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Abstract

This paper presents an overview of graphical models that can handle imprecision in
probability values. The paper first reviews basic concepts and presents a brief his-
torical account of the field. The main characteristics of the credal network model are
then discussed, as this model has received considerable attention in the literature.
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1 Introduction

Geographic, biologic, economic, and many other kinds of relations are rou-
tinely depicted with graphs. Consequently it should not be surprising that
graphs are also employed to represent interactions among random variables:
for example, Bayesian networks and Markov random fields use graph-theoretic
concepts to represent complex statistical situations. Perhaps the most pro-
found contribution of graph-theoretic (“graphical”) methods in probabilistic
modeling has been a way of thinking that emphasizes locality of interactions
as the key to compactness and efficiency. Graphs form a language; this lan-

guage is visually pleasant and computationally efficient. What else could be
asked for?

Researchers interested in non probabilistic calculi have not dismissed the suc-
cess of graphical models. Imprecise probabilities and graphs have been married
quite a few times, either because one wishes to extend the success of standard
graphical models to the realm of imprecise probabilities, or because one thinks
that standard graphical models are unrealistic unless they can handle impre-
cision in probability values. This paper offers an overview of graphical models
aimed at imprecise probabilities, with the primary intent to be introductory
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and didactic — at the expense of formality and technical detail. Some his-
torical perspective is provided in Section 3, but no comprehensive review is
attempted. The strategy here is to focus on a particular type of model, credal
networks, and to use this model to convey the central challenges and promises
of graphical techniques.

2 Graphical models for precise probabilities

The purpose of this section is to fix key terminology and to indicate the scope
of the paper. A graph is an object consisting of a set of nodes and a set of
edges connecting nodes [7]. In this paper we focus on graphical models that
have nodes/edges associated with statistical objects.

A Bayesian network consists of a directed acyclic graph where each node
is associated with a random variable and with conditional probability dis-
tributions [79]. (Note that here we start using “node” and “variable” inter-
changeably.) Edges indicate direct dependency, and are often embodied with a
causal interpretation: an edge from X to Y suggests that X somehow causes Y
[80,95]. An influence diagram is similar to a Bayesian network, but is equipped
with decision and value nodes; the purpose of an influence diagram is to repre-
sent sequential decision problems in compact form [24,63]. A Markov random
field consists of an undirected graph where each clique (completely connected
group of nodes) is associated with a non-negative function, called a poten-
tial [67]. Other models combine directed, undirected, bidirectional and dotted
edges [27,28,70,80,95]. In Markov Decision Processes, each node represents a
state, and the process can transit from a state to the next state by a number
of paths (the edges) [11,82]. Typically these graphical models are used either
to produce inferences (the computation of the posterior probability for one
or more events) or to produce configurations of variables that maximize some
appropriate quantity.

Central to all these graphical models are Markov properties. A Markov prop-
erty relates graphical entities to probabilistic independence relations. For ex-
ample, take the graph in Figure 1. What is the “Bayesian network” inter-
pretation for this graph? The answer is given by the Markov property for
Bayesian networks: the nondescendant nonparents of a node are independent
of the node conditional on the node’s parents. For instance, the graph in Fig-
ure 1 imposes independence of X and Z conditional on Y. Markov random
fields, Markov Decision Processes, and other graphical models display different
Markov properties.

In short, we have that: (1) Graphs provide a compact and efficient language
to represent multivariate statistical models; and (2) The interpretation of a
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Fig. 1. A simple directed acyclic graph.

graphical model is given by a Markov property.

