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Abstract

This paper presents concentration inequalities and laws of large numbers under
weak assumptions of irrelevance that are expressed using lower and upper expec-
tations. The results build upon De Cooman and Miranda’s recent inequalities
and laws of large numbers. The proofs indicate connections between the theory
of martingales and concepts of epistemic and regular irrelevance.

1. Introduction

In this paper we assume that a decision maker represents her uncertainty
about a situation of interest through a set of expectation functionals. As each
expectation functional induces a probability measure, our decision maker oper-
ates with a set of probability measures K instead of a single probability measure.
There may be more than a single measure in K either because there are dis-
agreements about the situation of interest, or because the decision maker is
verifying the robustness of her assessments against perturbations, or because
the decision maker has neither time nor resources to eliminate distributions
from K. Perhaps the decision maker even wishes to abstract tedious details of
the situation by not specifying point probabilities for some events. In any case,
for each variable X we have its lower and upper expectations, respectively

E[X ]
.
= inf E[X ] , E[X ]

.
= sup E[X ] ,

where inf and sup are taken with respect to the set of expectation functionals.
Similarly, for any event A, we have its lower and upper probabilities, respectively

P (A)
.
= inf P (A) , P (A)

.
= sup P (A) ,

where P (A) is equal to the expectation of IA, the indicator function of A.
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The goal of this paper is to present concentration inequalities and laws of
large numbers under weak assumptions of “irrelevance” that are appropriate for
such a decision maker. To illustrate the kind of result we seek, consider that
De Cooman and Miranda [5, Def. 1] have recently identified an assumption of
irrelevance based on lower and upper expectations, called forward factorization,
that leads to laws of large numbers such as:

for any ε > 0, lim
n→∞

P

(∑n
i=1 E[Xi]

n
− ε ≤

∑n
i=1 Xi

n
≤

∑n
i=1 E[Xi]

n
+ ε

)

= 1.

Note that weaker assumptions (basic model is a set of expectation functionals)
lead to weaker conclusions (average stays within interval). Inequalities and laws
presented later are similar to these previous seminal results.

Section 2 presents some basic concepts. Section 3 considers several assump-
tions of irrelevance for sets of variables. Section 4 presents results for bounded
variables. Regarding bounded variables the contribution here, when compared
to De Cooman and Miranda’s work, lies in offering tighter inequalities and
alternative proof techniques that are closely related to established methods in
standard probability theory (in particular, close to the Hoeffding and the Azuma
inequalities). Section 5 offers more significant contributions as we lift the as-
sumption of boundedness for variables, and use martingale theory to prove laws
of large numbers under countable additivity. Section 6 explains the validity of
results in Section 4 for full conditional measures and for Walley’s theory of lower
previsions. Section 7 comments on the significance of results.

2. Sets of expectations and probabilities, conditioning and irrelevance

Throughout the paper we assume that an expectation functional E maps
variables into real numbers, and satisfies:
(1) if α ≤ X ≤ β then α ≤ E[X ] ≤ β;
(2) E[X + Y ] = E[X ] + E[Y ];
where X, Y are variables and α, β are real numbers (inequalities are understood
pointwise). From such an expectation functional E, a finitely additive probabil-
ity measure P is induced by P (A)

.
= E[IA] for any event A with indicator func-

tion IA (an event is a subset of the possibility space Ω). We sometimes denote
the indicator function of event A simply by A. A finitely additive probability
measure defined on the field of all subsets of Ω completely characterizes an ex-
pectation functional on bounded functions and vice-versa [32, Thm. 3.2.2]. An
important property of expectation functionals is that if a sequence of bounded
variables X1, X2, . . . is such that limj→∞ sup |Xj −X | = 0 for some variable X ,
then [32, Sec. 2.6.1(l)]

lim
j→∞

E[Xj ] = E[X ] . (1)

A set of probability measures induced by a set of expectation functionals is
called a credal set [23]. We do not assume that a credal set must be convex, nor
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closed, nor connected; an axiomatization of such general credal sets from prefer-
ences has been proposed by Seidenfeld et al [29]. Given a credal set K, lower and
upper expectations can be written respectively as E[X ]

.
= infP∈K EP [X ] and

E[X ]
.
= supP∈K EP [X ]. Lower and upper probabilities are similarly written as

P (A)
.
= infP∈K P (A) and P (A)

.
= supP∈K P (A).

2.1. Countable additivity

Countable additivity is an assumption of continuity; for expectation func-
tionals it reads [35, Sec. 2.2]: if X1, X2, . . . increase monotonically to a limit X ,
then E[X ] = limi E[Xi]. For a probability measure, countable additivity means:
if A1 ⊃ A2 ⊃ . . . is a countable sequence of events such that ∩iAi = ∅, then
limn→∞ P (An) = 0. For a credal set, countable additivity means that given a
countable sequence of events

A1 ⊃ A2 ⊃ . . . such that ∩i Ai = ∅, then lim
n→∞

P (An) = 0 (2)

(hence, limn→∞ P (An) = 0 for every probability measure in the credal set; that
is, every probability measure in the credal set satisfies countable additivity).

Countable additivity is assumed in the remainder of this section and in Sec-
tions 3, 4 and 5. Whenever countable additivity is assumed, we assume that
variables are measurable and all measures in the credal set of interest are spec-
ified using the same σ-field (so that supP EP [X |Y ] is measurable). Countable
additivity is not assumed in Section 6.

2.2. Conditioning

The conditional expectation for variable X given a nonempty event A, de-
noted by E[X |A], is constrained by E[X |A]P (A) = E[XA]. The “standard”
approach to conditioning is to define E[X |A] as E[XA] /P (A) when P (A) > 0,
and to leave E[X |A] undefined when P (A) = 0. If we have two random vari-
ables X and Y , the standard (Kolmogorovian) approach to conditioning takes
E[X |Y ] to be a random variable that solves the following equation for every B
in the σ-algebra generated by Y [25, Sec. B.1.2]:

E[B(X − E[X |Y ])] = 0. (3)

The Radon-Nikodym theorem guarantees, given the assumption of countable
additivity in the standard theory, existence of E[X |Y ], unique up to probability
zero changes. Moreover, the following disintegrability result holds: E[X ] =
E[E[X |Y ]].

To motivate some of the definitions proposed in the next section, consider the
definition of conditional upper expectations when we have a set K of expectation
functionals. It might seem reasonable to define conditional upper expectations
as follows:

E
�

[X |A]
.
= sup

E∈K
E[X |A] if P (A) > 0 (4)

E
�

[X |A] undefined if P (A) = 0,
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and likewise for conditional lower expectations; that is, E�[X |A] is equal to
inf E[X |A] if P (A) > 0 and undefined otherwise. This sort of conditioning
appears in theories that ignore events of lower probability zero, such as Giron
and Rios’ theory [16]; later we indicate that this definition does not seem to
lead to interesting laws of large numbers. A possibly more sensible idea, that
we indicate through the superscript >, is to discard those distributions for which
P (A) = 0 [33, 34]:

E
>

[X |A]
.
= sup

E∈K:P(A)>0

E[X |A] if P (A) > 0, (5)

E
>

[X |A] undefined if P (A) = 0,

and likewise for conditional lower expectations; that is, E>[X |A] is equal to
infE∈K:P(A)>0 E[X |A] if P (A) > 0 and undefined otherwise. We refer to this
strategy as regular conditioning, inspired by Walley [32, Ap. J], who uses the
term regular extension for a similar idea. Appendix A further comments on
regular conditioning.

