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Abstract

We examine the complexity of inference in Bayesian networks specified by logical
languages. We consider representations that range from fragments of proposi-
tional logic to function-free first-order logic with equality; in doing so we cover
a variety of plate models and of probabilistic relational models. We study the
complexity of inferences when network, query and domain are the input (the
inferential and the combined complexity), when the network is fixed and query
and domain are the input (the query/data complexity), and when the network
and query are fixed and the domain is the input (the domain complexity). We
draw connections with probabilistic databases and liftability results, and obtain
complexity classes that range from polynomial to exponential levels; we identify
new languages with tractable inference, and we relate our results to languages
based on plates and probabilistic relational models.

Keywords: Bayesian networks, Complexity theory, Relational logic, Plate
models, Probabilistic relational models

1. Introduction

A Bayesian network can represent any distribution over a given set of random
variables [33, 69], and this flexibility has been used to great effect in a variety
of applications [107]. Many of these applications contain repetitive patterns
of entities and relationships. Thus it is not surprising that practical concerns
have led to modeling languages where Bayesian networks are specified using
relations, logical variables, and quantifiers [46, 109]. Some of these languages
enlarge Bayesian networks with plates [47, 83], while others resort to elements
of database schema [44, 58]; some others mix probabilities with logic program-
ming [104, 116] and even with functional programming [85, 89, 100]. The spec-
trum of tools that specify Bayesian networks by moving beyond propositional
sentences is vast, and their applications are remarkable.

Yet most of the existing analysis on the complexity of inference with Bayesian
networks focuses on a simplified setting where nodes of a network are associated
with categorial variables and distributions are specified by flat tables containing
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fan(Ann) fan(Bob)

friends(Ann,Ann) friends(Bob,Bob)

friends(Ann,Bob) friends(Bob,Ann) . . .

. . .

. . .

Figure 1: A Bayesian network with a repetitive pattern concerning friendship (only two stu-
dents are shown; a larger network is obtained for a larger number of students).

probability values [73, 113]. This is certainly unsatisfying: as a point of com-
parison, consider the topic of logical inference, where much is known about the
impact of specific constructs on computational complexity — suffice to mention
the beautiful and detailed study of inference complexity in description logics [3].

In this paper we examine the complexity of inferences in Bayesian networks
as dependent on the language that is used to specify the networks. We adopt a
simple specification strategy inspired by probabilistic programming [105] and by
structural equation models [99], where a Bayesian network over binary variables
is specified by a set of logical formulas and a set of independent random vari-
ables. As we show in the paper, this abstract specification strategy captures a
vast range of modeling languages in the literature. To illustrate the sort of spec-
ification we contemplate, consider a short example that will be elaborated later.
Suppose we have a population of students, and denote by fan(x ) the fact that
student x is a fan of say a particular band. And write friends(x , y) to indicate
that x is a friend of y . Now consider a Bayesian network with a node fan(x ) per
student, and a node friends(x , y) per pair of students (see Figure 1). Suppose
each node fan(x ) is associated with the assessment P(fan(x ) = true) = 0.2. And
finally suppose that a person is always a friend of herself, and two people are
friends if they are fans of the band; that is, for each pair of students, friends(x , y)
is associated with the formula

friends(x , y)↔ (x = y) ∨ (fan(x ) ∧ fan(y)). (1)

Now if we have data on some students, we may ask for the probability that some
two students are friends, or the probability that a student is a fan. We may
wish to consider more sophisticated formulas specifying friendship: how would
the complexity of our inferences change, say, if we allowed quantifiers in our
formula? Or if we allowed relations of arity higher than two? Such questions
are the object of our discussion.

We can thus parameterize computational complexity by the formal language
that is allowed in the logical formulas; we can move from sub-Boolean languages
to relational ones, in the way producing languages that are similar in power to
plate models [47] and to probabilistic relational models [72]. Overall we follow a
proven strategy adopted in logical formalisms: we focus on minimal sets of con-
structs (Boolean operators, quantifiers) that capture the essential connections
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between expressivity and complexity, and that can shed light on more sophis-
ticated languages. Our broader goal is to help with the design of knowledge
representation formalisms, and in that setting it is important to understand the
complexity introduced by language features, however costly those may be.

In this study, we distinguish a few concepts. Inferential complexity is the
complexity when the network, the query and the domain are given as input.
When the specification vocabulary is fixed, inference complexity is akin to com-
bined complexity as employed in database theory. Query complexity is the com-
plexity when the network is fixed and the input consists of query and domain.
The same concept has been often referred to as data complexity in the context of
probabilistic databases [121], as “query complexity” usually leads to a different
direction in databases; we use “query” here as typically done in the Bayesian
network literature, and later comment on the connections between these various
concepts. Finally, domain complexity is the complexity when network and query
are fixed, and only the domain is given as input. Query and domain complexity
are directly related respectively to dqe-liftability and domain liftability, concepts
that have been used in lifted inference [8, 64]. We make connections with lifted
inference and probabilistic databases whenever possible, and benefit from deep
results from those fields. One of the contributions of this paper is a frame-
work that can unify these varied research efforts with respect to the analysis of
Bayesian networks. We show that many non-trivial complexity classes charac-
terize the cost of inference as induced by various languages, and we make an
effort to relate our investigation to various knowledge representation formalisms,
from probabilistic description logics to plates to probabilistic relational models.

The paper is organized as follows. Section 2 reviews a few concepts concern-
ing Bayesian networks and computational complexity. Our contributions start
in Section 3, where we focus on propositional languages. In Section 4 we extend
our framework to relational languages, and review relevant literature on proba-
bilistic databases and lifted inference. In Sections 5 and 6 we study a variety of
relational Bayesian network specifications. In Section 7 we connect these speci-
fications to other schemes proposed in the literature. And in Section 8 we relate
our results, mostly presented within Wagner’s counting hierarchy and its exten-
sions, to Valiant’s counting hierarchy and its extensions. Section 9 summarizes
our findings and proposes future work.

All proofs are collected in Appendix A.

2. A bit of notation and terminology

We denote by P(A) the probability of event A. In this paper, every random
variable X is a function from a finite sample space (usually a space with finitely
many truth assignments or interpretations) to real numbers (usually to {0, 1}).
We refer to an event {X = x} as an assignment. Say that {X = 1} is a positive
assignment, and {X = 0} is a negative assignment.

A graph consists of a set of nodes and a set of edges (an edge is specified as
a pair of nodes), and we focus on graphs that are directed and acyclic [69]. The
parents of a node X, for a given graph, are denoted pa(X). Suppose we have a
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directed acyclic graph G such that each node is a random variable, and we also
have a joint probability distribution P over these random variables. Say that G
and P satisfy the Markov condition iff each random variable X is independent
with respect to P of its nondescendants in G given its parents in G.

A Bayesian network is a pair consisting of a directed acyclic graph G whose
nodes are random variables and a joint probability distribution P over all vari-
ables in the graph, such that G and P satisfy the Markov condition [92]. For a
collection of measurable sets A1, . . . , An, we then have

P(X1 ∈ A1, . . . , Xn ∈ An) =

n∏
i=1

P
(
Xi ∈ Ai|pa(Xi) ∈

⋂
j:Xj∈pa(Xi)

Aj

)
whenever the conditional probabilities exist. If all random variables are discrete,
then one can specify “local” conditional probabilities P(Xi = xi|pa(Xi) = πi),
and the joint probability mass function is the product of these local probabilities:

P(X1 = x1, . . . , Xn = xn) =

n∏
i=1

P(Xi = xi|pa(Xi) = πi) , (2)

where πi is the projection of {x1, . . . , xn} on pa(Xi), with the understanding
that P(Xi = xi|pa(Xi) = πi) stands for P(Xi = xi) whenever Xi has no parents.