3 Graphical models for imprecise probabilities

Probabilities are often stated through assessmentssuch as P(A) < 1/2, P(B) =
3/10, P(AU B) > 4/5, for events A and B. One of the recurring problems in
probability theory is how to handle a collection of assessments that can be sat-
isfied by more than one probability measure. The answer already articulated
by Boole [10] is that the assessments imply probability intervals over events.
For example, P(A) < 1/2 and P(AU B) > 4/5imply P(B) € [3/10,1]. Such a
formulation has been revisited and refined by many researchers, among which
de Finetti [43] and other statisticians of the “de Finettian school” [13], and
Hailperin [58] and Nilsson (who gave it the name probabilistic logic) [77]. The
rules of probabilistic logic have often been depicted through graph fragments
[47]; however these graph fragments have functioned only as visual represen-
tations. A similar situation has occurred in expert systems like MYCIN [94] or
INFERNO [83], where rules requiring manipulation of imprecise beliefs have
been often represented graphically, but have not inherited any semantics from
the graphical forms.

The development of Bayesian networks during the eighties suggested new
ways to combine uncertain reasoning with graphs. Algorithms for inference
in polytree-shaped Bayesian networks [79] inspired a number of influential pa-
pers on hierarchical hypothesis spaces. To understand the idea, consider Figure
2, which presents a piece of medical knowledge discussed by Gordon and Short-
liffe [55]. Each node in this figure represents an event that is decomposed into
its children nodes. A degree of support can be attributed to any node, indicat-
ing how much that node is believed to be true. Gordon and Shortliffe proposed
a representation of interval-valued degrees of support based on belief func-
tions, and a mechanism for combining belief functions based on Dempster rule.
Shafer, Shenoy and co-workers have developed message-passing algorithms for
combination of belief functions in hierarchical hypotheses spaces [89-93], and
the framework has been gradually extended in various directions [3,68].

Several other graphical models for imprecise probabilities surfaced around
1990. Fertig and Breese derived approximate inference algorithms for influ-
ence diagrams associated with lower bounds on probability values [12,46].
Van der Gaag started from a different mix: instead of directed acyclic graphs
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Fig. 2. Graphical model discussed by Gordon and Shortliffe [55]; nodes represent
events, and leaves are exhaustive and mutually exclusive.

and probability intervals, she adopted undirected models and general linear
constraints on probability values [99] — the result of these choices is a lin-
ear programming algorithm that can efficiently produce inferences. A different
scheme was proposed by Wellman: instead of probability values, one should
use qualitative notions such as “occurrence of event A increases the probabil-
ity of event B” [106]. The result is a qualitative Bayesian network; research on
this topic remains strong since its inception [8]. Yet another proposal for rep-
resentation of imprecise probabilistic knowledge is the “order-of-magnitude”
approach, where probabilities are represented up to ordinal or infinitesimal
values [49,96]. Qualitative and ordinal probabilities also received graphical
formulations [40,85], and elicitation procedures that can handle both quanti-
tative and qualitative assessments have also generated steady interest [44,86].

As a short digression, note that during the eighties and nineties many con-
cepts of conditioning for probability intervals and 2-monotone capacities were
formulated and discussed in the literature [22,60]. Quite a few of those con-
cepts faced technical and semantic difficulties, and this situation probably
contributed to delays in the theory of graphical models for imprecise proba-
bility. Clearly, it is difficult to construct a graphical model when the underlying
uncertainty calculus cannot properly handle conditioning.

The beginning of the nineties witnessed the first publications explicitly com-
bining general sets of probability measures and directed acyclic graphs [20,97].
At that time the field of robust Bayesian statistics was actively using sets of
probability measures to represent perturbations in statistical models [5]. Dif-
ficulties that plagued probability intervals and 2-monotone capacities were
found not to apply to sets of probability measures, and a rather complete
theory of imprecise probabilities, that extensively employed sets of probabil-
ity measures, was published by Walley in 1991 [102]. These developments led
to a marriage between sets of probabilities and directed acyclic graphs that
has been strong ever since. The next section discusses the theory of directed
acyclic graphs associated with sets of probability measures — structures often
referred to as credal networks.

