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1 INTRODUCTION

This paper presents alternatives and improvements to Lavine’s algorithm, currently the most popular
method for calculation of posterior expectation bounds induced by sets of probability measures. Models
based on convex sets of measures have been advocated as more realistic, meaningful and flexible than
standard probability models (e.g., as discussed by Giron and Rios (1980), Levi (1980) and Walley
(1991)).

The most important practical application of convex sets of probability measures is robustness anal-
ysis. The idea, detailed by Berger (1990), is to employ sets of probability measures to represent
perturbations and variations in a probabilistic model. The goal of robustness analysis is to produce
bounds on expected values. The interval between the upper and lower bounds induced by a convex set
of probability measures reflects the quality of model and data; small intervals indicate robustness to

perturbations.

Lavine (1991) has proposed a bracketing algorithm, aimed at robustness analysis, that has captured
great attention in recent years. The main goal of this paper is to present algorithms that conduct
robustness analysis more generally than Lavine’s algorithm. A second important goal of the paper is
to indicate the connections between the research on convex sets of measures that has been developed
in Artificial Intelligence and Statistics. Note that the word algorithm is used here informally to mean

any sequence of operations that produces probability and expectation bounds.

Firstly, algorithms previously developed in Artificial Intelligence are compared to Lavine’s algorithm.
Methods from probabilistic logic are reviewed, and the White-Snow algorithm is analyzed and presented
in a uniform notation. Walley’s algorithm is also compared to Lavine’s algorithm. Secondly, the
calculation of posterior bounds is reduced to a fractional programming problem: from the unifying
perspective of fractional programming, Lavine’s algorithm is identical to Dinkelbach’s algorithm, and
the White-Snow algorithm is similar to the Charnes-Cooper transformation. From this analysis, a
novel algorithm for expectation bounds is derived. This algorithm provides a complete solution for

the calculation of expectation bounds from priors and likelihood functions specified as convex sets of



measures. This novel algorithm is then extended to handle the situation where several independent
identically distributed experiments are conducted, given that the experiments are modeled by convex

sets of likelihood functions.

bTM

The novel algorithms developed in this paper have been implemented in a Matla package that is

publicly available. To illustrate the algorithms in this package, two examples are analyzed in Section 7.

2 THE THEORY OF CONVEX SETS OF PROBABILITY
MEASURES

This section presents the basic technical results used in this paper. Several theories of inference advocate
sets of probability measures as representations for statements of uncertainty; for example, the quasi-
Bayesian theory of Giron and Rios (1980), inner/outer measures (Suppes 1974; Good 1983; Ruspini
1987; Halpern and Fagin 1992), lower probability theory (Smith 1961; Fine 1988; Breese and Fertig
1991; Chrisman 1996b), the intervalism theory of Kyburg Jr. (1987), the convex Bayesian theory of
Levi (1980), the theory of coherent lower previsions of Walley (1991), and the very general theory of
probability /utility sets of Seidenfeld, Schervish, and Kadane (1995). Some theories, like Dempster-
Shafer theory, use representations that can be recast in terms of convex sets of measures (Dempster
1967; Kyburg Jr. 1987; Wasserman 1990). This article adopts the ideas advocated by Walley’s theory
of coherent lower previsions, but emphasizes an interpretation of the concepts that is based on convex

sets of probability measures, much in the spirit of the quasi-Bayesian theory of Giron and Rios (1980).

A closed convex set of probability measures is called a credal set by Levi (1980). A credal set
containing joint probability measures for a collection of variables is called a joint credal set. Denote by
P(-) either the probability P(A) of an event A or the distribution P(X) of a random variable X. Use
the symbol p(X) to denote either the probability mass function of X (when X is discrete-valued) or
the density function of X (when X is continuous-valued). A credal set defined by a set of distributions

P(X) is denoted by K(X). To simplify the discussion, assume that every distribution P(X) is defined



on the power set of values of X.