In this paper we only deal with finite objects, so we can assume that a
Bayesian network is fully specified by a finite graph and a local conditional
probability distribution per random variable: the local distribution associated
with random variable X specifies the probability of X given the parents of X.
Often probability values are given in tables (referred to as conditional probability
tables). Depending on how these tables are encoded, the directed acyclic graph
may be redundant; that is, all the information to reconstruct the graph and the
joint distribution is already in the tables. Even though we rarely mention the
graph G in our results, graphs are visually useful and we often resort to drawing
them in our examples.

A basic computational problem for Bayesian networks is: Given a Bayesian
network B, a set of assignmentsQ and a set of assignments E, determine whether
P(Q|E) > γ for some rational number γ. We assume that every probability value
is specified as a rational number. Hence P(Q|E) = P(Q,E) /P(E) is a rational
number, as P(Q,E) and P(E) are computed by summing through products given
by Expression (2).

We adopt basic terminology and notation from computational complex-
ity [97]. A language is a set of strings. A language defines a decision problem;
that is, the problem of deciding whether an input string is in the language. A
complexity class is a set of languages; we use well-known complexity classes P,
NP, PSPACE, and EXP. We also use ETIME, the class of languages that can
be decided by a deterministic Turing machine in time O(2cN ) when the input
is of size N , for some constant c; similarly, NETIME is the class of languages
that can be decided by a nondeterministic Turing machine in time O(2cN ). The
complexity class PP consists of those languages L that satisfy the following
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property: there is a polynomial-time nondeterministic Turing machine M such
that ` ∈ L iff more than half of the computations of M on input ` end up
accepting. Analogously, we have PEXP, consisting of those languages L with
the following property: there is an exponential-time nondeterministic Turing
machine M such that ` ∈ L iff more than half of the computations of M on
input ` end up accepting [14].

To proceed, we need to define oracles and related complexity classes. An
oracle Turing machine ML, where L is a language, is a Turing machine with
additional tapes, such that it can write a string ` to a tape and obtain from
the oracle, in unit time, the decision as to whether ` ∈ L or not. If a class of
languages/functions A is defined by a set of Turing machines M (that is, the
languages/functions are decided/computed by these machines), then define AL

to be the set of languages/functions that are decided/computed by {ML : M ∈
M}. For a function f , an oracle Turing machine Mf can be similarly defined,
and for any class A we have Af . If A and B are classes of languages/functions,
AB = ∪x∈BAx. For instance, the polynomial hierarchy consists of classes ΣP

i =

NPΣP
i−1 and ΠP

i = coΣP
i , with ΣP

0 = P (and PH is the union ∪iΠP
i = ∪iΣP

i ).
Wagner’s polynomial counting hierarchy is the smallest set of classes con-

taining P and, recursively, for any class C in the polynomial counting hierarchy,
the classes PPC, NPC, and coNPC (this characterization based on oracles comes
from results by Wagner [136, Theorem 4] and Toran [127, Theorem 4.1]). The
polynomial hierarchy is included in Wagner’s counting polynomial hierarchy.

A distinct counting hierarchy is Valiant’s [129]. We examine this hierarchy
further in Section 8; for now suffice to say that #P is the class of functions such
that f ∈ #P iff f(`) is the number of computation paths that accept ` for some
polynomial-time nondeterministic Turing machine. It is as if we had a special
machine, called by Valiant a counting Turing machine, that on input ` prints
on a special tape the number of computations that accept `.

We will also use the class PP1, defined as the set of languages in PP that
have a single symbol as input vocabulary. We can take this symbol to be 1,
so the input is just a sequence of 1s. One can interpret this input as a non-
negative integer written in unary notation. This is the counterpart of Valiant’s
class #P1 that consists of the functions in #P that have a single symbol as
input vocabulary [130].

We focus on many-one reductions: such a reduction from L to L′ is a
polynomial-time algorithm that takes the input to decision problem L and trans-
forms it into the input to decision problem L′ such that L′ has the same output
as L. A Turing reduction from L to L′ is a polynomial-time algorithm that de-
cides L using L′ as an oracle. For a complexity class C, a decision problem L is
C-hard with respect to many-one reductions if each decision problem in C can be
reduced to L with many-one reductions. A decision problem is then C-complete
with respect to many-one reductions if it is in C and it is C-hard with respect
to many-one reductions. Similar definitions of hardness and completeness are
obtained when “many-one reductions” are replaced by “Turing reductions”.

An important PP-complete (with respect to many-one reductions) decision
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problem is MAJSAT: the input is a propositional sentence φ and the decision
is whether or not the majority of assignments to the propositions in φ make φ
true [48]. Another PP-complete problem (with respect to many-one reductions)
is deciding whether #φ > k [117]; we use #φ to denote the number of satisfying
assignments for a formula φ. In fact this problem is still PP-complete with
respect to many-one reductions even if φ is monotone [51]. Recall that a sentence
is monotone if it contains no negation.

A formula is in kCNF iff it is in Conjunctive Normal Form with k literals
per clause (if there is no restriction on k, we just write CNF). MAJSAT is
PP-complete with respect to many-one reductions even if the input is restricted
to be in CNF; however, it is not known whether MAJSAT is still PP-complete
with respect to many-one reductions if the sentence φ is in 3CNF. Hence we
will resort in proofs to a slightly different decision problem, following results by
Bailey et al. [6]. The problem #3SAT(>) gets as input a propositional sentence
φ in 3CNF and an integer k, and the decision is whether #φ > k. We will
also use, in the proof of Theorem 2, the following decision problem. Say that a
truth assignment to the propositions in a sentence in 3CNF respects the 1-in-3
rule if at most one literal per clause is assigned true. Denote by #(1-in-3)φ the
number of satisfying assignments for φ that also respects the 1-in-3 rule. The
decision problem #(1-in-3)SAT(>) gets as input a propositional sentence φ in
3CNF and an integer k, and decides whether #(1-in-3)φ > k. We have:

Proposition 1. Both #3SAT(>) and #(1-in-3)SAT(>) are PP-complete with
respect to many-one reductions.

3. Propositional languages: Inferential and query complexity

In this section we focus on propositional languages, so as to present our
proposed framework in the most accessible manner. Recall that we wish to
parameterize the complexity of inferences by the language used in specifying
local distributions.

3.1. A specification framework
We are interested in specifying Bayesian networks over binary variables

X1, . . . , Xn, where each random variable Xi is the indicator function of a propo-
sition Ai. That is, consider the space Ω consisting of all truth assignments for
these variables (there are 2n such truth assignments); then Xi yields 1 for a
truth assignment that satisfies Ai, and Xi yields 0 for a truth assignment that
does not satisfy Ai. We will often use the same letter to refer to a proposition
and the random variable that is the indicator function of the proposition.

We adopt a specification strategy that moves away from tables of probabil-
ity values, a specification strategy that we borrow from probabilistic program-
ming [101, 116] and structural models [99]. A Bayesian network specification
associates with each proposition Xi either

• a logical equivalence Xi ↔ `i, or
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Y

XZ0 Z1

P(Y = 1) = 1/3,

P(Z0 = 1) = 1/5, P(Z1 = 1) = 7/10,

X ≡≡ (Y ∧ Z1) ∨ (¬Y ∧ Z0).