2.3. Irrelevance

Suppose we have a set of probability measures and two variables X and Y .
Walley defines epistemic irrelevance of Y to X to mean that

E[f(X)|Y ] = E[f(X)]

for all bounded functions f of X (Section 6 further comments on Walley’s the-
ory). One might take epistemic irrelevance as a relaxed version of stochastic
independence, perhaps suitable for robustness analysis, or as the appropriate
definition of irrelevance in the presence of disagreeing, incomplete or imprecise
assessments of probability. Note that epistemic irrelevance is much weaker than
requiring that each expectation functional satisfies standard stochastic indepen-
dence of X and Y .

Because Walley’s concept requires a theory of conditioning that departs from
the standard one (Section 6), we present here a modified concept of irrelevance
that employs the intuition behind regular conditioning. Assume countable ad-
ditivity and suppose all measures of interest are specified using the same σ-field;
further assume that for each expectation functional E, the conditional expec-
tation E[·|Y ] is a random variable obtained through the standard approach to
conditioning. In rough terms, our approach is to associate with each probability
measure P in the credal set an event NP such that P (NP ) = 0, and to require
that for all functions f of X ,

E[f(X)] ≤ EP [f(X)|Y = y] ≤ E[f(X)] for all y 6∈ NP . (6)

We start with some preliminary definitions. Given a credal set K, an exclu-
sion set N is a set containing an event NP for each probability measure P in
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K, such that P (NP ) = 0. Define the random variable E
>

N
[X |Y ] as follows:

E
>

N
[X |Y = y]

.
=







supP :y 6∈NP
EP [X |Y = y] when {P : y 6∈ NP } 6= ∅,

0 otherwise.

Define also E>
N

[X |Y = y]
.
= −E

>

N
[−X |Y = y]; that is:

E>
N

[X |Y = y]
.
=







infP :y 6∈NP
EP [X |Y = y] when {P : y 6∈ NP } 6= ∅,

0 otherwise.

Write
E

>

N
[X |Y ] ∼= α

to indicate that E
>

N
[X |Y = y] = α for those y such that {P : y 6∈ NP } 6= ∅.

Likewise, write

E
>

N
[X |Y ] / α and E>

N
[X |Y ] ' α

to indicate inequalities that hold for y such that {P : y 6∈ NP } 6= ∅. Finally:

Definition 1 Regular irrelevance of Y to X obtains when

E
>

N
[f(X)|Y ] ∼= E[f(X)] (7)

for every function f of X and for some exclusion set N.

Under countable additivity and standard conditioning (Expression (3)), reg-
ular irrelevance of Y to X implies

E
>

[f(X)|A(Y )] = E[f(X)] (8)

for any function f of X and for any event A(Y ) defined by variable Y such that
P (A(Y )) > 0. Throughout the paper the expression “event A(Y ) defined by
variable Y ” means that A has an indicator function that is a zero/one function
of Y .

3. Irrelevance assumptions and factorizations

We now introduce the main irrelevance assumptions for sets of random vari-
ables. To simplify the notation, a set of variables {X1, . . . , Xn} is denoted
by X1:n. Later we refer to infinitely long sequences of variables X1, X2, . . . ;
all concepts of irrelevance apply to an infinite sequence if they apply to every
subsequence X1:n.
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3.1. Forward regular irrelevance and weak forward regular irrelevance

Our starting point is De Cooman and Miranda’s assumption of forward ir-
relevance [5, 6] for random variables X1:n:

• for each i ∈ [2, n], for any function f of Xi,

E[f(Xi)|X1:i−1] = E[f(Xi)] .

We adapt their assumption to the definition of regular irrelevance, and define
forward regular irrelevance as follows:

• for each i ∈ [2, n], there is an exclusion set N such that for any function
f of Xi,

E
>

N
[f(Xi)|X1:i−1] ∼= E[f(Xi)] . (9)

A weaker condition, that we refer to as weak forward regular irrelevance,
follows the intuition behind Expression (6):

• for each i ∈ [2, n], there is an exclusion set N such that

E
>

N
[Xi|X1:i−1] / E[Xi] and E>

N
[Xi|X1:i−1] ' E[Xi] . (10)

Another variant of forward irrelevance, now based on the intuition behind
Expression (4), is:

• for each i ∈ [2, n], for any function f of Xi,

E[f(Xi)|X1:i−1 = x1:i−1] = E[f(Xi)] whenever P (X1:i−1 = x1:i−1) > 0.
(11)

This latter condition is really too weak to produce any sensible law of large
numbers, as the following example demonstrates.1 For this reason, we do not
deal with Condition (11) further in this paper.

Example 1 Consider binary variables X1, X2, . . . (values 0 and 1). Define
events A0

.
= ∩i≥1{Xi = 0} and A1

.
= ∩i≥1{Xi = 1}. Consider a convex and

closed set K of joint distributions built as the convex hull of three distributions
P1, P2 and P3, as follows.

Distribution P1 simply assigns probability one to A1. Distribution P2 as-
signs probability δ to A0 and probability 1 − δ to A1, for some δ ∈ (0, 1).
Distribution P3 is the product of identical marginals: for any integer n > 0,
P3(X1 = x1, . . . , Xn = xn) =

∏n
i=1 P3(Xi = xi), where P3(Xi = 1) = 1 − δ.

For the convex hull of P1, P2 and P3, Expression (11) is satisfied. This
conclusion is reached by analyzing each distribution in turn. Note that lower

1Example 1 of a previous publication [2] claims to convey the same message, but that
example is flawed in that Expression (11) does not hold.
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and upper expectations for any function of a binary variable X are linearly
related to lower and upper probabilities of the event {X = 1}; consequently, in
this example it is enough to consider upper and lower probabilities.

For distribution P1, P1(Xi = 1) = 1 and for any i > 1 we have P1(Xi =
1|A(X1:i−1)) = 1 whenever P (A(X1:i−1)) > 0. Note that for any event A(X1:i−1):
if A1 ∈ A, then P1(A) = 1; if A1 6∈ A, then P1(A) = 0. For distribu-
tion P2, P2(Xi = 1) = 1 − δ for any i > 0. Additionally, for any event
A(X1:i−1) we have P2(Xi = 1|A(X1:i−1)) either equal to 1 − δ or 1 whenever
P (A) > 0: if A1 6∈ A, then P (A) = 0 (due to P1); so suppose A1 ∈ A,
and note that if A0 ∈ A, then P2(Xi = 1|A) = 1 − δ, and if A0 6∈ A, then
P2(Xi = 1|A) = 1. For distribution P3, we have P3(Xi = 1) = 1 − δ and
for any i > 1 we have P3(Xi = 1|A(X1:i−1)) = 1 − δ for any nonempty event
A(X1:i−1). Hence we have P (Xi = 1) = P (Xi = 1|A(X1:i−1)) = 1 − δ and
P (Xi = 1) = P (Xi = 1|A(X1:i−1)) = 1 whenever P (A(X1:i−1)) > 0.