A few additional research efforts deserve mention in this brief historical ac-
count, at the risk of missing some relevant contributions. Chrisman [23] has



presented a quite original model for undirected graphs associated with prob-
ability intervals. Lukasiewicz [73], Thone et al. [98] and Luo et al. [74] have
presented graphical models that extend probabilistic logic. Several of those
algorithmic developments are discussed in an overview paper by Cano and
Moral [18]; their detailed review is quite complementary to the present paper.
Relatively little attention has been given to graphical models that incorporate
decisions and imprecise probabilities — however there has been recent effort
by Danielson et al. [39] to process decision trees and influence diagrams associ-
ated with linear constraints on probability values (the DecidelT program has
been produced in the course of that research). A related recent development
is the construction of classification trees with sets of probabilities [1].

Finally, the class of imprecise Markov Decision Processesshould be mentioned.
An imprecise Markov Decision Process is obtained when the probabilistic re-
quirements on Markov Decision Processes are relaxed: the transition from cur-
rent to next state is modeled by a set of probability measures or by probability
intervals. Work on imprecise Markov Decision Processes started in the seven-
ties [87] and has been revisited a few times since then [9,52,61,107,108]. Up to
now there have not been “graphical imprecise Markov Decision Processes” in
the literature.

4 Credal networks

A credal network is a graphical model that associates nodes and variables
with sets of probability measures. An informal way to convey the content of
a credal network is to think about it as a representation for a set of Bayesian
networks over a fized set of variables. Note that there is no commitment as to
whether one of these Bayesian networks is the “correct” one.

The most obvious motivation for credal networks is to have them as “relaxed”
Bayesian networks. In a Bayesian network, the Markov property implies that
we must specify a (unique) probability distribution for every variable condi-
tional on any configuration of the variable’s parents. This may be a difficult
process for several reasons. Existing beliefs may be incomplete or vague, or
there may be no resources to gather/process enough information so as to reach
a precise probability assessment. Even if experimental data are available, one
may not be comfortable with point estimates and may select probability inter-
vals as estimates. It may also be the case that a group of individuals is respon-
sible for specifying probability values, and these individuals cannot agree on
precise probability values. Hence we may want to specify a set of probability
distributions for every variable conditional on the variable’s parents. When we
do so, we obtain a credal network.



P(H=hD=d,E=¢e)=0.2
P(H=h|D=d,E=-¢)=0.9
P(H=h|D=-d,E=e)=08
P(H =h|D =—d,E = —¢) = 0.8
P(J=j|G=g)=0.1
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P(K =k|G=g,H=h)=03
P(K =k|G=g,.H=-h)=0.8
P(K =kG=~g,H=h)=02
P(K = kG =~g,H=-=h) =09

Fig. 3. An example credal network.

More than just “relaxed” Bayesian networks, credal networks offer a knowl-
edge representation tool. Most people do use probability intervals and quali-
tative relationships in their dealings with uncertainty; few people can assess
probability values up to their third decimal place. Moreover, most people can
handle disagreeing sources of probabilistic assessments, even when such a mix
does not lead to a single probability measure. People can handle imprecise
probabilities; a flexible and general knowledge representation tool for artificial
intelligence applications should do just as much.

It is interesting at this point to present examples of credal networks, leaving a
more detailed definition of concepts to Section 5. Two artificial examples are
discussed in the remainder of this section, so as to illustrate the basic elements
and the representational power of credal networks. Readers interested in real
applications may consult the work of Antonucci et al [4] for a complex credal
network constructed both from expert opinions and data, and the work of
Zaffalon et al [115] for a credal network constructed from data and used for
classification in a medical scenario.

Consider first the graph in Figure 3. All variables are Boolean; a variable X
has values z and —z. Suppose the network in Figure 3 was created by several
experts, reflecting a multitude of views and beliefs.

An expert was hired to establish the probabilities for variables A, B and F.
The expert first declared that A was “probable” while B was “between im-
probable and impossible.” Using Renooij’s verbal scale [86] as guidance, these
verbal statements were translated to P(A = a) € [0.75,0.85] and P(B =) €
[0.0,0.15]. The expert then applied the conventions of qualitative networks to
p(E|A, B) [106], as indicated by the plus and minus signs in Figure 3. That
is, the expert indicated that

P(E=e|lA=a,B=0)
P(E = e|A=a,B = —b)
P(E=e|lA=a,B=0)
P(E = e|A=—a,B =)

E=¢|A=—-a,B=0),
E =e¢e|A = —a, B = -b),
E =¢lA=a,B=-b),
E =¢e|A=—a,B=-b).

