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and didati | at the expense of formality and tehnial detail. Some his-torial perspetive is provided in Setion 3, but no omprehensive review isattempted. The strategy here is to fous on a partiular type of model, redalnetworks, and to use this model to onvey the entral hallenges and promisesof graphial tehniques.2 Graphial models for preise probabilitiesThe purpose of this setion is to �x key terminology and to indiate the sopeof the paper. A graph is an objet onsisting of a set of nodes and a set ofedges onneting nodes [7℄. In this paper we fous on graphial models thathave nodes/edges assoiated with statistial objets.A Bayesian network onsists of a direted ayli graph where eah nodeis assoiated with a random variable and with onditional probability dis-tributions [79℄. (Note that here we start using \node" and \variable" inter-hangeably.) Edges indiate diret dependeny, and are often embodied with aausal interpretation: an edge fromX to Y suggests that X somehow auses Y[80,95℄. An inuene diagram is similar to a Bayesian network, but is equippedwith deision and value nodes; the purpose of an inuene diagram is to repre-sent sequential deision problems in ompat form [24,63℄. A Markov random�eld onsists of an undireted graph where eah lique (ompletely onnetedgroup of nodes) is assoiated with a non-negative funtion, alled a poten-tial [67℄. Other models ombine direted, undireted, bidiretional and dottededges [27,28,70,80,95℄. In Markov Deision Proesses, eah node represents astate, and the proess an transit from a state to the next state by a numberof paths (the edges) [11,82℄. Typially these graphial models are used eitherto produe inferenes (the omputation of the posterior probability for oneor more events) or to produe on�gurations of variables that maximize someappropriate quantity.Central to all these graphial models are Markov properties. A Markov prop-erty relates graphial entities to probabilisti independene relations. For ex-ample, take the graph in Figure 1. What is the \Bayesian network" inter-pretation for this graph? The answer is given by the Markov property forBayesian networks: the nondesendant nonparents of a node are independentof the node onditional on the node's parents. For instane, the graph in Fig-ure 1 imposes independene of X and Z onditional on Y . Markov random�elds, Markov Deision Proesses, and other graphial models display di�erentMarkov properties.In short, we have that: (1) Graphs provide a ompat and eÆient languageto represent multivariate statistial models; and (2) The interpretation of a2



����X ����Y ����Z- -Fig. 1. A simple direted ayli graph.graphial model is given by a Markov property.3 Graphial models for impreise probabilitiesProbabilities are often stated through assessments suh as P (A) � 1=2, P (B) =3=10, P (A [ B) � 4=5, for events A and B. One of the reurring problems inprobability theory is how to handle a olletion of assessments that an be sat-is�ed by more than one probability measure. The answer already artiulatedby Boole [10℄ is that the assessments imply probability intervals over events.For example, P (A) � 1=2 and P (A [ B) � 4=5 imply P (B) 2 [3=10; 1℄. Suh aformulation has been revisited and re�ned by many researhers, among whihde Finetti [43℄ and other statistiians of the \de Finettian shool" [13℄, andHailperin [58℄ and Nilsson (who gave it the name probabilisti logi) [77℄. Therules of probabilisti logi have often been depited through graph fragments[47℄; however these graph fragments have funtioned only as visual represen-tations. A similar situation has ourred in expert systems like MYCIN [94℄ orINFERNO [83℄, where rules requiring manipulation of impreise beliefs havebeen often represented graphially, but have not inherited any semantis fromthe graphial forms.The development of Bayesian networks during the eighties suggested newways to ombine unertain reasoning with graphs. Algorithms for inferenein polytree-shaped Bayesian networks [79℄ inspired a number of inuential pa-pers on hierarhial hypothesis spaes. To understand the idea, onsider Figure2, whih presents a piee of medial knowledge disussed by Gordon and Short-li�e [55℄. Eah node in this �gure represents an event that is deomposed intoits hildren nodes. A degree of