The weak law of larger numbers fails because, for any ε ∈ (0, 1 − δ),

lim
n→∞

P

(∑n
i=1 E[Xi]

n
− ε <

∑n
i=1 Xi

n
<

∑n
i=1 E[Xi]

n
+ ε

)

= 1−P2(A0) = 1−δ.

This follows from the fact that, for any integer n > 0, P1 (
∑n

i=1 Xi/n = 1) = 1,

∀ε > 0 : P2

(

(1 − δ) − ε <
n
∑

i=1

Xi/n < 1 + ε

)

= 1 − P2(A0) = 1 − δ,

∀ε > 0 : lim
n→∞

P3

(

(1 − δ) − ε <

n
∑

i=1

Xi/n < (1 − δ) + ε

)

= 1.

3.2. Forward factorization

De Cooman and Miranda have introduced a condition called forward factor-
ization for variables X1:n that leads to interesting laws of large numbers [5, Def.
1]. Forward factorization requires:

• for each i ∈ [2, n], for any bounded function f of Xi and any non-negative
bounded function g of X1:i−1,

E[g(X1:i−1) (f(Xi) − E[f(Xi)])] ≥ 0. (12)

The second part of the next proposition conveys a possibly more intuitive
characterization of forward factorization:

Proposition 1 Forward factorization for variables X1:n is equivalent both to

• for each i ∈ [2, n], for any bounded function f of Xi and any event A
defined by variables X1:i−1,

E[A(X1:i−1) (f(Xi) − E[f(Xi)])] ≥ 0,
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and to

• for each i ∈ [2, n], for any bounded function f of Xi and any event A
defined by variables X1:i−1,

E
>

[f(Xi)|A(X1:i−1)] ≤ E[f(Xi)] whenever P (A(X1:i−1)) > 0.

The proof of this proposition is in Appendix B. The proof only assumes finite
additivity. Note that under countable additivity and standard conditioning
(Expression (3)), forward regular irrelevance implies forward factorization.

Forward factorization implies a valuable inequality that is used in Section 4:

Proposition 2 For bounded and nonnegative functions fi, forward factoriza-
tion of X1:n implies

E

[

n
∏

i=1

fi(Xi)

]

≤
n
∏

i=1

E[fi(Xi)] . (13)

The proof of this proposition is presented in Appendix C.

4. Bounded variables

Take variables X1, . . . , Xn such that supXi − inf Xi ≤ βi for βi < ∞. The
following inequalities, proved under several assumptions in theorems to be pre-
sented, are counterparts of Hoeffding inequality [9, 18]:

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−2ε2/γn , (14)

P

(

n
∑

i=1

(Xi − E[Xi]) ≤ −ε

)

≤ e−2ε2/γn . (15)

These concentration inequalities are similar to, but slightly tighter than, in-
equalities by De Cooman and Miranda [5, Remark 2]. Note that results in this
section are proved under the assumption of countable additivity and definitions
of conditioning and irrelevance presented earlier, while De Cooman and Miranda
adopt Walley’s theory; the matter is discussed in more detail in Section 6.

The next theorem assumes a factorization that is implied by forward regular
irrelevance (or by forward factorization); its proof, presented in Appendix D, is
remarkably similar to usual proofs of the Hoeffding inequality [9].

Theorem 1 Suppose bounded variables X1, . . . , Xn satisfy Expression (13) for
bounded and nonnegative functions fi. If γn

.
=
∑n

i=1 β2
i > 0, then Expres-

sions (14) and (15) hold.
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Theorem 1 leads to simple proofs of laws of large numbers stated by De
Cooman and Miranda [5]. The proof of the following theorem is presented in
Appendix E. The third expression in the theorem corresponds to a finitary ver-
sion of the usual strong law of large numbers [10]; because countable additivity
is assumed, limits can be taken (as in the last two expressions of Theorem 4).

In the next theorem and later we use

µ
n

.
= (1/n)

n
∑

i=1

E[Xi] , µn
.
= (1/n)

n
∑

i=1

E[Xi] .

Theorem 2 If bounded variables X1, X2, . . . are such that X1, . . . , Xn satisfy
Expressions (14) and (15) for any n > 1, then for any ε > 0,

∀n ≥ 1 : P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

≥ 1 − 2e−2nε2/(maxi β2

i );

lim
n→∞

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= 1;

∃N : ∀N ′ : P

(

∀n ∈ [N, N + N ′] : µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

> 1 − 2ε;

where n, N and N ′ denote positive integers.

Corollary 1 Suppose bounded variables X1, X2, . . . satisfy forward regular ir-
relevance or forward factorization. Then, for any ε > 0, the three expressions
in Theorem 2 hold.

We move to weak forward regular irrelevance and obtain an analogue of the
Azuma inequality [1, 8]. It is interesting to note that the proof of the following
theorem, presented in Appendix F, is remarkably similar to the usual proof of
the original Azuma inequality [1]. In Section 6 we comment on the similarities
between the next two theorems and results by De Cooman and Miranda [5, Sec.
4.1].

Theorem 3 Suppose bounded variables X1, . . . , Xn satisfy weak forward regular
irrelevance. If γn

.
=
∑n

i=1 β2
i > 0, then Expressions (14) and (15) hold.

We now present laws of large numbers under weak forward regular irrele-
vance, that follow directly from Theorems 2 and 3. De Cooman and Miranda
prove a similar pair of laws by resorting to their theory of forward irrelevant
natural extensions [5, Sec. 4.1]; again, recall that their results do not assume
countable additivity, as discussed in Section 6.

Corollary 2 Suppose bounded variables X1, X2, . . . satisfy weak forward regu-
lar irrelevance. Then, for any ε > 0, the three expressions in Theorem 2 hold.
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5. Laws of large numbers without boundedness

We now consider variables without bounds in their ranges under the as-
sumption of weak forward regular irrelevance; the resulting laws of large num-
bers are the main contribution of the paper. In this section we again assume
that countable additivity holds (Expression (2); that is, countable additivity of
each element P of the credal set). We also assume, again, that standard (Kol-
mogorovian) conditioning is adopted. Thus our setup is close to the standard
one; we only depart from the Kolmogorovian tradition in explicitly letting a set
of expectation functionals to be permissible given a set of assessments.

The proof employs a sequence of variables {Yn} defined as follows, for a
fixed P :

Yn
.
=

n
∑

i=1

Xi − EP [Xi|X1:i−1] .