Figure 2: A Bayesian network specified with logical equivalences and unconditional proba-
bilistic assessments.

• a probabilistic assessment P(Xi = 1) = α,

where `i is a formula in a propositional language L, such that the only extralog-
ical symbols in `i are propositions in {X1, . . . , Xn}, and α is a rational number
in the interval [0, 1].

We refer to each logical equivalence Xi ↔ `i as a definition axiom, borrowing
terminology from description logics [3]. We refer to `i as the body of the definition
axiom. In order to avoid confusion between the leftmost symbol↔ and possible
logical equivalences within `i, we write a definition axiom as in description logics:

Xi ≡≡ `i,

and we emphasize that ≡≡ is just syntactic sugar for logical equivalence ↔.
A Bayesian network specification induces a directed graph where the nodes

are the random variables X1, . . . , Xn, and Xj is a parent of Xi if and only if
the definition axiom for Xi contains Xj . If this graph is acyclic, as we assume
in this paper, then the Bayesian network specification does define a Bayesian
network.

Figure 2 depicts a Bayesian network specified this way.
Note that we avoid direct assessments of conditional probability, because one

can essentially create negation through P(X = 1|Y = 1) = P(X = 0|Y = 0) = 0.
In our framework, the use of negation is a decision about the language. We will
see that negation does make a difference when complexity is analyzed.

Any distribution over binary variables given by a Bayesian network can be
equivalently specified using definition axioms, as long as definitions are allowed
to contain negation and conjunction (and then disjunction is syntactic sugar).
To see that, consider a conditional distribution for X given Y1 and Y2; we can
specify this distribution using the definition axiom

X ≡≡ (¬Y1 ∧ ¬Y2 ∧ Z00) ∨ (¬Y1 ∧ Y2 ∧ Z01) ∨
(Y1 ∧ ¬Y2 ∧ Z10) ∨ (Y1 ∧ Y2 ∧ Z11) ,

where Zab are fresh binary variables (that do not appear anywhere else), as-
sociated with assessments P(Zab = 1) = P(X = 1|Y1 = a, Y2 = b). This sort of
encoding can be extended to any set Y1, . . . , Ym of parents, demanding the same
space as the corresponding conditional probability table.
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Example 1. Consider a simple Bayesian network with random variables X and
Y , where Y is the sole parent of X, and where:

P(Y = 1) = 1/3, P(X = 1|Y = 0) = 1/5, P(X = 1|Y = 1) = 7/10.

Then Figure 2 presents an equivalent specification for this network, in the sense
that both specifications have the same marginal distribution over (X,Y ). �

Note that definition axioms can exploit structures that conditional probabil-
ity tables cannot; for instance, to create a Noisy-Or gate [98], we simply write
X ≡≡ (Y1 ∧W1) ∨ (Y2 ∧W2), where W1 and W2 are inhibitor variables.

3.2. The complexity of propositional languages
Now consider a language INF[L] that consists of the strings (B,Q,E, γ) for

which P(Q|E) > γ, where

• P is the distribution encoded by a Bayesian network specification B with
definition axioms whose bodies are formulas in L,

• Q and E are sets of assignments (the query),

• and γ is a rational number in [0, 1].

In all definitions and results in this paper it is assumed that if P(E) = 0 then
the answer to the question “Is P(Q|E) > γ?” is simply “no”, meaning “there is
no such probability that is larger than γ”.1

To start, denote by Prop(∧,¬) the language of propositional formulas con-
taining conjunction and negation. Then INF[Prop(∧,¬)] is the language that
decides the probability of a query for networks specified with definition axioms
containing conjunction and negation. As every Bayesian network over binary
variables can be specified with such definition axioms, INF[Prop(∧,¬)] is in fact
a PP-complete language [33, Theorems 11.3 and 11.5].

There is obvious interest in finding simple languages L such that deciding
INF[L] is a tractable problem, so as to facilitate elicitation, decision-making and
learning [31, 37, 62, 106, 114]. And there are indeed propositional languages that
generate tractable Bayesian networks: for instance, it is well known that Noisy-
Or networks display polynomial inference when the query consists of negative
assignments [57]. Recall that a Noisy-Or network has a bipartite graph with
edges pointing from nodes in one set to nodes in the other set, and the latter
nodes are associated with Noisy-Or gates.

One might think that tractability can only be attained by imposing some
structural conditions on graphs, given results that connect complexity and graph
properties [74]. However, it is possible to attain tractability without restrictions
on graph topology. Consider the following result, where we use Prop(∧) and
Prop(∨) to indicate propositional languages respectively restricted to conjunc-
tion and restricted to disjunction:

1That is, the question is always “Is P(E) > 0 and P(Q|E) > γ?”; a different possibility
would be to ask whether “If P(E) > 0 then P(Q|E) > γ”.
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Theorem 1. INF[Prop(∧)] is in P when the query (Q,E) contains only positive
assignments, and INF[Prop(∨)] is in to P when the query contains only negative
assignments.

As the proof of this result shows (in Appendix A), only polynomial effort is
needed to compute probabilities for positive queries in networks specified with
Prop(∧), even if one allows root nodes to be negated (that is, the variables that
appear in probabilistic assessments can appear negated in the body of definition
axioms).

Alas, even small movements away from the conditions in Theorem 1 takes
us to PP-completeness:

Theorem 2. INF[Prop(∧)] and INF[Prop(∨)] are PP-complete with respect to
many-one reductions.

One might try to concoct additional propositional languages by using logical
forms in the literature [34]. We leave this to future work; instead of pursuing
various possible sub-Boolean languages, we wish to examine the query complex-
ity of Bayesian networks, and then move to relational languages.

A digression on reductions. The proof of Theorem 2 is somewhat long because
it uses many-one reductions. In Appendix A we show that much simpler proofs
for PP-completeness of INF[Prop(∧)] and INF[Prop(∨)] are possible if one uses
Turing reductions. A Turing reduction does give some valuable information:
if a problem is PP-complete with Turing reductions, then it is unlikely to be
polynomial (for if it were polynomial, then PPP would equal P, a highly unlikely
result given current assumptions in complexity theory [125]). However, Turing
reductions tend to blur some significant distinctions. For instance, for Turing
reductions it does not matter whether Q is a singleton or not: one can ask
for P(Q1|E1), P(Q2|E2), and so on, and then obtain P(Q1, Q2, . . . |E) as the
product of the intermediate computations. Hence many-one reductions yield
stronger results, so we emphasize them throughout this papper.

3.3. Query complexity
We have so far considered that the input is a string encoding a Bayesian

network specification B, a query (Q,E), and a rational number γ. However in
practice one may face a situation where the Bayesian network is fixed, and the
input is a string consisting of the pair (Q,E) and a rational number γ; the goal
is to determine whether P(Q|E) > γ with respect to the fixed Bayesian network.

Denote by QINF[B], where B is a Bayesian network specification, the lan-
guage consisting of each string (Q,E, γ) for which P(Q|E) > γ with respect to
B. And denote by QINF[L] the set of languages QINF[B] where B is a Bayesian
network specification with definition axioms whose bodies are formulas in L.

Definition 1. Let L be a propositional language and C be a complexity class.
The query complexity of L is in C iff every language in QINF[L] is in C.
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The fact that query complexity may differ from inferential complexity was
initially raised by Darwiche and Provan [31], and has led to a number of tech-
niques emphasizing compilation of a fixed Bayesian network [22, 32]. Indeed
the expression “query complexity” seems to have been coined by Darwiche [33,
Section 6.9], without the formal definition presented here.