support an be attributed to any node, indiat-ing how muh that node is believed to be true. Gordon and Shortli�e proposeda representation of interval-valued degrees of support based on belief fun-tions, and a mehanism for ombining belief funtions based on Dempster rule.Shafer, Shenoy and o-workers have developed message-passing algorithms forombination of belief funtions in hierarhial hypotheses spaes [89{93℄, andthe framework has been gradually extended in various diretions [3,68℄.Several other graphial models for impreise probabilities surfaed around1990. Fertig and Breese derived approximate inferene algorithms for inu-ene diagrams assoiated with lower bounds on probability values [12,46℄.Van der Gaag started from a di�erent mix: instead of direted ayli graphs3



����J����I ����EHHHj��������H ����C��R��	 ����G ����P��R��	 J : JaundieI: IntrahepatiE: ExtrahepatiH: HepatitisC: CirrosisG: Gall-stoneP : Panreati-anerFig. 2. Graphial model disussed by Gordon and Shortli�e [55℄; nodes representevents, and leaves are exhaustive and mutually exlusive.and probability intervals, she adopted undireted models and general linearonstraints on probability values [99℄ | the result of these hoies is a lin-ear programming algorithm that an eÆiently produe inferenes. A di�erentsheme was proposed by Wellman: instead of probability values, one shoulduse qualitative notions suh as \ourrene of event A inreases the probabil-ity of event B" [106℄. The result is a qualitative Bayesian network; researh onthis topi remains strong sine its ineption [8℄. Yet another proposal for rep-resentation of impreise probabilisti knowledge is the \order-of-magnitude"approah, where probabilities are represented up to ordinal or in�nitesimalvalues [49,96℄. Qualitative and ordinal probabilities also reeived graphialformulations [40,85℄, and eliitation proedures that an handle both quanti-tative and qualitative assessments have also generated steady interest [44,86℄.As a short digression, note that during the eighties and nineties many on-epts of onditioning for probability intervals and 2-monotone apaities wereformulated and disussed in the literature [22,60℄. Quite a few of those on-epts faed tehnial and semanti diÆulties, and this situation probablyontributed to delays in the theory of graphial models for impreise proba-bility. Clearly, it is diÆult to onstrut a graphial model when the underlyingunertainty alulus annot properly handle onditioning.The beginning of the nineties witnessed the �rst publiations expliitly om-bining general sets of probability measures and direted ayli graphs [20,97℄.At that time the �eld of robust Bayesian statistis was atively using sets ofprobability measures to represent perturbations in statistial models [5℄. Dif-�ulties that plagued probability intervals and 2-monotone apaities werefound not to apply to sets of probability measures, and a rather ompletetheory of impreise probabilities, that extensively employed sets of probabil-ity measures, was published by Walley in 1991 [102℄. These developments ledto a marriage between sets of probabilities and direted ayli graphs thathas been strong ever sine. The next setion disusses the theory of diretedayli graphs assoiated with sets of probability measures | strutures oftenreferred to as redal networks.A few additional researh e�orts deserve mention in this brief historial a-ount, at the risk of missing some relevant ontributions. Chrisman [23℄ has4



presented a quite original model for undireted graphs assoiated with prob-ability intervals. Lukasiewiz [73℄, Thone et al. [98℄ and Luo et al. [74℄ havepresented graphial models that extend probabilisti logi. Several of thosealgorithmi developments are disussed in an overview paper by Cano andMoral [18℄; their detailed review is quite omplementary to the present paper.Relatively little attention has been given to graphial models that inorporatedeisions and impreise probabilities | however there has been reent e�ortby Danielson et al. [39℄ to proess deision trees and inuene diagrams assoi-ated with linear onstraints on probability values (the DeideIT program hasbeen produed in the ourse of that researh). A related reent developmentis the onstrution of lassi�ation trees with sets of probabilities [1℄.Finally, the lass of impreise Markov Deision