bayesian network, the Markov property implies thatwe must spe
ify a (unique) probability distribution for every variable 
ondi-tional on any 
on�guration of the variable's parents. This may be a diÆ
ultpro
ess for several reasons. Existing beliefs may be in
omplete or vague, orthere may be no resour
es to gather/pro
ess enough information so as to rea
ha pre
ise probability assessment. Even if experimental data are available, onemay not be 
omfortable with point estimates and may sele
t probability inter-vals as estimates. It may also be the 
ase that a group of individuals is respon-sible for spe
ifying probability values, and these individuals 
annot agree onpre
ise probability values. Hen
e we may want to spe
ify a set of probabilitydistributions for every variable 
onditional on the variable's parents. When wedo so, we obtain a 
redal network. 5



����A ����B����E +���R ��	����C ����D ����F����G ��	��R ����H ��	��R ����I ��	��R����J ��	 ����K ��	��R ����L?
P (H = hjD = d;E = e) = 0:2P (H = hjD = d;E = :e) = 0:9P (H = hjD = :d;E = e) = 0:8P (H = hjD = :d;E = :e) = 0:8P (J = jjG = g) = 0:1P (J = jjG = :g) = 0:9P (K = kjG = g;H = h) = 0:3P (K = kjG = g;H = :h) = 0:8P (K = kjG = :g;H = h) = 0:2P (K = kjG = :g;H = :h) = 0:9Fig. 3. An example 
redal network.More than just \relaxed" Bayesian networks, 
redal networks o�er a knowl-edge representation tool. Most people do use probability intervals and quali-tative relationships in their dealings with un
ertainty; few people 
an assessprobability values up to their third de
imal pla
e. Moreover, most people 
anhandle disagreeing sour
es of probabilisti
 assessments, even when su
h a mixdoes not lead to a single probability measure. People 
an handle impre
iseprobabilities; a 
exible and general knowledge representation tool for arti�
ialintelligen
e appli
ations should do just as mu
h.It is interesting at this point to present examples of 
redal networks, leaving amore detailed de�nition of 
on
epts to Se
tion 5. Two arti�
ial examples aredis
ussed in the remainder of this se
tion, so as to illustrate the basi
 elementsand the representational power of 
redal networks. Readers interested in realappli
ations may 
onsult the work of Antonu

i et al [4℄ for a 
omplex 
redalnetwork 
onstru
ted both from expert opinions and data, and the work ofZa�alon et al [115℄ for a 
redal network 
onstru
ted from data and used for
lassi�
ation in a medi
al s
enario.Consider �rst the graph in Figure 3. All variables are Boolean; a variable Xhas values x and :x. Suppose the network in Figure 3 was 
reated by severalexperts, re
e
ting a multitude of views and beliefs.An expert was hired to establish the probabilities for variables A, B and E.The expert �rst de
lared that A was \probable" while B was \between im-probable and impossible." Using Renooij's verbal s
ale [86℄ as guidan
e, theseverbal statements were translated to P (A = a) 2 [0:75; 0:85℄ and P (B = b) 2[0:0; 0:15℄. The expert then applied the 
onventions of qualitative networks top(EjA;B) [106℄, as indi
ated by the plus and minus signs in Figure 3. Thatis, the expert indi
ated thatP (E = ejA = a; B = b)�P (E = ejA = :a; B = b) ;P (E = ejA = a; B = :b)�P (E = ejA = :a; B = :b) ;P (E = ejA = a; B = b)�P (E = ejA = a; B = :b) ;P (E = ejA = :a; B = b)�P (E = ejA = :a; B = :b) :6