The original work by Darwiche and Provan [31] shows how to transform a
fixed Bayesian network into a Query-DAG such that P(Q|E) > γ can be decided
in linear time. That is:

Theorem 3 (Darwiche and Provan [31]). QINF[Prop(∧,¬)] is in P.

Results on query complexity become more interesting when we move to
relational languages, as we do at once.

4. Relational Languages: Inferential, query, and domain complexity

In this section we extend our specification framework so as to deal with re-
lational languages. Such languages have been used in a variety of applications
with repetitive entities and relationships [46, 109], as we have alluded to in Sec-
tion 1. They have roots in general probabilistic logics that mix deterministic
knowledge and uncertain reasoning in very flexible, but sometimes too compli-
cated, ways [56]. The more focused interest in extending Bayesian networks
with relational constructs has produced an array of practical languages, as we
summarize later in Section 7: plates, PRMs, probabilistic logic programs. It is
not easy to extract a “common denominator” from these languages. However,
with some reflection we see that they all parameterize random variables using
relations; they all allow for logical definitions to be mixed with probabilistic
assessments; they all resort to the semantics of first-order logic to interpret re-
lations using sets (domains). We capture these common features in Section 4.1;
to do so, we use “parvariables” and related techniques introduced by Poole [103],
using as much syntax and semantics as possible from first-order logic and in par-
ticular from lifted inference techniques [90] (and borrowing some terminology
from description logics and logic programming as appropriate). Throughout we
resort to the same idea advocated in Section 3: that is, that a model can be
specified by a set of probability assessments and a set of logical definitions that
belong to a selected logical language. This is exactly the situation in acyclic
probabilistic logic programs and many other existing languages, as shown later
in Section 7.

After introducing our modeling framework in Section 4.1, in Section 4.2
we describe the complexity questions we intend to answer, and we offer a few
comments on lifted inference and probabilistic databases.

4.1. Relational Bayesian network specifications
A parameterized random variable, abbreviated parvariable, is a function that

yields, for each combination of its input parameters, a random variable. For
instance, parvariable X yields a random variable X(a) for each selected a. In
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what follows, parvariables and their parameters will correspond to relations and
their logical variables.

We use a vocabulary consisting of names of relations. Every relation r is asso-
ciated with a non-negative integer called its arity. A logical variable is referred
to as a logvar. A vector of logvars [x1, . . . , xk] is denoted ~x ; then r(~x ) is an atom.
A domain is a set; in this paper every domain is finite. When the logvars in an
atom are replaced by elements of the domain, we obtain r(a1, . . . , ak), a ground
atom, often referred to as a grounding of relation X. An interpretation I is a
function that assigns to each relation X of arity k a relation on Dk. An interpre-
tation can be viewed as a function that assigns true or false to each grounding
r(~a), where ~a is a tuple of elements of the domain. Typically in logical lan-
guages there is a distinction between constants and elements of a domain, but
we avoid constants altogether in our discussion: as argued by Bacchus, if con-
stants are used within a probabilistic logic, some sort of additional non-trivial
rigidity assumption must be used [4]. It is possible that by adding constants to
a language we increase its expressivity in ways that cannot be captured with
standard probabilities [12, 13]; we leave an analysis of languages with constants
to future work.

Given a domain D, we can associate with each grounding r(~a) a random
variable X(~a) over the set of all possible interpretations, such that X(~a)(I) = 1
if interpretation I assigns true to r(~a), and X(~a)(I) = 0 otherwise. Similarly,
we can associate with a relation r a parvariable X that yields, once a domain is
given, a random variable X(~a) for each grounding r(~a). To simplify matters, we
use the same symbol for a grounding r(~a) and its associated random variable
X(~a), much as we did with propositions and their associated random variables.
Similarly, we use the same symbol for a relation r and its associated parvariable
X. We can then write down logical formulas over relations/parvariables, and
we can assess probabilities for relations/parvariables. The next example clarifies
the dual use of symbols for relations/parvariables.

Example 2. Consider a model of friendship built on top of the example in
Section 1. Two people are friends if they are both fans of the same band, or if
they are linked in some other unmodeled way, and a person is always a friend of
herself. Take relations friends, fan, and linked. Given a domain, say D = {a, b},
we have the grounding friends(a, b), whose intended interpretation is that a and
b are friends; we take friendship to be asymmetric so friends(a, b) may hold while
friends(b, a) may not hold. We also have groundings fan(a), linked(b, a), and so
on. Each one of these groundings corresponds to a random variable that yields
1 or 0 when the grounding is respectively true or false is an interpretation.

The stated facts about friendship might be encoded by a variant of For-
mula (1):

friends(x , y) ≡≡ (x = y) ∨ (fan(x ) ∧ fan(y)) ∨ linked(x , y). (3)

We can draw a directed graph indicating the dependence of friends on the
other relations, as in Figure 3. Suppose we believe 0.2 is the probability that an
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fan friends linked

Figure 3: Representing dependences amongst relations in Example 2.

element of the domain is a fan, and 0.1 is the probability that any two people
are linked for some other reason. To express these assesssments we might write

P(fan(x ) = 1) = 0.2 and P
(
linked(x , y) = 1

)
= 0.1, (4)

with implicit outer universal quantification. �

Given a formula and a domain, we can produce all groundings of the formula
by replacing its logvars by elements of the domain in every possible way (as usual
when grounding first-order formulas). We can similarly ground probabilistic
assessments by grounding the affected relations.

Example 3. In Example 2, we can produce the following groundings from
domain D = {a, b} and Formula (3):

friends(a, a) ≡≡ (a = a) ∨ (fan(a) ∧ fan(a)) ∨ linked(a, a),

friends(a, b) ≡≡ (a = b) ∨ (fan(a) ∧ fan(b)) ∨ linked(a, b),

friends(b, a) ≡≡ (b = a) ∨ (fan(b) ∧ fan(a)) ∨ linked(b, a),

friends(b, b) ≡≡ (b = b) ∨ (fan(b) ∧ fan(b)) ∨ linked(b, b),

Similarly, we get:

P(fan(a) = 1) = 0.2, P(fan(b) = 1) = 0.2,
P(linked(a, a) = 1) = 0.1, P(linked(a, b) = 1) = 0.1,
P(linked(b, a) = 1) = 0.1, P(linked(b, b) = 1) = 0.1,

by grounding assessments in Expression (4). �

We wish to extend our propositional framework by specifying Bayesian net-
works using both parameterized probabilistic assessments and first-order def-
initions. So, suppose we have a finite set of parvariables, each one of them
corresponding to a relation in a vocabulary. A relational Bayesian network
specification associates, with each parvariable Xi, either

• a definition axiom Xi(~x ) ≡≡ `i(~x , Y1, . . . , Ym), or

• a probabilistic assessment P(X(~x ) = 1) = α,

where

• `i is a well-formed formula in a language L, containing relations Y1, . . . , Ym
and free logvars ~x (and possibly additional logvars bound to quantifiers),

• and α is a nonnegative rational in the interval [0, 1].
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fan(a) fan(b) fan(c)

friends(a, a) friends(b, b) friends(c, c)

linked(a, a) linked(b, b) linked(c, c)

friends(a, b) friends(a, c) friends(b, a) friends(b, c) friends(c, a) friends(c, b)

linked(a, b) linked(a, c) linked(b, a) linked(b, c) linked(c, a) linked(c, b)

Figure 4: The grounding (on domain {a, b, c}) of the relational Bayesian network specification
in Example 2.