Proesses should be mentioned.An impreise Markov Deision Proess is obtained when the probabilisti re-quirements on Markov Deision Proesses are relaxed: the transition from ur-rent to next state is modeled by a set of probability measures or by probabilityintervals. Work on impreise Markov Deision Proesses started in the seven-ties [87℄ and has been revisited a few times sine then [9,52,61,107,108℄. Up tonow there have not been \graphial impreise Markov Deision Proesses" inthe literature.4 Credal networksA redal network is a graphial model that assoiates nodes and variableswith sets of probability measures. An informal way to onvey the ontent ofa redal network is to think about it as a representation for a set of Bayesiannetworks over a �xed set of variables. Note that there is no ommitment as towhether one of these Bayesian networks is the \orret" one.The most obvious motivation for redal networks is to have them as \relaxed"Bayesian networks. In a Bayesian network, the Markov property implies thatwe must speify a (unique) probability distribution for every variable ondi-tional on any on�guration of the variable's parents. This may be a diÆultproess for several reasons. Existing beliefs may be inomplete or vague, orthere may be no resoures to gather/proess enough information so as to reaha preise probability assessment. Even if experimental data are available, onemay not be omfortable with point estimates and may selet probability inter-vals as estimates. It may also be the ase that a group of individuals is respon-sible for speifying probability values, and these individuals annot agree onpreise probability values. Hene we may want to speify a set of probabilitydistributions for every variable onditional on the variable's parents. When wedo so, we obtain a redal network. 5



����A ����B����E +���R ��	����C ����D ����F����G ��	��R ����H ��	��R ����I ��	��R����J ��	 ����K ��	��R ����L?
P (H = hjD = d;E = e) = 0:2P (H = hjD = d;E = :e) = 0:9P (H = hjD = :d;E = e) = 0:8P (H = hjD = :d;E = :e) = 0:8P (J = jjG = g) = 0:1P (J = jjG = :g) = 0:9P (K = kjG = g;H = h) = 0:3P (K = kjG = g;H = :h) = 0:8P (K = kjG = :g;H = h) = 0:2P (K = kjG = :g;H = :h) = 0:9Fig. 3. An example redal network.More than just \relaxed" Bayesian networks, redal networks o�er a knowl-edge representation tool. Most people do use probability intervals and quali-tative relationships in their dealings with unertainty; few people an assessprobability values up to their third deimal plae. Moreover, most people anhandle disagreeing soures of probabilisti assessments, even when suh a mixdoes not lead to a single probability measure. People an handle impreiseprobabilities; a exible and general knowledge representation tool for arti�ialintelligene appliations should do just as muh.It is interesting at this point to present examples of redal networks, leaving amore detailed de�nition of onepts to Setion 5. Two arti�ial examples aredisussed in the remainder of this setion, so as to illustrate the basi elementsand the representational power of redal networks. Readers interested in realappliations may onsult the work of Antonui et al [4℄ for a omplex redalnetwork onstruted both from expert opinions and data, and the work ofZa�alon et al [115℄ for a redal network onstruted from data and used forlassi�ation in a medial senario.Consider �rst the graph in Figure 3. All variables are Boolean; a variable Xhas values x and :x. Suppose the network in Figure 3 was reated by severalexperts, reeting a multitude of views and beliefs.An expert was hired to establish the probabilities for variables A, B and E.The expert �rst delared that A was \probable" while B was \between im-probable and impossible." Using Renooij's verbal sale [86℄ as guidane, theseverbal statements were translated to P (A = a) 2 [0:75; 0:85℄ and P (B = b) 2[0:0; 0:15℄. The expert then applied the onventions of qualitative networks top(EjA;B) [106℄, as indiated by the plus and minus signs in Figure 3. Thatis, the expert indiated thatP (E = ejA = a; B = b)�P (E = ejA = :a; B = b) ;P (E = ejA = a; B = :b)�P (E = ejA = :a; B = :b) ;P (E = ejA = a; B = b)�P (E = ejA = a; B = :b) ;P (E = ejA = :a; B = b)�P (E = ejA = :a; B = :b) :6