The expert 
ould also state the pre
ise assessment P (E = ejA = a; B = b) =0:4. The largest set of fun
tions P (EjA;B) that satisfy these qualitativeand numeri
 assessments has seven verti
es. Ea
h vertex is spe
i�ed by atriplet 
ontaining values P (E = ejA = a; B = :b), P (E = ejA = :a; B = b),and P (E = ejA = :a; B = :b); the seven verti
es are given by the follow-ing triplets: [0; 0:4; 0℄; [0; 1; 0℄; [0:4; 1; 0:4℄; [0; 0:4; 0:4℄; [0:4; 0:4; 0:4℄; [0; 1; 1℄;[0:4; 1; 1℄.A se
ond expert was hired to examine variables F , I and L. The expert as-sessed P (F = f) = 0:2. The expert then took a Noisy-OR fun
tion [79℄ tomodel p(IjE; F ), with \link" probabilities P (I = ijE = e; F = :f) = 0:9 andP (I = ijE = :e; F = f) = 0:8. The expert de
ided to have a \leak" proba-bility, but 
ould not assess its value pre
isely, and adopted an interval leakprobability of [0.1,0.2℄. To assess p(LjI), the expert 
onsulted a databasewith experiments, but she was unsure about priors for the estimates, andtook an Impre
ise Diri
hlet Model [6,104,113℄ over them, produ
ing inter-val estimates for P (L = ljI = i) and P (L = ljI = :i). The expert obtainedP (L = ljI = i) 2 [0:5; 0:6℄ and P (L = ljI = :i) 2 [0:4; 0:5℄.A group of three experts was then hired to model the remaining variables.The experts used a large database to obtain pre
ise estimates for P (HjD;E),P (J jG), and P (KjG;H), shown in Figure 3. No data was available for C, D,and G. After mu
h dis
ussion, the experts produ
ed assessments P (C = 
) �0:4, P (C = :
) � 0:5, P (D = d) � 0:2, and P (D = :d) � 0:7. The expertsdid not agree at all on P (GjC;D); indi
ating �rst, se
ond and third opinionsas ve
tors (all in the same order), the opinions of the experts were:P (G = gjC = 
;D = d)= [0:2; 0:3; 0:4℄;P (G = gjC = 
;D = :d)= [0:7; 0:6; 0:5℄;P (G = gjC = :
;D = d)= [1; 1; 1℄;P (G = gjC = :
;D = :d)= [0:8; 0:9; 0:8℄:The experts re
ommended that, for every possible 
ombination of probabilityvalues within the eli
ited bounds and sets, the joint distribution should beprodu
ed using the Markov 
ondition in the graph of Figure 3. Consider a fewinferen
es with this network (an inferen
e here is the 
omputation of a tightinterval 
ontaining all possible values for the probability of an event). 1 Forexample, P (D = djA = :a; F = f;K = k) 2 [0:17; 0:45℄. Note that inferen
esdo not assume more information than available in the model, but they do yield1 Inferen
es were 
omputed with the JavaBayes system version 0.347, availableunder GPL from http://www.pmr.poli.usp.br/ltd/Software/javabayes. This system
ontains a naive enumeration algorithm for manipulation of sets of probabilities.7



valuable information | we 
an say that P (D = djA = :a; F = f;K = k) issmaller than 0.5 if we need to make a de
ision 
on
erning this value.The important point in this example is that the 
redal network summarizes alarge variety of assessments, translating di�erent kinds of beliefs into a uniformand understandable language. Qualitative, verbal, empiri
al and subje
tiveinformation are all organized into a single stru
ture.Consider a se
ond example, taken from Cozman et al. [34℄. The example isbased on Jaeger's version of the \Holmes problem," a situation that mixes �rst-order logi
 