The key observation is that {Yn} is a martingale with respect to P . The proper-
ties of this martingale are explored in the proof of the next theorem, presented
in Appendix G.

Theorem 4 Suppose variables X1, X2, . . . satisfy weak forward regular irrele-
vance. Suppose further that E[Xi] and E[Xi] are finite quantities such that2

E[Xi] − E[Xi] ≤ δ, and the variance of any Xi with respect to any element P
of the credal set is no larger than a finite quantity σ2. Then, for any ε > 0,

∀n ≥ 1 : P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

≥ 1 −
σ2 + δ2

ε2n
,

∃N : ∀N ′ : P

(

∀n ∈ [N, N +N ′] : µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

> 1 − 2ε,

where n, N and N ′ denote positive integers. Consequently,

∀ε > 0 : lim
n→∞

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= 1,

P

(

lim sup
n→∞

(∑n
i=1 Xi

n
− µn

)

> 0

)

= 0,

P

(

lim inf
n→∞

(∑n
i=1 Xi

n
− µ

n

)

< 0

)

= 0.

One final question is whether it is possible to remove the condition that vari-
ances must be finite in this theorem. Even in the standard theory one finds that
laws of large numbers fail if restrictions on variances are simply removed [15].
Typically when restrictions on variances are removed one requires variables to

2As noted in Appendix G, it is possible to remove the need for δ; we thank a reviewer for
providing sharper inequalities that do not require δ.
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be identically distributed [14, 24]. In our setting the most natural requirement
would be to ask all credal sets containing marginal distributions to be identical.
This is the situation where, as Epstein and Schneider aptly call, variables are
independent and indistinguishably distributed [13, Eq. 2.2]. Alas, the following
example shows that this assumption of indistinguishability fails to substitute
for restrictions on variances.

Example 2 Assume countable additivity. Consider integer-valued random vari-
ables X1, X2, . . . that satisfy forward factorization. The only available assess-
ment is E[Xi] = E[Xi] = 0 for every Xi (all marginal credal sets are identical).
Now consider a joint distribution P that satisfies all assessments and irrele-
vances: P is the product measure of Pi defined as: Pi(Xi = −i) = Pi(Xi = i) =
1/(2i), Pi(Xi = 0) = 1 − 1/i. As shown by Geller [15, Example 1] this joint
distribution leads to failure of the weak law of large numbers. Consequently, the
lower probability of |

∑n
i=1 Xi|/n ≤ ε does not go to 1 as n grows without bound.

Note that if one does assume that each joint distribution in the credal set
has identical marginals, then further results can be proved by combining Theo-
rem 4 with truncation techniques [24, Sec. 4.7]. That is, by assuming forward
regular irrelevance (not weak forward regular irrelevance), one can consider the
sequence of truncated variables XiI|Xi|≤i. Countable additivity then allows one
to discard the contribution, for each joint distribution, of the variables XiI|Xi|>i

(because
∑∞

i=1 P
(

Xi 6= XiI|Xi|>i

)

≤
∑∞

i=1 P (|X1| > i) ≤ E[|X1|] < ∞ for ev-
ery joint distribution, and then the Borel-Cantelli lemma guarantees that the
differences are negligible). Consequently, the behavior of the original sequence
can be investigated, possibly using Theorem 4, by studying the truncated se-
quence {XiI|Xi|≤i}. The extent to which such techniques can lead to concep-
tually interesting results is yet to be understood, given that the assumption
of identical marginals for each joint distribution seems to clash in spirit with
regular irrelevance and the factorization conditions studied in this paper.

Finding a condition that is both stronger than indistinguishability and more
intuitive than assuming identical marginals for every joint distribution, and that
still leads to laws of large numbers, is an open problem.

6. A comment on Walley’s theory of lower previsions

The work by De Cooman and Miranda on laws of large numbers adopts
Walley’s theory of lower previsions [5], and focus on bounded variables. We
now comment on the extent to which results in Section 4 apply to Walley’s
theory; to do so, we first review basic facts about full conditional measures.

The theory of full conditional measures, whose most vocal advocate was de
Finetti [7], offers an alternative to the standard (Kolmogorovian) theory. The
idea is to take the conditional expectation E[X |A] as a primitive that is well
defined even if the event A has zero probability. Three axioms are imposed on
conditional expectations: for any nonempty event A,
(1) if α ≤ X(ω) ≤ β for all ω ∈ A, then α ≤ E[X |A] ≤ β;
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(2) E[X + Y |A] = E[X |A] + E[Y |A];
(3) E[IA|A] = 1;
(4) E[IAX |B] = E[X |A]E[IA|B] whenever A ⊆ B.
If a function E[·|·] satisfies these axioms, we call it a full conditional expectation.
We can then define a set-function P (B|A)

.
= E[IB |A] for any event B and any

nonempty event A. Such P is usually called a full conditional measure [11, 21],
and it satisfies, for every nonempty event C:
(1) P (C|C) = 1;
(2) P (A|C) ≥ 0 for all A;
(3) P (A ∪ B|C) = P (A|C) + P (B|C) for all disjoint A and B;
(4) P (A ∩ B|C) = P (A|B ∩ C) P (B|C) for all A and B such that B ∩ C 6= ∅.

If we are dealing with full conditional expectations, then, given two variables
X and Y , the expectation E[X |Y = y] is well defined for every y such that
{Y = y} is nonempty. Given a set K of full conditional expectations, we can
define lower and upper conditional expectations respectively as E[X |Y = y]

.
=

infE∈K E[X |Y = Y ] and E[X |Y = y]
.
= supE∈K E[X |Y = y] for every y, with-

out concern on whether P (Y = y) = 0 or not. Note that Radon-Nikodym deriva-
tives do not always satisfy the axioms for full conditional measures when the
conditioning event has probability zero [27, 28]; hence there are substantial dif-
ferences between full conditional measures and standard (Kolmogorovian-style)
probability measures.

For a single expectation functional, disintegrability holds with respect to
Y when E[X ] = E[E[X |Y ]] for any X . Disintegrability may fail for a single
finitely additive probability measure over an infinite space [7, 11]; that is, there
is a finitely additive probability measure P such that EP [X ] > EP [EP [X |Y ]].
There are that do not adopt countable additivity but still obtain disintegrability.
The theories of coherent behavior by Heath and Sudderth [17] and by Lane and
Sudderth [22] axiomatize the strategic measures of Dubins and Savage [12], and
prescribe probability measures that disintegrate appropriately along predefined
partitions. It would be sufficient for our purposes to have sets of such strategic
measures disintegrating over suitable partitions (note that despite the drawbacks
of strategic measures [19], they do admit non-trivial laws of large numbers [20]).

For an upper expectation, define disintegrability with respect to Y to mean

E[X ] ≤ E
[

E[X |Y ]
]

for any X. (16)

Disintegrability without further qualification means disintegrability with respect
to any Y . Walley’s theory deals with full conditional measures but adds a
condition of conglomerability that implies disintegrability of upper expectations
[32, Sec. 6.3.5(5)].