The expert ould also state the preise assessment P (E = ejA = a; B = b) =0:4. The largest set of funtions P (EjA;B) that satisfy these qualitativeand numeri assessments has seven verties. Eah vertex is spei�ed by atriplet ontaining values P (E = ejA = a; B = :b), P (E = ejA = :a; B = b),and P (E = ejA = :a; B = :b); the seven verties are given by the follow-ing triplets: [0; 0:4; 0℄; [0; 1; 0℄; [0:4; 1; 0:4℄; [0; 0:4; 0:4℄; [0:4; 0:4; 0:4℄; [0; 1; 1℄;[0:4; 1; 1℄.A seond expert was hired to examine variables F , I and L. The expert as-sessed P (F = f) = 0:2. The expert then took a Noisy-OR funtion [79℄ tomodel p(IjE; F ), with \link" probabilities P (I = ijE = e; F = :f) = 0:9 andP (I = ijE = :e; F = f) = 0:8. The expert deided to have a \leak" proba-bility, but ould not assess its value preisely, and adopted an interval leakprobability of [0.1,0.2℄. To assess p(LjI), the expert onsulted a databasewith experiments, but she was unsure about priors for the estimates, andtook an Impreise Dirihlet Model [6,104,113℄ over them, produing inter-val estimates for P (L = ljI = i) and P (L = ljI = :i). The expert obtainedP (L = ljI = i) 2 [0:5; 0:6℄ and P (L = ljI = :i) 2 [0:4; 0:5℄.A group of three experts was then hired to model the remaining variables.The experts used a large database to obtain preise estimates for P (HjD;E),P (J jG), and P (KjG;H), shown in Figure 3. No data was available for C, D,and G. After muh disussion, the experts produed assessments P (C = ) �0:4, P (C = :) � 0:5, P (D = d) � 0:2, and P (D = :d) � 0:7. The expertsdid not agree at all on P (GjC;D); indiating �rst, seond and third opinionsas vetors (all in the same order), the opinions of the experts were:P (G = gjC = ;D = d)= [0:2; 0:3; 0:4℄;P (G = gjC = ;D = :d)= [0:7; 0:6; 0:5℄;P (G = gjC = :;D = d)= [1; 1; 1℄;P (G = gjC = :;D = :d)= [0:8; 0:9; 0:8℄:The experts reommended that, for every possible ombination of probabilityvalues within the eliited bounds and sets, the joint distribution should beprodued using the Markov ondition in the graph of Figure 3. Consider a fewinferenes with this network (an inferene here is the omputation of a tightinterval ontaining all possible values for the probability of an event). 1 Forexample, P (D = djA = :a; F = f;K = k) 2 [0:17; 0:45℄. Note that inferenesdo not assume more information than available in the model, but they do yield1 Inferenes were omputed with the JavaBayes system version 0.347, availableunder GPL from http://www.pmr.poli.usp.br/ltd/Software/javabayes. This systemontains a naive enumeration algorithm for manipulation of sets of probabilities.7



valuable information | we an say that P (D = djA = :a; F = f;K = k) issmaller than 0.5 if we need to make a deision onerning this value.The important point in this example is that the redal network summarizes alarge variety of assessments, translating di�erent kinds of beliefs into a uniformand understandable language. Qualitative, verbal, empirial and subjetiveinformation are all organized into a single struture.Consider a seond example, taken from Cozman et al. [34℄. The example isbased on Jaeger's version of the \Holmes problem," a situation that mixes �rst-order logi onstruts with probabilities [66℄. The story is this. If a person vlives in LA, then she may (probabilistially) sound the alarm, depending onwhether there is a burglary and whether there is an earthquake. If v does notlive in LA, then she may (probabilistially) sound the alarm in ase there is aburglary. Here v is a universally quanti�ed variable in a domain V, and the rela-tions alarm(v), lives-in(v,LA), burglary(v) and earthquake(LA) desribev's situation. To simplify the notation, denote alarm(v) by Av, lives-in(v,LA)by Lv, burglary(v) by Bv and earthquake(LA) by E. For eah relation Y ,either y or :y holds.Jaeger presents a model for the \Holmes problem" that is based on Bayesiannetworks [66℄. Jaeger uses the �rst-order desription of the \Holmes problem"to build a Bayesian network for any given domain | that is, given a domain,Jaeger's method produes a Bayesian network. Take a domain VH ontainingG and H and suh that lG holds; in this ase Jaeger's method onstruts thegraph in Figure 4. To do so, Jaeger's method assumes that(1) all probability values are preisely known;(2) P (avjlv; Bv; E) is a Noisy-OR funtion of Bv and E;(3) P (avj:lv; Bv; E) is independent of E.This strategy is learly attrative; however it fails if there is impreision inprobability values, or if there is disagreement about how to de�ne the distri-bution p(AvjLv; Bv; E). 