onstru
ts with probabilities [66℄. The story is this. If a person vlives in LA, then she may (probabilisti
ally) sound the alarm, depending onwhether there is a burglary and whether there is an earthquake. If v does notlive in LA, then she may (probabilisti
ally) sound the alarm in 
ase there is aburglary. Here v is a universally quanti�ed variable in a domain V, and the rela-tions alarm(v), lives-in(v,LA), burglary(v) and earthquake(LA) des
ribev's situation. To simplify the notation, denote alarm(v) by Av, lives-in(v,LA)by Lv, burglary(v) by Bv and earthquake(LA) by E. For ea
h relation Y ,either y or :y holds.Jaeger presents a model for the \Holmes problem" that is based on Bayesiannetworks [66℄. Jaeger uses the �rst-order des
ription of the \Holmes problem"to build a Bayesian network for any given domain | that is, given a domain,Jaeger's method produ
es a Bayesian network. Take a domain VH 
ontainingG and H and su
h that lG holds; in this 
ase Jaeger's method 
onstru
ts thegraph in Figure 4. To do so, Jaeger's method assumes that(1) all probability values are pre
isely known;(2) P (avjlv; Bv; E) is a Noisy-OR fun
tion of Bv and E;(3) P (avj:lv; Bv; E) is independent of E.This strategy is 
learly attra
tive; however it fails if there is impre
ision inprobability values, or if there is disagreement about how to de�ne the distri-bution p(AvjLv; Bv; E). 2 In 
ase these assumptions fail, a 
redal network 
anbe used without diÆ
ulties.Take Figure 4 and 
onsider the following assessments, whi
h attempt to trans-late the rather vague s
enario of the \Holmes problem":(1) P (e) 2 [0:01; 0:1℄.(2) P (bv) 2 [0:001; 0:01℄ for any v in the domain.(3) P (lv) 2 [0:05; 0:15℄ for any v in the domain.2 The automati
 resort to Noisy-OR fun
tions is somewhat arti�
ial, and it is 
har-a
teristi
 of methods that produ
e a single Bayesian network out of logi
al andprobabilisti
 
onstru
ts [50,53,65,78,81℄. 8



(4) P (avjlv; bv;:e) = 0:9,P (avjlv;:bv; e) = 0:2,and P (avjlv; bv; e) � 0:9:that is, alarm with burglary and earthquake is more probable than alarmwith just burglary when v lives in LA.(5) P (avjlv;:bv;:e) 2 [0:0; 0:1℄:that is, there is a \leak" probability between 0 and 0.1 that the alarmsounds even with no burglary and no earthquake when v lives in LA.(6) P (avj:lv; bv; e) = 0:9,P (avj:lv; bv;:e) = 0:9,P (avj:lv;:bv; e) = 0:0:and P (avj:lv;:bv;:e) = 0:0:that is, probabilities are pre
ise and do not depend on E when v doesnot live in LA.Suppose we take every possible 
ombination of probability values within theindi
ated bounds, and produ
e joint distributions using the Markov 
ondi-tion in the graph of Figure 4. We obtain P (aH) 2 [0:0001; 0:0253℄, P (aH je) 2[0:0108; 0:0388℄, P (aG) 2 [0:0029; 0:1179℄ and P (aGje) 2 [0:2007; 0:2080℄. Notethat inferen
es produ
e rather small intervals; even though only a few as-sessments are used to build the 
redal network, the stru
tural assumptionsrepresented by the graph greatly 
onstrain probability values.In this example a 
redal network is used to mix logi
al statements with 
exibleprobabilisti
 assessments. An alternative way to 
ombine logi
al and proba-bilisti
 assessments would be to employ a probabilisti
 logi
 [47,58,59,72,77℄.However, it would be important to state assessments of independen
e as well| without su
h assessments we 
annot give meaning to the beautifully 
on
isegraphi
al representation in Figure 4. We would then fa
e the diÆ
ulty thatinferen
e in general probabilisti
 logi
 with independen
e assessments is likelyto be higher than the 
omplexity of independen
e-free probabilisti
 logi
 |and the latter is already quite disheartening [72℄. How 
ould we then havea 
exible and 
ompa
t language to represent logi
al, probabilisti
, and inde-penden
e assessments? In short, we need a language that is more 
exible thantraditional probability theory, but more stru
tured than general probabilisti
logi
. Credal networks o�er one su
h balan
ing a
t.5 The theory of 
redal sets and 
redal networksBefore we analyze in further detail the properties of 
redal networks, we shoulddis
uss a few de�nitions. A set of probability measures is 
alled a 
redal set(from Levi's 
redal states [71℄). There is some debate on whether 
redal sets9