The formula `i is the body of the corresponding definition axiom. The par-
variables that appear in `i are the parents of parvariable Xi, and are denoted by
pa(Xi). Clearly the definition axioms induce a directed graph where the nodes
are the parvariables and the parents of a parvariable (in the graph) are exactly
pa(Xi). This is the parvariable graph of the relational Bayesian network speci-
fication (this sort of graph is called a template dependency graph by Koller and
Friedman [69, Definition 6.13]). For instance, Figure 3 depicts the parvariable
graph for Example 2.

When the parvariable graph of a relational Bayesian network specification
is acyclic, we say the specification itself is acyclic. In this paper we assume
that relational Bayesian network specifications are acyclic, and we do not even
mention this anymore.

The grounding of a relational Bayesian network specification S on a domainD
is defined as follows. First, produce all groundings of all definition axioms. Then,
for each parameterized probabilistic assessment P(X(~x ) = 1) = α, produce its
ground probabilistic assessments

P(X( ~a1) = 1) = α, P(X( ~a2) = 1) = α, and so on,

for all appropriate tuples ~aj built from the domain. The grounded relations,
definitions and assessments specify a propositional Bayesian network that is
then the semantics of S with respect to domain D.

Example 4. Consider Example 2. For a domain {a, b}, the relational Bayesian
network specification given by Expressions (3) and (4) is grounded into the
sentences and assessments in Example 3. By repeating this process for a larger
domain {a, b, c}, we obtain a larger Bayesian network whose graph is depicted
in Figure 4. �

Note that logical inference might be used to simplify grounded definitions;
for instance, in the previous example, one might note that friends(a, a) is simply
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X2 X3

X1 X5

X4 X6

X2(1) X3(1)

X1(1) X5(1)

X4(1, 1)

X4(1, 2)

X6(1)

X2(2) X3(2)

X1(2) X5(2)

X4(2, 1)

X4(2, 2)

X6(2)

Figure 5: The parvariable graph of the relational Bayesian Network specification in Example 5,
and its grounding on domain D = {1, 2}.

true. Note also that the grounding of a formula with quantifiers turns, as usual,
an existential quantifier into a disjunction, and a universal quantifier into a
conjunction.

Example 5. Take the following relational Bayesian network specification (with
no particular meaning, just to illustrate a few possibilities):

P(X1(x ) = 1) = 2/3, P(X2(x ) = 1) = 1/10,
P(X3(x ) = 1) = 4/5, P

(
X4(x , y) = 1

)
= 1/2,

X5(x ) ≡≡ ∃y : ∀z : ¬X1(x ) ∨X2(y) ∨X3(z),
X6(x ) ≡≡ X5(x ) ∧ ∃y : X4(x , y) ∧X1(y),

Take a domain D = {1, 2}; the grounded definition of X5(1) is

X5(1) ≡≡ ((¬X1(1) ∨X2(1) ∨X3(1)) ∧ (¬X1(1) ∨X2(1) ∨X3(2))) ∨
((¬X1(1) ∨X2(2) ∨X3(1)) ∧ (¬X1(1) ∨X2(2) ∨X3(2))) .

Figure 5 depicts the parvariable graph and the grounding of this relational
Bayesian network specification. �

In order to study complexity questions we must decide how to encode any
given domain. Note that there is no need to find special names for the ele-
ments of the domain, so we take that the domain is always the set of numbers
{1, 2, . . . , N}. Now if this list is explicitly given as input, then the size of the
input is of order N . However, if only the number N is given as input, then the
size of the input is either of order N when N is encoded in unary notation, or
of order logN when N is encoded in binary notation. The distinction between
unary and binary notation for input numbers is often used in description log-
ics [3]. We will see later that the encoding of input N has significant impact on
complexity.

The conceptual difference between unary and binary encodings of domain
size can be captured by the following analogy. Suppose we are interested in the
inhabitants of a city: the probabilities that they study, that they marry, that
they vote, and so on. Suppose the behavior of these inhabitants is modeled by
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a relational Bayesian network specification, and we observe evidence on a few
people. If we then take our input N to be in unary notation, we are implicitly
assuming that we have a directory, say a mailing list, with the names of all
inhabitants; even if we do not care about their specific names, each one of them
exists concretely in our modeled reality. But if we take our input N to be in
binary notation, we are just focusing on the impact of city size on probabilities,
without any regard for the actual inhabitants; we may say that N is a thousand,
a million, or maybe even fifty million (and perhaps none of these numbers are
close to actual city size).

4.2. Inferential, combined, query and domain complexity
To repeat, we are interested in the relationship between the language L that

is employed in definition axioms and the complexity of inferences. While in the
propositional setting we distinguished between inferential and query complexity,
here we have an additional distinction to make. Consider the following defini-
tions, where S is a relational Bayesian network specification, N is the domain
size, Q and E are sets of assignments for ground atoms, γ is a rational number
in [0, 1], and C is a complexity class. Recall that the inequality P(Q|E) > γ” is
to be understood as an abbreviation for “P(E) > 0 and P(Q|E) > γ”.

Definition 2. Denote by INF[L] the language consisting of strings (S,N,Q,E, γ)
for which P(Q|E) > γ with respect to the grounding of S on domain of size
N , where S contains definition axioms whose bodies are formulas in L. The
inferential complexity of L is in C iff INF[L] is in C; moreover, the inferential
complexity is C-hard with respect to a reduction iff INF[L] is C-hard with respect
to the reduction, and it is C-complete with respect to a reduction iff it is in C
and it is C-hard with respect to the reduction.

Definition 3. Denote by QINF[S] the language consisting of strings (N,Q,E, γ)
for which P(Q|E) > γ with respect to the grounding of S on domain of size N .
Denote by QINF[L] the set of languages QINF[S] for S whose bodies of definition
axioms are formulas in L. The query complexity of L is in C iff every language
in QINF[L] is in C; moreover, the query complexity is C-hard with respect to a
reduction iff some language in QINF[L] is C-hard with respect to the reduction,
and it is C-complete with respect to a redution iff it is in C and it is C-hard with
respect to the reduction.

Definition 4. Denote by DINF[S,Q,E] the language consisting of strings (N, γ)
for which P(Q|E) > γ with respect to the grounding of S on domain of size
N . Denote by DINF[L] the set of languages DINF[S,Q,E] for S whose bodies of
definition axioms are formulas in L, and where Q and E are sets of assignments.
The domain complexity of L is in C iff every language in DINF[L] is in C;
moreover, the domain complexity is C-hard with respect to a reduction iff some
language in DINF[L] is C-hard with respect to the reduction, and it is C-complete
with respect to a redution iff it is in C and it is C-hard with respect to the
reduction.

We conclude this section with a number of observations.
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Combined complexity. The definition of inferential complexity imposes no re-
striction on the vocabulary; later we will impose bounds on relation arity. We
might instead assume that the vocabulary is fixed; in this case we might use
the term combined complexity, as this is the term used in finite model theory
and database theory to refer to the complexity of model checking when both
the formula and the model are given as input, but the vocabulary is fixed [78].

Lifted inference. We note that query and domain complexities are related re-
spectively to dqe-liftability and domain-liftability, as defined in the study of lifted
inference [64, 63].

