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An evenly convex credal set is a set of probability measures that is evenly convex; that 
is, a set that is an arbitrary intersection of open halfspaces. An evenly convex credal set 
can for instance encode preference judgments through strict and non-strict inequalities 
such as P (A) > 1/2 and P (A) ≤ 2/3. This paper presents an axiomatization of evenly 
convex sets from preferences, where we introduce a new (and very weak) Archimedean 
condition. We examine the duality between preference orderings and credal sets; we also 
consider assessments of almost preference and natural extensions. We then discuss regular 
conditioning, a concept that is closely related to evenly convex sets.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The goal of this paper is to show, first, that relatively simple axioms on preference orderings can be used to characterize 
evenly convex sets of probability measures; that is, sets that are arbitrary intersections of open halfspaces. Evenly convex 
sets allow assessments such as P (A) ≥ 1/2 and 1/4 < P (B) ≤ 3/4: strict and non-strict inequalities can be expressed on 
probability values. Central to our results is a new (very weak) Archimedean condition. We then examine the definition of 
conditioning under such axioms, as well as concepts of almost preference and natural extension.

A preference ordering is a binary relation � on gambles; a gamble is a function X that yields a real number X(ω) for 
each state ω, and X � Y is understood as “X is preferred to Y ”. If a preference ordering satisfies a few conditions, to be 
discussed later, then the ordering can be represented by a single probability measure (that is, by an additive set-function 
that assigns a nonnegative number to each event, such that P (�) = 1). It is not always reasonable to assume that a precise 
probability value can be attached to every possible event: one might be willing to attach probability values only to a few 
events, or perhaps one might associate probability intervals with events, or even impose weaker constraints on probability 
values.

If a preference ordering is only a partial order, then, subject to a few additional conditions, it can be represented by a 
set of probability measures [16,28,33,35,36]. Typically such axiomatizations of sets of probability measures focus on max-
imal closed convex sets of probability measures. It seems that the only existing axiomatization that allows for open sets of 
probability measures sets has been given by Seidenfeld, Schervish, and Kadane [29], using a general setting where utili-
ties are also derived, and a proof technique based on transfinite induction. Their representation result may require sets of 
state-dependent utilities to represent preferences; for this reason it may be a little difficult to grasp the geometric content 
of a preference profile. One wonders whether it is possible to capture assessments such as P (A) > 1/2 with some intuitive 
construction.

✩ This paper is part of the Virtual special issue on Tenth International Symposium on Imprecise Probability: Theories and Applications (ISIPTA’17), Edited 
by Alessandro Antonucci, Giorgio Corani, Inés Couso and Sébastien Destercke.
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Section 3 presents our axiomatization for evenly convex sets of probability measures. We use the new Archimedean 
condition, and emphasize the use of separating hyperplanes as much as possible, hopefully producing results that can be 
appreciated with moderate effort. We study the connection of our Archimedean condition with other conditions in the 
literature, and we examine the duality between preference orderings and sets of probability measures. Section 4 looks at 
assessments of “almost preference”, and studies the natural extension of sets of assessments. Finally, Section 5 discusses 
regular conditioning, a popular form of conditioning that is intimately related to evenly convex sets.

2. Preference orderings, sets of desirable gambles, and credal sets

In this section we present some basic concepts and results used throughout. Because some results here are in essence 
well-known, only very short proofs are given for them.

Consider a finite set � containing n states {ω1, . . . , ωn}. An event is a subset of �; a gamble is a function X : � → �. 
A gamble can be viewed as a n-dimensional vector. A probability measure over � is entirely specified by a n-dimensional 
vector with non-negative elements that add up to one. Given such a vector p that induces a probability measure P, and a 
gamble X , the expected value of X , denoted by EP[X], is simply the inner product X · p.

All sets we consider are subsets of �n; throughout we assume the Euclidean topology. For a set A, clA is the closure of 
A and relintA is the relative interior of A. A cone A is a set such that if X ∈ A then λX ∈ A for λ > 0 (the origin may not 
be in A). If B is a convex set, the smallest convex cone containing B is {λX : λ > 0, X ∈ B} [27, Corollary 2.6.3]. An exposed 
ray of a convex cone is an exposed face that is a half-line emanating from the origin (recall that an exposed face is a face 
that is equal to the set of points achieving the maximum of some linear function).

Most results in this paper deal with the representation of preferences1:

Definition 1. A preference ordering � is a strict partial order over pairs of gambles.

Absence of preference between X and Y is indicated by X � Y . If X � 0, X is desirable; if X � 0, X is neutral.
We always assume two additional properties:

Monotonicity: If X(ω) > Y (ω) for all ω ∈ �, then X � Y ;
Cancellation: For all α ∈ (0, 1], X � Y iff αX + (1 − α)Z � αY + (1 − α)Z .

The following representation obtains:

Proposition 2. If a preference ordering � satisfies monotonicity and cancellation, then there is a convex cone D, not containing the 
origin but containing the interior of the positive orthant, such that X � Y iff X − Y ∈D.

The proof is short and instructive:

Proof. First, X � Y iff (X + Z)/2 � (Y + Z)/2 iff (X + Z)/4 +0/2 � (Y + Z)/4 +0/2 iff X + Z � Y + Z (applying cancellation). 
Hence X � Y iff X − Y � 0. Also Y � 0 iff 0 � −Y ; if X � 0 and Y � 0 we have X � 0 � −Y and by transitivity we obtain 
X � −Y , thus X + Y � 0. If X � 0, then λX � 0 for any λ ∈ (0, 1] by cancellation, and by finite induction we get λX � 0
for any λ > 0. Hence � can be represented by a cone that contains every positive gamble (by monotonicity) and does not 
contain the zero gamble (because X � X is not allowed). �

As shown in this proof, we can capture a preference ordering by focusing on preferences with respect to the zero gamble, 
or, equivalently, by focusing on a convex cone of gambles. Cones that encode preference orderings have received attention 
for some time [16,28,33,35,36]. The literature on sets of desirable gambles [22,25,34] employs cones of gambles to model 
preferences, often assuming the following property of admissibility: if X(ω) ≥ Y (ω) for all ω and X(ω) > Y (ω) for some ω, 
then X � Y . We do not assume admissibility here.2

In this paper we use the term set of desirable gambles to refer to a convex cone D that represents a preference ordering as 
in Proposition 2. This proposition allows one to freely switch between preference orderings and sets of desirable gambles.

One might think that any convex cone of gambles could be represented by a set K of probability measures as follows: 
X ∈ D iff EP[X] > 0 for all P ∈ K. This is not possible. Consider the set of desirable gambles depicted in Fig. 1 (left).3 All 

1 A strict partial order is a binary relation that is irreflexive and transitive; an equivalence is a binary relation that is reflexive, transitive, and symmetric 
(a binary relation � is irreflexive when X � X is false for every X ; it is transitive when X � Y and Y � Z imply X � Z ; it is symmetric when X � Y implies 
Y � X ) [15, Section 2.3].

2 Admissibility cannot be satisfied in general if preferences are to be encoded by expectation with respect to probability measures that may assign 
probability zero to events. That is, suppose we want to have that X � Y iff EP[X] > EP[Y ]; we may face X and Y such that X(ω) = Y (ω) for all ω except 
that X(ω′) > Y (ω′) for ω′ with P (ω′) = 0 (in this case X � Y due to admissibility but EP[X] = EP[Y ]).

