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Abstract

This paper examines concepts of independence for full conditional probabilities;
that is, for set-functions that encode conditional probabilities as primary ob-
jects, and that allow conditioning on events of probability zero. Full conditional
probabilities have been used in economics, in philosopy, in statistics, in artificial
intelligence. This paper characterizes the structure of full conditional probabili-
ties under various concepts of independence; limitations of existing concepts are
examined with respect to the theory of Bayesian networks. The concept of layer
independence (factorization across layers) is introduced; this seems to be the
first concept of independence for full conditional probabilities that satisfies the
graphoid properties of Symmetry, Redundancy, Decomposition, Weak Union,
and Contraction. A theory of Bayesian networks is proposed where full condi-
tional probabilities are encoded using infinitesimals, with a brief discussion of
hyperreal full conditional probabilities.

Keywords: Full conditional probabilities, Coherent probabilities,
Independence concepts, Graphoid properties, Bayesian networks

1. Introduction

A standard probability measure is a real-valued, non-negative, countably
additive set-function, such that the possibility space gets probability 1. In fact,
if the space is finite, as we assume in this paper, there is no need to be concerned
with countable additivity, and one deals only with finite additivity. In standard
probability theory, the primitive concept is the “unconditional” probability P(A)
of an event A; from this concept one defines conditional probability P(A|B) of
event A given event B, as the ratio P(A ∩B) /P(B). This definition however is
only enforced if P(B) > 0; otherwise, the conditional probability P(A|B) is left
undefined.

A full conditional probability is a real-valued, non-negative set-function, but
now the primitive concept is the conditional probability P(A|B) for event A
given event B. This quantity is only restricted by the relationship P(A ∩B) =
P(A|B)P(B). Note that P(A|B) is a well-defined quantity even if P(B) = 0.
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Full conditional probabilities offer an alternative to standard probabilities
that has found applications in economics [6, 7, 8, 35], decision theory [26, 45] and
statistics [9, 40], in philosophy [24, 33], and in artificial intelligence, particularly
in dealing with default reasoning [1, 11, 13, 15, 23, 30]. Applications in statis-
tics and artificial intelligence are usually connected with the theory of coherent
probabilities; indeed, a set of probability assessments is said to be coherent if
and only if the assessments can be extended to a full conditional probability on
some suitable space [19, 28, 39, 45]. Full conditional probabilities are related
to other uncertainty representations such as lexicographic probabilities [7, 30],
and hyperreal probabilities [25, 27].

In this paper we study concepts of independence applied to full conditional
probabilities. We characterize the structure of joint full conditional probabilities
when various judgments of independence are enforced. We examine difficulties
caused by failure of some graphoid properties and by non-uniqueness of joint
probabilities under judgments of independence. We discuss such difficulties
within the usual theory of Bayesian networks [38].

We then propose the concept of layer independence as it satisfies the graphoid
properties of Symmetry, Redundancy, Decomposition, Weak Union, and Con-
traction. We also propose a theory of Bayesian networks that accommodates
full conditional probabilities by resorting to infinitesimals, and comment on a
theory of hyperreal full conditional probabilities.

This paper should be relevant to researchers concerned with full conditional
probabilities and their applications for instance in game theory and default rea-
soning, and also relevant to anyone interested in uncertainty modeling where
conditional probabilities are the primary object of interest. The paper is orga-
nized as follows. Section 2 reviews the necessary background on full conditional
probabilities. Section 3 characterizes the structure of full conditional proba-
bilities under various judgments of independence. Section 4 introduces layer
factorization, defines layer independence, and analyzes its graphoid properties.
Section 5 examines the challenges posed by failure of graphoid properties and
non-uniqueness, paying special attention to the theory of Bayesian networks.
We suggest a strategy to specify joint full conditional probabilities through
Bayesian networks, by resorting to infinitesimals. Section 6 offers brief remarks
on a theory of hyperreal full conditional probabilities.

2. Background on full conditional probabilities

In this paper we focus on finite possibility spaces, and take that every subset
of the possibility space Ω is an event. Any nonempty event is a possible event.

2.1. Axioms

A full conditional probability [20] is a two-place set-function P : B×(B\∅)→
<, where B is a Boolean algebra over a set Ω, such that for every event C 6= ∅:
(1) P(C|C) = 1;
(2) P(A|C) ≥ 0 for every A;
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(3) P(A ∪B|C) = P(A|C) + P(B|C) for disjoint A and B;
(4) P(A ∩B|C) = P(A|B ∩ C)P(B|C) for A and B such that B ∩ C 6= ∅.

Whenever the conditioning event C is equal to Ω, we suppress it and write
the “unconditional” probability P(A). Note that P(Ω|C) = 1 for any C 6= ∅, as:
1 = P (C|C) = P (C ∩Ω|C) = P (C|Ω∩C)P (Ω|C) = P (C|C)P (Ω|C) = P (Ω|C).
If instead P(Ω|C) = 1 is assumed as an axiom, then the fourth axiom can be
derived, in the presence of the others, from the following condition: P(A|C) =
P(A|B)P(B|C) when A ⊆ B ⊆ C and B 6= ∅ [17, Section 2].

There are other names for full conditional probabilities in the literature, such
as conditional probabilities [31], complete conditional probability systems [35].
We sometimes use joint full probability or marginal full probability to emphasize
that a particular full conditional probability is defined respectively for a set of
variables or for a variable within a set of variables.

Full conditional probabilities allow conditioning on events of zero probabil-
ity. Indeed, the axioms impose no restriction on the probability of a condition-
ing event. Consider Axiom (4). If P(B|C) = 0, the constraint P(A ∩B|C) =
P(A|B ∩ C)P(B ∩ C) is trivially true, and P(A|B ∩ C) must be elicited by dif-
ferent means.

Example 1. Consider Ω = {ω1, ω2, ω3, ω4} and probability assessments

P(ω1) = 1, P(ω2|A) = α, P(ω3|A) = 1− α,

where A = {ω2, ω3, ω4} and α ∈ (0, 1). Note that P(A) = 0, hence we cannot
condition on A in the standard Kolmogorovian setup. Note also that P(ω4|A) =
0 given the assessments. 2

For a nonempty event C, the set-function P(·| · ∩C), defined whenever the
conditioning event is nonempty, is a full conditional probability. That is, the
restriction of a full conditional probability to conditional events A|(B ∩ C),
for fixed C, remains a full conditional probability. We refer to it as the full
conditional probability given C, and denote it by PC .

A sequence of positive probabilities {Pn} approximates a full conditional
probability if P(A|B) = limn→∞ Pn(A∩B)/Pn(B) for any eventA and nonempty
event B. Any full conditional probability can be associated with such an ap-
proximating sequence [36, Theorem 1].

2.2. Variables and their full distributions

Throughout we use letters W , X, Y , Z to denote random variables. For
variable X, denote the set of values of X by ΩX . As the possibility space is
finite, there are no issues of measurability.

Whenever possible we use x to denote the event {X = x} and {y, z} to
denote the event {Y = y} ∩ {Z = z}, and likewise for similar events. We use yc

to denote {Y 6= y}.
Letters A, B, C, D denote events. We often write A(X) to indicate that

event A belongs to the algebra generated by X (that is, A is equal to {ω :
X(ω) ∈ A′} for some set A′ of real-numbers).
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Denote by PX the set-function that evaluates to P(A(X)|B(X)) for any
events A(X) and B(X) in the algebra generated by X, where B(X) is nonempty.
Clearly PX is a full conditional probability: the full distribution of X.

Example 2. Consider Example 1. Define binary variables as follows:

X(ω1) = X(ω3) = x0, X(ω2) = X(ω4) = x1,

Y (ω1) = Y (ω2) = y0, Y (ω3) = Y (ω4) = y1,

Here ΩX = {x0, x1} and ΩY = {y0, y1}. Then P(x0, y0) = 1 (all other atomic
events have unconditional probability equal to zero). Also, P(x1, y0|A) = α and
P(x0, y1|A) = 1− α for A = {x1, y0} ∪ {x0, y1} ∪ {x1, y1}. 2

2.3. Layers

We can partition the possible elements of Ω into events L0, . . . , LK as follows.
First, take L0 to be the set of elements of Ω that have positive unconditional
probability. Then take L1 to be the set of elements of Ω that have positive
probability conditional on Ω\L0. And then take Li, for i ∈ {2, . . . ,K}, to be the
set of elements of Ω that have positive probability conditional on Ω\∪i−1

j=0Lj . The
events Li are called the layers of the full conditional probability. (Note that some
authors use a different terminology, using instead the sequence {∪Kj=iLj}Ki=0

rather than {Li}Ki=0 [15, 31].)