IV IV IA A
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The expert could also state the precise assessment P(E =e¢|A =a,B =10) =
0.4. The largest set of functions P(E|A, B) that satisfy these qualitative
and numeric assessments has seven vertices. Each vertex is specified by a
triplet containing values P(F = e|A =a, B = —b), P(E = ¢e|A = —a,B =),
and P(E = e|A = —a, B = —b); the seven vertices are given by the follow-
ing triplets: [0,0.4,0]; [0,1,0]; [0.4,1,0.4]; [0,0.4,0.4]; [0.4,0.4,0.4]; [0,1,1];
0.4,1,1].

A second expert was hired to examine variables F', I and L. The expert as-
sessed P(F = f) = 0.2. The expert then took a Noisy-OR function [79] to
model p(I|E, F), with “link” probabilities P(I =i|E =e¢, F = —=f) = 0.9 and
P(I =ilE =—e, F = f) = 0.8. The expert decided to have a “leak” proba-
bility, but could not assess its value precisely, and adopted an interval leak
probability of [0.1,0.2]. To assess p(L|I), the expert consulted a database
with experiments, but she was unsure about priors for the estimates, and
took an Imprecise Dirichlet Model [6,104,113] over them, producing inter-
val estimates for P(L =1|I =) and P(L =I|I = —i). The expert obtained
P(L=1/I=1i)€]0.5,0.6] and P(L =1|I = —i) € [0.4,0.5].

A group of three experts was then hired to model the remaining variables.
The experts used a large database to obtain precise estimates for P(H|D, E),
P(J|G), and P(K|G, H), shown in Figure 3. No data was available for C, D,
and G. After much discussion, the experts produced assessments P(C = ¢) >
0.4, P(C ==¢) > 0.5, P(D=d) > 0.2, and P(D = —d) > 0.7. The experts
did not agree at all on P(G|C, D); indicating first, second and third opinions
as vectors (all in the same order), the opinions of the experts were:

P(G=g|C=¢,D=4d)=[0.2,0.3,0.4],
P(G = g|C =¢,D = ~d) =[0.7,0.6,0.5],
P(G =g|C =-¢,D=d)=][1,1,1],

P(G = g|C' = —¢, D = —d) =1[0.8,0.9, 0.8].

The experts recommended that, for every possible combination of probability
values within the elicited bounds and sets, the joint distribution should be
produced using the Markov condition in the graph of Figure 3. Consider a few
inferences with this network (an inference here is the computation of a tight
interval containing all possible values for the probability of an event).! For
example, P(D = d|A = —a,F = f, K = k) € [0.17,0.45]. Note that inferences
do not assume more information than available in the model, but they do yield

! Inferences were computed with the JavaBayes system version 0.347, available
under GPL from http://www.pmr.poli.usp.br/ltd /Software/javabayes. This system
contains a naive enumeration algorithm for manipulation of sets of probabilities.



valuable information — we can say that P(D =d|A =-a,F = f,K = k) is
smaller than 0.5 if we need to make a decision concerning this value.

The important point in this example is that the credal network summarizes a
large variety of assessments, translating different kinds of beliefs into a uniform
and understandable language. Qualitative, verbal, empirical and subjective
information are all organized into a single structure.

Consider a second example, taken from Cozman et al. [34]. The example is
based on Jaeger’s version of the “Holmes problem,” a situation that mixes first-
order logic constructs with probabilities [66]. The story is this. If a person v
lives in LA, then she may (probabilistically) sound the alarm, depending on
whether there is a burglary and whether there is an earthquake. If v does not
live in LA, then she may (probabilistically) sound the alarm in case there is a
burglary. Here v is a universally quantified variable in a domain V, and the rela-
tions alarm(v), lives-in(v,LA), burglary(v) and earthquake(LA) describe
v’s situation. To simplify the notation, denote alarm(v) by A,, lives-in(v,LA)
by L,, burglary(v) by B, and earthquake(LA) by E. For each relation Y,
either y or -y holds.