3 In all figures, the interior of sets of desirable gambles appear in pink, and their boundaries appear in red. Sets of probability measures appear in orange 
or purple; other sets appear in blue.
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Fig. 1. Left: a cone D; one bordering ray (thick line from the origin) belongs to D, while the other bordering ray does not belong to D. Right: to understand 
the effect of Auman’s continuity condition, take a similar cone D; the gamble X2 is inside D and the gamble X1 is in the border, so the segment between 
X1 and X2 is in D, implying that X1 � 0 or X1 � 0 by Aumann’s continuity condition; the same reasoning could be repeated for −X1, hence the border 
must be open because X1 � 0 and −X1 � 0 cannot happen. (Colors in the figures appear in the web version of this article.)

Fig. 2. A cone D that satisfies Aumann’s condition. Left: the cone depicted in three dimensions; D contains the positive orthant and is bounded by two 
planes shown in the picture (the intersection of the two planes appears as a dotted line that does not belong to D); the intersection of the planes with 
D appears in red, and part of the boundary of D is not in D (that part is hatched). Right: looking at D from point (1, −1, 0) to (0, 0, 0); the dashed line 
segment corresponds to the boundary of D that is only partially in D.

gambles in the interior of D satisfy X(ω1)P (ω1) + X(ω2)P (ω2) > 0 for P (ω1) = P (ω2) = 1/2. No other pair of probability 
values (or sets of pairs of probability values) can similarly represent the interior of D. But even this probability measure 
cannot represent the fact that half the border is in D; for X in this half-border, X(ω1)(1/2) + X(ω2)(1/2) = 0.

As a digression, note that a set of desirable gambles satisfying admissibility can always be represented by a convex set of 
lexicographic probability measures4 [2,8,10,24,25,28]. Even though lexicographic probabilities have their appeal, we do not 
deal with them further in this paper.

To obtain a representation based on (non-lexicographic) probabilities, we must consider conditions on boundaries of 
sets of desirable gambles. Such conditions inevitably describe limiting behavior. For instance, Aumann [1] has proposed the 
following condition:

Aumann’s continuity: If αX + (1 − α)Y � Z for all α > 0, then either Y � Z or Y � Z .

If the interior of the set of desirable gambles is an open halfspace, Auman’s continuity condition forces the set of 
desirable gambles to be open (see Fig. 1 (right)). In fact, when absence of preference is an equivalence, then Aumann’s 
condition implies that D is an open halfspace, and its representing set K is a singleton — this result, alluded to in the 
second paragraph of Section 1, is well-known and discussed further in Appendix A.

In general, if the interior of the set of desirable gambles D is strictly smaller than a halfspace, Aumann’s continuity 
condition does not imply that D is entirely open. All that Aumann’s continuity condition requires of D is that, if both X
and −X belong to the boundary of D, then X � 0.5 Fig. 2 shows a cone D that respects Aumann’s continuity condition; 
note that a face of the closure of D is only partially in D.

If the continuity condition is strengthened so that D is assumed open [28,33], then it is possible to find a representation 
of preference orderings through probabilities. Walley imposes openness by basically requiring that X � 0 implies X − ε � 0
for some ε > 0 [33, Section 3.7.8, D7]. Another possible condition is (note that limits of sequences of gambles are always 
assumed pointwise):

Open continuity If Xi � 0 is false for every i, and X = limi Xi , then X � 0 is false.

4 Recall that a lexicographic probability measure is an ordered sequence of probability measures [3]; given a gamble X , the expected value E [X] is then 
a vector of expected values (one per measure in the lexicography).

5 To see this, reason as follows. Aumann’s condition can be understood as requiring that each gamble on the boundary of D is either desirable or neutral. 
So, take X on the boundary of D. Then there are two possibilities: either −X is also on the boundary of D, or not. If −X is also on the boundary, then 
X � 0 by the assumption on D. If −X is not on the boundary of D, then −X is not in D (otherwise we would have, for some ε > 0, both X + ε/2 and 
−X − ε in D, implying (X + ε/2)/2 + (−X − ε)/2 = −ε/4 � 0, a violation of monotonicity), and consequently 0 � X is false because otherwise −X � 0, 
a contradiction. Hence either X � 0 or X � 0 under Aumann’s condition.
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Fig. 3. Left: Part 1 of the proof of Proposition 3; the set of desirable gambles D and the convex cone C, and a gamble X /∈ D. Right: Part 5 of the proof of 
Proposition 3; the set K (intersection of C and the unitary simplex), the point p outside of C, a corresponding X (note that X · p = 0), and X − ε .

Here is the representation result under the assumption of openness:

Proposition 3. If a set of desirable gambles D is open, then it can be represented by a closed convex set K of probability measures, in 
the sense that X ∈D iff EP[X] > 0 for all P ∈K.

Proof. Part 1) Build the set C = {p : X · p > 0, ∀X ∈ D}. Take any X /∈ D (there must be some such X , otherwise the zero 
gamble would be in D). The relative interior of D and of the singleton {X} are disjoint. Consequently, there exists a vector p
such that X · p ≤ 0 and W · p ≥ 0 for all W ∈D, with W · p > 0 for some W ∈D [27, Theorems 11.3, 11.7]. We cannot have 
W · p = 0 for W ∈D; if we had, then there would be λ > 0 such that W − λp ∈D (because D is open and full dimensional 
due to monotonicity), and then (W − λp) · p = −λ||p|| < 0, yielding a contradiction. Fig. 3 illustrates the main ideas in this 
argument. Hence, for X /∈ D there is p ∈ C such that X · p ≤ 0 (so C is nonempty); equivalently, if ∀p ∈ C : X · p > 0, then 
X ∈D.

Parts 2, 3, 4) Just copy here the Parts 2, 3, 4 in the proof of later Theorem 9. By doing so, obtain that X ∈ D ⇔ ∀p ∈ C :
X · p > 0, and moreover that there is a convex set of probability measures K that is the intersection of C and the unitary 
simplex, such that X ∈D ⇔ ∀P ∈ K : EP[X] > 0.

Part 5) To show that K is closed, show that the complement of the cone C is open: If p /∈ C , then there is X ∈ D
such that X · p ≤ 0, and also X − ε ∈ D for some ε > 0 (as D is open by assumption). Consider the closed halfspace 
H = {q : (X − ε) · q ≤ 0}; this halfspace is disjoint from C . Also, p is in H but not on its boundary (there is a ball around p
inside H for any radius smaller than |(X − ε) · p|/||X − ε||). So for any point not in C there is a ball, around the point, also 
not in C; thus the complement of C is open as desired. �

A set of probability measures is called a credal set [21]. Note that, given a set of desirable gambles and the credal set K
built in the proof of Proposition 3, any credal set with the same convex hull as K is also a representation for D. However, 
K is the unique maximal credal set that represents D (indeed, if two sets of probability measures represent D, their union 
also does so).

There is a significant disadvantage in assuming that a set of desirable gambles is open; namely, the representing credal 
set is necessarily closed. Hence one cannot say that a coin is biased simply by stating P (Heads) > 1/2. It seems that the 
only existing condition in the literature that can accept such assessments has been proposed by Seidenfeld, Schervish, and 
Kadane [29]. Their condition has two parts, but only one is necessary here6:

SSK-continuity If Xi � Yi for every i, and limi Y i � Z , then limi Xi � Z , whenever limits exist.

The other part of the original condition by Seidenfeld, Schervish, and Kadane can actually be derived from the previous 
conditions:

Proposition 4. Suppose a preference ordering � satisfies cancellation and SSK-continuity. If Xi � Yi for every i, and W � limi Xi , then 
W � limi Y i .

Proof. The assumptions imply Xi − Yi � 0 and then −Yi � −Xi for every i; similarly, − lim Xi = lim−Xi � −W , so by 
SSK-continuity, lim−Yi � −W and then W � lim Yi . �

Later we use the following simplified version of SSK-continuity:

Proposition 5. Suppose � is a preference ordering satisfying cancellation. Suppose that if Xi � Yi and limi Y i � 0 then limi Xi � 0. 
Then � satisfies SSK-continuity.