2.1 Lower and Upper Expectations, Envelopes and Densities

Lower and upper ezpectations for a bounded function f(X), given a credal set K, are defined as:

E[f(X)) = min Bf(V],  BIA(X)] = max B, [f(V),

where Ep[f(X)] is the standard expectation of f(X). Lower expectations can be obtained from upper
expectations through the expression E[f(X)] = —E[—f(X)]. There is a one-to-one correspondence
between credal sets and collections of coherent lower (or upper) expectations (the definition of coherence
is given by Walley (1991)). Any credal set generates a unique collection of coherent lower (or upper)

expectations and vice-versa.
Given a credal set K, a probability interval is induced for every event A:

P(A) = min P(4), P(4) = max P(4).

The set-functions P(A) and P(A) are called lower and upper envelopes respectively. Similarly, the func-
tions p(X) = minpex p(X) and p(X) = maxper p(X) are called lower and upper densities respectively.
Lower envelopes can be obtained from upper envelopes through the expression P(4) = 1 — P(A°). For
any event A, the lower envelope of A is obtained by taking the lower expectation of the indicator

function d4(X), which is one if X € A and zero otherwise.

2.2 Conditioning

Convex sets of conditional probability measures are used to represent the beliefs held by a decision
maker given an event. A credal set defined by conditional distributions P(X|A) (for variable X and
event A) is denoted by K (X|A). A collection of credal sets K (X|y), indexed by a variable Y, is denoted

by K(X|Y). To simplify terminology, K (XY") is also called a credal set.



A credal set K (X|Y) is separately specified when the constraints that define K (X |y;) do not interfere
with the constraints that define K(X|ys) for y; # y2. More generally, a collection of credal sets is
separately specified when measures can be independently selected from the credal sets. A conditional
credal set K(X|Y) is separately specified when each credal set K (X|y) is specified by coherent lower

expectations given all values of the conditioning variable (Walley 1991, Chapter 6).

Inference is performed by applying Bayes rule to each measure in a credal set; the posterior credal
set is the union of all posterior probability measures (more details can be found in the Internet at
http://www.cs.cmu.edu/~qBayes/Tutorial). To obtain a posterior credal set, one has to apply Bayes
rule only to the extreme points of a joint credal set and then take the convex hull of the resulting
posterior probability measures (Giron and Rios 1980; Levi 1980). To obtain maximum and minimum

values of posterior probabilities, one must look only at the extreme points of the posterior credal set

(Walley 1991, Section 6.4.2).

Given a joint credal set K (X,Y) and a bounded function f(X), the functionals E[f(X)|Y] and
E[g(X,Y)] (for arbitrary bounded functions f(X) and g(X,Y)) are closely related by the generalized
Bayes rule (first proposed by Walley (1991, Section 6.4.1)). For an event A such that P(A4) > 0,

E[f(X)|A4] is the unique value of u that solves the equation:

E[(f(X) = p)da(Y)] =0. (1)

Note that the generalized Bayes rule uses operations on the joint credal set K(X,Y) to generate

conditional values; the same technique is used in Lavine’s algorithm (Expression (3)).

Suppose that a credal set K (X) and a separately specified credal set K (Y| X) are given. To obtain
the posterior expectation E[f(X)|y], it is necessary to apply the generalized Bayes rule to the joint
credal set K (X,Y) that has the correct marginal credal set K (X) and the correct conditional credal

set K(Y]X). The following theorem investigates this situation.

Theorem 1 Consider a bounded function f(X) and suppose that K(X) and K(Y|X) are separately

specified. For a given y, define the lower likelihood Ly(x) = p(y|z) and the upper likelihood U, (z) =



plylz). If ply) > 0, E[f(X)]y] is equal to the unique value of p that satisfies the equation

L) if f()<np.

E[(f(X) = 1) pu(y|X)] =0, where p,(ylz) =

E[f(X)|y] is obtained by solving a similar equation (obtained by replacing E for E, greater than by

smaller than and vice-versa,).

Proof. Direct from Walley (1991, Section 8.5.3).