2 In ase these assumptions fail, a redal network anbe used without diÆulties.Take Figure 4 and onsider the following assessments, whih attempt to trans-late the rather vague senario of the \Holmes problem":(1) P (e) 2 [0:01; 0:1℄.(2) P (bv) 2 [0:001; 0:01℄ for any v in the domain.(3) P (lv) 2 [0:05; 0:15℄ for any v in the domain.2 The automati resort to Noisy-OR funtions is somewhat arti�ial, and it is har-ateristi of methods that produe a single Bayesian network out of logial andprobabilisti onstruts [50,53,65,78,81℄. 8



(4) P (avjlv; bv;:e) = 0:9,P (avjlv;:bv; e) = 0:2,and P (avjlv; bv; e) � 0:9:that is, alarm with burglary and earthquake is more probable than alarmwith just burglary when v lives in LA.(5) P (avjlv;:bv;:e) 2 [0:0; 0:1℄:that is, there is a \leak" probability between 0 and 0.1 that the alarmsounds even with no burglary and no earthquake when v lives in LA.(6) P (avj:lv; bv; e) = 0:9,P (avj:lv; bv;:e) = 0:9,P (avj:lv;:bv; e) = 0:0:and P (avj:lv;:bv;:e) = 0:0:that is, probabilities are preise and do not depend on E when v doesnot live in LA.Suppose we take every possible ombination of probability values within theindiated bounds, and produe joint distributions using the Markov ondi-tion in the graph of Figure 4. We obtain P (aH) 2 [0:0001; 0:0253℄, P (aH je) 2[0:0108; 0:0388℄, P (aG) 2 [0:0029; 0:1179℄ and P (aGje) 2 [0:2007; 0:2080℄. Notethat inferenes produe rather small intervals; even though only a few as-sessments are used to build the redal network, the strutural assumptionsrepresented by the graph greatly onstrain probability values.In this example a redal network is used to mix logial statements with exibleprobabilisti assessments. An alternative way to ombine logial and proba-bilisti assessments would be to employ a probabilisti logi [47,58,59,72,77℄.However, it would be important to state assessments of independene as well| without suh assessments we annot give meaning to the beautifully onisegraphial representation in Figure 4. We would then fae the diÆulty thatinferene in general probabilisti logi with independene assessments is likelyto be higher than the omplexity of independene-free probabilisti logi |and the latter is already quite disheartening [72℄. How ould we then havea exible and ompat language to represent logial, probabilisti, and inde-pendene assessments? In short, we need a language that is more exible thantraditional probability theory, but more strutured than general probabilistilogi. Credal networks o�er one suh balaning at.5 The theory of redal sets and redal networksBefore we analyze in further detail the properties of redal networks, we shoulddisuss a few de�nitions. A set of probability measures is alled a redal set(from Levi's redal states [71℄). There is some debate on whether redal sets9



����BG����AG ����E? ���	 ����BH����AH ����LH?���R ���	Fig. 4. The network for the \Holmes problem" with domain VH = fG;Hg andassuming lG holds.should be losed or open [88,102℄, and whether redal sets should be onvex 3or not [69,71℄. In this paper a redal set an be losed or open, onvex ornon-onvex.A redal set de�ned by probability distributions p(X) is denoted by K(X).Given a redal setK(X) and a bounded funtion f(X), the upper and lower ex-petations of f(X) are de�ned respetively asE[f(X)℄ = supp(X)2K(X)Ep[f(X)℄and E[f(X)℄ = infp(X)2K(X) Ep[f(X)℄, where Ep[f(X)℄ indiates standard ex-petation. Upper and lower probabilities are de�ned similarly. A lower expeta-tion an be viewed as an assessment of the form Ep[f(X)℄ � E[f(X)℄ (that is,a linear onstraint on the spae of probability distributions for X). A redalset K and its onvex hull produe the same lower/upper expetations andlower/upper probabilities.The most ommonly adopted sheme for onditioning in redal sets is ele-mentwise Bayes rule (that is, onditioning is obtained by applying Bayes ruleto eah element of a redal set). 