6 Note that their setting is more general, as they derive probabilities and utilities from preferences, and in that setting their complete condition may be 
necessary.
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Fig. 4. Six credal sets with the same evenly convex hull. Filled dots, thick lines and filled regions are in the credal sets (filled regions are open). The first 
set is evenly open; in fact it is the evenly convex hull of all sets. The first three sets are convex; their convex hulls are distinct. The fourth set is not convex 
and its convex hull is equal to the second set. The fifth set is not convex, and the sixth set is not even connected; both have the same convex hull that is 
different from the convex hulls of all previous sets.

Proof. If {Xi} → X , {Yi} → Y , Xi � Yi and Y � Z then {Xi − Z} → X − Z , {Yi − Z} → Y − Z , Xi − Z � Yi − Z and Y − Z � 0; 
if the property assumed in the statement is true, then X − Z � 0 so X � Z as desired. �

If a preference ordering satisfies SSK-continuity, and {Xi} → X , {Yi} → Y , and Xi � Yi , then either X � Y or X � Y (for 
suppose otherwise that Y � X ; SSK-continuity says that if Xi � Yi and Y = limi Y i � X then limi Xi � X , hence X � X , 
a contradiction). Thus we have that SSK-continuity conveys Aumann’s continuity condition.

We will return to SSK-continuity when we examine whether it implies even convexity (it does not).

3. Evenly convex sets of desirable gambles and evenly convex credal sets

In this section we consider preference orderings that can be represented by evenly convex sets of desirable gambles; 
such preference orderings can also be represented by evenly convex credal sets. This will allow us to consider assessments 
such as 1/4 ≤ P (Heads) < 1/2.

An evenly convex set A is an arbitrary intersection of open halfspaces [14]. Hence an open convex set is evenly convex; 
also a closed convex set is evenly convex as it is an infinite intersection of halfspaces. For any set A, its evenly convex hull
ecoA is the intersection of all evenly convex sets containing A; so ecoA is the intersection of all open halfspaces that 
contain A. Note that coA ⊆ ecoA, where coA is the convex hull of A. Fig. 4 depicts sets with identical evenly convex hull.

There are many characterizations of evenly convex sets [12,17,19]. In particular, we will use the following result in the 
proof of Theorem 7: a convex set A is evenly convex iff for every X0 ∈ clA\A, and every {Xi}i≥1 ⊂ A, and every {λi}i≥1
such that λi > 0, we have X0 − limi λi(Xi − X0) /∈A whenever the limit exists [12, Corollary 6].

Appendix B introduces a separation property for evenly convex cones that is used later, but that is of independent 
interest.

3.1. Evenly convex sets of desirable gambles

We introduce the following condition:

Even continuity If Xi � 0 for every i, and Y � 0 is false, then limi(λi Y − Xi) � 0 is false for any sequence of λi > 0 such 
that the limit exists.

Even though the condition is somewhat long, it is quite reasonable: one cannot take an undesirable gamble Y and make 
it desirable, not even in the limit, by multiplying it by a positive number and subtracting from it a desirable gamble.7

To make later results more concise, we introduce the following definition:

Definition 6. A preference ordering � is coherent when it satisfies monotonicity, cancellation, and even continuity.

We then obtain:

Theorem 7. If a preference ordering � is coherent, then there is an evenly convex cone D of gambles, not containing the origin but 
containing the interior of the positive orthant, such that X � Y iff X − Y ∈D.

Proof. Take the set of desirable gambles produced by Proposition 2.
For a fixed Y ∈ clD\D (hence Y /∈D) and Xi ∈D for every i, and λi > 0, compute λ′

i = 1 +λi and X ′
i = λi Xi . Clearly λ′

i > 0
and X ′

i ∈ D. By even continuity, limi(λ
′
i Y − X ′

i) /∈ D; hence limi((1 + λi)Y − λi Xi) /∈ D, and then Y − limi λi(Xi − Y ) /∈ D. 
Thus D is evenly convex [12, Corollary 6]. �

Note that coherence implies Aumann’s continuity condition:

7 One might consider a weaker condition (as suggested by a reviewer): If Xi � 0 and not Y � 0, then not limi(Y − Xi) � 0. But this is implied by 
SSK-continuity: if Xi � 0, then if Y � limi Xi then Y � 0 by SSK-continuity, implying that if Xi � 0, then if not Y � 0 then not Y � limi Xi .
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Proposition 8. Suppose a preference ordering � is coherent. If αX + (1 − α)Y � Z for all α > 0, then either Y � Z or Y � Z .

Proof. If Xi � 0 for every i, then the fact that ¬(0 � 0) and even continuity imply ¬(−X � 0) for X = limi Xi . Now, if 
αX + (1 − α)Y � Z , then take αi = 1/2i and Xi = αi(X − Z) + (1 − αi)(Y − Z); hence Xi � 0, implying that ¬(Z − Y � 0), 
so either Y � Z or Y � Z . �
3.2. Evenly convex credal sets

Evenly convex sets of desirable gambles can be nicely represented by evenly convex sets of probability measures, as 
described by the next theorem. In the next proof and later we use the nonempty cone

C = {p : X · p > 0,∀X ∈ D}. (1)

Theorem 9. If a preference ordering � is coherent, then there is a unique maximal evenly convex credal set K such that X � Y iff for 
all P ∈ K we have EP[X] > EP[Y ].

Proof. Part 1) For any X /∈ D, there is p such that X · p ≤ 0 and Y · p > 0 for all Y ∈ D by Theorem 24. So C is nonempty, 
and in fact it is a cone (if p′ and p′′ satisfy the constraints, then so does p′ + p′′ and λp′ for λ > 0). Hence if X /∈ D then 
∃p ∈ C : X · p ≤ 0; equivalently, if ∀p ∈ C : X · p > 0, then X ∈D.

Part 2) By construction, if X ∈D then X · p > 0 for all p ∈ C; using this and Part 1, X ∈D ⇔ ∀p ∈ C : X · p > 0.
Part 3) We now show that C is equivalent to a set of probability measures K. Denote by 1 a vector of ones, and 1i a 

vector whose ith element is 1 and all other elements are zero. By monotonicity, 1 · p > 0 for all p ∈ C , so 
∑

i pi > 0. Also, 
for every p ∈ C: (1i + ε) · p > 0 for every ε > 0; hence pi + ε

∑
j p j > 0 for every ε , implying that pi ≥ 0 (if pi < 0 then for 

ε < −pi/ 
∑

j p j we have pi + ε
∑

j p j < 0, a contradiction). Hence we can normalize each p in C , thus obtaining a set of 
probability measures K that is a representation for D: X ∈D ⇔ ∀P ∈ K : EP[X] > 0.

Part 4) Note that K is the intersection of C and the unitary simplex 
∑

i pi = 1: If p belongs to this intersection, it is 
normalized element of C , so p ∈ K; and if p ∈ K, then p ∈ C and also it is normalized so it belongs to the unitary simplex.

Part 5) The cone C is defined as the intersection of open halfspaces, hence by definition it is evenly convex. And K is 
the intersection of those open halfspaces and the unitary simplex (itself the intersection of open halfspaces), hence K is 
evenly convex.