2.3 Inferences with Convex Sets of Probability Measures in Probabilistic

Logic and Robust Statistics

A credal set can be understood as a collection of constraints on probability measures. This viewpoint
has been emphasized in Artificial Intelligence, particularly after the discussion of probabilistic logic by
Nilsson (1986). Several variants of probabilistic logic exist (Bacchus 1990; Fagin, Halpern, and Megiddo
1990; Thone, Guntzer, and Kiefling 1992; Frisch and Haddawy 1994; Lukasiewicz 1995; Dubois, Prade,
and Smets 1996); the purpose of the work is always to start from a collection of linear constraints on the
probability of propositions, and obtain probability bounds through linear programming. Conditional
and posterior constraints can be handled to a limited extent by Fagin, Halpern, and Megiddo (1990)
and Lukasiewicz (1996).

A different line of research has focused on the properties of 2-monotone and infinite monotone
Choquet capacities. These credal sets admit closed-form expressions for posterior quantities when a
single measurement is performed (Halpern and Fagin 1992; Wasserman and Kadane 1990; Walley 1981).

Chrisman (1995) has modified these closed-form expressions to handle sequences of measurements.

Robust Statistics focuses mostly on inferences involving a conditional distribution P(X|#) and a
prior credal set K(0©) (Berger 1985; Kadane 1984; Berger 1990; Wasserman 1992). Inference is equated
to calculation of the posterior credal set K (©|z). A number of results are available for important cases,

such as density ratio classes (Berger 1990) and unimodal and symmetric constraints (Berger 1990).



There are three common ways to specify credal sets: either by specifying a finite collection of extreme
points, or by specifying a finite collection of linear inequalities, or by generating a neighborhood of
measures with convenient properties (for example, credal sets generated by 2-monotone capacities).!
The first situation is relatively simple: If a credal set K (X) is specified by a collection of extreme points
and A is an event such that P(A) > 0, the conditional expectation E,[f(X)|A] can be computed for
each extreme point of K(X), and E[f(X)|A] is the maximum of these conditional expectations. The
second situation (collection of linear inequalities) can be handled through Lavine’s and White-Snow’s
algorithms. The third situation (neighborhoods of measures) can be handled through Lavine’s and

Walley’s algorithms. All algorithms assume that the lower envelope of the conditioning event is larger

than zero, an assumption that is taken for granted in this paper.

Only a few authors consider the possibility that prior and conditional credal sets be specified (Lavine
1991; Pericchi and Perez 1994; Walley 1991)). An algorithm for prior and conditional credal sets, that

completely solves this problem, is derived through linear fractional programming methods in Section 5.

3 LAVINE’S AND WALLEY’S ALGORITHMS

The posterior upper expectation for a bounded function f(X) conditional on event A with positive
lower envelope is:
(2)

B[f(X)|A] = max {M} |

Ep[0a(X)]
where the maximization is with respect to all the measures in the joint credal set. To simplify the
presentation, only upper expectations are considered; lower expectations can be obtained through

similar computations.

Lavine’s algorithm can be informally stated as follows. Pick a real number g in the interval
[inf f(X)64(X), sup f(X)d4(X)] and check whether E[f(X)|A] is larger, smaller or equal to u, and

respectively increase u, decrease p or stop. When f(X) is bounded, repetition of this procedure is

IThis classification of problems, and the fact that Lavine’s algorithm can use f(X)d 4 (X) rather than f(X), to compute

its starting point, were suggested to me by Peter Walley.



certain to produce an interval containing E[f(X)|A]; the algorithm stops when this interval is small

enough, or the number of repetitions exceeds some threshold.
Note that (Lavine 1991):
E[f(X)[A] > p & max [Ep[f(X)da(X)] — pEp[04(X)]] > 0 & E[(f(X) — p)da(X)] >0,  (3)

demonstrating that Lavine’s algorithm is simply a bracketing solution for the generalized Bayes rule

(Expression (1)).