Example 3. In Example 1, we have L0 = {ω1}, L1 = {ω2, ω3}, and L2 = {ω4}.
Note that P(ω4|L2) = P(ω4|ω4) = 1. 2

For nonempty B, denote by LB the first layer such that P(B|LB) > 0, and
refer to it as the layer of B. We then have P(A|B) = P(A|B ∩ LB) [6, Lemma
2.1a]. Clearly, if we have PC , then P(A|B ∩ C) = P(A|B ∩ C ∩ LB∩C).

Given an event A and a layer Li, if A ∩ Li 6= ∅, then P(A|Li) > 0. This
is true because A must contain some ω that belongs to Li, and P(w|Li) =
P
(
w|(∪Kj=iLj) ∩ Li

)
= P

(
w| ∪Kj=i Li

)
> 0.

Any full conditional probability can be represented as a sequence of strictly
positive probability measures P0, . . . ,PK , where the support of Pi is restricted
to Li. This useful result has been derived by several authors [7, 15, 26, 31].

Example 4. In Example 1, we have P0, P1, P2 as follows: P0(ω1) = P(ω1|L0) =
1; P1(ω2) = P(ω2|L1) = α and P1(ω3) = P(ω3|L1) = 1 − α; and P2(ω4) =
P(ω4|L2) = 1. If we take eventA = {ω2, ω3, ω4}, then P(ω2|A) = P(ω2|A ∩ L1) =
α. 2

Given a full conditional probability and its K + 1 layers, we can create an
approximating sequence as follows:

Pn = γ−1
n

(
P + εnP1 + ε2nP2 + . . .+ εKn PK

)
, (1)

where γn =
∑K
i=1 ε

i
n is a sequence of normalization constants, and where εn > 0

goes to zero as n→∞ [29]. Such approximating sequences are used later.
Given a variable X, we can consider layers of PX (subsets of ΩX), denoted

by LXi . The layers LXi form a partition of the possible elements of ΩX .
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P0 y0 y1

x0 1
x1

P1 y0 y1

x0 (1− α)
x1 α

P2 y0 y1

x0

x1 1

Table 1: Joint full distribution of binary variables X and Y , with α ∈ (0, 1), specified over
three layers.

y0 y1

x0 b1c0 b1− αc1
x1 bαc1 b1c2

Table 2: Compact representation of joint full distribution for binary variables X and Y .

Example 5. Consider Example 2. Table 1 shows a joint full distribution of
(X,Y ), as a series of positive distributions over three layers. The marginal full
distribution of X is given by PX(x0) = 1 and PX(x1|x1) = 1. Hence LX0 = {x0}
and LX1 = {x1}. Similarly, the marginal full distribution of Y is given by
PY (y0) = 1 and PY (y1|y1) = 1. Hence LY0 = {y0} and LY1 = {y1}. 2

2.4. Some notation

We often write bαci to denote a probability value α that belongs to the ith
layer Li.

Example 6. Table 2 shows the full distribution in Example 5, using a compact
notation where probability values and layers are conveyed together. 2

2.5. Layer numbers

For a nonempty event A, the index i of the first layer Li such that P(A|Li) >
0 is the layer number ofA, denoted by ◦(A). Layer numbers have been studied by
Coletti and Scozzafava [15], who refer to them as zero-layers. Given a nonempty
event B, define the layer number of A given B to be ◦(A|B) = ◦(A ∩B)−◦(B).
Inspired by Coletti and Scozzafava [15], we adopt ◦(A) =∞ if A = ∅. We have,
for C 6= ∅,

◦(A ∪B|C) = min(◦(A|C) , ◦(B|C)).

Also, if ◦(A ∩B) > ◦(B), then P(A|B) = P(A|B ∩B)P(B|B) = P(A ∩B|B) =
P(A ∩B|B ∩ LB) = 0 because A ∩ B and LB must be disjoint. Note that
when we write ◦(x) for the event {X = x}, we must compute the layer number
with respect to the underlying full conditional probability, not with respect
to the full distribution of X. For instance, in Table 3 we have ◦(x1) = 2,
but if we were to focus on the marginal full distribution of X, we would see
that the event {X = x1} lies in layer LX1 . Note also that the conditional
layer number ◦(x|y) is computed with respect to the underlying full conditional
probability as ◦(x, y) − ◦(y), and it may not be identical to the index of the
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y0 y1

x0 b1c0 b1c1
x1 b1c3 b1c2

Table 3: Joint full distribution of binary variables X and Y .

layer for x in the conditional full distribution P{Y=y}. For instance, for the full
distribution in Table 3 we have ◦(x1, y0)−◦(y0) = 3, but x1 lies in the layer of the
full conditional probability P{Y=y0} associated with index 1. To some extent,
layer numbers “carry” with them information about the underlying joint full
probability.

2.6. Relative probability

A concept of independence discussed later employs relative probabilities [3,
29, 34]. A relative probability ρ is a two-place set-function that takes values in
[0,∞], such that for every event A and every nonempty events B and C, we
have [29, Definition 2.1]:
(1) ρ (A;A) = 1;
(2) ρ (A ∪B;C) = ρ (A;C) + ρ (B;C) if A ∩B = ∅;
(3) ρ (A;C) = ρ (A;B) ρ (B;C) if the latter product is not 0×∞.

If a relative probability is such that all values of ρ(·; ·) are positive and
finite, then this relative probability can be represented by a positive probability
measure P by making P(A) equal to ρ (A; Ω). The last axiom then implies
ρ (A;B) = P(A) /P(B). Note however that for any α > 0, the measure αP also
offers a representation for the same relative probabilities.

Now if some values of ρ(·; ·) are equal to zero, the relative probability can
be represented by a full conditional probability with more than one layer. The
layers are formed by collecting pairs of atoms whose relative probability is finite;
these layers are ordered so that if ρ (ω;ω′) = 0, then ω ∈ Li and ω′ ∈ Lj with
i > j. Now for each layer L, define P(A|L) = ρ (A;L) for any event A in the
layer. We then obtain ρ (A;B) = P(A|L) /P(B|L) whenever A and B belong to
the same layer; otherwise, ρ (A;B) is 0 if ◦(A) > ◦(B) and ∞ if ◦(A) < ◦(B).
We thus have:

ρ (A;B) =
P(A|LA∪B)

P(B|LA∪B)
=

P(A|(A ∪B) ∩ LA∪B)

P(B|(A ∪B) ∩ LA∪B)
× P(A ∪B|LA∪B)

P(A ∪B|LA∪B)

=
P(A|A ∪B)

P(B|A ∪B)
,

with the understanding that the ratio yields ∞ if its denominator is zero.
A sequence of positive probability measures {Pn} approximates a relative

probability if ρ (A;B) = limn→∞ Pn(A)/Pn(B). It is always possible to find
such a sequence of probability measures for any given relative probability [29,
footnote 4]; for instance, write down a full conditional probability that represents
the relative probability, and generate an approximating sequence for this full
conditional probability (Expression (1)).
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2.7. Concepts of independence

The standard concept of stochastic independence for variables X and Y
given variable Z requires

P(x|y, z) = P(x|z) whenever P(y, z) > 0. (2)

Throughout the paper we ignore Z if it is some constant variable, and discard
the expression “given Z” in those cases; then we simply say that X and Y are
stochastically independent.

The definition of stochastic independence is too weak for full conditional
probabilities: consider Table 3, where X and Y are stochastically independent
but

P(y0) = 1 6= 0 = P(y0|x1) .

To avoid this embarrassment, more stringent notions of independence have been
proposed for full probabilities [7, 42, 15, 26].

First, say that X is epistemically irrelevant to Y given Z if P(y|x, z) = P(y|z)
whenever {x, z} 6= ∅, and then say that X and Y are epistemically independent
given Z if X is epistemically irrelevant to Y given Z and vice-versa. Note that
epistemic irrelevance is quite weak, and in particular it is not symmetric: in
Table 3 we see that Y is epistemically irrelevant to X, but X is not epistemically
irrelevant to Y .