����BG����AG ����E? ���	 ����BH����AH ����LH?���R ���	Fig. 4. The network for the \Holmes problem" with domain VH = fG;Hg andassuming lG holds.should be 
losed or open [88,102℄, and whether 
redal sets should be 
onvex 3or not [69,71℄. In this paper a 
redal set 
an be 
losed or open, 
onvex ornon-
onvex.A 
redal set de�ned by probability distributions p(X) is denoted by K(X).Given a 
redal setK(X) and a bounded fun
tion f(X), the upper and lower ex-pe
tations of f(X) are de�ned respe
tively asE[f(X)℄ = supp(X)2K(X)Ep[f(X)℄and E[f(X)℄ = infp(X)2K(X) Ep[f(X)℄, where Ep[f(X)℄ indi
ates standard ex-pe
tation. Upper and lower probabilities are de�ned similarly. A lower expe
ta-tion 
an be viewed as an assessment of the form Ep[f(X)℄ � E[f(X)℄ (that is,a linear 
onstraint on the spa
e of probability distributions for X). A 
redalset K and its 
onvex hull produ
e the same lower/upper expe
tations andlower/upper probabilities.The most 
ommonly adopted s
heme for 
onditioning in 
redal sets is ele-mentwise Bayes rule (that is, 
onditioning is obtained by applying Bayes ruleto ea
h element of a 
redal set). 4 Su
h an intuitive pres
ription, 
alled thegeneralized Bayes rule by Walley [102,103℄, 
an be justi�ed axiomati
ally invarious ways [51,56,102℄. Note that if K(X) is 
onvex, then K(XjA) is 
onvexas well [71℄.There are two di�erent ways to represent 
onditioning with respe
t to randomvariables. First, 
onsider the 
olle
tion of separately spe
i�ed 
onditional 
redalsets fK(XjY = y) : y is a value of Y g. We denote this 
olle
tion of 
redalsets by K(XjY ). Se
ond, 
onsider the dire
t spe
i�
ation of a set of fun
tionsp(XjY ); 
all su
h a set an extensive 
onditional 
redal set, and denote itby L(XjY ). It should be 
lear that K(XjY ) and L(XjY ) are quite di�erentobje
ts; the �rst is a set of 
redal sets, and the se
ond is a single set offun
tions. 5 In the �rst example in Se
tion 4, K(LjI) is separately spe
i�ed3 A 
redal set is 
onvex if, for any measures P1 and P2 in the set, the measure�P1 + (1� �)P2 is in the set for any � 2 [0; 1℄.4 Alternative s
hemes are dis
ussed by Chrisman [22℄, Moral [75℄ and de Coomanand Za�alon [42℄.5 A note on terminology: Moral and Cano use the term 
onditioned to the valuesto indi
ate separately spe
i�ed 
redal sets (the latter term is used by Walley [102℄10



while L(EjA;B) is extensively spe
i�ed.A 
redal network 
onsists of a dire
ted a
y
li
 graph, where ea
h node in thegraph is asso
iated with a random variable, and where ea
h variable X isasso
iated with 
onditional 
redal sets K(Xjpa(X)) or L(Xjpa(X)). The goalis to 
ombine these \lo
al" 
redal sets into a set of joint distributions satisfyinga Markov 
ondition on the graph. 6 To a