4 Suh an intuitive presription, alled thegeneralized Bayes rule by Walley [102,103℄, an be justi�ed axiomatially invarious ways [51,56,102℄. Note that if K(X) is onvex, then K(XjA) is onvexas well [71℄.There are two di�erent ways to represent onditioning with respet to randomvariables. First, onsider the olletion of separately spei�ed onditional redalsets fK(XjY = y) : y is a value of Y g. We denote this olletion of redalsets by K(XjY ). Seond, onsider the diret spei�ation of a set of funtionsp(XjY ); all suh a set an extensive onditional redal set, and denote itby L(XjY ). It should be lear that K(XjY ) and L(XjY ) are quite di�erentobjets; the �rst is a set of redal sets, and the seond is a single set offuntions. 5 In the �rst example in Setion 4, K(LjI) is separately spei�ed3 A redal set is onvex if, for any measures P1 and P2 in the set, the measure�P1 + (1� �)P2 is in the set for any � 2 [0; 1℄.4 Alternative shemes are disussed by Chrisman [22℄, Moral [75℄ and de Coomanand Za�alon [42℄.5 A note on terminology: Moral and Cano use the term onditioned to the valuesto indiate separately spei�ed redal sets (the latter term is used by Walley [102℄10



while L(EjA;B) is extensively spei�ed.A redal network onsists of a direted ayli graph, where eah node in thegraph is assoiated with a random variable, and where eah variable X isassoiated with onditional redal sets K(Xjpa(X)) or L(Xjpa(X)). The goalis to ombine these \loal" redal sets into a set of joint distributions satisfyinga Markov ondition on the graph. 6 To aomplish this, it is neessary to de�ne:(1) what is the Markov ondition on the graph; (2) how to ombine the loalredal sets. The remainder of this setion disusses these points.We start by disussing independene onepts in the ontext of redal sets.There are at least two possibilities (to simplify the disussion, we assume thatevery event has positive lower probability):� First, we may require fatorization for all distributions in the redal set(that is, p(X; Y ) = p(X) p(Y ) for all distributions). Suh a requirementimplies non-onvexity of the redal set. To remain agnosti with respet toonvexity, we may require fatorization just for the verties of the redal set.We then say that X and Y are strongly independent. Strong independeneis the most ommonly adopted onept in the literature; variants of thisonept were already impliit in Huber's work on frequentist robustness[64℄ and in the �rst proposals for redal networks [20,97℄.� Seond, we may require irrelevane of onditioning: We say that Y is epis-temially irrelevant to X if E[f(X)jY = y℄ = E[f(X)℄ for any boundedf(X) and any y. It turns out that epistemi irrelevane is not symmetri |Y may be epistemially irrelevant to X while X is not epistemially irrele-vant to Y [102℄. We say that X and Y are epistemially independent if X isepistemially irrelevant to Y and Y is epistemially irrelevant to X [102℄.The literature ontains a number of alternative de�nitions for independene[26,33,41℄; even though some uni�ation of onepts may be possible [32,76℄, itseems unlikely that a single onept will beome prevalent in all appliationsof redal sets. Note that suh onepts are often not equivalent; for example,strong independene implies epistemi independene, but not the onverse.There are several ways to de�ne onditional independene as well [76℄. Say thatX and Y are strongly independent onditional on Z if the verties of the redalset K(X; Y jZ = z) fatorize for every z. And say that X and Y are epistemi-and Cozman [31℄), and use onditional set and onditional information to indiateextensive onditional redal sets [76℄.6 Andersen and Hooker have disussed redal networks that ombine loal andnon-loal redal sets [2℄; the disussion here is restrited to networks ontainingonly loal sets. The advantage of using only loal sets is that it is always possibleto satisfy the Markov ondition disussed later; non-loal sets may be inonsistentwith the Markov ondition. 11