Second, say that X is h-irrelevant to Y given Z when

P(B(Y )|z ∩A(X) ∩D(Y )) = P(B(Y )|z ∩D(Y )) ,

for all values z, all events B(Y ), D(Y ) in the algebra generated by Y , and all
events A(X) in the algebra generated by X, such that z ∩ A(X) ∩ D(Y ) 6= ∅.
And say that X and Y are h-independent given Z when X is h-irrelevant to Y
given Z and vice-versa; in that case, we have:

P(A(X) ∩B(Y )|z ∩ C(X) ∩D(Y )) = (3)

P(A(X)|z ∩ C(X))P(B(Y )|z ∩D(Y )) ,

for C(X) in the algebra generated by X such that z ∩C(X)∩D(Y ) 6= ∅. Ham-
mond [26] refers to h-independence simply as “conditional independence,” while
Battigalli [5] refers to it as the “independence condition”; Swinkels [41] uses
the term “quasi-independence” for Battigalli’s independence condition, while
Kohlberg and Reny [29] employ the term “weak independence” for a condition
that is weaker than Battigalli’s for several variables but equivalent to Battigalli’s
for two variables. When dealing with unconditional independence, Hammond
and Battigalli assume the possibility space to be a product of possibility spaces
(Ω = ΩX × ΩY ), while Kohlberg and Reny do not assume it but require, for
independence of X and Y , the same condition on Ω. Hence Kohlberg and
Reny’s version of h-independence is stronger in that it imposes a condition on
the possibility space.
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Another concept of independence has been proposed by Kohlberg and Reny
[29] using relative probabilities. Their proposal is to consider X and Y inde-
pendent when

ρ (A(X) ∩B(Y );A′(X) ∩B′(Y )) = lim
n→∞

Pn(A(X))Pn(B(Y ))

Pn(A′(X))Pn(B′(Y ))
(4)

for all A(X), A′(X) in the algebra generated by X, and all B(Y ), B′(Y ) in the
algebra generated by Y , for some sequence {Pn} of positive product probability
measures [29, Definition 2.7]. They show that this concept is equivalent to the
following condition [29, Lemma 2.8]: the set of possible values for (X,Y ) is the
product ΩX×ΩY , and moreover there is a sequence {Pn} of positive probability
measures such that

P(x, y|{x, y} ∪ {x′, y′})
P(x′, y′|{x, y} ∪ {x′, y′})

= lim
n→∞

Pn(x)Pn(y)

Pn(x′)Pn(y′)
. (5)

Kohlberg and Reny [29] then say that X and Y are strongly independent; be-
cause the term “strong” has been used in the literature before to refer to various
concepts of independence, we simply say that X and Y are kr-independent. And
we say that X and Y are kr-independent given Z when they are kr-independent
with respect to P{Z=z} for every possible z. Expression (4) can be adapted
to such a concept of conditional independence, in the language of full condi-
tional probabilities, as follows: there is a sequence {Pn} of positive probability
measures such that, for all events in appropriate algebras,

P(A(X) ∩B(Y )|((A(X) ∩B(Y )) ∪ (A′(X) ∩B′(Y ))) ∩ {z})
P(A′(X) ∩B′(Y )|((A(X) ∩B(Y )) ∪ (A′(X) ∩B′(Y ))) ∩ {z})

=

lim
n→∞

Pn(A(X)|z)Pn(B(Y )|z)
Pn(A′(X)|z)Pn(B′(Y )|z)

.

Expression (5) can be similarly adapted to conditional independence.
Coletti and Scozzafava [12, 13, 14, 15] have proposed conditions on zero-

layers to capture aspects of independence. Here cs-independence of event B to
event A, where B 6= ∅ 6= Bc, requires:

P(A|B) = P(A|Bc) , ◦(A|B) = ◦(A|Bc) , and ◦(Ac|B) = ◦(Ac|Bc) . (6)

To understand the motivation for conditions on zero-layers, suppose that A∩B,
A ∩Bc, Ac ∩B are nonempty, but Ac ∩Bc = ∅. Hence observation of Bc does
provide information about A. However, the indicator functions of A and B
may be epistemically/h-independent! Coletti and Scozzafava’s conditions fail in
this situation: B cannot be independent to A. Hence Coletti and Scozzafava’s
condition automatically handles logical dependence/independence of events. As
noted before, other authors [6, 26, 29] instead require the possibility space to
be the product of possibility spaces for the variables.

Vantaggi [42] has presented detailed analysis of Condition (6), and also has
presented conditions aimed at independence of variables. First, consider an ex-
tension of cs-independence to conditional cs-independence, as follows [13, 42].
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Say that B is cs-irrelevant to A given C if B∩C 6= ∅ 6= Bc∩C, and P(A|B ∩ C) =
P(A|Bc ∩ C), ◦(A|B ∩ C) = ◦(A|Bc ∩ C), and ◦(Ac|B ∩ C) = ◦(Ac|Bc ∩ C).
Say that Y is strongly cs-irrelevant to X given Z if any nonempty event {Y = y}
is cs-irrelevant to any event {X = x} given any nonempty event {Z = z} [42,
Definition 7.1]. This is a very strong condition as in particular it demands logi-
cal independence of Y and Z. A weaker concept of independence has also been
proposed by Vantaggi: Y is weakly cs-irrelevant to X given Z if {Y = y} is
cs-irrelevant to {X = x} given {Z = z} whenever {y, z} 6= ∅ 6= {yc, z} [42,
Definition 7.3]. Note that Vantaggi initially refers to both concepts as stochas-
tic independence [42], remarking that the first concept leads to a “strong” form
of independence when applied to indicator functions; later she uses conditional
cs-independence for the second concept [44, Definition 3.4]. Cozman and Sei-
denfeld use strong coherent irrelevance for the first concept and weak coherent
irrelevance for the second [16], but it is perhaps better to keep Vantaggi’s name
so has to indicate clearly the origin of the concept.

Focusing only on layer numbers, conditional cs-irrelevance of Y to X given Z
implies ◦(x|y, z) = ◦(x|z) whenever {y, z} 6= ∅. This is true because, assuming
{y, z} 6= ∅, we have that either {yc, z} = ∅, and in this case {y, z} = {z} and
then ◦(x|y, z) = ◦(x|z) trivially, or else

◦(x|z) = ◦({x, y, z} ∪ {x, yc, z})− ◦(z)
= min (◦(x, y, z) , ◦(x, yc, z))− ◦(z)
= min (◦(x|y, z) + ◦(y, z) , ◦(x|yc, z) + ◦(yc, z))− ◦(z)
= ◦(x|y, z) + min (◦(y, z) , ◦(yc, z))− ◦(z)
= ◦(x|y, z) + ◦({y, z} ∪ {yc, z})− ◦(z)
= ◦(x|y, z) .

Consequently, conditional cs-irrelevance of Y to X given Z implies

◦(x, y|z) = ◦(x|z) + ◦(y|z) whenever {Z = z} 6= ∅. (7)

Condition (7) is called the conditional layer condition by Cozman and Sei-
denfeld [16, Corollary 4.11]. Note that this condition is symmetric. One can
obtain additional concepts of independence by combining the conditional layer
condition with other conditions. For instance, say that X is fully irrelevant to
Y given Z if X is h-irrelevant to Y given Z and they satisfy the conditional
layer condition; say that X and Y are fully independent given Z if they are h-
independent given Z and they satisfy the conditional layer condition [16]. Full
independence is stronger than Kolhlberg and Reny’s version of h-independence,
because full independence not only implies conditions on the possibility space,
but also imposes conditions on layer numbers.

2.8. Graphoid properties

Concepts of independence can be compared with respect to the graphoid
properties they satisfy. Graphoid properties purport to encode the essence of
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conditional independence of X and Y given Z, as a ternary relation (X⊥⊥Y |Z)
[18, 38]. In this paper we are interested in the following five properties:

Symmetry: (X⊥⊥Y |Z)⇒ (Y ⊥⊥X |Z)

Redundancy: (X⊥⊥Y |X)

Decomposition: (X⊥⊥(W,Y ) |Z)⇒ (X⊥⊥Y |Z)

Weak Union: (X⊥⊥(W,Y ) |Z)⇒ (X⊥⊥W |(Y,Z))

Contraction: (X⊥⊥Y |Z) & (X⊥⊥W |(Y,Z))⇒ (X⊥⊥(W,Y ) |Z)

Often the following property is considered:

Intersection: (X⊥⊥W |(Y,Z)) & (X⊥⊥Y |(W,Z))⇒ (X⊥⊥(W,Y ) |Z)

We do not deal with Intersection in this paper, as this property holds for
strictly positive probability measures, but fails already for standard probability
measures when some events have probability zero [38]. The other five properties,
namely Symmetry, Redundancy, Decomposition, Weak Union, and Contraction,
are often used to define structures that are called semi-graphoids [38]. Whenever
we refer to the “semi-graphoid” properties, we mean these five properties.