Part 6) Note that if two sets of probability measures K1 and K2 represent a preference ordering, then K1 ∪ K2 also 
represents the same preference ordering (if X � 0, then ∀P ∈ K1 : EP[X] > 0 and ∀P ∈ K2 : EP[X] > 0, implying that ∀P ∈
K1 ∪K2 : EP[X] > 0; conversely, if ∀P ∈K1 ∪K2 : EP[X] > 0, then ∀P ∈K1 : EP[X] > 0, hence X � 0). Thus there is a unique 
maximal credal set that represents �; to show that K is this credal set, suppose there is K′ that represents �, and P′ ∈ K′
but P′ /∈ K. If P′ /∈ K, then by the definition of K we must have some X ∈ D such that EP′ [X] ≤ 0. However, because K′
represents �, for any X ∈ D we must have EP[X] > 0 for all P ∈ K′; that is, EP′ [X] > 0. Hence we get a contradiction, 
implying that no representing credal set can contain probability measures outside of K. �

In fact many sets of probability measures may encode the same ordering. For instance, if a representing K is a closed set, 
then the set of its extreme points extK is an equivalent representation for �; that is, X � Y ⇔ ∀P ∈ extK : EP[X] > EP[Y ]. 
We can actually state a more interesting fact:

Theorem 10. Suppose � is a coherent preference ordering, and the credal set K has been built as in the proof of Theorem 9. A set of 
probability measures K′ represents � iff ecoK′ = K.

Proof. We need only to consider preferences with respect to the zero gamble.
Take a credal set K′ such that ecoK′ = K. Clearly if X � 0 then ∀P ∈ K : EP[X] > 0 then ∀P ∈ K′ : EP[X] > 0 as K′ ⊆

ecoK′ . Now suppose ∀P ∈ K′ : EP[X] > 0. Consider that ecoK′ is the set of all p such that Y · p > 0 for all Y such that for 
all q ∈ K′ we have Y · q > 0. As X satisfies the last set of inequalities, then X · p > 0 for all p ∈ ecoK′ , hence EP[X] > 0 for 
all P ∈ K, and then X � 0. Hence K′ represents �.

Now suppose K′ represents �. Then its elements must satisfy the constraints X · p > 0 for all X ∈ D. Suppose K′ also 
satisfies a nontrivial constraint Y · p > α for some Y and α; that is, there is p′ that satisfies all other constraints but such 
that Y · p′ ≤ α. Because every p is a probability measure, (Y − α) · p > 0 is an equivalent constraint. Hence (Y − α) · p > 0
for all p ∈ K′; because K′ represents �, Y − α is a desirable gamble. However there is p′ ∈ K such that (Y − α) · p′ ≤ 0, 
implying Y −α /∈D, a contradiction. So there is no additional nontrivial strict linear inequality that distinguishes K′ and K, 
and consequently they share the same evenly convex hull. �

This theorem shows that if two evenly convex sets are different, then they represent distinct preference orderings. Fig. 4
shows several different credal sets that have the same evenly convex hull, and hence represent the same coherent preference 
ordering.
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Fig. 5. An evenly convex cone D, its polar cone D◦ , the cone C and the credal set K corresponding to D. The dual cone D� is equal to the closure of the 
cone C as D� is the mirror image of D◦ . The boundary of D consists of two half-lines extending from the origin. One of these half-lines is in D except 
for the origin (this part of the boundary of D is shown in red), and the corresponding face of clC is not in C; this face of clC appears as a dashed line. 
The other half-line on the boundary of D is not in D, and the corresponding face of C is indeed in C; this face clC appears as a thick line. The credal set 
K is the interior of the line segment between (1/2, 1/2) and (1/3, 2/3) plus the latter point.

3.3. A bit of duality

Additional insight can be obtained by investigating the duality between clD and clC , as we do in this section.
To start, recall some needed definitions. Given a convex set A, its polar set is A◦ = {p : ∀X ∈ A : X · p ≤ 1} [5]; if A is 

a convex cone its polar set is equal to its polar cone, defined as {p : ∀X ∈ A : X · p ≤ 0} (because any inequality with right 
hand side larger than zero is redundant). The dual cone is simply the mirror image of the polar cone: A� = −A◦ . Also, 
A◦◦ = {X : ∀p ∈A◦ : X · p ≤ 0} = {X : ∀ − p ∈ −A◦ : X · p ≤ 0} = {X : ∀p ∈A� : X · p ≥ 0} =A�� .

If we have a set of desirable gambles D, then the definition of the cone C is such that clC is exactly the dual of D, 
and then clD is the dual of clC . Now, the larger a cone, the smaller its dual cone. So, when the set of desirable gambles 
is maximal (an open halfspace, indicating minimum uncertainty concerning preferences), the corresponding credal set is 
minimal (a single probability measure, indicating minimum uncertainty); also, the smaller the set of desirable gambles, 
the larger the corresponding credal set. If a set of desirable gambles is the union of several cones, then the corresponding 
credal set is obtained by intersecting the various credal sets corresponding to those cones. And even the faces of clD and 
clC are related: a face of clD that is in D corresponds to a face of clC that is not in C , and the reverse is true under some 
conditions. Fig. 5 depicts these relationships in a simple two-dimensional case.

As C is nonempty, clC = {p : ∀X ∈ D : X · p ≥ 0}; hence clC is by definition the dual cone of D [4, Section 2.6]. Then 
(clC)� is just the closure of D, as clD =D�� [5, Theorem 6.2]. Also, if a cone F ⊂D (say a proper face of D), then D� ⊂F� , 
and if we have several cones {Di}i , then (∪iDi)

� = ∩D�
i [20, Theorem 23.3].

It is also possible to establish the announced connection between the faces of clD and clC , as follows. The following 
definition is necessary: for any face F of a closed convex cone A, define its dual face F� = A� ∩ F⊥ [31, Section 2.13], 
where the superscript ⊥ denotes orthogonal complement (that is, B⊥ = {p : ∀X ∈ B : X · p = 0}). If for two faces F1 and F2

of A we have that F1 is a face of F2, then F�
2 is face of F�

1 [32, Proposition 2.4]. In fact, if all faces of A are exposed, then 
the mapping between faces of A and its dual is one-to-one and onto, in such a way that F1 is a face of F2 iff F�

2 is face 
of F�

1 [32, Corollary 2.6]. In particular if clD is the convex hull of some finite set of gambles, then all its faces are exposed 
and the mapping is indeed one-to-one and onto the faces of clC [31, Theorem 2.13.2]. Of course, this applies similarly to 
faces of clC and its dual.

Note that if a face of clD does intersect D, its dual face does not intersect C:

Theorem 11. If F is a face of clD, and F ∩D �= ∅, then F� ∩ C = ∅.

Proof. As F ∩D �= ∅, pick X ∈F ∩D. For any p ∈F⊥ we must have X · p = 0, so p cannot be in C; hence F⊥ ∩ C = ∅ and 
consequently F� ∩ C =D� ∩F⊥ ∩ C = ∅. �

The converse can be shown for any face that is finitely generated8:

Theorem 12. If F is a face of clD that is the convex hull of a finite set of gambles, and F ∩D = ∅, then F� ∩ C �= ∅.

Proof. We have that F is the conic hull of a finite set of gambles {X1, . . . , Xn}. Suppose that no element of F⊥ = {p : ∀X ∈
F : X · p = 0} belongs to C . Then for each p ∈ C there is at least a X ∈F such that X · p > 0. Write X as 

∑
i αi Xi (where all 

8 Whether or not Theorem 12 holds for general faces is an open question.
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αi ≥ 0) to obtain that 
∑

i αi Xi · p > 0; if we have Xi · p ≥ 0 for all Xi , then it must be that Xi · p > 0 for at least one Xi . (To 
conclude that Xi · p ≥ 0 for all Xi , reason as follows. As any Y ∈ F is on the boundary of D, for all such Y we have, for all 
p ∈ C and all ε > 0, that (Y + ε) · p > 0. So for all Y ∈ F and all p ∈ C we must have Y · p ≥ 0 to satisfy Y · p > −ε

∑
i pi

for all ε > 0.) Consequently the convex combination Z = ∑n
i=1 Xi/n must satisfy Z · p > 0 for all p ∈ C , and then Z ∈D. But 

Z must belong to F , so Z cannot be in D by assumption. Hence there must be an element of F⊥ in C; this proves the 
theorem as F⊥ ∩ C =F⊥ ∩ C ∩ clC =F⊥ ∩ C ∩D� =F� ∩ C . �
3.4. Back to SSK-continuity

Note that SSK-continuity is satisfied by coherent preference orderings:

Proposition 13. If � is a coherent preference ordering, then SSK-continuity holds.