The term “lifted inference” is usually attached to algorithms that try to
compute inferences involving parvariables without actually producing ground-
ings [66, 90, 103]. A formal definition of lifted inference has been proposed
by Van den Broeck [132]: an algorithm is domain lifted iff inference runs in
polynomial-time with respect to N , for fixed model and query. This definition
assumes that N is given in unary notation; if N is given in binary notation, the
input is of size logN , and a domain lifted algorithm may take exponential time.
Domain liftability has been extended to dqe-liftability, where the inference must
run in polynomial-time with respect to N and the query, for fixed model [64].

In short, dqe-liftability means that query complexity is polynomial, while
domain-liftability means that domain complexity is polynomial. Deep results
have been obtained both on the limits of liftability [64, 63], and on algorithms
that attain liftability [8, 134, 65, 94, 122]. We will use several of these re-
sults in our later proofs; in particular, the inferential/query/domain complexity
of relational Bayesian network specifications based on function-free first-order
logic with equality, and its bounded variable fragments, can be extracted from
previous results.

We feel that dqe-liftability and domain-liftability are important concepts but
they focus only on a binary choice (polynomial versus non-polynomial); our goal
here is to map languages and complexities in more detail. As we have mentioned
in Section 1, our main goal is to grasp the complexity, however high, of language
features.

Probabilistic databases. Highly relevant material has been produced in the study
of probabilistic databases; that is, databases where data may be associated with
probabilities [28, 68, 118, 137, 139]. As an example of probabilistic database,
the Trio system lets the user indicate that Amy drives an Acura with probability
0.8 [9]. As another example, the NELL system scans text from the web and
builds a database of facts, each associated with a number between zero and
one [91].

Here we just summarize the framework described by Suciu et al. [121]. Thus
consider a set of relations, each implemented as a table. Each tuple in a table
may be associated with a probability, and these probabilistic tuples are assumed
independent (as dependent tuples can be modeled from independent ones [121,
Section 2.7.1]). A probabilistic database management system receives a logical
formula φ(~x ) and must determine, using data and probabilities in the tables,
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the probability P(φ(~a)) for tuples ~a. The logical formula φ(~x ) is referred to as
the query; for example, φ may be a Union of Conjunctive Queries (a first-order
formula with equality, conjunction, disjunction and existential quantification).
Note that the word “query” is not used with the meaning usually adopted in the
context of Bayesian networks; in probabilistic databases, a query is a formula
whose probability is to be computed.

Suppose that all tuples in the table for relation X(~x ) receive identical proba-
bility value α. This table can be viewed as the grounding of a parvariable X(~x )
that is associated with a single assessment P(X(~x ) = 1) = α. Beame et al. say
that the probabilistic database is symmetric iff each table can be associated with
a parvariable and a single probabilistic assessment [8]. It should be clear that a
symmetric probabilistic database and a query expressed as a logical formula φ
map directly to our relational Bayesian network specification; hence results on
both topics can be transferred with little effort. This is plesant because several
deep results have been derived on probabilistic databases; as we discuss later,
the inferential and query complexity of first-order logic and of some bounded
variable fragments have been derived, together with deep results on domain
complexity for those logical languages. Research on probabilistic databases has
also identified classes of queries (referred to as safe queries) that are associated
with dichotomy theorems: that is, either a query belongs to such a class and is
tractable, or it is not tractable. We return to these results at the end of Section
5.

A distinguishing characteristic of research on probabilistic databases is the
intricate search for languages that lead to tractable inferences. As we have al-
ready indicated in our previous discussion of lifted inference, our main goal here
is to understand the connection between features of a knowledge representation
formalism and the complexity of conditional probability calculations. We are
not so focused on finding tractable cases that can take upon large volumes of
data, even though we are obviously looking for them; indeed we later present
tractability results for the DLLitenf language, results that we take to be are one
of the main contributions of this paper.

Query or data complexity?. The definition of query complexity (Definition 3)
reminds one of data complexity as adopted in finite model theory and in database
theory [78]. It is thus not surprising that research on probabilistic databases
has used the term “data complexity” to mean the complexity when the database
is the only input, leaving “query” to its meaning in database theory [121].

In the context of Bayesian networks, usually a “query” is a pair (Q,E) of
assignments. If Q and E contain all assignments that are present in the input,
then there is no real difference between “query” and “data”. Indeed, we might
have adopted the term “data complexity” throughout this paper as we only
discuss queries that contain all available data.2

However we feel that there are situations where the “query” is not equal to the

2In fact we have used the term data complexity in previous work [25].
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“data”. For instance, in probabilistic relational models one often uses auxiliary
grounded relations to indicate which groundings are parents of a given grounding
(we return to this in Section 7). And in probabilistic logic programming one can
use probabilistic facts to associate probabilities with specific groundings [41, 101,
116]. In these cases one deals with a “query” (Q,E) and separate “data” that
regulate parts of the grounded Bayesian network.

Another possible distinction between “query” and “data” complexities can be
found in probabilistic databases. Suppose we have a relational Bayesian network
specification, and a formula φ whose probability P(φ) is to be computed, and
data given by tables where each cell is associated with a probability. One might
then either fix the specification and vary the formula and the data (we might
call this the “query” complexity), or fix the specification and the formula φ and
vary only the data (this would clearly be the “data” complexity). This sort of
distinction actually parallels distinctions found in description logics [19].

It is possible that differences between “query” and “data” are not found to be
of practical value in future work. For now we prefer to keep open the possibility
of a fine-grained analysis of complexity, so we use the term “query complexity”
even though our queries are simply sets of assignments containing all available
data.

5. The complexity of relational Bayesian network specifications

We start with function-free first-order logic with equality, a language we
denote by FFFO. One might guess that such a powerful language leads to
exponentially hard inference problems. Indeed:

Theorem 4. INF[FFFO] is PEXP-complete with respect to many-one reductions,
regardless of whether the domain is specified in unary or binary notation.

We note that Grove, Halpern and Koller have already argued that counting
the number of suitably defined distinct interpretations of monadic first-order
logic is hard for the class of languages decided by exponential-time counting
Turing machines [54, Theorem 4.14]. As they do not present a proof of their
counting result (and no similar proof seems to be available in the literature),
and as we need some of the reasoning to address query complexity later, we
present a detailed proof of Theorem 4 in Appendix A.

We emphasize that when the domain is specified in binary notation the proof
of Theorem 4 only requires relations of arity one. One might hope to find lower
complexity classes for fragments of FFFO that go beyond monadic logic but
restrict quantification. For instance, in description logics one often restricts
relations to have arity two, and existential quantification to follow the pattern
∃y : X(x , y) ∧ Y (y), in many cases obtaining interesting complexity classes [3].
Such a restriction on quantification will not do in our setting. To understand
why, note that if P

(
X(x , y) = 1

)
= 1, then

∃y : X(x , y) ∧ Y (y) is equivalent to ∃y : Y (y) (5)
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with probability one. Similarly, we can impose ∃y : X(x , y) with probability
one. Now these quantification patterns, together with negation, are sufficient to
build the entire proof of Theorem 4. Thus PEXP-completeness is reached again.

We might try an even more stringent restriction. So, consider the following
language, inspired by the popular ALC description logic (to be discussed in
more detail in Section 6). Here we have restricted quantification and added the
restriction that only two logvars can be used and reused.

Definition 5. The language ALC consists of all formulas recursively defined so
that X(x ) and X(y) are formulas where X is a unary relation, ¬φ is a formula
when φ is a formula, φ ∧ ϕ is a formula when both φ and ϕ are formulas, and
∃y : X(x , y) ∧ Y (y) and ∃x : X(y , x ) ∧ Y (x ) are formulas when X is a binary
relation and Y is a unary relation, with the restriction that only x and y can
appear as logvars in formulas.