Epistemic independence satisfies Symmetry, Redundancy, Decomposition
and Contraction, but it fails Weak Union, while h-/full independence satisfy
Symmetry, Redundancy, Decomposition and Weak Union, but fail Contraction
[16]. The full distribution in Table 4 displays both the failure of Weak Union for
epistemic independence and the failure of Contraction for h-/full independence.

Concerning kr-independence, it does not seem that its graphoid properties
have been analyzed in the literature. We have:

Theorem 1 Symmetry, Redundancy, Decomposition and Weak Union are sat-
isfied by kr-independence.

Proof. Symmetry is immediate. To obtain Redundancy, consider a fixed value
x of X. Now the range of (X,Y ) given {X = x} is exactly {x, y} for all y in
the range of Y with X fixed at x. Given any full distribution for (X,Y ), we can
construct a sequence Pn for the full distribution given {X = x} by first taking
Pn(X = x|x) = 1, and then by multiplying it by each positive probability
distribution Pn(Y |x) in an approximating sequence of the full distribution of
Y given {X = x}. The resulting product distribution (positive over the range
of (X,Y ) given {X = x}) approximates the original full distribution given
{X = x}, as

P(x, y|{x, y} ∩ {x, y′})
P(x, y′|{x, y} ∩ {x, y′})

=
P(y|x ∩ {y ∪ y′})
P(y′|x ∩ {y ∪ y′})

= lim
n→∞

Pn(x|x)Pn(y|x)

Pn(x|x)Pn(y′|x)
;

henceX and Y are kr-independent given {X = x}. Now consider Decomposition
and Weak Union. Take a sequence that satisfies kr-independence of X and
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w0y0 w1y0 w0y1 w1y1

x0 bαc0 bβc2 b1− αc0 b1− βc2
x1 bαc1 bγc3 b1− αc1 b1− γc3

Table 4: Full distribution of W , X, Y , with distinct α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 1).

(W,Y ) given Z; clearly for each element of this sequence Decomposition and
Weak Union hold, so X and Y are kr-independent given Z, and also X and W
are kr-independent given (Y,Z). Hence Decomposition and Weak Union hold
for kr-independence. While this reasoning is immediate for Decomposition, the
argument for Weak Union deserves a more detailed description. Consider events
A(X), A′(X), B(W ) and B′(W ) respectively in the algebras generated by X
and by W , and denote by C the event (A(X)∩B(W ))∪(A′(X)∩B′(W )). Then,
using the fact that a sequence {Pn} exists by hypothesis,

P(A(X) ∩B(W )|C ∩ y)

P(A′(X) ∩B′(W )|C ∩ y)
=

P(A(X) ∩B(W ) ∩ y|C ∩ y)

P(A′(X) ∩B′(W ) ∩ y|C ∩ y)

= ρ(A(X) ∩B(W ) ∩ y;A′(X) ∩B′(W ) ∩ y)

= lim
n→∞

Pn(A(X) ∩B(W ) ∩ y)

Pn(A′(X) ∩B′(W ) ∩ y)

= lim
n→∞

Pn(A(X) ∩B(W )|y)

Pn(A′(X) ∩B′(W )|y)

= lim
n→∞

Pn(A(X)|y)Pn(B(W )|y)

Pn(A′(X)|y)Pn(B′(W )|y)
,

as desired. 2

Additionally, kr-independence fails Contraction: the full distribution in Ta-
ble 4 satisfies kr-independence of X and Y , and also kr-independence of X and
W given Y , and yet X and (W,Y ) are not kr-independent.

3. The structure of epistemic, h-, and full independence

In this section we study the structure of joint full conditional probabilities
subject to judgments of independence. To simplify notation we assume in this
section that we only have two variables and a full conditional probability P;
all results hold if everything were stated given a variable Z, as in that case we
would use a full conditional probability Pz for each possible values of Z.

The basic idea is to order the values of X by their layer numbers, then
order the values of Y by their layer numbers, so as to write down the joint full
conditional probability as a matrix of product measures. Table 5 depicts this
idea, where

Ci,j = LXi × LYj ,

11



LY0 . . . LYn
LX0 C0,0 . . . C0,n

...
...

. . .
...

LXm Cm,0 . . . Cm,n

Table 5: Structure of the joint full conditional probability.

y0 y1

x0 b1c0 b1/3c2
x1 b1/6c1 b1/3c1
x2 b1/3c1 b1/6c1

Table 6: Joint full distribution of stochastically independent variables X and Y .

and as before LXi and LYj denote the layers of the full distributions of X and Y
respectively. Throughout this section we denote by m the number of layers of
the full distribution for X and by n the number of layers of the full distribution
for Y .

Conditional stochastic independence, given by Condition (2), forces the ele-
ments of C0,0 to have positive probability given by

P(x, y) = P(x)P(y) ,

but other cells in Table 5 need not resemble product measures in any way. For
instance, take the full distribution in Table 6: probabilities conditional on C1,0

are not products of marginal probabilities.
Epistemic independence extends the factorization into the first row and first

column of Table 5 in the following sense.

Theorem 2 X and Y are epistemically independent if and only if

• for i ∈ {0, . . . ,m}, for all x ∈ LXi and for all y:

P
(
x, y|LXi

)
= P

(
x|LXi

)
P(y) ,

and

• for j ∈ {0, . . . , n}, for all y ∈ LYj and for all x:

P
(
x, y|LYj

)
= P(x)P

(
y|LYj

)
.

Moreover, if X and Y are epistemically independent, then

• for i ∈ {0, . . . ,m}, for all possible pairs (x, y) ∈ Ci,0:

P(x, y|Ci,0) = P
(
x|LXi

)
P(y) ;

12



• for j ∈ {0, . . . , n}, for all possible pairs (x, y) ∈ C0,j:

P(x, y|C0,j) = P(x)P
(
y|LYj

)
.

Proof. Suppose X and Y are epistemically independent. For any pair (x, y)
such that x ∈ LXi , we have:

P
(
x, y|LXi

)
= P

(
y|x ∩ LXi

)
P
(
x|LXi

)
= P(y|x)P

(
x|LXi

)
= P(y)P

(
x|LXi

)
.

By interchanging X and Y , we obtain P
(
x, y|LYj

)
= P(x)P

(
y|LYj

)
for any pair

(x, y) such that y ∈ LYj . Now suppose P satisfies P
(
x, y|LXi

)
= P

(
x|LXi

)
P(y)

for x ∈ LXi and P
(
x, y|LYj

)
= P(x)P

(
y|LYj

)
for y ∈ LYj . Take y ∈ LYj ; then

P
(
x, y|LYj

)
= P

(
x|y ∩ LYj

)
P
(
y|LYj

)
= P(x|y)P

(
y|LYj

)
; hence P(x|y)P

(
y|LYj

)
=

P(x)P
(
y|LYj

)
and we can cancel out P

(
y|LYj

)
because it is larger than zero by

definition. Consequently, P(x|y) = P(x). By interchanging X and Y , we obtain
P(y|x) = P(y). Thus X and Y are epistemically independent.

Now consider the second part of the theorem. For any pair (x, y) such that
x ∈ LXi and y ∈ LY0 , use the fact that Ci,0 = (LXi ×ΩY )∩ (LY0 ×ΩX) and that
1 = P

(
LY0
)

= P
(
LY0 |LXi

)
(using Lemma 2.1 by Cozman and Seidenfeld [16]) to

obtain:

P(x, y|Ci,0) = P
(
x, y|(LXi × ΩY ) ∩ (LY0 × ΩX)

)
= P

(
x, y|(LXi × ΩY ) ∩ (LY0 × ΩX)

)
P
(
LY0 |LXi

)
= P

(
{x, y} ∩ LY0 |LXi

)
= P

(
x, y|LXi

)
= P(y)P

(
x|LXi

)
.

By interchanging X and Y , we obtain P(x, y|C0,j) = P(x)P
(
y|LYj

)
. 2

These results can be explained as follows. Define

pi(x) = P
(
x|LXi

)
and qj(y) = P

(
y|LYj

)
.

Then for each cell (i, j) in the first column and in the first row of Table 5, we
have a distribution that factorizes as P(x, y|Ci,j) = pi(x)qj(y); the other cells
need not factorize.

We now move into h-independence. The following result is similar to Theo-
rem 2.1 by Battigalli and Veronesi [6]:

Proposition 1 If X and Y are h-independent, then for every possible pair
(x, y) ∈ Ci,j,

P(x, y|Ci,j) = P
(
x|LXi

)
P
(
y|LYj

)
. (8)

Hence all possible (x, y) in a set Ci,j share the same layer number.