omplish this, it is ne
essary to de�ne:(1) what is the Markov 
ondition on the graph; (2) how to 
ombine the lo
al
redal sets. The remainder of this se
tion dis
usses these points.We start by dis
ussing independen
e 
on
epts in the 
ontext of 
redal sets.There are at least two possibilities (to simplify the dis
ussion, we assume thatevery event has positive lower probability):� First, we may require fa
torization for all distributions in the 
redal set(that is, p(X; Y ) = p(X) p(Y ) for all distributions). Su
h a requirementimplies non-
onvexity of the 
redal set. To remain agnosti
 with respe
t to
onvexity, we may require fa
torization just for the verti
es of the 
redal set.We then say that X and Y are strongly independent. Strong independen
eis the most 
ommonly adopted 
on
ept in the literature; variants of this
on
ept were already impli
it in Huber's work on frequentist robustness[64℄ and in the �rst proposals for 
redal networks [20,97℄.� Se
ond, we may require irrelevan
e of 
onditioning: We say that Y is epis-temi
ally irrelevant to X if E[f(X)jY = y℄ = E[f(X)℄ for any boundedf(X) and any y. It turns out that epistemi
 irrelevan
e is not symmetri
 |Y may be epistemi
ally irrelevant to X while X is not epistemi
ally irrele-vant to Y [102℄. We say that X and Y are epistemi
ally independent if X isepistemi
ally irrelevant to Y and Y is epistemi
ally irrelevant to X [102℄.The literature 
ontains a number of alternative de�nitions for independen
e[26,33,41℄; even though some uni�
ation of 
on
epts may be possible [32,76℄, itseems unlikely that a single 
on
ept will be
ome prevalent in all appli
ationsof 
redal sets. Note that su
h 
on
epts are often not equivalent; for example,strong independen
e implies epistemi
 independen
e, but not the 
onverse.There are several ways to de�ne 
onditional independen
e as well [76℄. Say thatX and Y are strongly independent 
onditional on Z if the verti
es of the 
redalset K(X; Y jZ = z) fa
torize for every z. And say that X and Y are epistemi-and Cozman [31℄), and use 
onditional set and 
onditional information to indi
ateextensive 
onditional 
redal sets [76℄.6 Andersen and Hooker have dis
ussed 
redal networks that 
ombine lo
al andnon-lo
al 
redal sets [2℄; the dis
ussion here is restri
ted to networks 
ontainingonly lo
al sets. The advantage of using only lo
al sets is that it is always possibleto satisfy the Markov 
ondition dis
ussed later; non-lo
al sets may be in
onsistentwith the Markov 
ondition. 11




ally independent 
onditional on Z if E[f(X)jY = y; Z = z℄ = E[f(X)jZ = z℄for any bounded fun
tion f(X) and any (y; z), and E[g(Y )jX = x; Z = z℄ =E[g(Y )jZ = z℄ for any bounded fun
tion g(Y ) and any (x; z).Suppose we have a dire
ted a
y
li
 graph, random variables X1; : : : ; Xn, \lo-
al" 
redal sets (either separately or extensively spe
i�ed), and we have set-tled on a 
on
ept of independen
e. It seems reasonable to assume that everyvariable Xi asso
iated with the graph is independent of its nondes
endantnonparents given its parents. This is the Markov 
ondition for 
redal networks| note that the 
ondition depends on the adopted 
on
ept of independen
e.We then have all ingredients of a 
redal network: a graph, variables, 
redalsets, and a Markov 
ondition. Now we have to de
ide how to build a set ofjoint distributions over X1; : : : ; Xn out of these ingredients.In general, there may be several sets of joint distributions that are 
onsistentwith a given 
olle
tion of marginal and 
onditional 
redal sets. Any one of thesesets of joint distributions is 
alled an extension of the marginal and 
onditional
redal sets. Usually one is interested in the largest possible extension for agiven set of assessments (Walley refers to these extensions as \natural" ones[102℄). For a 
redal network, we might 
onsider the largest extension satisfyingthe Markov 
ondition as the \natural semanti
s" for the network. So we have:(1) the largest extension that satis�es the Markov 
ondition with respe
t tostrong independen
e | the strong extension;(2) the largest extension that satis�es the Markov 
ondition with respe
t toepistemi
 independen
e | the epistemi
 extension.Other extensions 
ould be generated for a 
redal network, but the strongand the epistemi
 extensions are the only ones that have re
eived systemati
attention so far in the literature. 7 Strong extensions were already impli
it inthe �rst proposals for 
redal networks [20,97℄ and have re
eived 
onsiderableattention [2,21,30,45,109℄. Comparatively few results are known 
on
erningepistemi
 extensions [31,35℄.Given a 
redal network with lo
al separately spe
i�ed 
redal setsK(Xijpa(Xi)),the strong extension of the network is the 
onvex hull of the set 
ontaining alljoint distributions that fa
torize asYi p(Xijpa(Xi)) ; (1)where the 
onditional distributions p(Xijpa(Xi) = �k) are sele
ted from the7 A note on terminology: Couso et al. employ the term independen
e in the sele
tionto refer to strong independen
e and reserve strong independen
e to the more spe
i�

ase of strong extensions [26℄. 12



lo
al 
redal sets K(Xijpa(Xi) = �k) [32℄. If present, extensive 
onditional
redal sets L(Xijpa(Xi)) 
an be used in Expression (1): Instead of sele
t-ing p(Xijpa(Xi) = �k) from K(Xijpa(Xi) = �k), one would then sele
t thefun
tion p(Xijpa(Xi)) from the set of fun
tions L(Xijpa(Xi)).The examples dis
ussed in Se
tion 4 showed inferen
es 
omputed with respe
tto strong extensions of the networks.Strong extensions are appropriate in a variety of 
ontexts. In parti
ular, strongextensions are appropriate when one views a 
redal set as a bla
k-box 
on-taining the \true" probability measure [54℄. Under this \sensitivity analysis"interpretation, there is a Bayesian network hidden \inside" a 
redal network,and it makes sense to restri
t our attention to joint distributions that satisfythe Markov property for standard sto
hasti
 independen
e. Strong extensionsare also appropriate when several experts spe
ifying a 
redal network disagreeabout probability values but agree that every a

eptable joint distributionshould satisfy standard sto
hasti
 independen
e (�rst example in Se
tion 4).An appealing property of strong extensions is that they display the same sep-aration properties of standard Bayesian networks (that is, d-separation holdsin strong extensions) [31℄. A �nal argument in favor of strong extensions isthat they are not ex
lusively dependent on strong independen
e; it is pos-sible to generate strong extensions from 
onditions involving only epistemi
independen
e [32℄.6 Inferen
e and learning with strong extensionsGiven a 
redal network, one may be interested in lower/upper probabilitiesor expe
tations, or one may be interested in parti
ular values of variablesthat \dominate" other values a

ording to some 
riterion. Often the terminferen
e is used to indi
ate the 
omputation of lower/upper probabilities insome extension. In this 
ase, if Xq is a query variable and XE represents aset of observed variables, the inferen
e is the 
omputation of tight bounds forp(XqjXE) for one or more values of Xq.For inferen
es with strong extensions, it is known that the distributions thatminimize/maximize p(XqjXE) belong to the set of verti
es of the extension[45℄. 8 The diÆ
ulty fa
ed by inferen
e algorithms is the potentially enormousnumber of verti
es that a strong extension may have, even for small networks.8 This is valid when unobserved variables are assumed to be missing at random; ifthe \missingness me
hanism" is entirely unknown, 
omparisons between probabil-ities 
an often be produ
ed eÆ
iently even for densely 
onne
ted 
redal networks[42℄. 13