Proof. Take {Xi} → X and {Yi} → Y such that Xi � Yi . Take the representing credal set K; any probability measure P ∈ K

satisfies EP[Xi − Yi] > 0, so limi EP[Xi − Yi] ≥ 0; then EP[limi Xi] ≥ EP[limi Y i] as the state space is finite, hence EP[X] ≥
EP[Y ]. If additionally Y � Z , then EP[Y ] > EP[Z ] for every P ∈ K, so EP[X] > EP[Z ] for every P ∈ K, and then X � Z as 
desired. �

The natural question is whether SSK-continuity implies even continuity. It does not; but to appreciate the matter, it is 
interesting to note that SSK-continuity implies even continuity in an important case. Start by considering a consequence of 
SSK-continuity that is quite reasonable as a property of preferences:

Proposition 14. Suppose � is a preference ordering satisfying SSK-continuity. If αW + (1 − α)X � Y � 0 for α ∈ (0, 1], then X � 0.

Proof. Take αi = 1/2i , Xi = αi W + (1 −αi)X and Yi = Y . As Xi � Yi , {Xi} → X , {Yi} → Y , and Y � 0, SSK-continuity implies 
X � 0 as desired. �

This result leads to:

Proposition 15. Suppose � is a preference ordering satisfying monotonicity, cancellation, and SSK-continuity, with representing set of 
desirable gambles D. If X ∈D and Y ∈ clD, then αX + (1 − α)Y ∈D for α ∈ (0, 1).

Proof. Take X ∈ D, Y ∈ clD, α ∈ (0, 1), and Z = αX + (1 − α)Y . For some δ > 0 we have Y + δ ∈ relintD by monotonicity; 
hence β(Y + δ) + (1 − β)Y ∈ D for β ∈ (0, 1] [27, Theorem 6.1]. Note that Y = γ Z − αγ X where γ = (1 − α)−1; thus 
β(γ Z − αγ X + δ) + (1 − β)(γ Z − αγ X) � 0. Hence β(γ Z + δ) + (1 − β)(γ Z) � αγ X for β ∈ (0, 1]. By assumption X � 0, 
so αγ X � 0; by Proposition 14, we obtain γ Z � 0, hence Z ∈D as desired. �

A cone A whose closure is the intersection of finitely many closed halfspaces is evenly convex iff it satisfies: if X ∈ A
and Y ∈ clA, then the segment between X and Y is in A [14, Section 3.5]. Hence we obtain:

Theorem 16. Suppose � is a preference ordering satisfying monotonicity, cancellation, and SSK-continuity, with representing set of 
desirable gambles D. If the closure of D is the intersection of finitely many closed halfspaces, then D is evenly convex.

However, in general SSK-continuity does not imply even convexity of sets of desirable gambles. To prove the latter 
sentence, we build an example as follows. First, we take a coherent preference ordering �′ and its representing set of 
desirable gambles D′ , so that D′ contains a non-exposed but extreme ray R0 that goes through a gamble X0 (that is, 
R0 = {λX0 : λ > 0}), such that the auxiliary set of desirable gambles D′′ = D′\R0 has the same evenly convex hull as D′ . 
Then we define a preference ordering �′′ as X �′′ Y iff X − Y ∈ D′′ . We finally show that this preference ordering satisfies 
SSK-continuity even though D′′ is not evenly convex.

Example 17. Suppose � = {ω1, ω2, ω3}; a gamble X can be encoded as a triple of numbers (x1, x2, x3), meaning 
(X(ω1), X(ω2), X(ω3)). Consider B as the union of the open circle with center (1/4, 1/4, 1/2) and radius 

√
3/2 drawn 

on the simplex consisting of x1 + x2 + x3 = 1, and the closed polygon with four vertices (3/4, 3/4, −1/2), (−1/4, −1/4, 3/2), 
(−2, 3/2, 3/2), (−1, 5/2, −1/2). Take X0 = (−1/4, −1/4, 3/2), a non-exposed extreme point of B. Fig. 6 depicts the set B. 
Take the cone D′′ as the set of all rays emanating from the origin and going through points of B except X0.

We now show that, even though D′′ is not an evenly convex set, �′′ built as described satisfies SSK-continuity.
As the cone D′ is evenly convex, we can build its representing credal set K′ . By construction X �′′ 0 implies that for 

all P ∈ K′ we have EP[X] > 0; also by construction X �′′ 0 implies X /∈ R0. Also, if for all P ∈ K′ we have EP[X] > 0 and
X /∈ R0, then X �′′ 0. That is, we have the representation: X �′′ 0 ⇔ (X /∈ R0) ∧

(∀P ∈K′ : EP[X] > 0
)
.
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Fig. 6. The set B in Example 17, viewed from point (1, 1, 1). The axes appear as dashed lines. The set B includes the simplex where x1 + x2 + x3 = 1 and 
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0; this simplex is depicted using dotted lines. Thus the set B is not contained in the positive orthant; the smallest cone from the origin 
that contains B also contains the positive orthant.

Fig. 7. A closed convex cone A (left), the cones A and −A (middle), and the cones A and X −A for X in an extreme ray of A (right).

Note that �′′ satisfies cancellation and monotonicity because D′′ is a cone containing the interior of the positive orthant. 
By Proposition 5, we need to show that {Xi} → X , {Yi} → Y , Xi �′′ Yi , Y �′′ 0 imply X �′′ 0. If Y ∈ R0, then Y �′′ 0 is false 
and there is nothing to prove; hence assume that Y /∈ R0. We distinguish two cases: X /∈ R0 and X ∈ R0.

Take X /∈ R0. To prove that X �′′ 0, note that EP[Xi − Yi] > 0 for every P ∈ K′ , so limi EP[Xi − Yi] ≥ 0 and therefore 
EP[X] ≥ EP[Y ] for P ∈ K′ . Thus EP[X] ≥ EP[Y ] > EP[0] = 0 and then EP[X] > 0 for every P ∈ K′ , implying X �′′ 0 as 
desired.

Now take X ∈ R0; note that X is in an extreme ray of clD′ . In the next paragraph we show that if {Xi} → X , {Yi} → Y , 
Xi �′′ Yi , then Y �′′ 0 must be false. Hence it is irrelevant to consider X ∈ R0 as the premise of SSK-continuity is never 
satisfied in this case, and the argument is finished.

To conclude we show that, if A is a convex cone, {Xi} → X , {Yi} → Y , Xi − Yi ∈ A, and X belongs to an extreme ray of 
clA but X /∈ A, then Y /∈ A. We have that Y ∈ clA and, as Xi − Yi ∈ A for every i, X − Y ∈ clA (the closure is the set of 
limiting points). So we have both Y and X − Y in clA. If Y �= λX , then X/2 is the convex combination Y /2 + (X − Y )/2 of 
two points not in the ray containing X , a contradiction with the assumption that X is in an extreme ray of clA. So Y = λX
for some λ, and then Y /∈ A. (This result is illustrated by Fig. 7: Y must belong to the closure of A and to the closure of 
X −A, so it belongs to the line from the origin through X .) �
4. Almost preferences and natural extension

In practice we may have a set of assessments indicating preferences, and we may be interested in the consequences 
of these assessments. It seems “natural” to study the smallest preference ordering that agrees with given assessments, in 
accordance with a least commitment strategy. In this section we explore this idea to adapt Walley’s natural extensions [33]
to the context of evenly convex credal sets.