ally independent onditional on Z if E[f(X)jY = y; Z = z℄ = E[f(X)jZ = z℄for any bounded funtion f(X) and any (y; z), and E[g(Y )jX = x; Z = z℄ =E[g(Y )jZ = z℄ for any bounded funtion g(Y ) and any (x; z).Suppose we have a direted ayli graph, random variables X1; : : : ; Xn, \lo-al" redal sets (either separately or extensively spei�ed), and we have set-tled on a onept of independene. It seems reasonable to assume that everyvariable Xi assoiated with the graph is independent of its nondesendantnonparents given its parents. This is the Markov ondition for redal networks| note that the ondition depends on the adopted onept of independene.We then have all ingredients of a redal network: a graph, variables, redalsets, and a Markov ondition. Now we have to deide how to build a set ofjoint distributions over X1; : : : ; Xn out of these ingredients.In general, there may be several sets of joint distributions that are onsistentwith a given olletion of marginal and onditional redal sets. Any one of thesesets of joint distributions is alled an extension of the marginal and onditionalredal sets. Usually one is interested in the largest possible extension for agiven set of assessments (Walley refers to these extensions as \natural" ones[102℄). For a redal network, we might onsider the largest extension satisfyingthe Markov ondition as the \natural semantis" for the network. So we have:(1) the largest extension that satis�es the Markov ondition with respet tostrong independene | the strong extension;(2) the largest extension that satis�es the Markov ondition with respet toepistemi independene | the epistemi extension.Other extensions ould be generated for a redal network, but the strongand the epistemi extensions are the only ones that have reeived systematiattention so far in the literature. 7 Strong extensions were already impliit inthe �rst proposals for redal networks [20,97℄ and have reeived onsiderableattention [2,21,30,45,109℄. Comparatively few results are known onerningepistemi extensions [31,35℄.Given a redal network with loal separately spei�ed redal setsK(Xijpa(Xi)),the strong extension of the network is the onvex hull of the set ontaining alljoint distributions that fatorize asYi p(Xijpa(Xi)) ; (1)where the onditional distributions p(Xijpa(Xi) = �k) are seleted from the7 A note on terminology: Couso et al. employ the term independene in the seletionto refer to strong independene and reserve strong independene to the more spei�ase of strong extensions [26℄. 12



loal redal sets K(Xijpa(Xi) = �k) [32℄. If present, extensive onditionalredal sets L(Xijpa(Xi)) an be used in Expression (1): Instead of selet-ing p(Xijpa(Xi) = �k) from K(Xijpa(Xi) = �k), one would then selet thefuntion p(Xijpa(Xi)) from the set of funtions L(Xijpa(Xi)).The examples disussed in Setion 4 showed inferenes omputed with respetto strong extensions of the networks.Strong extensions are appropriate in a variety of ontexts. In partiular, strongextensions are appropriate when one views a redal set as a blak-box on-taining the \true" probability measure [54℄. Under this \sensitivity analysis"interpretation, there is a Bayesian network hidden \inside" a redal network,and it makes sense to restrit our attention to joint distributions that satisfythe Markov property for standard stohasti independene. Strong extensionsare also appropriate when several experts speifying a redal network disagreeabout probability values but agree that every aeptable joint distributionshould satisfy standard stohasti independene (�rst example in Setion 4).An appealing property of strong extensions is that they display the same sep-aration properties of standard Bayesian networks (that is, d-separation holdsin strong extensions) [31℄. A �nal argument in favor of strong extensions isthat they are not exlusively dependent on strong independene; it is pos-sible to generate strong extensions from onditions involving only epistemiindependene [32℄.6 Inferene and learning with strong extensionsGiven a redal network, one may be interested in lower/upper probabilitiesor expetations, or one may be interested in partiular values of variablesthat \dominate" other values aording to some riterion. Often the terminferene is used to indiate the omputation of lower/upper probabilities insome extension. In this ase, if Xq is a query variable and XE represents aset of observed variables, the inferene is the omputation of tight bounds forp(XqjXE) for one or more values of Xq.For inferenes with strong extensions, it is known that the distributions thatminimize/maximize p(XqjXE) belong to the set of verties of the extension[45℄. 8 The diÆulty faed by inferene algorithms is the potentially enormousnumber of verties that a strong extension may have, even for small networks.8 This is valid when unobserved variables are assumed to be missing at random; ifthe \missingness mehanism" is entirely unknown, omparisons between probabil-ities an often be produed eÆiently even for densely onneted redal networks[42℄. 13