For example, take the network in Figure 1, and assume that X, Y and Zhave four values ea
h, with separately spe
i�ed 
redal sets with four verti
esea
h. There are then 49 potential verti
es of the strong extension (that is,49 di�erent distributions following Expression (1)). The only 
redal networksthat are amenable to eÆ
ient exa
t inferen
es are polytree-shaped networkswith binary variables [45℄. Other networks, even polytree-shaped ones, fa
etremendous 
omputational 
hallenges [36℄. Exa
t inferen
e algorithms typi-
ally examine potential verti
es of the strong extension to produ
e the re-quired lower/upper values [15,21,31,36,37℄. Approximate inferen
e algorithms
an produ
e either outer or inner approximations: the former produ
e intervalsthat en
lose the 
orre
t probability interval between lower and upper prob-abilities [19,38,57,97℄, while the latter produ
e intervals that are en
losed bythe 
orre
t probability interval [2,15,16,30℄. Some of these algorithms empha-size enumeration of verti
es, while others resort to optimization te
hniques (as
omputation of lower/upper values for p(XqjXE) is equivalent to minimiza-tion/maximization of a fra
tion 
ontaining polynomials in probability values).Rather detailed overviews of inferen
e algorithms for impre
ise probabilitieshave been published by Cano and Moral [17,18℄.
Pro
edures that \learn" 
redal networks from data have been investigated inthe last de
ade. A few s
enarios have been explored in the literature. Thesimplest situation is to learn a 
redal network for a given graph, using a 
om-plete database of 
ategori
al variables and Impre
ise Diri
hlet priors [29,115℄.Another s
enario is to learn a 
redal network for a given graph, 
ategori
alvariables, and missing data [84,110,112℄. Finally, the most 
omplex situationis to learn the graph and the lo
al 
redal sets from 
omplete or missing data[14,110,114℄ | there is a great la
k of methods that learn general graphi
alstru
tures dire
tly from data. Most of the e�ort in learning 
redal networkshas been so far dire
ted to 
redal 
lassi�
ation (that is, to use a 
redal networkfor 
lassi�
ation); in fa
t, some of the most su

essful appli
ations of 
redalnetworks have appeared in the 
ontext of 
redal 
lassi�
ation [84,113℄. Credal
lassi�
ation di�ers from Bayesian 
lassi�
ation in that an observation maybe labeled with a set of 
lasses | all 
lasses that are not dominated by anyother 
lasses with respe
t to posterior probability. Thus 
redal 
lassi�
ationrequires more than just 
omputation of minima and maxima of probabilities;
redal 
lassi�
ation requires that undominated 
lasses be identi�ed through
omparisons between 
lasses. Classi�
ation is an important topi
 for appli-
ation of 
redal networks, with a huge potential and still a great number of
hallenges. 14



7 Con
lusionThe purpose of this paper was to present a broad overview of graphi
al modelsfor impre
ise probabilities and a more detailed dis
ussion of 
redal networks.Su
h graphi
al models are quite 
exible in their representational power andyet are quite 
ompa
t and easy to 
onstru
t. The theory of 
redal networkshas re
eived 
onsiderable attention and is now rea
hing a reasonable degreeof maturity.Given the breadth of the �eld, this overview is 
ertain to have missed relevantwork on graphi
al models and impre
ise probabilities. It is hoped that su
homissions are not many and 
an be forgiven. In any 
ase, two topi
s should atleast be mentioned: graphi
al models for possibility measures, and graphi
almodels that handle zero lower probabilities. Both topi
s are important andraise a large number of 
on
eptual and te
hni
al problems; they were omittedfor la
k of spa
e. A vast literature on graphi
al models for possibility measures
an be 
onsulted [48℄. With regard to zero lower probabilities [25,102,105℄,there has been re
ent work on this subje
t, and new 
on
epts and algorithmshave been proposed to handle su
h situations [100,101℄.Many types of graphi
al models have been little explored, parti
ularly modelsthat deal with de
ision-making. There have also been few available softwarepa
kages for manipulation of graphi
al models with impre
ise probabilities.There is 
ertainly no shortage of potential 
ontributions to be made regardinggraphi
al models for impre
ise probabilities.
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