Proof. In Expression (3), ignore z and takeA(X) = x, B(Y ) = y, C(X) = LXi ,
D(Y ) = LYj . 2
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LY0 . . . LYn
LX0 p0q0 . . . p0qn

...
...

. . .
...

LXm pmq0 . . . pmqn

Table 7: Structure of the joint conditional probability: factorization.

Note that it is important to restrict the result to possible pairs (x, y), because
the event {ω : (X(ω), Y (ω)) ∈ Ci,j}may be empty even when Ci,j contains pairs
(x, y). In fact, each Ci,j is either entirely possible or entirely impossible, given
the constraints on layer numbers.

Returning to the matrix in Table 5, we see that now inside cell (i, j) we have
factorization pi(x)pj(y) given Ci,j . Table 7 depicts the structure of the joint full
conditional probability.

The cells in Table 7 must satisfy some constraints concerning their “depth”;
basically, layer numbers grow to the right and to the bottom. Recall that m
and n are respectively the maximum layer number for the full distribution of X
and of Y . Then:

Proposition 2 If X and Y are h-independent, then for i ≥ 0, j ≥ 0, k > 0
such that conditioning events are well-defined and nonempty:

P(Ci+k,j |Ci,j ∪ Ci+k,j) = 0 and P(Ci,j+k|Ci,j ∪ Ci,j+k) = 0,

and
◦(Ci+k,j) > ◦(Ci,j) , ◦(Ci,j+k) > ◦(Ci,j)

whenever ◦(Ci,j) is finite. Additionally, ◦(Ci,j) ≥ i+ j for i ∈ [0,m], j ∈ [0, n].

Proof. Because all elements of a cell share the same layer number, we need
only to focus on two events, {x, y} ∈ Ci,j and {x′, y} ∈ Ci+k,j . Note that
P(x′|x ∪ x′) = 0. Using h-independence:

P(x′, y|{x, y} ∪ {x′, y}) = P(x′, y|{x ∪ x′} ∩ y) = P(x′|x ∪ x)P(y|y) = 0

and P(Ci+k,j |Ci,j ∪ Ci+k,j) = 0 whenever the conditioning event is nonempty
(that is, ◦(Ci+k,j) > ◦(Ci,j) whenever ◦(Ci,j) is finite). By interchanging X
and Y , we obtain P(Ci,j+k|Ci,j ∪ Ci,j+k) = 0 whenever the conditioning event
is nonempty (that is, ◦(Ci,j+k) > ◦(Ci,j) whenever ◦(Ci,j) is finite). Finally,
to reach a cell Ci,j from cell C0,0, at least i + j layers are crossed (moving
horizontally or vertically in Table 7). 2

Example 7. Given two h-independent variables X and Y , the “shallowest”
possible joint full conditional probability is the one where cell (i, j) lives in the
(i+ j)th layer; that is, where both C0,1 and C1,0 are in the same layer, and so
on. An example is the full distribution in Table 2. In such a configuration we

14



y0 y1 y2

x0 b1c0 b1/2c1 b1/2c2
x1 b1/2c1 b1c3 b1/2c4
x2 b1/2c2 b1/2c4 b1c5

Table 8: Joint full distribution of variables X and Y .

have ◦(x, y) = ◦(x) + ◦(y). However this sort of equality may not hold: Table 8
presents a joint full distribution that satisfies h-independence of X and Y and
where ◦(x, y) > ◦(x) + ◦(y) for some (x, y).

The following theorem characterizes the structure of h-independence.

Theorem 3 X and Y are h-independent if and only if

• for every nonempty Ci,j, for every pair (x, y) ∈ Ci,j:

P(x, y|Ci,j) = P
(
x|LXi

)
P
(
y|LYj

)
,

and

• for all i ≥ 0, j ≥ 0, k > 0 such that conditioning events are well-defined
and nonempty:

P(Ci+k,j |Ci,j ∪ Ci+k,j) = 0 and P(Ci,j+k|Ci,j ∪ Ci,j+k) = 0.

In this theorem, the “only if ” direction is a combination of previous ar-
guments, while the proof of the “if” direction requires an extended version of
Lemma 2.2 by Battigalli and Veronesi [6]. The extension is needed because they
assume Ω = ΩX × ΩY in their work. So, we start with:

Lemma 1 X is h-irrelevant to Y if and only if

P(y|x ∩ {y ∪ y′}) = P(y|x′ ∩ {y ∪ y′})

whenever x ∩ {y ∪ y′} 6= ∅ 6= x′ ∩ {y ∪ y′}.

Proof. The “only if” direction is immediate. For the “if” direction, fix a value
of X, say x′, and values of Y , say y and y′, such that x′ ∩ {y ∪ y′} 6= ∅. Then:

P(y|y ∪ y′) =
∑
x∈ΩX

P(x, y|y ∪ y′)

=
∑

x∈ΩX :x∩{y∪y′}6=∅

P(x, y|y ∪ y′)

=
∑

x∈ΩX :x∩{y∪y′}6=∅

P(y|x ∩ {y ∪ y′})P(x|y ∪ y′)
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=
∑

x∈ΩX :x∩{y∪y′}6=∅

P(y|x′ ∩ {y ∪ y′})P(x|y ∪ y′)

= P(y|x′ ∩ {y ∪ y′})
∑

x∈ΩX :x∩{y∪y′}6=∅

P(x|y ∪ y′)

= P(y|x′ ∩ {y ∪ y′}) ,

where the condition in the lemma was used in the fourth equality (the other
equalities are simply properties of full conditional probabilities). Because a full
conditional probability is completely determined by its values on conditioning
events given by the union of two atomic events [6, Lemma 2.1c], and because
P(·|x′ ∩ ·) is a full conditional probability, we obtain that the full distribution
of Y and the full distribution of Y given x′ must be identical except on a set
D′(Y ) such that x′ ∩D′(Y ) = ∅ while D′(Y ) 6= ∅. But D′(Y ) must belong to
layers of the full distribution of Y that have higher layer numbers than events
in (D′(Y ))c (to see that, take any y ∈ D′(Y ) and any possible y′ 6= D′(Y );
then P(y|y ∪ y′) = P(y|x′ ∩ {y ∪ y′}) = 0). We obtain, for any D(Y ) such that
x′ ∩D(Y ) 6= ∅:

P(y|x′ ∩D(Y )) = P(y|x′ ∩D(Y ) ∩ (D′(Y ))c)

= P(y|D(Y ) ∩ (D′(Y ))c)

= P(y|D(Y )) .

And using Lemma 2.1 by Cozman and Seidenfeld [16], we obtain the equality
P(B(Y )|A(X) ∩D(Y )) = P(B(Y )|D(Y )) whenever A(X) ∩D(Y ) 6= ∅; thus X
is h-irrelevant to Y . 2

We can now present the proof of Theorem 3.

Proof. As noted, the “only if” direction is basically a combination of Propo-
sitions 1 and 2. To prove the “if” direction, note that Lemma 1 implies: X and
Y are h-independent if for any two distinct values x and x′ and any two distinct
values y and y′,

P(x, y|{x, y} ∪ {x, y′}) = P(x′, y|{x′, y} ∪ {x′, y′}) (9)

whenever {x, y} ∪ {x, y′} 6= ∅ 6= {x′, y} ∪ {x′, y′},

P(x, y|{x, y} ∪ {x′, y}) = P(x, y′|{x, y′} ∪ {x′, y′}) (10)

whenever {x, y} ∪ {x′, y} 6= ∅ 6= {x, y′} ∪ {x′, y′}.

Note also that if we have two points (x, y) and (x′, y′) that belong to the
same nonempty cell Ci,j ,

P(x, y|Ci,j) = P(x, y|{{x, y} ∪ {x′, y′}} ∩ Ci,j)P({x, y} ∪ {x′, y′}|Ci,j)
= P(x, y|{x, y} ∪ {x′, y′}) (P(x, y|Ci,j) + P(x′, y′|Ci,j)) ,
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and because P(x, y|Ci,j) = pi(x)qj(y) > 0 and P(x′, y′|Ci,j) = pi(x
′)qj(y

′) > 0,

P(x, y|{x, y} ∪ {x′, y′}) =
pi(x)qj(y)

pi(x)qj(y) + pi(x′)qj(y′)
.

Now consider four points (x, y), (x, y′), (x′, y), (x′, y′). Given the second
condition in the theorem, there are only four possible situations.