Lavine’s algorithm is a viable choice if the calculation of E[(f(X) — p)d4(X)] is in fact easier than
the nonlinear maximization in Expression (2). For example, Lavine’s algorithm is effective when applied
to density ratio classes and 2-monotone Choquet capacities. Apart from these special cases, Lavine’s
algorithm is practical when a single conditional distribution P(X|¢) and a prior credal K () are spec-
ified, because in this case each iteration of the algorithm (Expression (3)) demands the maximization
of a linear functional. Such a maximization is straightforward when 6 has finitely many values or is

discretized.

Walley (1991, Note 6.4.1) has proposed an iterative algorithm to obtain posterior quantities by

calculating a series of upper expectations. In Walley’s algorithm, E[f(X)|A] is obtained by iterating
priv1 = pi + 2B[(f(X) — 1) (X)] /(P(A) + P(A)).

Walley also proved that the error at step n is bounded by ¢A"™, where ¢ is a constant and A =
(P(A) — P(A))/(P(A) + P(A)); consequently, Walley’s algorithm has the property that €,11 = A€y,
where €, is a bound on the error at step n. Walley’s algorithm is attractive when E[(f(X) — p;)d4(X)]
can be easily computed (for example, models generated by 2-monotone Choquet capacities). To compare
Walley’s algorithm to Lavine’s, note first that Lavine’s algorithm has linear convergence. If bisection is

used in Lavine’s algorithm, then €,11 = (1/2)e,, and Walley’s algorithm converges faster than Lavine’s

when A < (1/2).

In the remainder of this paper, it is assumed that 6 has a finite number of values and K (#) is

finitely generated, so that techniques of linear programming can be applied and compared to Lavine’s



algorithm.

4 WHITE-SNOW ALGORITHM

Lavine’s algorithm requires the solution of a parametric linear program? in the value of y when (i)
a single conditional distribution P(X6) is specified; and (ii) a prior credal K (0) is specified through
linear constraints A[p(6:)...p(6,)]" < B, where A and B are matrices of appropriate dimensions. An
algorithm that produces upper and lower expectations by direct application of linear programming has
been developed by White III (1986) and improved by Snow (1991) for these situations. The White-Snow
algorithm was developed in the context of expert systems and no connection to Lavine’s algorithm has
been mentioned in the literature so far. The White-Snow algorithm is summarized below in uniform

notation.

For a given z, define:

e the vectors a; = p(6;), i = p(z|6;) and f; = f(6;);
e the matrix C = A — B1, where 1 is a row vector of ones;

e the matrix D = C x diag [8;',..., 8]

n

The calculation of a posterior upper expectation is:

E[f(6)lx] = max [ o

subject to:

Ca <0, Zaizl, a; > 0.
i

White IIT (1986) proposed the following change of variables:

a;if;

Vi = ’
25 B

2The use of parametric linear programming in Lavine’s algorithm was pointed out by one of the refrees.




which reduces the calculation of the posterior upper expectation to a linear program:
E[f(0)]] = max lz fi'Yi] ;
i

subject to:

Dy <0, Y ovi=1, 7 > 0.

To obtain the matrix D, all §; must be larger than zero. When 3; = 0, set the variable v; to zero
and discard it from the equations. Snow (1991) has proved that the solution of this linear program

yields the correct posterior upper expectation.

5 POSTERIOR BOUNDS THROUGH LINEAR FRACTIONAL

PROGRAMMING

The algorithms presented in Sections 3 and 4 were derived through special properties of upper expec-
tations. Lavine’s and White-Snow’s algorithms can be derived in a more direct and general way as
algorithms for linear fractional programming. Only recent references associate linear fractional pro-
grams to upper expectations (Betro and Guglielmi 1996; Jaumard, Hansen, and de Aragao 1991; Luo,
Yu, Lobo, Wang, and Pham 1996; Zaffalon 1997); only Pacifico, Salinetti, and Tardella (1994) compare

linear fractional programming to Lavine’s algorithm.