Given an arbitrary set of preference assessments, their natural extension is the smallest preference ordering that is ob-
tained from the original assessments by applying the coherence conditions. We contemplate two kinds of assessments here. 
First, the assessment “X is preferred to Y ” is interpreted as X � Y . Second, the assessment “X is almost-preferred to Y ” 
is interpreted as X + ε � Y for every ε > 0. Almost-preference is the basis of Walley’s theory of lower previsions [33, Sec-
tion 3.7]; in short, an almost-preference of X over Y indicates that X and Y are not necessarily exchangeable in a given 
transaction, but any positive change to X makes it preferable to Y .

Suppose then that we have a set of strict preferences S = {X j � Y j} j∈ J and a set of almost-preferences A = {Xk + ε �
Yk, ε > 0}k∈K , for arbitrary sets of indexes J and K . When there is a smallest coherent preference ordering � that satisfies 
both S and A, we refer to � as the natural extension of S and A. And we call the credal set representing � the credal natural 
extension of S and A.

Theorem 18. Given strict preferences S = {X j � Y j} j∈ J and almost-preferences A = {Xk + ε � Yk, ε > 0}k∈K , consider rays s j =
{λ(X j − Y j)}λ>0 , for each j ∈ J , and ak,ε = {λ(Xk − Yk + ε)}λ>0 , for each k ∈ K and ε > 0. Denote by DS,A the evenly convex 
hull of points in rays s j and ak,ε and points in the interior of the positive orthant. Then there exists a natural extension � of S and 
A iff the cone DS,A does not contain the origin. And if DS,A does not contain the origin, then the preference ordering induced by 
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DS,A is the natural extension of S and A. Moreover, in this case the credal natural extension of S and A is the evenly convex set 
{p : ∑ pi = 1, pi ≥ 0 for all i, (X j − Y j) · p > 0 for all j ∈ J , (Xk − Yk) · p ≥ 0 for all k ∈ K }.

Proof. Suppose for a moment that the natural extension � exists, and that we wish to build a set of desirable gambles 
D such that X � Y iff X − Y ∈ D. So consider a cone D′ consisting of all rays s j and ak,ε and the interior of the positive 
orthant (the latter must be in D due to monotonicity). Now to satisfy transitivity, cancellation and even continuity, D must 
be an evenly convex cone, as argued in the proof of Proposition 2 and Theorem 7. Hence to produce the smallest such cone, 
we must take the evenly convex hull of D′ . Now if ecoD′ contains the origin, there is no natural extension (otherwise we 
would have X � X); and if ecoD′ does not contain the origin, then all requirements are satisfied by taking DS,A = ecoD′ as 
described in the theorem.

Suppose the origin is not in DS,A , so there is a natural extension, and build the cone C = {p : X · p > 0, ∀X ∈DS,A}. Now 
consider another cone:

C′ = {p : (1i + ε) · p > 0, (X j − Y j) · p > 0, (Xk − Yk + ε) · p > 0},
where each 1i is a vector whose ith element is 1 and all other elements are zero, j ranges over preferences in S, 
and k ranges over preferences in A, and ε ranges over the positive reals. If p ∈ C , then p ∈ C′ as every constraint 
in C′ also appears in C . In the next paragraph we show that if p ∈ C′ then p ∈ C; consequently, C = C′ . Each re-
striction (X + ε) · p > 0 for every ε > 0 is equivalent to X · p ≥ 0, so C = C′ = {p : pi ≥ 0, (X j − Y j) · p > 0,

(Xk − Yk) · p ≥ 0}. Now the credal set representing the natural extension � is the intersection of C and the uni-
tary simplex; hence it is the intersection of {p : pi ≥ 0, (X j − Y j) · p > 0, (Xk − Yk) · p ≥ 0} and {p : ∑

i pi = 1,

pi ≥ 0}. The intersection we seek is {p : ∑i pi = 1, pi ≥ 0, (X j − Y j) · p > 0, (Xk − Yk) · p ≥ 0}, and the proof is finished.
It remains to show that p ∈ C′ implies p ∈ C . Fix some q that belongs to C′; that is, X · q > 0 for every X ∈ D′ . Now, 

there may be Y ∈ ecoD′\D′ . So, suppose we have Y ∈ ecoD′\D′ but Y · q ≤ 0. But then we would be able to add the 
constraint X · q > 0 (here q is fixed and X runs through all gambles) to the evenly convex hull of D′ , and this constraint 
would eliminate Y from ecoD′ , contradicting the assumption that Y ∈ ecoD′ . Hence q satisfies the property that X · q > 0
for every X ∈ ecoD′ , implying that q ∈ C as desired. �
5. Conditioning

In Kolmogorov’s probability theory, the conditional probability of event A given event B , denoted P (A|B), is simply the 
ratio P (A ∩ B) /P (B) whenever P (B) > 0; conditional probability is left undefined when P (B) = 0.

When preferences are encoded by credal sets, the definition of conditional probability requires additional care. First of 
all, suppose P (B) > 0 for each probability measure P in the credal set K. Then we can define the conditional credal set 
given B , denoted by KB , to be the set of all conditional probability measures P (·|B) obtained by applying Kolmogorov’s ratio 
definition to probability measures in K. A second possibility is that P (B) = 0 for all probability measures in K; inspired by 
Kolmogorov’s definition, we may then leave undefined the conditional credal set given B . And there is a third possibility: 
we may have some measures in K such that P (B) = 0, and yet other measures in K such that P (B) > 0. One strategy could 
be to leave KB undefined in this case [16]. However, this event B may happen with some positive probability, thus the 
possibility that B is observed cannot be ignored; what can be said about preferences in case B is indeed observed?9

To avoid this difficulty, one may adopt a theory of probability that allows conditioning on events of zero probability, as 
advocated by de Finetti [13], Renyi [26], and Popper [23]. In fact there has been work on sets of de Finetti-style probabilities 
[7] or sets of full conditional probabilities in Dubin’s sense [9]. Another strategy is pursued by Walley, who also applies 
conditioning regardless of the conditioning event, but moves away from probabilities as the basic representation (Walley’s 
theory is discussed later). Such approaches are quite distinct from the one we have followed in this paper, as we have 
focused here on sets of “usual” probability measures.

If one is to stay with sets of probability measures, the most popular way to define conditioning for credal sets is regular 
conditioning, where KB is computed by discarding measures assigning probability zero to B:

KB = {P(·|B) : P ∈K,P(B) > 0}; (2)

if the latter set is empty, then KB is left undefined. This concept is closely related to Walley’s regular extensions, to be 
discussed later in this section.

We have the following result. Here, and in the remainder of this paper, we use IB to refer to the indicator function of B .

Theorem 19. If K is an evenly convex credal set and D is the set of desirable gambles induced by K (that is, X ∈ D iff ∀P ∈ K :
EP[X] > 0), and B is an event such that P (B) > 0 for some P ∈K, then

9 A more extreme situation is this. Suppose we have a credal set such that each state ω ∈ � is assigned probability zero for some measure in K. Leaving 
Kω undefined for each ω would be unreasonable: whatever state ω we might observe, nothing would be said about preferences given ω.
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Fig. 8. The unitary simplex, the credal set K described in Example 20, and the conditional credal set KB , where B = {ω2, ω3}, viewed from point (1, 1, 1). 
The credal set K is closed and touches the probability measure that assigns P (ω1) = 1; this measure is discarded when regular conditioning is applied 
given B . The conditional credal set KB is an interval from (0, 1, 0) to (0, 1/4, 3/4), containing the latter point but not the former one; it does not contain 
the conditional probability measure that assigns P (ω2|B) = 1.