Jaeger presents a model for the “Holmes problem” that is based on Bayesian
networks [66]. Jaeger uses the first-order description of the “Holmes problem”
to build a Bayesian network for any given domain — that is, given a domain,
Jaeger’s method produces a Bayesian network. Take a domain Vy containing
G and H and such that [ holds; in this case Jaeger’s method constructs the
graph in Figure 4. To do so, Jaeger’s method assumes that

(1) all probability values are precisely known;
(2) P(ayl|ly, By, E) is a Noisy-OR function of B, and F;
(3) P(ay|—ly, By, E) is independent of E.

This strategy is clearly attractive; however it fails if there is imprecision in
probability values, or if there is disagreement about how to define the distri-
bution p(A,|L,, By, E).? In case these assumptions fail, a credal network can
be used without difficulties.

Take Figure 4 and consider the following assessments, which attempt to trans-
late the rather vague scenario of the “Holmes problem”:

(1) P(e) €0.01,0.1].
(2) P(b,) € [0.001,0.01] for any v in the domain.
(3) P(l,) € ]0.05,0.15] for any v in the domain.

2 The automatic resort to Noisy-OR functions is somewhat artificial, and it is char-
acteristic of methods that produce a single Bayesian network out of logical and
probabilistic constructs [50,53,65,78,81].



(4) P(ayl|ly, by, me) = 0.9,
P(ay|ly, —by,e) = 0.2,
and P(ayl|ly,b,,e) > 0.9:
that is, alarm with burglary and earthquake is more probable than alarm
with just burglary when v lives in LA.
(5) P(ayl|ly, —by,—e) € [0.0,0.1]:
that is, there is a “leak” probability between 0 and 0.1 that the alarm
sounds even with no burglary and no earthquake when v lives in LA.
(6) P(ay|=ly,by,e) = 0.9,
P(a,|-l,,b,,—e) = 0.9,
P(ay|=ly, —by, ) = 0.0:
and P(a,|—l,, =b,, —e) = 0.0:
that is, probabilities are precise and do not depend on E when v does
not live in LA.

Suppose we take every possible combination of probability values within the
indicated bounds, and produce joint distributions using the Markov condi-
tion in the graph of Figure 4. We obtain P(ay) € [0.0001,0.0253], P(anle) €
[0.0108,0.0388], P(ag) € [0.0029,0.1179] and P(agle) € [0.2007,0.2080]. Note
that inferences produce rather small intervals; even though only a few as-
sessments are used to build the credal network, the structural assumptions
represented by the graph greatly constrain probability values.

In this example a credal network is used to mix logical statements with flexible
probabilistic assessments. An alternative way to combine logical and proba-
bilistic assessments would be to employ a probabilistic logic [47,58,59,72,77].
However, it would be important to state assessments of independence as well
— without such assessments we cannot give meaning to the beautifully concise
graphical representation in Figure 4. We would then face the difficulty that
inference in general probabilistic logic with independence assessments is likely
to be higher than the complexity of independence-free probabilistic logic —
and the latter is already quite disheartening [72]. How could we then have
a flexible and compact language to represent logical, probabilistic, and inde-
pendence assessments? In short, we need a language that is more flexible than
traditional probability theory, but more structured than general probabilistic
logic. Credal networks offer one such balancing act.

5 The theory of credal sets and credal networks

Before we analyze in further detail the properties of credal networks, we should
discuss a few definitions. A set of probability measures is called a credal set
(from Levi’s credal states [71]). There is some debate on whether credal sets



Fig. 4. The network for the “Holmes problem” with domain Vy = {G,H} and
assuming /g holds.

should be closed or open [88,102], and whether credal sets should be convex?

or not [69,71]. In this paper a credal set can be closed or open, convex or
non-convex.