We now return to the main purpose of this section; that is, we analyze
the validity of results in Section 4 within Walley’s theory of lower previsions.
Propositions 1 and 2 hold for sets of full conditional measures (without any
assumption of countable additivity). Hence Theorems 1 and 2 hold for such
sets (and in Walley’s theory). Note that Theorem 2 presents finitary versions
of the laws of large numbers that are appropriate when countable additivity is
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not assumed; if countable additivity is assumed, then limits can be taken as
in Theorem 4. Thus the main results in De Cooman and Miranda’s work are
recovered, with different proofs.

Also, we have that forward irrelevance leads to forward factorization and
then to the laws of large numbers in Theorem 2 (this is proved by De Cooman
and Miranda using a different strategy). To see this, note that using Walley’s
definition of epistemic irrelevance we have: if Y is epistemically irrelevant to X ,
then

E[f(X)|A(Y )] ≤ E
[

E[f(X)|Y, A(Y )] |A(Y )
]

= E
[

E[f(X)|Y ] |A(Y )
]

= E
[

E[f(X)] |A(Y )
]

= E[f(X)] .

for any function f of X and any event A(Y ) defined by Y such that P (A(Y )) >
0.3 Thus forward irrelevance implies forward factorization, using Proposition 1,
and this leads to the laws of large numbers.

Theorem 3 is more delicate as the use of elementwise disintegrability in the
proof is not really meaningful in Walley’s theory. However we can derive the
result by assuming only disintegrability of upper expectations and the following
condition, that adapts weak forward regular irrelevance to Walley’s theory:

• for each i ∈ [2, n],

E[Xi|X1:i−1] ≤ E[Xi] and E[Xi|X1:i−1] ≥ E[Xi] . (17)

The proof of the following theorem is given in Appendix H.

Theorem 5 Suppose bounded variables X1, . . . , Xn satisfy the condition given
by Expression (17). Assume disintegrability of upper expectations with respect
to X1:i−1 for i ∈ {2, . . . , n}. If γn

.
=
∑n

i=1 β2
i > 0, then Expressions (14) and

(15) hold.

Using Theorems 2 and 5:

Corollary 3 Suppose bounded variables X1, X2, . . . satisfy the condition given
by Expression (17). Assume disintegrability of upper expectations with respect
to X1:n for n > 1. Then, for any ε > 0, the three expressions in Theorem 2
hold.

3This derivation is not valid for general sets of full conditional measures. Thanks to
Matthias Troffaes for useful discussion about this point.
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7. Discussion

The concentration inequalities and laws of large numbers proved in this paper
assume rather weak conditions of irrelevance. When compared to usual laws of
large numbers, both premises and consequences are weaker: expectations are
not assumed precisely known, and convergence is interval-valued.

Inequalities (14) and (15), and related theorems, slightly sharpen results in
De Cooman and Miranda’s seminal work [5]. The proofs of these inequalities,
as presented in this paper, are rather close to well-known methods in standard
probability theory. It should be noted that De Cooman and Miranda already
comment on the similarity between their inequalities and Hoeffding’s. Note also
that De Cooman and Miranda’s results generalize several previous efforts, such
as by Epstein and Schneider, where credal sets are convex and closed and satisfy
a condition of supermodularity [13, Sec. 4].

Theorem 4 is possibly the most valuable contribution of this paper. The
strategy of the proof is to translate weak assumptions of irrelevance into facts
regarding martingales, and to adapt results for martingales to this setting.
This strategy keeps the proof close to well-known results in probability the-
ory. The connection between lower and upper expectations and the theory
of martingales seems rather natural [4, 30], but the relationship between epis-
temic/regular irrelevance and martingales does not appear to have been explored
in depth so far. We note that the basic constraint defining martingales (that
is, E[Yn|X1:n−1] = Yn−1) is preserved by convex combination of distributions;
therefore, the study of martingales seems appropriate when one deals with con-
vex sets of probability distributions — certainly it seems less contorted than
the analysis through stochastic independence, as stochastic independence is not
preserved by convex combination.

There are some open questions that call for study. First, it would be valuable
to determine whether countable additivity (or at least disintegrability assump-
tions) are really needed in Theorems 3 and 4. Another question is whether the
condition on variances in Theorem 4 can be replaced by some weaker condi-
tion; this prompts the question of whether there is some interesting notion of
“identically distributed” variables in the present setting.
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A. Regular conditioning

Using an earlier proposal by Walley himself [31, Sec. 7], we can define regular
conditioning without any reference to individual probability measures:

E
>

[X |A]
.
= inf

(

α : E[A(X − α)] ≤ 0
)

if P (A) > 0, (18)

E
>

[X |A] undefined if P (A) = 0,

Lemma 1 If P (A) > 0,

E
>

[X |A] = sup
E∈K:P(A)>0

E[X |A] = inf
(

α : E[A(X − α)] ≤ 0
)

.

Proof. We have:

inf
(

α : E[A(X − α)] ≤ 0
)

= inf

(

α : sup
E∈K

(E[AX ] − αE[A]) ≤ 0

)

= inf

(

α : sup
E∈K:P(A)>0

(E[AX ] − αE[A]) ≤ 0

)

= inf

(

α : sup
E∈K:P(A)>0

E[X |A] ≤ α

)

= sup
E∈K:P(A)>0

E[X |A] . 2

B. Proof of Proposition 1

We divide the proof in two steps.

Lemma 2 Forward factorization for variables X1:n is equivalent to: for each
i ∈ [2, n], for any bounded function f of Xi and any event A defined by variables
X1:i−1,

E[A(X1:i−1) (f(Xi) − E[f(Xi)])] ≥ 0. (19)

Proof. If condition (12) holds, then by selecting g(X1:i−1) = A(X1:i−1) we
obtain Expression (19). Now assume conversely that Expression (19) holds.
For a fixed i, define Y = g(X1:i−1) and construct a sequence of simple functions
indexed by j ≥ 1:

Y ≥
j

.
=

2j+1
∑

k=1

MY

2j
kAj,k,

where, for k ∈ {0, 1, 2, . . . , 2j + 1}, Aj,k is the indicator function of

{

ω :
MY

2j
(k − 1) ≤ Y (ω) <

MY

2j
k

}

.
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For any P of interest, Expression (19) implies

EP

[

Y ≥
j (f(Xi) − E[f(Xi)])

]

≥ 0,

because Y ≥
j is a weighted sum of indicator functions, where weights are all

non-negative. As j grows, the simple functions Y ≥
j converge uniformly to Y .