Linear fractional programming studies the maximization of ratios of linear functions (Ibaraki 1981;

Schaible and Ziemba 1981). Consider the linear fractional program:

> fiaifBi
mgx [—EJ Oéjﬁj ] 9

where the (3;, f; are given and the «; are subject to linear constraints. There are two main algorithms

for linear fractional programming:

e Create a “parameterized” problem for a parameter u:

max lZ(fi - M)Oézﬂi] ;

i

10



subject to the same constraints on the original problem; and search for the value of y such that
the maximum is zero. This method is variously called Dinkelbach or Jagannatham algorithm,

and dates back to the sixties. Note that this method is identical to Lavine’s algorithm.

e Transform the problem by a change of variables:

b B

which reduces the calculation of the posterior upper expectation to a linear program:

max lz fzﬂi%"l ,
i
subject to:
Cy' <0, > Bivi=1, 7 > 0.

This is called the Charnes-Cooper method, Zzaund also dates back to the sixties. Notice that this
method is similar to White-Snow’s algorithm; the only difference is that ~; = v/8;. On one hand,
the Charnes-Cooper method has the advantage of automatically handling the case 8; = 0; on the
other hand, the White-Snow algorithm has the advantage that the posterior credal set is directly

represented by the variables ~;.

6 POSTERIOR UPPER EXPECTATIONS FOR PRIOR AND
CONDITIONAL CREDAL SETS

The main results of the paper are described in this section. A novel method for the calculation of poste-
rior bounds given separately specified prior and conditional credal sets (K (6) and K (X|0) respectively)
is proposed and then extended to the case of multiple independent measurements. A simplified version
of this problem, where an interval is associated with each value of P(X#), is studied by Snow (1996);
the same techniques are used in the following derivation. Approximate bounds for the same problem
are provided by Salo (1996) using different techniques. Walley (1996, Page 18) presents closed-form
solutions for a narrower version of the problem where both prior and conditional credal sets are defined

by density bounded families.

11



First note that Theorem 1 demonstrates that separately specified prior and conditional credal sets
can be handled through the function h(u) = E[(f(0) — p)pu(2|6)]. The function h(u) is strictly decreas-
ing with p, so the solution of h(x) = 0 can be obtained by bracketing p in the interval [inf f(0), sup f(6)].

This generates a sequence of linear programs, and closely mimics Lavine’s bracketing algorithm.

It is actually possible to compute posterior upper expectations given sets of priors and likelihood
functions through a single linear program. By Theorem 1, the upper expectation is attained only by
likelihood functions that assume either U, (6;) or L, (6;) for each ;. Take the vectors a and f defined in
Section 4. Define two new vectors, ' and o', each with the same length as . Consider the following

linear fractional program:
> i (fila (b)) + fiUz (0:)e)
a',a’ Zj (Lx(O])a; + U, (9]')0(;-,) ’

subject to:

C(a' +a") <0, Y (@i +ai) =1, a; > 0, ol > 0.

Now the Charnes-Cooper transformation can be applied and the lower expectation can be obtained
through a linear program. For each 6;, a solution of this linear program has either o} = 0 or af = 0.
This automatically selects the correct likelihood value. This method is more general than the procedure
derived by Snow (1996), and the derivation is shorter and simpler; note that the algorithm automatically

handles situations where the likelihoods are zero, while Snow has to consider a variety of special cases.

Suppose now that a sequence of measurements Xy, ..., X,, is given, and the measurements are all
taken to be independent and modeled by identical sets K (X;|0) of likelihood functions. The objective

of robust inference is to calculate the bounds E[f(8)|z1,...,z,] and E[f(8)|z1,...,z,].

There are several different interpretations to the statement that “measurements are independent”
(as discussed by Chrisman (1996a) and de Campos and Moral (1995)). Results derived in this section
are valid for several definitions in the literature, but, for definiteness, Walley’s definition of independence

(Walley 1991, Chapter 9) is adopted throughout the discussion.