Case 1: The four points belong to the same cell Ci,j , and this cell is nonempty
(if the cell is empty, there is nothing to verify). Expression (9) yields

pi(x)qj(y)

pi(x)qj(y) + pi(x)qj(y′)
=

pi(x
′)qj(y)

pi(x′)qj(y) + pi(x′)qj(y′)
;

that is (by cancelling terms),

qj(y)

qj(y) + qj(y′)
=

qj(y)

qj(y) + qj(y′)
,

a tautology. Expression (10) is likewise satisfied.
Case 2: Points (x, y) and (x′, y) belong to the same cell Ci,j , while points

(x, y′) and (x′, y′) belong to cell Ci,j+k for some k > 0. If both cells are empty,
there is nothing to verify. Suppose instead that Ci,j 6= ∅. Constraints on layers
yield

P(x, y|{x, y} ∪ {x, y′}) = P(x′, y|{x′, y} ∪ {x′, y′}) = 1.

If Ci,j+k = ∅, there is nothing to verify concerning Expression (10); otherwise,
Expression (10) yields

pi(x)qj(y)

pi(x)qj(y) + pi(x′)qj(y)
=

pi(x)qj(y
′)

pi(x)qj(y′) + pi(x′)qj(y′)
,

a tautology.
Case 3: Points (x, y) and (x, y′) belong to the same cell Ci,j , while points

(x′, y) and (x′, y′) belong to cell Ci+k,j for some k > 0. If both cells are empty,
there is nothing to verify. Suppose instead that Ci,j 6= ∅. If Ci+k,j = ∅, there is
nothing to verify concerning Expression (9); otherwise, Expression (9) yields

pi(x)qj(y)

pi(x)qj(y) + pi(x)qj(y′)
=

pi(x
′)qj(y)

pi(x′)qj(y) + pi(x′)qj(y′)
,

a tautology. Constraints on layers yield

P(x, y|{x, y} ∪ {x′, y}) = P(x, y′|{x, y′} ∪ {x′, y′}) = 1.

Case 4: All points belong to different cells. Suppose first that the four
cells are nonempty, with (x, y) of lowest layer number, (x′, y′) of highest layer
number, and (x, y′) and (x′, y′) of intermediate layer numbers. Then constraints
on layers yield

P(x, y|{x, y} ∪ {x, y′}) = P(x′, y|{x′, y} ∪ {x′, y′}) = 1,

P(x, y|{x, y} ∪ {x′, y}) = P(x, y′|{x, y′} ∪ {x′, y′}) = 1.
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y0 y1

x0 b1c0 b1/2c1
x1 b1c2 b1/2c1

Table 9: Joint full distribution that satisfies layer factorization.

Now suppose {x, y′} is empty; hence {x′, y′} is empty as well. The first equality
holds while the second is irrelevant. Likewise, if {x′, y} is empty, then {x′, y′} is
empty as well; the second equality holds while the first one is irrelevant. Finally,
if both {x′, y} and {x, y′} are empty, then {x′, y′} is empty as well, and there
is nothing to verify. 2

Corollary 1 X and Y are fully independent if and only if for every Ci,j, for
every pair (x, y) ∈ Ci,j,

P(x, y|Ci,j) = P
(
x|LXi

)
P
(
y|LYj

)
and ◦(x, y) = ◦(x) + ◦(y) .

As noted by Kohlberg and Reny [29], kr-independence implies h-independence
when variables are logically independent. Hence the structure of joint full con-
ditional probabilities under kr-independence must be given by product mea-
sures as in Table 7. However, kr-independence imposes considerable stronger
conditions; Kohlberg and Reny [29] tie kr-independence to an exchangeability
condition, while Swinkels [41] tie kr-independence to an “extendibility” condi-
tion. These conditions are rather complex; we have not been able to derive any
further insight on kr-independence, and leave its structure to future work. We
however come back, in Section 5, to insights behind approximating sequences in
order to build a theory of Bayesian networks for full conditional probabilities.

4. Factorization by layer

H-independence and full independence are quite attractive, but still they do
not satisfy the Contraction property. In this section we examine a different route
to concepts of independence, one that will take us to a concept of independence
satisfying the semi-graphoid properties.

Say that X and Y satisfy layer factorization given Z when, for each layer
Li of the underlying full conditional probability P,

P(x, y|z ∩ Li) = P(x|z ∩ Li)P(y|z ∩ Li) whenever z ∩ Li 6= ∅. (11)

By itself, the layer factorization condition is quite weak. For instance,
the joint full distribution in Table 9 satisfies layer factorization, even though
P(x0|y0) = 1 6= 1/2 = P(x0|y1) (that is, even epistemic independence fails).

We might then combine layer factorization with other conditions, to ob-
tain stronger concepts of independence that satisfy desirable properties. As an
exercise, suppose for instance that two variables X and Y are h-independent
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y0 y1 y2

x0 b1c0 b1c1 b1c2
x1 b1c3 b1c5 b1c6
x2 b1c4 b1c7 b1c8

y0 y1 y2

x0 b1c0 b1c3 b1c6
x1 b1c1 b1c4 b1c7
x2 b1c2 b1c5 b1c8

Table 10: Joint full distributions of variables X and Y that satisfy layer factorization and are
h-independent; in the right table, X and Y are even fully independent.

and satisfy layer factorization. Table 10 shows two full distributions that sat-
isfy both conditions. Alas, the combination of h-/fully independence and layer
factorization does not yield the Contraction property. Indeed, for the full dis-
tribution in Table 4 we have that X and Y are h-/fully independent and satisfy
layer factorization, X and W are h-/fully independent given Y and satisfy layer
factorization given Y , and yet X and (W,Y ) are not h-independent.

Nonetheless, we can use layer factorization to produce an interesting new
concept:

Definition 1. X and Y are layer independent given Z if, for each layer Li of
the underlying full conditional probability P,

• P(x, y|z ∩ Li) = P(x|z ∩ Li)P(y|z ∩ Li) whenever z ∩ Li 6= ∅,

and

• ◦(x, y|z) = ◦(x|z) + ◦(y|z) whenever {Z = z} 6= ∅.

For a fixed z ∩ Li 6= ∅, consider the sets

Ai(X) = {x : x ∩ z ∩ Li 6= ∅} and Bi(X) = {y : y ∩ z ∩ Li 6= ∅}.

Then P(x, y|z ∩ Li) = P(x|z ∩ Li)P(y|z ∩ Li) > 0 for every (x, y, z) ∈ Ai(X)×
Bi(Y ) × {Z = z}, while for every other (x, y, z) we have P(x, y|z ∩ Li) =
P(x|z ∩ Li)P(y|z ∩ Li) = 0. Hence z ∩ Li = Ai(X) × Bi(Y ) × {Z = z}; in
other words, every set z ∩ Li is a rectangle.

Moreover, we obtain the semi-graphoid properties:

Theorem 4 Layer independence satisfies Symmetry, Redundancy, Decomposi-
tion, Weak Union and Contraction.

Proof. Symmetry is immediate.
For Redundancy: Whenever x ∩ Li 6= ∅,

P(x, y|x ∩ Li) = P(y|x ∩ x ∩ Li)P(x|x ∩ Li) = P(x|x ∩ Li)P(y|x ∩ Li) .

Also, ◦(x, y|x) = ◦(x, y, x)− ◦(x) = ◦(x, y)− ◦(x) = ◦(y|x) = ◦(x|x) + ◦(y|x).
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For Decomposition: We have P(w, x, y|z ∩ Li) = P(x|z ∩ Li)P(w, y|z ∩ Li)
for z ∩ Li 6= ∅; then

P(x, y|z ∩ Li) =
∑
w

P(w, x, y|z ∩ Li)

= P(x|z ∩ Li)
∑
w

P(w, y|z ∩ Li)

= P(x|z ∩ Li)P(y|z ∩ Li) .

Also, we start with ◦(w, x, y, z) + ◦(z) = ◦(w, y, z) + ◦(x, z); then ◦(x, y, z) +
◦(z) = minw ◦(w, x, y, z) + ◦(z) = minw ◦(w, y, z) + ◦(x, z) = ◦(y, z) + ◦(x, z) as
desired.