Uniform convergence of {Y ≥
j } and boundedness of f imply uniform convergence

of Y ≥
j (f(Xi)−E[f(Xi)]) to Y (f(Xi)−E[f(Xi)]). Consequently, using Expres-

sion (1),

lim
j→∞

EP

[

Y ≥
j (f(Xi) − E[f(Xi)])

]

= EP [Y (f(Xi) − E[f(Xi)])] ,

and then EP [Y (f(Xi) − E[f(Xi)])] ≥ 0 for every P of interest, as desired. 2

Lemma 3 Forward factorization for variables X1:n is equivalent to: for each
i ∈ [2, n], for any bounded function f of Xi and any event A defined by variables
X1:i−1,

E
>

[f(Xi)|A(X1:i−1)] ≤ E[f(Xi)] whenever P (A(X1:i−1)) > 0.

Proof. Denote f(Xi) by X and A(X1:i−1) by A. Using Lemma 2 and Expres-
sion (18), it is enough to show that E

[

A(X − E[X ])
]

≤ 0 is equivalent to inf(α :

E[A(X − α)] ≤ 0) ≤ E[X ] whenever P (A) > 0. Clearly if E
[

A(X − E[X ])
]

≤ 0

then inf(α : E[A(X − α)] ≤ 0) ≤ E[X ] (just take α = E[X ]). And because
E[A(X − α)] is decreasing in α, inf(α : E[A(X − α)] ≤ 0) ≤ E[X ] implies
E
[

A(X − E[X ])
]

≤ 0. 2

C. Proof of Proposition 2

Proof. For any X , Y , we have E[X ] − E[Y ] ≤ E[X − Y ] because

E[X ] = E[X − Y + Y ] ≤ E[X − Y ] + E[Y ] .

Define f i .
=
∏i

j=1 fj(Xj); then:

E[fn] − E
[

fn−1E[fn(Xn)]
]

≤ E
[

fn − fn−1E[fn(Xn)]
]

= E
[

fn−1(fn(Xn) − E[fn(Xn)])
]

= −E
[

fn−1(−fn(Xn) − E[−fn(Xn)])
]

≤ 0 (using Expression (12)).

Hence E[fn] ≤ E
[

fn−1E[fn(Xn)]
]

, and because fn(Xn) ≥ 0 (thus E[fn(Xn)] ≥

0), we have E[fn] ≤ E
[

fn−1
]

E[fn(Xn)]. We obtain the desired result by
iterating this reasoning. 2
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D. Proof of Theorem 1

Proof. If X ≥ 0, then I{X≥ε} ≤ X/ε for any ε > 0; using the fact that if X ≤ Y

then E[X ] ≤ E[Y ], we obtain P (X ≥ ε) ≤ E[X ] /ε (a Markov inequality).
Consequently, for s > 0, any variable X satisfies

P (X ≥ ε) = P
(

esX ≥ esε
)

≤ e−sεE[exp(sX)] .

Using this inequality and Proposition 2:

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεE

[

exp

(

n
∑

i=1

s(Xi − E[Xi])

)]

≤ e−sε
n
∏

i=1

E
[

exp
(

s(Xi − E[Xi])
)]

.

We now use the variant of Hoeffding’s result given by Expression (23): If variable
X satisfies a ≤ X ≤ b and E[X ] ≤ 0, then E[exp(sX)] ≤ exp(s2(b − a)2/8) for
any s > 0. Hence E

[

exp(s(Xi − E[Xi]))
]

≤ exp(s2β2
i /8) and

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεes2γn/8 ≤ e−2ε2/γn ,

where the last inequality is obtained by taking s = 4ε/γn. This proves the
first inequality in the theorem; the second inequality is proved by considering
the upper probability P

(
∑n

i=1((−Xi) − E[−Xi]) ≥ ε
)

and noting that E[Xi] =

−E[−Xi]. 2

E. Proof of Theorem 2

Proof. Define β2 .
= maxi β2

i . Noting that P (A) = 1− P (Ac) for any event A,
using subadditivity of upper probability, and then Expressions (14) and (15):

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= 1 − P

({

n
∑

i=1

Xi − nµn ≥ nε

}

∪

{

n
∑

i=1

Xi − nµ
n
≤ nε

})

≥ 1 − P

(

n
∑

i=1

Xi − nµn ≥ nε

)

− P

(

n
∑

i=1

Xi − nµ
n
≤ nε

)

≥ 1 − e
− 2nε2

β2 − e
− 2nε2

β2

= 1 − 2e
− 2nε2

β2 .
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By taking the limit as n grows without bound, we obtain that the lower proba-
bility goes to one. Now consider the strong law of large numbers. For any ε > 0,
N > 0 and N ′ > 0,

P

(

∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≥ µn + ε

)

≤
N+N ′

∑

n=N

P

(∑n
i=1 Xi

n
≥ µn + ε

)

≤
N+N ′

∑

n=N

e−2nε2/β2

=
(

e−2Nε2/β2
)

N ′

∑

n=0

e−2nε2/β2

=
(

e−2Nε2/β2
) 1 − e−2(N ′+1)ε2/β2

1 − e−2ε2/β2

<
e−2Nε2/β2

1 − e−2ε2/β2
.

Consequently,

P

(

∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≥ µn + ε

)

< ε,

provided that N is a positive integer such that N > −(β2/(2ε2)) ln ε(1−e−2ε2/β2

).
An analogous argument leads to

P

(

∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≤ µ

n
− ε

)

< ε.

By superadditivity of upper probability: for any ε > 0, there is N such that for
any N ′,

P

(

∀n ∈ [N, N +N ′] : µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

> 1 − 2ε,

as desired. 2

F. Proof of Theorem 3

Proof. Using both Markov’s inequality (as in the proof of Theorem 1) and
elementwise disintegrability, for any s > 0,

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεE

[

exp

(

n
∑

i=1

s(Xi − E[Xi])

)]

= e−sε sup
P

EP

[

EP

[

exp

(

n
∑

i=1

s(Xi − E[Xi])

)

| X1:n−1

]]

= e−sε sup
P

EP

[

exp

(

n−1
∑

i=1

s(Xi − E[Xi])

)

hP (X1:n−1)

]

,
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where hP (X1:n−1) = EP

[

exp
(

s(Xn − E[Xn])
)

| X1:n−1

]

. Due to weak forward
regular irrelevance:

EP [Xn|X1:n−1] ≤ E[Xn|X1:n−1] ≤ E[Xn]

whenever the event defined by X1:n−1 has nonzero probability with respect to
P . For these events we now apply Expression (23); other events have probability
zero and do not matter when the outer expectation is calculated. So, for events
of interest,

EP

[

Xn − E[Xn] |X1:n−1

]

≤ 0.

We apply Expression (23) to P in conditional form (that is: if variable X satisfies
a ≤ X ≤ b and EP [X |A] ≤ 0, then EP [exp(sX)|A] ≤ exp(s2(b − a)2/8) for any
s > 0). Then:

hP (X1:n−1) = EP

[

exp
(

s(Xn − E[Xn])
)

|X1:n−1

]

≤ exp(s2β2
n/8). (20)

Given this inequality,

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sε sup
P

EP

[

exp

(

n−1
∑

i=1

s(Xi − E[Xi])

)

es2β2

n/8

]

≤ e−sεes2β2

n/8 sup
P

EP

[

exp

(

n−1
∑

i=1

s(Xi − E[Xi])

)]

.