Variables X and Y are independent given a value of Z when the lower expectation E[f(X)]y, 2] is

equal to the lower expectation E[f(X)|z] for any bounded function f(X), and the lower expectation

12



E[g(Y)|z, 2] is equal to the lower expectation E[g(Y)|z] for any bounded function g(Y). For exam-
ple, the statement “measurements Xi,...,X,, are independent given #” indicates that the credal set

K(X;|Xy,...,Xi-1,Xit1,-..,Xn,0) contains the same functions as the credal set K (X;|0).

The central problem is how to calculate the lower and upper likelihoods Ly, . .. (8) and Uy, .. 5. (0);
once these functions are calculated, the same algorithm developed in Section 6 can be used to obtain

posterior bounds. The following simple result yields the likelihoods:

Theorem 2 The upper and lower likelihoods are given by:

Usy,eonan (6) = H [p(zil0)], Lay,..wn () = H [p(x:]6)] -

Proof. Note the inequalities:

Lg,.... 0, (0) =minp(zy,...,2,]0) = min lH p(zilTiz1, ..., Tn,0)

(3

> H [p(il0)] , (4)

(3

Uzi,...zn (0) = maxp(z1,...,2,|0) = max [Hp(wﬂwiﬂ, ey T, 0)] < H [B(z;|6)] . (5)

To obtain the lower and upper likelihoods, construct distributions p’ and p”. Construct p'(z1, ..., 2,|6)
by multiplying together the likelihood functions that yield the minimum likelihood value for the mea-
surements. Construct p”(z1,...,z,|f) by multiplying together the likelihood functions that yield the
maximum likelihood value for the measurements. From that, p'(z1,...,z,|0) = II; [p(x:]6)] and
p'(x1,...,2,]0) = [I, [P(x:]0)]. These equalities demonstrate that the inequalities (4) and (5) are

in fact tight.

7 EXAMPLES

The methods developed in this paper can be implemented on top of standard linear programming
packages. The following examples were solved through procedures implemented with the optimization

facilities available in the Matlab™™ system (Appendix 8).

13



Example 1 (White III (1986)) Consider a variable 8 with four values {61,60>,03,64}, and the fol-

lowing constraints on the marginal prior measure of 6:
2.5p(61) > p(64) > 2p(61) , 10p(63) > p(62) > 9p(8s) p(62) = 5p(64) -
Suppose the following lower and upper likelihoods are given for a measurement x:

Ly(61) =09, Ly(6) =0.1125, L,(65) =0.05625, L (64) = 0.1125,
Uy(61) =095, U,(6y) =0.1357, U, (fs) =0.1357, U, (64) = 0.1357.

Consider the calculation of the lower density p(#1|r) = mina/ o (0.9 +0.95a7), where o’ and o
are vectors with four elements, subject to:

e Cla' + '] <0 where the matrix C is obtained as described in Section 6;

e [0.9,0.1125,0.0562,0.1125]a’ + [0.95,0.1357,0.1357,0.1357]a/ = 1;

e o >0andaf >0.
The lower density p(f;|X) = 0.2881 is obtained through linear programming. The minimizing o' is
[0.3201,0,0,0] and the minimizing o' is [0,4.0013, 0.4446, 0.8003].

The bounds obtained through linear fractional programming are only valid if the conditional credal
sets are specified separately for each value of #. White’s original example specified the conditional

probability measures through linear inequalities:
p(z|62) = p(z|64), p(z|63) < p(z|62) < 2p(z]6s) ,

Tp(x|62) < p(x|01) < 8p(x|f2), p(z]f3) > 0.01, 0.9 < p(z]61) < 0.95.

In this case the bounds produced by linear fractional programming are not tight, because Theorem 1

does not apply.

14



Example 2 Consider a discrete variable 6 ranging from 120 to 180 in unitary increments. A beta

distribution is used to specify a prior probabilily mass function:
6; — 120
r(6;) = YBeta (ZT, 15, 11) ,

where 7y is a constant to ensure that ). r(0;) = 1. Suppose that r(0) is not deemed a reliable model and
an e-contaminated model is taken with ¢ = 0.15. The prior credal set K (0) is defined by all densities of

the form p(6;) = (1 — €)r(6;) + eq(0;), where q(0) is an arbitrary probability mass function.