For Weak Union: If y ∩ z ∩ Li 6= ∅,

P(w, x|y ∩ z ∩ Li)P(y|z ∩ Li) = P(w, x, y|z ∩ Li)
= P(x|z ∩ Li)P(w, y|z ∩ Li)
= P(x|z ∩ Li)P(w|y ∩ z ∩ Li)P(y|z ∩ Li)
= P(x, y|z ∩ Li)P(w|y ∩ z ∩ Li)
= P(x|y ∩ z ∩ Li)P(w|y ∩ z ∩ Li)P(y|z ∩ Li) ,

while the second equality comes from the layer independence of X and (W,Y ),
the fourth equality comes from the layer independence of X and Y (using De-
composition), and the other equalities are properties of full conditional prob-
abilities. By dividing both sides by P(y|z ∩ Li) (this is possible because, as
y ∩ z ∩ Li 6= ∅, we have P(y|z ∩ Li) > 0, so we can divide both sides by this
quantity to obtain P(w, x|y ∩ z ∩ Li) = P(x|y ∩ z ∩ Li)P(w|y ∩ z ∩ Li) as de-
sired. Also, we have ◦(w, x, y, z) + ◦(z) = ◦(w, y, z) + ◦(x, z) and by Decom-
position we have ◦(x, z) + ◦(y, z) = ◦(x, y, z) + ◦(z); by adding both sides,
◦(w, x, y, z) + ◦(y, z) = ◦(w, y, z) + ◦(x, y, z) as desired.

For Contraction: We have P(x, y|z ∩ Li) = P(x|z ∩ Li)P(y|z ∩ Li) for z ∩
Li 6= ∅ and P(w, x|y ∩ z ∩ Li) = P(x|y ∩ z ∩ Li)P(w|y ∩ z ∩ Li) for y ∩ z ∩
Li 6= ∅. Suppose z ∩ Li 6= ∅: if y ∩ z ∩ Li = ∅, then P(w, x, y|z ∩ Li) =
P(x|z ∩ Li)P(w, y|z ∩ Li) = 0; if instead y ∩ z ∩ Li 6= ∅, then

P(w, x, y|z ∩ Li) = P(w, x|y ∩ z ∩ Li)P(y|z ∩ Li)
= P(x|y ∩ z ∩ Li)P(w|y ∩ z ∩ Li)P(y|z ∩ Li)
= P(x, y|z ∩ Li)P(w|y ∩ z ∩ Li)
= P(x|z ∩ Li)P(y|z ∩ Li)P(w|y ∩ z ∩ Li)
= P(x|z ∩ Li)P(w, y|z ∩ Li) ,

as desired. Also, we have ◦(w, x, y, z) + ◦(y, z) = ◦(w, y, z) + ◦(x, y, z) and
◦(x, y, z) + ◦(z) = ◦(x, z) + ◦(y, z); by adding both sides, ◦(w, x, y, z) + ◦(z) =
◦(w, y, z) + ◦(x, z) as desired. 2

Note that this result is obtained because we keep track of the layers of
the underlying full conditional probability, not just layers of the marginal and
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conditional pieces that appear in graphoid properties. It is the cost of keeping
track of these layers that pays for the semi-graphoid properties. Similarly, all
layer numbers are computed with respect to the underlying full conditional
probability; hence the whole idea requires considerable bookkepping when many
variables are interacting.1

5. Building joint full conditional probabilities: non-uniqueness and
Bayesian networks

Independence relations are often used to build joint probability distributions
out of marginal and conditional distributions. One ubiquitous example is the
construction of a sequence of independent identically distributed variables so
as to prove concentration inequalities. Another example is the combination of
marginal and conditional probabilities in Bayesian networks and Markov random
fields [38]. In this section we examine to what extend this modeling strategy
can be used to establish a theory of Bayesian networks with full conditional
probabilities.

5.1. Challenges in building a joint full probability with a Bayesian network

In the theory of Bayesian networks, directed acyclic graphs are employed to
organize marginal and conditional distributions into a single standard joint dis-
tribution [38]. Alas, as the examples in Appendix A show, the standard theory
of Bayesian networks does not apply when concepts of independence fail semi-
graphoid properties. This suggests that a concept such as layer independence,
that satisfies all semi-graphoid properties, should be important in specifying
full conditional probabilities through Bayesian networks. Concepts such as en-
hanced basis and d-separation could then be defined without difficulty [22]. (Of
course, a different path would be to build alternatives to Bayesian networks that
do not require all semi-graphoid properties [4, 43, 44].)

However, failure of graphoid properties is not the only challenge when one
tries to build a joint full conditional probability out of conditional and marginal
pieces. Another challenge is the non-uniqueness of joint full conditional proba-
bilities.

We start by examining epistemic independence, the weakest concept of in-
dependence that makes sense for full conditional probabilities. Consider the
full distribution in Table 2. The marginal full distribution of X is given by
P(x0) = P(x1|xc0) = 1; likewise, the marginal full distribution of Y is given by
P(y0) = P(y1|yc0) = 1. The marginal distributions do not provide any informa-
tion about α; indeed, any value of α produces identical marginals. In addition,
both full distributions in Table 11 produce the same marginal distributions.

1Matthias Troffaes has suggested a different concept (unpublished) that uses a condition
similar to P(x, y, z|Lx,y,z)P(z|Lz) = P(x, z|Lx,z)P(y, z|Ly,z). This is an interesting alterna-
tive path, where each probability value is associated with a particular layer.
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y0 y1

x0 b1c0 b1c2
x1 b1c1 b1c3

y0 y1

x0 b1c0 b1c1
x1 b1c2 b1c3

Table 11: Joint full distributions of binary variables X and Y .

y0 y1

x0 bαc0 b1− αc0
x1 bαc1 b1− αc1

Table 12: Joint full distribution of (X,Y ) from Table 4.

The full distributions in Tables 2 and 11 have identical marginals, and they
satisfy h-/full independence of X and Y ; hence non-uniqueness of joint distribu-
tions can happen for h-/full independence (non-uniqueness is already discussed
by Battigalli [5]).

We can further understand the difficulties with non-uniqueness for h-/full
independence by considering how they fail the Contraction property. Consider
again Table 4 and the marginalized full distribution of (X,Y ) in Table 12.
The problem here is that the full distribution for (X,Y ) does not contain any
information about β and γ, but these values become crucial once we condition
on w1. The marginal full distribution of (X,Y ) “hides” β and γ because the
probabilities in deeper layers disappear when we marginalize over W . In a sense,
the deeper layers are “covered” by the shallower layers. That is, the joint full
distribution contains more information than its marginal pieces.

Now note that both full distributions in Table 11 satisfy layer independence
of X and Y , so non-uniqueness can happen for this concept of independence as
well.

Uniqueness also fails with kr-independence (as already noted by Kohlberg
and Reny [29]). Both full distributions in Tables 2 and 11 display kr-independence
of X and Y with identical marginals.

We might wonder whether non-uniqueness crops up even in the absence of
any judgment of independence. For instance, suppose we have variables X
and Y , and we obtain P(x|y) and P(y) for all possible (x, y). Alas, we cannot
necessarily build a single joint distribution of (X,Y ) out of these assessments:

Example 8. Consider two variables X and Y respectively with three and two
values, and suppose we have the following assessments:

P(y0) = P(y1|y1) = 1,

P(x0|y0) = P(x1|y0) /2 = 1/3, P(x0|y1) = P(x1|y1) = 1/2.

The joint full distributions in Table 13 satisfy these assessments, for any α ∈
(0, 1). 2
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y0 y1

x0 b1/3c0 b(1− α)/2c1
x1 b2/3c0 b(1− α)/2c1
x2 bαc1 b1c2

y0 y1

x0 b1/3c0 b1/2c2
x1 b2/3c0 b1/2c2
x2 b1c1 b1c3

y0 y1

x0 b1/3c0 b1/2c1
x1 b2/3c0 b1/2c1
x2 b1c2 b1c3

Table 13: Joint full distributions discussed in Example 8, with α ∈ (0, 1).

Hence we cannot expect to generate unique full distributions out of a Bayesian
network whose assessments are interpreted as a collection of full conditional
probabilities, unless more information is input into the network concerning the
relative layer numbers of various events. One possibility is to view a Bayesian
network as a representation for a set of full conditional probabilities [10, 46].
But here we wish to consider the specification of a single full conditional prob-
ability over a set of variables, out of marginal and conditional pieces; we defer
the direct treatment of sets of full conditional probabilities to the future. So,
how can we specify a single full conditional probability within the framework of
Bayesian networks?

We might, for instance, adopt layer independence, and ask the user to specify
a standard Bayesian network per layer of the joint full conditional probability.
Another, more direct, and much more attractive, idea is to introduce more in-
formation explicitly into Bayesian networks, as discussed in the next subsection.