KB = {IB p : ∀X ∈ D : X · p > 0 and IB · p = 1},
an evenly convex credal set.

Proof. As K is evenly convex, it is the intersection of a cone C = {p : X · p > 0, ∀X ∈D} and the unitary simplex. To produce 
KB , we first focus on the points q = IB p, for each p ∈ C such that IB · p > 0. That is, we start with the set

K′
B = {q : q = IB p and ∀X ∈ D : X · p > 0 and IB · p > 0}.

This set is a cone: if q1 = IB p1 and q2 = IB p2 satisfy the defining constraints, q1 + q2 is equal to IB(p1 + p2) and λq1 is 
equal to IBλp1 for all λ > 0, and clearly we have X · (p1 + p2) > 0 and λp1 > 0 for all X ∈ D and IB · (p1 + p2) > 0 and 
IBλp1 > 0; hence both q1 + q2 and λq1 for λ > 0 belong to the set.

So, take the intersection of K′
B with the unitary simplex to “normalize” each point in the cone (this is equivalent to 

dividing q by IB · q when conditioning). By collecting these constraints, we obtain

KB = {q : q = IB p and ∀X ∈ D : X · p > 0 and IB · q = 1 and IB · p > 0},
a set defined solely by linear constraints (thus evenly convex). As the constraint IB · q > 0 is redundant given IB · q = 1, we 
can simplify the description of KB to obtain the expression in the theorem — an expression that is akin to the Charnes–
Cooper transformation employed in linear fractional programming [6]. �

To understand why a theory of evenly convex sets is needed when regular conditioning is adopted, note that KB may 
have open faces even if K is closed. This fact has been noticed before, and one can find a relatively simple example in Ref. 
[11, Example 1]. Here is an even simpler example:

Example 20. Suppose � = {ω1, ω2, ω3}, and consider the credal K set containing all probability measures that satisfy

3P(ω2) ≥ P(ω3) and (P(ω1) − 1)2 + P(ω2)
2 + (P(ω3) − 1)2 ≤ 1.

The resulting credal set is depicted in Fig. 8. Denote by B the event {ω2, ω3}. Using regular conditioning, KB is an evenly 
convex set consisting of all conditional probability measures such that P (ω2|B) ∈ [1/4, 1). This conditional credal set is also 
depicted in Fig. 8. �

Expression 2 defines regular conditioning solely in terms of probabilities; clearly it would be very useful to extract 
regular conditioning directly from preferences. Alas finding such a characterization with an intuitive content seems to be a 
difficult problem that is left open here.

Walley also considers the connection between regular extension and preferences [33, Appendix F]. His approach deserves 
some discussion as it combines representations based on lower previsions with regular extensions.10 Recall that a lower 
prevision P is, under mild assumptions, a superadditive functional (that is, P (X + Y ) ≥ P (X) + P (Y )) such that P (X) ≥
infω X(ω) and P (λX) = λP (X) for λ > 0. A lower prevision can be represented by a closed convex credal set K as P (X) =
infP∈KEP[X]. A lower prevision P can always be represented by some convex cone of gambles G in the sense that, for any 
X , P (X) = sup (λ : X − λ ∈ G). And the upper prevision of X is P (X) = −P (−X). For an event B with indicator function IB , 

10 The remainder of this section perhaps requires some understanding of Walley’s theory of imprecise probabilities [33].
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Fig. 9. The credal set KP in Example 21, viewed from point (1, 1, 1). The conditional credal set KB is a closed interval in the plane defined by P (ω1) = 0. 
The gamble W introduced in that example is also shown.

the lower probability of B , denoted by P (B), is defined to be P (IB); the upper probability of B , denoted by P (B), is P (IB). 
Given a number of assessments P (Xi) = αi , Walley’s natural extension E is the smallest lower prevision that agrees with 
the assessments. For any given X , E(X) can be calculated by building the (closed convex) credal set KP that consists of all 
probability measures satisfying EP[Xi] ≥ αi , and then returning E(X) = infP∈KP EP[X] for any X .

The idea of Walley’s regular extensions [33, Appendix F] is to first extract a set of gambles from P , to be interpreted as 
the set of gambles that are “actually” desirable:

R2 = {X : (P (X) ≥ 0 and P (X) > 0) or (X ≥ 0)};
however this set is not appropriate here because it contains the origin. A solution is to use Couso and Moral’s approach to 
regular extensions, as they adapt Walley’s definition to a setting where the origin is not desirable [8, Expression (10)]. In 
short, Couso and Moral extract from a given P the following set of gambles:

GP = {X : (P (X) ≥ 0 and P (X) > 0) or (X ≥ 0 and X �= 0)}.
The regular extension is then defined as a lower prevision induced by GP :

P (X |B) = sup
(
λ : B(X − λ) ∈ GP

)
.

With this scheme, as desired, we have that P (X |B) = infP∈KP :P(B)>0 EP[X |B] when P (B) > 0; besides, when P (B) = 0, then 
P (X |B) = inf{X(ω) : ω ∈ B}.11

This approach is elegant because it concentrates all conditional information into a single set of gambles GP . However, 
the interpretation of this set of gambles in terms of probabilities may be difficult, as suggested by the next example.

Example 21. Suppose � = {ω1, ω2, ω3}, and consider assessments P (ω1) = 1/2 and P (3Iω2 −Iω3 ) = 0 and P (3Iω3 −Iω2 ) = 0. 
Then

KP = {P : P(ω1) ≥ 1/2 and 3P(ω3) ≥ P(ω2) ≥ P(ω3) /3}
is a closed and convex set, as depicted in Fig. 9.

The constraints clearly allow P (ω1) = 1, in which case the probability of B = {ω2, ω3} is zero. Indeed, we have E(IB) = 0. 
Now, is it the case that B can have probability zero? In Walley’s approach, it seems the answer is no. To understand this, 
consider a gamble W such that W (ω1) = 0 and W (ω2) = W (ω3) = 1/2. This gamble belongs to GP as W ≥ 0 and W �= 0. If 
GP is to encode the “actually” desirable gambles, then it must be that 

∑
i P (ωi) W (ωi) > 0; that is, P (ω2) /2 +P (ω3) /2 > 0, 

or equivalently P (B) > 0. By attributing desirability to elements of GP , a “hidden” constraint is imposed, a constraint that 
requires P (B) > 0.

That is, a conditioning event with zero lower probability cannot be interpreted, in Walley’s approach, as an event that 
can actually have zero probability, even when the input assessments allow this zero probability to be assigned. Although 
“hidden” constraints removing zero probabilities do not affect lower/upper previsions, they may affect a representation of GP

based on credal sets. There is a difference between the closed convex credal set that represents the input lower previsions 

11 Here is a short proof. If P(B) = 0 then P (B(X −λ)) = P (B(X −λ)) = 0 and we have P(X |B) = sup(λ : B(X −λ) ≥ 0 and B(X −λ) �= 0); hence P(X |B) =
inf(X(ω) : ω ∈ B). And if P(B) > 0, then the conditions B(X − λ) ≥ 0 and B(X − λ) �= 0 become irrelevant as P(X |B) ≥ inf(X(ω) : ω ∈ B) with or without 
them; we thus have P (X |B) = sup(λ : infP(EP[B X] − EP[Bλ]) ≥ 0 and supP(EP[B X] − EP[Bλ]) > 0). Consequently, P(X |B) = sup(λ : infP:P(B)>0 EP[X |B] ≥
λ and supP:P(B)>0 EP[X |B] > λ); that is, P (X |B) = min(infP:P(B)>0 EP[X |B] , supP:P(B)>0 EP[X |B]) = infP:P(B)>0 EP[X |B].
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and the evenly convex credal set that should be used to represent the “actually” desirable gambles, but Walley’s approach 
is to focus on the former representation: the difference is washed over by taking infima and suprema.