Several measurements X; of the variable 0 are taken. All measurements are independent and iden-

tically modeled by a set of likelihoods K (X;|0) defined by all densities of the form:

1 (X; — Gi)2>
X;l6;) = exp | ——2—" ), where o € [10,11].
pX31) = e (12 10,11]
Consider the calculation of E[f|zi,...,z,] and E[f|z1,...,z,]. Two steps must be taken: (i)

formulation of constraints for prior measures, and (ii) calculation of lower and upper likelihoods.

The constraints that must be satisfied by any prior measure in K(6) can be formulated as:

p(0:) > (1 —e)r(8s), p(f:) >0, > p(i) = 1.

Any likelihood function p(z;|6;) x exp(—(z;—6;)?/(20))/+/0 has a single maximum at o = (z,;—6;)?.
Consequently, to find the maximum and minimum of each likelihood p(z;|6;), it is necessary to check
the values of the likelihood for ¢ = (z; — 0;)?, 0 = 10 (minimum value of variance) and o = 11
(maximum value of variance). The full lower likelihood Ly, . ., (6) is the product of all lower bounds
on the individual likelihoods (Section 6); likewise, the full upper likelihod Uy, ... 5, (9) is the product of

all upper bounds on the individual likelihoods.

Consider, for example, the sequence of 20 measurements in Table 1. The table also shows the lower
and upper posterior expectations, E[f|z1,...,z,] and E[f|z1,...,z,], obtained with these measure-

ments through linear fractional programming.
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8 CONCLUSION

Two new technical results are noteworthy in this paper. First, a unified perspective for Lavine’s
algorithm and the White-Snow algorithm is derived, based on linear fractional programming. Related
algorithms derived in Artificial Intelligence and robust Statistics are brought together in this manner,

despite the fact that their motivations have stemmed from disparate applications.

Second, the main contribution is the algorithm for calculation of posterior quantities given sep-
arately specified prior and conditional credal sets. This algorithm and its extension to independent
identically distributed measurements provides a complete solution for robust Bayesian inferences based

on separately specified credal sets.

APPENDIX: SOFTWARE FOR INFERENCES

The Matlab™ procedures used in the paper are publicly available in the Internet at the address

bT™ can be found

http://www.cs.cmu.edu/~ gbayes/RobustInferences/Matlab/; information about Matla
in the Internet at http://www.matlab.com. The following files are available: (i) q1.m is a procedure
that generates bounds from inequalities in the prior but uses a single likelihood function; (ii) q2.m is a
procedure that generates bounds from inequalities in the prior and bounds in the likelihood functions;
(iii) cond.m is a procedure that generates likelihood bounds for a set of Gaussian distributions with a

range of variances; (iv) ws.m contains the matrices and operations that solve Example 1; and (v) ex.m

contains the matrices and operations that solve Example 2.
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Measurements

Lower and upper posterior expectations

156.2684 161.2516

0 [ 141.5769, 150.5769 ]
150.7508  157.2864

0z, [ 147.0183, 151.1553 |
153.5161  126.2255

Oz, o [ 147.5942, 150.8717 ]
143.0349  147.2622

Olz1,...,z3 [ 148.3935, 151.7279 ]
166.9614 146.7706

Olzy, ..., x4 [ 147.4245, 150.2526 |
150.5906  153.1799

flz1,... x5 [ 149.4921, 153.6234 |
157.5622  144.8883

9|1‘1,...,1’10 [ 149.1507, 153.1745 ]
154.0049  149.9796

flz1,. .., 15 [ 147.9065, 152.5462 ]
136.5862  166.0651

T [ 148.7107, 153.8154 ]

153.7504  158.4765

Table 1: Twenty measurements and lower and upper posterior expectations.
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