Because logical inference with ALC is a PSPACE-complete problem [3], one
might hope that probabilistic inference might be solved within polynomial space.
Alas, ALC does not move us below PEXP when domain size is given in binary
notation (later we show that unary notation leads to better behavior):

Theorem 5. INF[ALC] is PEXP-complete with respect to many-one reductions
when domain size is given in binary notation.

Now returning to full FFFO, consider its query complexity. We divide the
analysis in two parts, as the related proofs are quite different:3

Theorem 6. QINF[FFFO] is PEXP-complete with respect to many-one reduc-
tions when domain size is specified in binary notation.

Theorem 7. QINF[FFFO] is PP-complete with respect to many-one reductions
when domain size is specified in unary notation.

As far as domain complexity is concerned, it seems very hard to establish
a completeness result for FFFO when domain size is given in binary notation.4
We simply rephrase an ingenious argument by Jaeger [63] to establish:

Theorem 8. Suppose NETIME 6= ETIME. Then DINF[FFFO] is not solved in
deterministic exponential time when domain size is given in binary notation.

And for domain size in unary notation:

Theorem 9. DINF[FFFO] is PP1-complete with respect to many-one reductions
when domain size is given in unary notation.

3The query complexity of monadic FFFO seems to be open, both for domain in binary and
in unary notation; proofs of Theorems 6 and 7 need relations of arity two.

4One might think that, when domain size is given in binary notation, some small change
in the proof of Theorem 9 would show that DINF[FFFO] is complete for a suitable subset of
PEXP. Alas, it does not seem easy to define a complexity class that can convey the complexity
of DINF[FFFO] when domain size is in binary notation. Finding the precise complexity class
of DINF[FFFO] is an open problem.
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Theorem 9 is in essence implied by arguments in a major result by Beame et
al. [8, Lemma 3.9]: they show that counting the number of interpretations for
formulas in the three-variable fragment FFFO3 is #P1-complete. The fragment
FFFOk consists of the formulas in FFFO that employ at most k logvars; note
that logvar symbols may be reused within a formula, but there is a bounded
supply of such symbols [78, Chapter 111]. For instance, ALC belongs to FFFO2.
The proof by Beame et al. is rather involved as they restrict themselves to three
logvars; in Appendix A we show that Theorem 9 admits a much simpler proof,
a small contribution that may be useful to researchers.

It is apparent from Theorems 4, 5, 6 and 8 that we are bound to obtain
exponential complexity when domain size is given in binary notation. Hence,
from now on we work with domain sizes in unary notation, unless explicitly
indicated.

Of course, a domain size in unary notation cannot by itself avoid exponential
behavior (consider for instance Theorem 4). In particular, an exponentially large
number of groundings can be generated by increasing arity: even a domain with
two individuals leads to 2k groundings for a relation with arity k. Hence, we
often assume that our relations have bounded arity. We might instead assume
that the vocabulary is fixed, as done in finite model theory when studying
combined complexity. We prefer the more general strategy where we bound
arity; clearly a fixed vocabulary implies a fixed maximum arity.

With such additional assumptions, we obtain PSPACE-completeness of in-
ferential complexity:

Theorem 10. INF[FFFO] is PSPACE-complete with respect to many-one re-
ductions when relations have bounded arity and domain size is given in unary
notation.

With a few differences, this result is implied by results by Beame et al. in
their important paper [8, Theorem 4.1]: they show that counting interpretations
with a fixed vocabulary is PSPACE-complete (that is, they focus on combined
complexity and avoid conditioning assignments). We present a short proof of
Theorem 10 within our framework in Appendix A.

Note that the proof of Theorem 7 is already restricted to arity 2, hence
QINF[FFFO] is PP-complete with respect to many-one reductions when relations
have bounded arity (larger than one) and the domain is given in unary notation.

We now turn to FFFOk. As we have already noted, this sort of language
has been studied already, again by Beame et al., who have derived their domain
and combined complexity [8]. In Appendix A we present a short proof of the
next result, to emphasize that it follows by a simple adaptation of the proof of
Theorem 7:

Theorem 11. INF[FFFOk] is PP-complete with respect to many-one reductions
for all k ≥ 0 when domain size is given in unary notation.

Query complexity also follows directly from arguments in the proofs of pre-
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vious results, as is clear from the proof of the next theorem in Appendix A:5

Theorem 12. QINF[FFFOk] is PP-complete with respect to many-one reduc-
tions for all k ≥ 2 when domain size is given in unary notation.

Now consider domain complexity for the bounded variable fragment; previ-
ous results in the literature establish this complexity [8, 132, 134]. In fact, the
case k > 2 is based on a result by Beame et al. that we have already alluded to;
in Appendix A we present a simplified argument for this result.

Theorem 13. DINF[FFFOk] is PP1-complete with respect to many-one reduc-
tions for k > 2 and polynomial for k ≤ 2 when domain size is given in unary
notation.

There are important knowledge representation formalisms within bounded-
variable fragments of FFFO. For instance, many description logics belong to
FFFO2 [3]; one example is the logic ALC that we have discussed before. In the
next section we examine description logics in more detail.

As a different exercise, we now consider the quantifier-free fragment of FFFO.
In such a language, every logvar in the body of a definition axiom must appear
in the defined relation, as no logvar is bound to any quantifier. Denote this
language by QF; in Section 7 we show the close connection between QF and
plate models. We have:

Theorem 14. Suppose relations have bounded arity. INF[QF] and QINF[QF]
are PP-complete with respect to many-one reductions, and DINF[QF] requires
constant computational effort. These results hold even if domain size is given in
binary notation.

As we have discussed at the end of Section 4, the literature on lifted in-
ference and on probabilistic databases has produced deep results on query and
domain complexity. One example is the definition of safe queries, a large class of
formulas with tractable query complexity [29]; similar classes of formulas have
been studied for symmetric probabilistic databases [53]. Note that even though
a formula can be decided in polynomial time to be safe or not, computational
support is needed for such a decision. As we have here focused on languages
whose complexity can be determined directly from their syntactic features, we
leave to future work the study of relational Bayesian network specifications that
are based on safe queries and related languages.

6. Specifications based on description logics

The term “description logic” encompasses a large family of formal languages
that can encode terminologies and assertions about individuals. Those lan-
guages are now fundamental knowledge representation tools, as they have solid

5The case k = 1 seems to be open; when k = 1, query complexity is polynomial when
inference is solely on unary relations [133, 134]. When k = 0 we obtain propositional networks
and then query complexity is polynomial by Theorem 3.
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semantics and computational guarantees concerning reasoning tasks [3]. Given
the favorable properties of description logics, much effort has been spent in
mixing them with probabilities [81].

Relational Bayesian network specifications based on description logics can
benefit from well tested tools and results, and offer a natural path to encode
probabilistic ontologies. We have already examined the description logic ALC
in the previous section, and we continue that study here.