These inequalities can be iterated to produce:

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sε exp

(

s2
n
∑

i=1

β2
i /8

)

= e−sεes2γn/8.

Finally, by selecting s = 4ε/γn,

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−2ε2/γn .

The second inequality in the theorem is proved by noting that weak forward
factorization of X1, . . . , Xn implies weak forward factorization of −X1, . . . ,−Xn

(as E[Xi] = −E[−Xi]), and by focusing on P
(
∑n

i=1((−Xi) − E[−Xi]) ≥ ε
)

. 2

G. Proof of Theorem 4

As noted before the statement of Theorem 4, we use the sequence {Yn}
defined as

Yn
.
=

n
∑

i=1

Xi − EP [Xi|X1:i−1] .
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This sequence is a function of all variables X1:n such that

EP [Yn|X1:n−1] =

(

n−1
∑

i=1

Xi − EP [Xi|X1:i−1]

)

+

EP [Xn−EP [Xn|X1:n−1] |X1:n−1]

= Yn−1 + EP [Xn|X1:n−1] − EP [Xn|X1:n−1]

= Yn−1;

so, {Yn} is a martingale with respect to P . We now manipulate a number
of standard conditional expectations, where the conditioning events that have
positive probability with respect to P are the ones that matter. We have:

EP

[

(Yn − Yn−1)
2|X1:n−1

]

= EP

[

Y 2
n |X1:n−1

]

− 2EP [Yn−1Yn|X1:n−1] + Y 2
n−1

= EP

[

Y 2
n |X1:n−1

]

− 2Yn−1EP [Yn|X1:n−1] + Y 2
n−1

= EP

[

Y 2
n |X1:n−1

]

− 2Yn−1Yn−1 + Y 2
n−1

= EP

[

Y 2
n |X1:n−1

]

− Y 2
n−1.

And by taking expectations on both sides we obtain the following martingale
property (note the use of elementwise disintegrability):

EP

[

Y 2
n

]

= EP

[

(Yn − Yn−1)
2
]

+ EP

[

Y 2
n−1

]

. (21)

Elementwise disintegrability also leads to

EP [Yn] =

n
∑

i=1

EP [Xi] − EP [EP [Xi|X1:i−1]] =

n
∑

i=1

EP [Xi] − EP [Xi] = 0.

Proof. We start with Expression (21) for a fixed P . Because Yn − Yn−1 =
Xn − EP [Xn|X1:n−1],

EP

[

Y 2
n

]

= EP

[

(Xn − EP [Xn|X1:n−1])
2
]

+ EP

[

Y 2
n−1

]

.

Iterating the last expression, and denoting EP [Xi] − EP [Xi|X1:i−1] by ∆i:

EP

[

Y 2
n

]

=

n
∑

i=1

EP

[

(Xi − EP [Xi|X1:i−1])
2
]

=

n
∑

i=1

EP

[

((Xi − EP [Xi]) + (EP [Xi] − EP [Xi|X1:i−1]))
2
]

=
n
∑

i=1

EP

[

(Xi − EP [Xi])
2
]

+ 2∆iEP [Xi − EP [Xi]] + ∆2
i

=

n
∑

i=1

EP

[

(Xi − EP [Xi])
2
]

+ ∆2
i

≤
n
∑

i=1

σ2 + δ2 = n(σ2 + δ2), (22)
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using weak forward regular irrelevance to conclude that ∆2
i ≤ δ2.4

After these preliminaries on the sequence {Yn}, note that for any ε > 0,

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= P

(

n
∑

i=1

E[Xi] − εn <

n
∑

i=1

Xi <

n
∑

i=1

E[Xi] + εn

)

≥ P

(

n
∑

i=1

EP [Xi|X1:i−1] − εn <

n
∑

i=1

Xi <

n
∑

i=1

EP [Xi|X1:i−1] + εn

)

,

using weak forward regular irrelevance. The last expression is equal to

P

(

−ε <

∑n
i=1 Xi − EP [Xi|X1:i−1]

n
< ε

)

= P (|Yn/n| < ε) .

By Chebyshev’s inequality and Expression (22),

P (|Yn/n| < ε) = 1− P (|Yn/n| ≥ ε) ≥ 1 −
EP

[

Y 2
n

]

ε2n2
≥ 1 −

σ2 + δ2

ε2n
.

By combining these inequalities for any P of interest, the first inequality in the
theorem is proved. By taking the limit as n grows without bound, we obtain

lim
n→∞

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= 1.

The proof of the strong law of large numbers uses the same strategy, but
replaces the appeal to Chebyshev’s inequality by an appeal to the Kolmogorov-
Hajek-Renyi inequality (Expression (24)), as in the proof of the strong law of
large numbers by Whittle [35, Thm. 14.2.3]. So, for a fixed P and for any ε > 0,
we proceed as previously to obtain:

P

(

∀n ∈ [N, N + N ′] : µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

≥ P

(

∀n ∈ [N, N + N ′] : −ε <
Yn

n
< ε

)

= P (∀n ∈ [N, N + N ′] : |Yn/n| < ε) .

4A reviewer generously suggested a derivation that shows EP

ˆ

Y 2
n

˜

≤ nσ2, thus obtain-
ing a sharper inequality and removing the need for δ. The strategy is to recall that the
set of square-integrable functions is an Hilbert space; hence EP [·|X1:n] is the orthogonal
projection onto the set of square-integrable X1:n-measurable functions. Consequently, from
the properties of Hilbert spaces, EP

ˆ

(X − EP [X|X1:n])2
˜

≤ EP

ˆ

(X − EP [X])2
˜

and then

EP

ˆ

Y 2
n

˜

=
P

n

i=1
EP

ˆ

(X − EP [X|X1:n])2
˜

≤
P

n

i=1
EP

ˆ

(X − EP [X])2
˜

≤ nσ2.
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As {0, YN , YN+1, . . . , YN+N ′} forms a martingale, we use the Kolmogorov-Hajek-
Renyi inequality (Expression (24)) to produce:

P (∀n ∈ [N, N + N ′] : |Yn/n| < ε) ≥ 1 −
EP

[

Y 2
N

]

ε2N2
−

N+N ′

∑

i=N+1

(Yi − Yi−1)
2

ε2i2
.

Hence:

P (∀n ∈ [N, N + N ′] : |Yn/n| < ε)

≥ 1 −

∑N
i=1 EP

[

(Xi − EP [Xi|X1:i−1])
2
]

ε2N2
−

N+N ′

∑

i=N+1

EP

[

(Xi − EP [Xi|X1:i−1])
2
]

ε2i2

≥ 1 −
σ2 + δ2

ε2N
−

N+N ′

∑

i=N+1

σ2 + δ2

ε2i2
(using Expression (22))

≥ 1 −
σ2 + δ2

ε2N
−

∞
∑

i=N+1

σ2 + δ2

ε2i2

≥ 1 −
σ2 + δ2

ε2

(

1

N
+

∫ ∞

N

1/i2di

)

= 1 −
σ2 + δ2

ε2

(

1

N
+

1

N

)

= 1 − 2
σ2 + δ2

ε2N
.