A credal set defined by probability distributions p(X) is denoted by K (X).
Given a credal set K (X) and a bounded function f(X), the upper and lower ex-
pectations of f(X) are defined respectively as E[f(X)] = supy x)en(x) Eplf (X)]
and E[f(X)] = infyx)exx) Ep[f(X)], where E,[f(X)] indicates standard ex-
pectation. Upper and lower probabilities are defined similarly. A lower expecta-
tion can be viewed as an assessment of the form E,[f(X)] > E[f(X)] (that is,
a linear constraint on the space of probability distributions for X). A credal
set K and its convex hull produce the same lower/upper expectations and
lower /upper probabilities.

The most commonly adopted scheme for conditioning in credal sets is ele-
mentwise Bayes rule (that is, conditioning is obtained by applying Bayes rule
to each element of a credal set).? Such an intuitive prescription, called the
generalized Bayes rule by Walley [102,103], can be justified axiomatically in
various ways [51,56,102]. Note that if K (X) is convex, then K (X|A) is convex
as well [71].

There are two different ways to represent conditioning with respect to random
variables. First, consider the collection of separately specified conditional credal
sets {K(X|Y =y) : yis avalue of Y}. We denote this collection of credal
sets by K(XY). Second, consider the direct specification of a set of functions
p(X|Y); call such a set an extensive conditional credal set, and denote it
by L(XY). It should be clear that K(X|Y) and L(X]|Y') are quite different
objects; the first is a set of credal sets, and the second is a single set of
functions.® In the first example in Section 4, K(L|I) is separately specified

3 A credal set is convex if, for any measures P; and P, in the set, the measure
aPy + (1 — )P, is in the set for any a € [0, 1].

4 Alternative schemes are discussed by Chrisman [22], Moral [75] and de Cooman
and Zaffalon [42].

5 A mnote on terminology: Moral and Cano use the term conditioned to the values
to indicate separately specified credal sets (the latter term is used by Walley [102]
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while L(E|A, B) is extensively specified.

A credal network consists of a directed acyclic graph, where each node in the
graph is associated with a random variable, and where each variable X is
associated with conditional credal sets K (X |pa(X)) or L(X |pa(X)). The goal
is to combine these “local” credal sets into a set of joint distributions satisfying
a Markov condition on the graph.® To accomplish this, it is necessary to define:
(1) what is the Markov condition on the graph; (2) how to combine the local
credal sets. The remainder of this section discusses these points.

We start by discussing independence concepts in the context of credal sets.
There are at least two possibilities (to simplify the discussion, we assume that
every event has positive lower probability):

e First, we may require factorization for all distributions in the credal set
(that is, p(X,Y) = p(X)p(Y) for all distributions). Such a requirement
implies non-convexity of the credal set. To remain agnostic with respect to
convexity, we may require factorization just for the vertices of the credal set.
We then say that X and Y are strongly independent. Strong independence
is the most commonly adopted concept in the literature; variants of this
concept were already implicit in Huber’s work on frequentist robustness
[64] and in the first proposals for credal networks [20,97].

e Second, we may require irrelevance of conditioning: We say that Y is epis-
temically irrelevant to X if E[f(X)|Y =y] = E[f(X)] for any bounded
f(X) and any y. It turns out that epistemic irrelevance is not symmetric —
Y may be epistemically irrelevant to X while X is not epistemically irrele-
vant to Y [102]. We say that X and Y are epistemically independent if X is
epistemically irrelevant to Y and Y is epistemically irrelevant to X [102].

The literature contains a number of alternative definitions for independence
[26,33,41]; even though some unification of concepts may be possible [32,76], it
seems unlikely that a single concept will become prevalent in all applications
of credal sets. Note that such concepts are often not equivalent; for example,
strong independence implies epistemic independence, but not the converse.

There are several ways to define conditional independence as well [76]. Say that
X and Y are strongly independent conditional on Z if the vertices of the credal
set K(X,Y|Z = z) factorize for every z. And say that X and Y are epistemi-

and Cozman [31]), and use conditional set and conditional information to indicate
extensive conditional credal sets [76].