As another point, take a gamble Z such that Z(ω1) = 0, Z(ω2) = −1, Z(ω3) = 3. This gamble also belongs to GP as 
P(Z) = 0 and P(Z) = 1. If we were to encode the desirability of Z by imposing EP[Z ] > 0 for all P in the representing 
credal set, it should be the case that 3P (ω3) − P (ω2) > 0. But this constraint removes all probability measures on the 
lower boundary of the set KP , hence removing every probability measure such that P (ω2|B) = 3/4. Because lower/upper 
previsions are not affected by boundary behavior, we obtain P (ω2|B) = 3/4 even though we cannot have P (ω2|B) = 3/4. 
However, regular conditioning applied to KP produces a closed conditional credal set KB also depicted in Fig. 9: each ex-
treme point is actually attained using probability measures within KP . To repeat, in Walley’s approach there is a difference 
between the representation of lower previsions and the representation of “actually” desirable gambles when regular con-
ditioning is used. The difficulty, of course, is that lower previsions are always represented by closed convex credal sets in 
Walley’s theory, while regular conditioning requires evenly convex ones. �
6. Conclusion

We have presented a few axioms on preference orderings that, together, imply a representation through evenly convex 
credal sets. This representation lets one handle assessments of strict inequality for probabilities, and go beyond what can 
be done with closed convex credal sets. The main idea is to adopt a novel Archimedean condition (even continuity) that 
implies even convexity. A similar representation can be obtained using SSK-continuity in many, but not all, cases.

We have also discussed natural extensions and, more importantly, the concept of regular conditioning, a concept that is 
inextricably linked to evenly convex credal sets.

Future work should look at more general sets of probabilities, mimicking results by Seidenfeld, Schervish, and Kadane 
[30].
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Appendix A. Obtaining a unique probability measure

Aumann’s continuity suffices to obtain a unique probability measure when absence of preference is an equivalence rela-
tion. This result is in essence well-known, but it seems that a detailed proof is not available in the literature.

Proposition 22. If a preference ordering � satisfies monotonicity, cancellation, and Aumann’s continuity, and absence of preference �
is an equivalence, then its representing set of desirable gambles D is an open halfspace, and its representing credal set K is a singleton.

We start with a useful property [15, Theorem 2.1]: when � is an equivalence, then

X � Y ∧ Y � Z ⇒ X � Z . (A.1)

To prove this, assume X � Y and Y � Z , and note: if X � Z , by transitivity of � we have Y � Z violating Y � Z ; and if 
Z � X , by transitivity of � we have Y � X violating X � Y .

Proof. Part 1) Take X on the boundary of D; to create a contradiction, assume X ∈ D. Consider that for any δ > 0, both 
X − δ and X − δ/2 are not in D (if they were, then X would not be on the boundary). So, either X − δ � 0 or 0 � X − δ, 
and likewise X − δ/2 � 0 or 0 � X − δ/2. In fact, 0 � X − δ for every δ > 0 [to show this, suppose that X − δ � 0 for some 
δ > 0; if X − δ/2 � 0 as well, then by transitivity X − δ/2 � X − δ, violating monotonicity; if instead 0 � X − δ/2, then 
X − δ � X − δ/2 (using Expression (A.1)), again violating monotonicity]. But this implies that −X + δ � 0 for every δ > 0, so 
α(−X + δ) + (1 − α)(−X) � 0 for all α > 0. By Aumann’s continuity, we have either −X � 0 or −X � 0, contradicting the 
assumption X � 0. So a gamble on the boundary of D is not in D, hence D is open.

Part 2) Because D is open, it can be represented by a credal set K. Suppose there are distinct P1 and P2 and X such 
that EP1 [X] < EP2 [X]; then one can find μ and δ > 0 such that EP1 [X] < μ < μ + δ < EP2 [X]. Now EP1 [X − μ] < 0 implies 
¬(X − μ � 0), and EP2 [X − μ] > 0 implies ¬(0 � X − μ); hence X − μ � 0. But similarly X − μ − δ � 0, and by transitivity 
of � we have 0 � −δ, violating monotonicity. Hence P1 = P2. Now note that if the credal set is a singleton containing P, 
then the set of desirable gambles is the open halfspace EP[ f ] > 0. �
Appendix B. A separation property for evenly convex cones

If A is evenly convex, then if X ∈ A and Y ∈ clA we have αX + (1 − α)Y ∈ A for α ∈ (0, 1) [14, Section 3.5]. Conse-
quently:
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Lemma 23. Suppose A is evenly convex and 0 /∈A. If X and −X belong to clA, then neither is in A.

Proof. If X ∈ A, then −X ∈ clA implies X/2 + (−X)/2 = 0 ∈ A, a contradiction; hence X /∈ A. By similar reasoning, 
−X /∈A. �

We then obtain the following separation property:

Theorem 24. Suppose A is an evenly convex cone such that 0 /∈ A. If X /∈ A, then there is p such that X · p ≤ 0 and Y · p > 0 for all 
Y ∈A.

Proof. Part 1) Suppose X ∈ clA, but X /∈A. Because A is evenly convex, there is p and β such that X · p = β and Y · p > β

for all Y ∈ A [17, Proposition 3.1(ii)]. If β > 0, then for any Y in a neighborhood of 0 we have εY · p < β for some ε > 0; 
this is a contradiction because some such Y is in A, and for this Y we must have εY · p > β . Hence β ≤ 0. We now show 
that actually β = 0.

For Y ∈ A, Y · p > β = X · p, hence (Y − X) · p > 0. Because X is on the boundary of A, there is a gamble Y in a 
neighborhood of X that belongs to A; define Z = Y − X , and note that the segment from Y to X (excluding X) is in A [14, 
Section 3.5]. That is, there is Z such that Z · p > 0 and (X + ε Z) · p > β for ε > 0 in a neighborhood of 0. Now for any λ > 0
we have λ(X + ε Z) ∈A. That is, λ(X + ε Z) · p > β , so X · p > β/λ − ε Z · p. Again use X · p = β , to obtain β > β/λ − ε Z · p. 
Consequently, we have both β ≤ 0 and β > −ε Z · p/(1 − 1/λ); take say λ = 2 to obtain the constraint β > −ε(2Z · p). These 
conditions can only be satisfied for ε > 0 if β = 0.

Part 2) Now suppose instead that X /∈ clA. Consider the cone B = {λX : λ ≥ 0}. Using an appropriate separation result 
[18, Theorem 2.5], we know that there is p such that Y · p > 0 for Y ∈ clA\(clA ∩ −clA), Y ′ · p = 0 for Y ′ ∈ (clA ∩ −clA) ∪
(B ∩ −B), Y ′′ · p ≤ 0 for Y ′′ ∈ B\(B ∩ −B). Clearly B ∩ −B contains just the zero gamble. Now note that clA ∩ −clA does 
not intersect A (if Y ∈ clA ∩ −clA, then Y ∈ clA and −Y ∈ clA, so both are not in A by Lemma 23). Hence there is p such 
that X · p ≤ 0 and Y · p > 0 for Y ∈A. �
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