For example, take the network in Figure 1, and assume that X, Y and Zhave four values eah, with separately spei�ed redal sets with four vertieseah. There are then 49 potential verties of the strong extension (that is,49 di�erent distributions following Expression (1)). The only redal networksthat are amenable to eÆient exat inferenes are polytree-shaped networkswith binary variables [45℄. Other networks, even polytree-shaped ones, faetremendous omputational hallenges [36℄. Exat inferene algorithms typi-ally examine potential verties of the strong extension to produe the re-quired lower/upper values [15,21,31,36,37℄. Approximate inferene algorithmsan produe either outer or inner approximations: the former produe intervalsthat enlose the orret probability interval between lower and upper prob-abilities [19,38,57,97℄, while the latter produe intervals that are enlosed bythe orret probability interval [2,15,16,30℄. Some of these algorithms empha-size enumeration of verties, while others resort to optimization tehniques (asomputation of lower/upper values for p(XqjXE) is equivalent to minimiza-tion/maximization of a fration ontaining polynomials in probability values).Rather detailed overviews of inferene algorithms for impreise probabilitieshave been published by Cano and Moral [17,18℄.
Proedures that \learn" redal networks from data have been investigated inthe last deade. A few senarios have been explored in the literature. Thesimplest situation is to learn a redal network for a given graph, using a om-plete database of ategorial variables and Impreise Dirihlet priors [29,115℄.Another senario is to learn a redal network for a given graph, ategorialvariables, and missing data [84,110,112℄. Finally, the most omplex situationis to learn the graph and the loal redal sets from omplete or missing data[14,110,114℄ | there is a great lak of methods that learn general graphialstrutures diretly from data. Most of the e�ort in learning redal networkshas been so far direted to redal lassi�ation (that is, to use a redal networkfor lassi�ation); in fat, some of the most suessful appliations of redalnetworks have appeared in the ontext of redal lassi�ation [84,113℄. Credallassi�ation di�ers from Bayesian lassi�ation in that an observation maybe labeled with a set of lasses | all lasses that are not dominated by anyother lasses with respet to posterior probability. Thus redal lassi�ationrequires more than just omputation of minima and maxima of probabilities;redal lassi�ation requires that undominated lasses be identi�ed throughomparisons between lasses. Classi�ation is an important topi for appli-ation of redal networks, with a huge potential and still a great number ofhallenges. 14



7 ConlusionThe purpose of this paper was to present a broad overview of graphial modelsfor impreise probabilities and a more detailed disussion of redal networks.Suh graphial models are quite exible in their representational power andyet are quite ompat and easy to onstrut. The theory of redal networkshas reeived onsiderable attention and is now reahing a reasonable degreeof maturity.Given the breadth of the �eld, this overview is ertain to have missed relevantwork on graphial models and impreise probabilities. It is hoped that suhomissions are not many and an be forgiven. In any ase, two topis should atleast be mentioned: graphial models for possibility measures, and graphialmodels that handle zero lower probabilities. Both topis are important andraise a large number of oneptual and tehnial problems; they were omittedfor lak of spae. A vast literature on graphial models for possibility measuresan be onsulted [48℄. With regard to zero lower probabilities [25,102,105℄,there has been reent work on this subjet, and new onepts and algorithmshave been proposed to handle suh situations [100,101℄.Many types of graphial models have been little explored, partiularly modelsthat deal with deision-making. There have also been few available softwarepakages for manipulation of graphial models with impreise probabilities.There is ertainly no shortage of potential ontributions to be made regardinggraphial models for impreise probabilities.
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