6 Andersen and Hooker have discussed credal networks that combine local and
non-local credal sets [2]; the discussion here is restricted to networks containing
only local sets. The advantage of using only local sets is that it is always possible
to satisfy the Markov condition discussed later; non-local sets may be inconsistent
with the Markov condition.

11



cally independent conditionalon Z if E[f(X)|Y =y, Z = z] = E[f ) =
for any bounded function f(X) and any (y, z), and E[g(Y)|X =z, Z = 2]
E[g(Y)|Z = z] for any bounded function g(Y) and any (z, 2).

7

Suppose we have a directed acyclic graph, random variables X1,..., X, “lo-
cal” credal sets (either separately or extensively specified), and we have set-
tled on a concept of independence. It seems reasonable to assume that every
variable X, associated with the graph is independent of its nondescendant
nonparents given its parents. This is the Markov condition for credal networks
— note that the condition depends on the adopted concept of independence.
We then have all ingredients of a credal network: a graph, variables, credal
sets, and a Markov condition. Now we have to decide how to build a set of
joint distributions over Xy, ..., X, out of these ingredients.

In general, there may be several sets of joint distributions that are consistent
with a given collection of marginal and conditional credal sets. Any one of these
sets of joint distributions is called an extension of the marginal and conditional
credal sets. Usually one is interested in the largest possible extension for a
given set of assessments (Walley refers to these extensions as “natural” ones
[102]). For a credal network, we might consider the largest extension satisfying
the Markov condition as the “natural semantics” for the network. So we have:

(1) the largest extension that satisfies the Markov condition with respect to
strong independence — the strong extension;

(2) the largest extension that satisfies the Markov condition with respect to
epistemic independence — the epistemic extension.

Other extensions could be generated for a credal network, but the strong
and the epistemic extensions are the only ones that have received systematic
attention so far in the literature.” Strong extensions were already implicit in
the first proposals for credal networks [20,97] and have received considerable
attention [2,21,30,45,109]. Comparatively few results are known concerning
epistemic extensions [31,35].

Given a credal network with local separately specified credal sets K (X;|pa(X;)),

the strong extension of the network is the convex hull of the set containing all
joint distributions that factorize as

T p(Xilpa(X,)). (1

where the conditional distributions p(X;|pa(X;) = ;) are selected from the

7 A note on terminology: Couso et al. employ the term independence in the selection
to refer to strong independence and reserve strong independence to the more specific
case of strong extensions [26].

12



local credal sets K (X;pa(X;)=m) [32]. If present, extensive conditional
credal sets L(X;|pa(X;)) can be used in Expression (1): Instead of select-
ing p(X;pa(X;) = m) from K(X;|pa(X;) =), one would then select the
function p(X;|pa(X;)) from the set of functions L(X;|pa(X;)).

The examples discussed in Section 4 showed inferences computed with respect
to strong extensions of the networks.

Strong extensions are appropriate in a variety of contexts. In particular, strong
extensions are appropriate when one views a credal set as a black-box con-
taining the “true” probability measure [54]. Under this “sensitivity analysis”
interpretation, there is a Bayesian network hidden “inside” a credal network,
and it makes sense to restrict our attention to joint distributions that satisfy
the Markov property for standard stochastic independence. Strong extensions
are also appropriate when several experts specifying a credal network disagree
about probability values but agree that every acceptable joint distribution
should satisfy standard stochastic independence (first example in Section 4).
An appealing property of strong extensions is that they display the same sep-
aration properties of standard Bayesian networks (that is, d-separation holds
in strong extensions) [31]. A final argument in favor of strong extensions is
that they are not exclusively dependent on strong independence; it is pos-
sible to generate strong extensions from conditions involving only epistemic
independence [32].