5.2. Specifying an approximating sequence with a single extended Bayesian net-
work

Our proposal is that, to specify a joint full conditional probability, one must
specify an approximating sequence through a single suitably extended Bayesian
network. To understand the proposal, suppose we have a set of variables and we
start building a standard Bayesian network for them. We proceed as usual, by
assigning variables to nodes and by placing edges between nodes, so as to build
a directed acyclic graph. We must then specify probability values. In a standard
Bayesian network, every probability value is given as a real number that may be
zero. In our extended Bayesian network we do not allow a probability value to
be zero; instead, all probability values must be given as strictly positive ratios
of polynomials in ε > 0. This ε-parametrized Bayesian network encodes an
approximating sequence that is obtained by taking ε to zero. The resulting full
distribution is the semantics of the extended Bayesian network.

The following example illustrates the idea.

Example 9. Consider a Bayesian network with two binary variables X and Y
and no arrow between them (hence X and Y are independent). If all probability
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y0 y1

x0
1

1+(α/(1−α))ε
1

1+ε
1

1+(α/(1−α))ε
ε

1+ε

x1
(α/(1−α))ε

1+(α/(1−α))ε
1

1+ε
(α/(1−α))ε

1+(α/(1−α))ε
ε

1+ε

ε→0−→
y0 y1

x0 b1c0 b1− αc1
x1 bαc1 b1c2

Table 14: Extended distribution of binary variables X and Y , and resulting full conditional
probability as ε goes to zero.

values were zero, we would have no difficulty specifying a single probability
measure displaying this independence relation. However, suppose both P(x1)
and P(y1) are equal to zero. As we have noted already, a naive specification of
marginal probabilities is not sufficient to fix the complete joint full conditional
probability. However, suppose we have the following assessments:

P(x0) ∝ 1, P(x1) ∝ α

1− α
ε, P(y0) ∝ 1, P(y1) ∝ ε.

Note that these assessments are only proportional to the probabilities, as the
obvious normalizing constants are easy to compute. The joint distribution is
given by Table 14; note that by taking the limit as ε goes to zero, we obtain the
full distribution in Table 2. 2

As this example shows, the layer Li of the joint full distribution consists of
those polynomial coefficients associated with εi. By being explicit about ε, one
can specify precisely the relative probabilities of cells Ci,j and Ci′,j′ .

The following simple elicitation method builds approximating sequences for
joint full conditional probabilities using extended Bayesian networks. First,
build a directed acyclic graph where nodes are variables and edges denote de-
pendence, as in a standard Bayesian network. Now consider a variable X and
a configuration y of its parents. Specify each layer of the full distribution of X
given y; say that layer Li is associated with the positive probability measure
pi(X|y). Then write, for any x,

P(x|y) =

∑K
i=0 βiε

ipi(x|y)∑K
i=0 βiε

i
.

The resulting network represents a single joint full conditional probability that
is obtained by taking ε to zero. The specification of numbers βi guarantees that
the relative probabilities of cells are given. For instance, in Example 9, the full
conditional probability of X was encoded using β1 = α/(1− α).

The stochastic independence relations in the approximating probability dis-
tributions are inherited as kr-independence relations in the resulting full con-
ditional probability. Hence d-separation in the graph of the Bayesian network
implies kr-independence in the resulting joint full distribution.

The simplest way to interpret ε, and to determine the rules to handle it, is
to take it to be an infinitesimal, and to consider the specification of a Bayesian
network to happen in the hyperreal line <(ε); that is, the real-numbers plus an
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infinitesimal ε. Hammond has forcefully argued for such a representation of full
conditional probabilities [26, 27].

6. Hyperreal full conditional probabilities

Once we move to hyperreals as a specification device, one possibility is to
adopt hyperreals as the basic machinery underlying probabilities. The use of
hyperreals in probability theory has been intensely explored [2, 21, 37, 48],
sometimes explicitly in connection with full conditional probabilities [25, 27].
Of course, one can take hyperreal “unconditional” probabilities as the prim-
itive notion [32, 37, 47], assume then to be always positive, and then define
conditional probability simply as a derived concept: P(A|B) = P(A ∩B) /P(B).

Instead, it seems a better idea to adopt conditional probability as the main
primitive concept, even if hyperreal probabilities are always positive. That is,
take that P is a two-place set-function from B×(B\∅) into the hyperreals, where
B is a Boolean algebra over a set Ω, such that for any event C 6= ∅:
(1) P(C|C) = 1;
(2) P(A|C) > 0 whenever A ∩ C 6= ∅;
(3) P

(
∪Ni=1Ai|C

)
=
∑N
i=1 P(Ai|C) for disjoint Ai;

(4) P(A ∪B|C) = P(A|B ∪ C)P(B|C) when B ∩ C 6= ∅.
We can then define independence of X and Y given Z as

P(x|y, z) = P(x|z) for every nonempty {y, z}. (12)

Then, with the usual proof of semi-graphoid properties [38], we obtain:

Theorem 5 For an hyperreal conditional probability that satisfies the axioms
in this section, independence as defined by Expression (12) satisfies Symmetry,
Redundancy, Decomposition, Weak Union, and Contraction.

7. Conclusion

We have studied concepts of independence for full conditional probabilities,
and the construction of joint full distributions from marginal and conditional
ones using judgments of independence. We have derived the structure of joint
full conditional probabilities under epistemic/h-/full independence, and exam-
ined the semi-graphoid properties of these (and other) concepts of indepen-
dence. We have introduced the condition of layer factorization; the derived
concept of layer independence is particularly interesting because it satisfies all
semi-graphoid properties.

We have also examined non-uniqueness of full joint conditional probabilities
under various concepts of independence. We suggested an specification strategy
that adapts the theory of Bayesian networks to full conditional probabilities,
by parameterizing probability values with an infinitesimal ε. We closed by
commenting on a theory of hyperreal full conditional probabilities.

25



Our proposal concerning modeling tools, such as Bayesian networks, can be
summarized as follows. Whenever a modeling tool, originally built for standard
probability measures, is to be used to specify full conditional probabilities, the
most effective way to do so is to extend the tool into the hyperreal line, so
that specification of probability values only deals with positive values. Instead
of trying to change completely the semantics of modeling tools so as to cope
with failure of graphoid properties and of uniqueness, it is better to view these
modeling tools as devices that specify approximating sequences. Full conditional
probabilities are then obtained in the limit, and there are no concerns about
non-uniqueness.
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Appendix A. Failure of semi-graphoid properties and Bayesian net-
works

Failure of semi-graphoid properties does cause damage to the theory of
Bayesian networks, assuming that a theory as developed by Geiger et al. [22]
is desired. Note that Geiger et al. define deterministic nodes in terms of con-
ditional independence; for full conditional probabilities one must instead define
deterministic nodes directly, as nodes that are functions of their parents.

The next example shows the difficulties caused by failure of Weak Union for
epistemic independence.

Example 10. Consider four binary variables ordered as Z, Y , X and W , and
the following pair of judgements of epistemic independence: (X EIN Y | Z) and
(W EIN (X,Y ) | Z), where EIN stands for epistemic independence. These vari-
ables and judgements form an enhanced basis as defined by Geiger et al. [22].
The network induced by this enhanced basis has root Z with three children
(the other variables), and no other edges. Clearly X and Y are d-separated by
(W,Z). However X and Y may not be epistemically independent given (W,Z):
suppose P(z0) = P(z1), take P{Z=z1} to be uniform, and P{Z=z0} to be given by
Table 4.

Suppose, conversely, that one receives a directed acyclic graph with three
nodes, W , X, and Y , where Y is the sole parent of W , and where X is dis-
connected from W and Y . The Markov condition on this graph requires: X
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independent of (W,Y ), Y independent of X, and W independent of X condi-
tional on Y . These epistemic independence relations are all satisfied by the full
conditional probability in Table 4, but the d-separation of X and Y given W
does not imply epistemic independence of X and Y conditional on W . 2

The next example shows the difficulties caused by failure of Contraction for
h-/full independence.

Example 11. Consider four binary variables ordered as Z, Y , X and W , and
the following enhanced basis: (X FIN Y | Z) and (W FINX | (Y,Z)), where FIN
stands for full independence. The resulting network has a root Z with three
children (the other variables); there is only one other edge from Y to W . Clearly
X and (W,Y ) are d-separated by Z; however X and (W,Y ) may not be h-
independent given Z: just take the same full conditional probability constructed
in the first paragraph of Example 10.

Suppose conversely that one receives a directed acyclic graph with four
nodes, where X is the only root, the only parent of Z is X, the only parent
of Y is Z, and W has both Y and Z as parents. The Markov condition on
this graph requires: W and X are independent conditional on (Y,Z); Y and
X are independent conditional on Z. Again, the full conditional probability
constructed in the first paragraph of Example 10 satisfies these judgements of
full independence, but the d-separation of X and (W,Y ) given Z does not imply
full independence of X and (W,Y ) conditional on Z. 2
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