Consequently, for integer N > (σ2 + δ2)/ε3, we obtain the desired inequality

P

(

∀n ∈ [N, N + N ′] : µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

> 1 − 2ε.

Using the Kolmogorov-Hajek-Renyi without an upper bound on n,

P

(

∀n ≥ N :

∑n
i=1 Xi

n
< µn + ε

)

≥ P

(

∀n ≥ N : µ
n
− ε ≤

∑n
i=1 Xi

n
≤ µn + ε

)

> 1 − 2ε.

Consequently,

P

(

∃n ≥ N :

∑n
i=1 Xi

n
≥ µn + ε

)

< 2ε.

This is almost exactly the inequality obtained by De Cooman and Miranda [5,
Thm. 7] for bounded variables. We now copy their reasoning [5, A.8] to obtain
probabilities over lim sup and lim inf. Event Λ = {ω : lim supn(1/n)

∑n
i=1(Xi −

E[Xi]) > 0} is equal to ∩m≥1 ∩N≥1 ∪n≥NΛm,n, where

Λm,n =

{

ω : (1/n)
n
∑

i=1

(Xi(ω) − E[Xi]) ≥ 1/m

}

.
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Using countable additivity, P (Λ) = infm≥1 infN≥1 P (∪n≥NΛm,n) for every P .
And using the previous inequality, for every m there is some N ∗ ≥ 1 such that

inf
m≥1

inf
N≥1

P (∪n≥NΛm,n) ≤ inf
m≥1

P (∪n≥N∗Λm,n) ≤ inf
m≥1

2/m = 0;

consequently, P (Λ) = 0 for any P of interest, as desired.
The last expression in the theorem is proved from

P

(

∀n ≥ N :

∑n
i=1 Xi

n
> µ

n
− ε

)

> 1 − 2ε,

by a similar argument. 2

H. Proof of Theorem 5

Proof. Using both Markov’s inequality (as in the proof of Theorem 1) and
disintegrability, for any s > 0 we get

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεE

[

exp

(

n
∑

i=1

s(Xi − E[Xi])

)]

≤ e−sεE

[

E

[

exp

(

n
∑

i=1

s(Xi − E[Xi])

)

| X1:n−1

]]

= e−sεE

[

exp

(

n−1
∑

i=1

s(Xi − E[Xi])

)

h(X1:n−1)

]

,

where h(X1:n−1) = E
[

exp
(

s(Xn − E[Xn])
)

| X1:n−1

]

. Due to Condition (17),

E[Xn|X1:n−1] ≤ E[Xn] ; thus E
[

Xn − E[Xn] |X1:n−1

]

≤ 0.

We now apply Expression (23) (if variable X satisfies a ≤ X ≤ b and E[X ] ≤ 0,
then E[exp(sX)] ≤ exp(s2(b − a)2/8) for any s > 0), conditional on X1:n−1:

h(X1:n−1) = E
[

exp
(

s(Xn − E[Xn])
)

|X1:n−1

]

≤ exp(s2β2
n/8).

We have reached an analog of Expression (20), and the proof of the theorem
can be produced by copying the steps after that expression. 2

I. Two auxiliary inequalities

The following inequality is a simple extension of a basic result by Hoeffd-
ing [9, 18]: If variable X satisfies a ≤ X ≤ b and E[X ] ≤ 0, then for any
s > 0,

E[exp(sX)] ≤ exp(s2(b − a)2/8). (23)
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Proof. First, the inequality is clearly valid if a = b or if b < 0. From now on,
suppose b ≥ 0 ≥ a. By convexity of the exponential function,

exp(sx) ≤
x − a

b − a
esb +

b − x

b − a
esa for x ∈ [a, b].

Given monotonicity of upper expectations,

E[exp(sX)] ≤ E

[

X − a

b − a
esb +

b − X

b − a
esa

]

.

Because (esb − esa)(b − a) > 0, and using E[X ] ≤ 0,

E[exp(sX)] ≤
b

b − a
esa −

a

b − a
esb +

esb − esa

b − a
E[X ]

≤
b

b − a
esa −

a

b − a
esb

Now if a = 0, then E[exp(sX)] ≤ 1 ≤ exp(s2b2/8) and the theorem is valid.
Thus suppose b ≥ 0 > a. By rearranging terms, we obtain:

E[exp(sX)] ≤ exp(φ(s(b − a))),

for φ(u) = −pu + log(1 − p + peu) with p = −a/(b − a) (note that p ∈ (0, 1]).
Given that φ(0) = φ′(0) = 0 and φ′′(u) ≤ 1/4 for u > 0 (as the maximum
of φ′′(u) is 1/4, attained at eu = (1 − p)/p), we can use Taylor’s theorem as
follows. For some v ∈ (0, u), φ(u) = φ(0) + uφ′(0) + (u2/2)φ′′(v) ≤ (u2/8) and
consequently φ(s(b−a)) ≤ s2(b−a)2/8. By putting together these inequalities,
we obtain Expression (23).2

We now review the Kolmogorov-Hajek-Renyi inequality, almost exactly as
proved by Whittle [35, Thm. 14.2.2]; this is presented just to indicate the role
of elementwise disintegrability in the derivation. Let {Xi} be a martingale with
X0 = 0, and let {εi} be a sequence 0 < ε1 ≤ ε2 ≤ . . . ; the inequality is

P (∀j ∈ [1, n] : |Xj | < εj) ≥ 1 −
n
∑

i=1

E
[

(Xi − Xi−1)
2
]

ε2i
. (24)

Proof. Define ε0
.
= ε1 and An

.
= {∀j ∈ [0, n] : |Xj | < εj}. Using ξi =

Xi − Xi−1, and denoting the indicator function of some events by the events
themselves,

P (An) = EP [An] = EP

[

An−1I{|Xn|<εn}

]

≥ EP

[

An−1(1 − X2
n/ε2n)

]

(as I{|X|<ε} ≥ 1 − X2/ε2)

= EP

[

An−1(1 − (X2
n−1 + ξ2

n)/ε2n)
]

(by the martingale property, Expression (21))

≥ EP

[

An−2(1 − X2
n−1/ε2n−1)

]

− EP

[

ξ2
n/ε2n

]

(as εn−1 ≤ εn and I{|X|<ε}(1 − X2/ε2) ≥ (1 − X2/ε2)).
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Iteration of the last inequality yields the result. Note that disintegrability for
each P was used when applying the martingale property. 2

It should be noted that the inequality proved by Whittle is slightly differ-
ent: P (∀j ∈ [1, n] : |Xj | ≤ εj) ≥ 1−

∑n
i=1 E

[

(Xi − Xi−1)
2
]

/ε2i (under the same
conditions). The proof only changes by replacing indicator functions (I{|X|<ε}

by I{|X|≤ε}).
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