6 Inference and learning with strong extensions

Given a credal network, one may be interested in lower/upper probabilities
or expectations, or one may be interested in particular values of variables
that “dominate” other values according to some criterion. Often the term
inference is used to indicate the computation of lower/upper probabilities in
some extension. In this case, if X, is a query variable and Xy represents a
set of observed variables, the inference is the computation of tight bounds for
p(X,|Xg) for one or more values of X,.

For inferences with strong extensions, it is known that the distributions that
minimize/maximize p(X,|Xg) belong to the set of vertices of the extension
[45].% The difficulty faced by inference algorithms is the potentially enormous
number of vertices that a strong extension may have, even for small networks.

8 This is valid when unobserved variables are assumed to be missing at random; if
the “missingness mechanism” is entirely unknown, comparisons between probabil-
ities can often be produced efficiently even for densely connected credal networks
[42].
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For example, take the network in Figure 1, and assume that X, Y and Z
have four values each, with separately specified credal sets with four vertices
each. There are then 4° potential vertices of the strong extension (that is,
49 different distributions following Expression (1)). The only credal networks
that are amenable to efficient exact inferences are polytree-shaped networks
with binary variables [45]. Other networks, even polytree-shaped ones, face
tremendous computational challenges [36]. Exact inference algorithms typi-
cally examine potential vertices of the strong extension to produce the re-
quired lower /upper values [15,21,31,36,37|. Approximate inference algorithms
can produce either outer or inner approximations: the former produce intervals
that enclose the correct probability interval between lower and upper prob-
abilities [19,38,57,97], while the latter produce intervals that are enclosed by
the correct probability interval [2,15,16,30]. Some of these algorithms empha-
size enumeration of vertices, while others resort to optimization techniques (as
computation of lower/upper values for p(X,|Xg) is equivalent to minimiza-
tion/maximization of a fraction containing polynomials in probability values).
Rather detailed overviews of inference algorithms for imprecise probabilities
have been published by Cano and Moral [17,18].

Procedures that “learn” credal networks from data have been investigated in
the last decade. A few scenarios have been explored in the literature. The
simplest situation is to learn a credal network for a given graph, using a com-
plete database of categorical variables and Imprecise Dirichlet priors [29,115].
Another scenario is to learn a credal network for a given graph, categorical
variables, and missing data [84,110,112]. Finally, the most complex situation
is to learn the graph and the local credal sets from complete or missing data
[14,110,114] — there is a great lack of methods that learn general graphical
structures directly from data. Most of the effort in learning credal networks
has been so far directed to credal classification (that is, to use a credal network
for classification); in fact, some of the most successful applications of credal
networks have appeared in the context of credal classification [84,113]. Credal
classification differs from Bayesian classification in that an observation may
be labeled with a set of classes — all classes that are not dominated by any
other classes with respect to posterior probability. Thus credal classification
requires more than just computation of minima and maxima of probabilities;
credal classification requires that undominated classes be identified through
comparisons between classes. Classification is an important topic for appli-
cation of credal networks, with a huge potential and still a great number of
challenges.
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7 Conclusion

The purpose of this paper was to present a broad overview of graphical models
for imprecise probabilities and a more detailed discussion of credal networks.
Such graphical models are quite flexible in their representational power and
yet are quite compact and easy to construct. The theory of credal networks
has received considerable attention and is now reaching a reasonable degree
of maturity.

Given the breadth of the field, this overview is certain to have missed relevant
work on graphical models and imprecise probabilities. It is hoped that such
omissions are not many and can be forgiven. In any case, two topics should at
least be mentioned: graphical models for possibility measures, and graphical
models that handle zero lower probabilities. Both topics are important and
raise a large number of conceptual and technical problems; they were omitted
for lack of space. A vast literature on graphical models for possibility measures
can be consulted [48]. With regard to zero lower probabilities [25,102,105],
there has been recent work on this subject, and new concepts and algorithms
have been proposed to handle such situations [100,101].

Many types of graphical models have been little explored, particularly models
that deal with decision-making. There have also been few available software
packages for manipulation of graphical models with imprecise probabilities.
There is certainly no shortage of potential contributions to be made regarding
graphical models for imprecise probabilities.
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