Typically a description logic deals with individuals, concepts, and roles. An
individual like John corresponds to a constant in first-order logic; a concept like
researcher corresponds to a unary relation in first-order logic; and a role like
buysFrom corresponds to a binary relation in first-order logic. A vocabulary
contains a set of individuals plus some primitve concepts and some primitive
roles. From these primitive concepts and roles one can define other concepts
and roles using a set of operators. For instance, one may allow for concept in-
tersection: then C uD denotes the intersection of concepts C and D. Likewise,
CtD denotes the union of C and D, and ¬C denotes the complement of C. For
a role r and a concept C, a common construct is ∀r.C, called a value restriction.
Another common construct is ∃r.C, an existential restriction. Description log-
ics often define additional constructs such as intersection/union/complement of
roles, composition of roles, and inverse of roles. For instance, usually r− denotes
the inverse of role r.

The semantics of description logics typically resorts to domains and in-
terpretations. A domain D is a set. An interpretation I maps each indi-
vidual to an element of the domain, each primitive concept to a subset of
the domain, and each role to a set of pairs of elements of the domain. And
then the semantics of C u D is fixed by I(C u D) = I(C) ∩ I(D). Similarly,
I(C t D) = I(C) ∪ I(D) and I(¬C) = D\I(C). And for the restricted quan-
tifiers, we have I(∀r.C) = {x ∈ D : ∀y : (x, y) ∈ I(r) → y ∈ I(C)} and
I(∃r.C) = {x ∈ D : ∃y : (x, y) ∈ I(r) ∧ y ∈ I(C)}. The semantics of the inverse
role r− is, unsurprisingly, given by I(r−) = {(x, y) ∈ D ×D : (y, x) ∈ I(r)}.

We can translate this syntax and semantics to their counterparts in first-
order logic. Thus C u D can be read as C(x) ∧ D(x), C t D as C(x) ∨ D(x),
and ¬C as ¬C(x). Moreover, ∀r.C translates to ∀y : r(x, y) → C(y) and ∃r.C
translates to ∃y : r(x, y) ∧ C(y).

The description logic ALC adopts intersection, complement, and existential
restriction (union and value restrictions are obtained from those constructs).
Definition 5 introduced the language ALC that corresponds to ALC, and Theo-
rem 5 examined its inferential complexity when domain size is given in binary
notation. For domain size in unary notation, we have:

Theorem 15. Suppose the domain size is specified in unary notation. Then
INF[ALC] and QINF[ALC] are PP-complete with respect to many-one reductions,
and DINF[ALC] is in P.

Of course, we might go much further than ALC in expressivity and still
be within the two-variable fragment of FFFO; for instance, we might allow for
Boolean operations on roles, role composition and role inverses.
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Conversely, we can also contemplate description logics that are less expres-
sive than ALC in an attempt to obtain tractability. Indeed, some description
logics combine selected Boolean operators with restricted quantification to ob-
tain polynomial complexity of logical inferences. Two notable such description
logics are EL and DL-Lite.6

6.1. Specifications based on the description logic EL
Consider the description logic EL, where the only allowed operators are

intersection and existential restrictions [2]. Define:

Definition 6. The language EL consists of all formulas recursively defined so
that X(x ) and X(y) are formulas when X is a unary relation, φ∧ϕ is a formula
when both φ and ϕ are formulas, and ∃y : X(x , y)∧Y (y) and ∃x : X(y , x )∧Y (x )
are formulas when X is a binary relation and Y is a unary relation, with the
restriction that only the symbols x and y can appear as logvars in formulas.

That is, EL is the negation-free fragment of ALC. We note that EL also
includes the top concept > that is interpreted as the whole domain; in our
setting we essentially have it by introducing P(> = 1) = 1.

Because EL contains conjunction, we easily have that INF[EL] is PP-hard by
Theorem 2. And domain complexity is polynomial as implied by DINF[ALC].
Query complexity requires significant additional work as discussed in the proof
of the next theorem:

Theorem 16. Suppose the domain size is specified in unary notation. Then
INF[EL] and QINF[EL] are PP-complete with respect to many-one reductions,
even if the query contains only positive assignments, and DINF[EL] is in P.

6.2. Specifications based on the description logic DL-Lite
The description logic DL-Lite is particularly interesting because it captures

central features of ER or UML diagrams, and yet common inference services
have polynomial complexity [1, 18].

The simplicity and computational efficiency of the DL-Lite language have
led many researchers to mix them with probabilities. For instance, D’Amato
et al. [30] propose a variant of DL-Lite where the interpretation of each sentence
is conditional on a context that is specified by a Bayesian network. A similar
approach was taken by Ceylan and Peñalosa [21], with minor semantic differ-
ences. A different approach is to extend the syntax of DL-Lite sentences with
probabilistic subsumption connectives, as in the Probabilistic DL-Lite [111]. Dif-
ferently from our focus here, none of those proposals employ DL-Lite to specify
Bayesian networks.

6Due to their favorable balance between expressivity and complexity, EL and DL-Lite are
the basis for standard profiles of the OWL knowledge representation language, as explained
at http://www.w3.org/TR/owl2-profiles/.

23



male(1)

father(1)son(1)

parentOf(1,1) parentOf(1,2)

male(2)

father(2)son(2)

parentOf(2,1) parentOf(2,2)

Figure 6: Grounding of relational Bayesian network specification from Example 6 on domain
D = {1, 2}.

In DL-Lite one has primitive concepts as before, and also basic concepts: a
basic concept is either a primitive concept, or ∃r for a role r, or ∃r− for a role
r. Again, r− denotes the inverse of r. And then a concept in DL-Lite is either
a basic concept, or ¬C when C is a basic concept, or C uD when C and D are
concepts. The semantics of r−, ¬C and C uD are as before, and the semantics
of ∃r is, unsurprisingly, given by I(∃r) = {x ∈ D : ∃y : (x, y) ∈ I(r)}.

We focus on the negation-free fragment of DL-Lite; that is, we consider:

Definition 7. The language DLLitenf consists of all formulas recursively defined
so that X(x ) and X(y) are formulas when X is a unary relation, φ ∧ ϕ is a
formula when both φ and ϕ are formulas, and ∃y : X(x , y), ∃y : X(y , x ),
∃x : X(y , x ), and ∃x : X(x , y) are formulas when X is a binary relation, with
the restriction that only x and y can appear as logvars in formulas.

Example 6. Consider a short relational specification:

P(male(x ) = 1) = 1/2,
father(x ) ≡≡ male(x ) ∧ ∃y : parentOf(x , y),

son(x ) ≡≡ male(x ) ∧ ∃y : parentOf(y , x ),

For domainD = {1, 2}, this relational Bayesian network specification is grounded
into the Bayesian network in Figure 6. �

Note that INF[DLLitenf ] is PP-hard by Theorem 2; moreover, as DLLitenf

belongs to FFFO2, INF[DLLitenf ] is in PP by Theorem 11 and DINF[DLLitenf ] is
in P [132, 134].7 More interestingly, we obtain tractability if we restrict queries
to positive assignments:

Theorem 17. Suppose the domain size is specified in unary notation. If in
addition the query (Q,E) contains only positive assignments, then INF[DLLitenf ],
QINF[DLLitenf ], and DINF[DLLitenf ] are in P.

In proving this result (in Appendix A) we show that an inference with a pos-
itive query can be reduced to a particular weighted edge cover counting problem

7The exact complexity of QINF[DLLitenf ] is an open question.
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of independent interest. And using these edge cover counting techniques we can
also show that a related problem, namely finding the most probable explanation,
is polynomial for relational Bayesian network specifications based on DLLitenf .
To state this result precisely, consider a relational Bayesian network specifica-
tion S based on DLLitenf , a set of assignments E for ground atoms, and a domain
size N . Denote by X the set of random variables that correspond to groundings
of relations in S. Now there is at least one set of assignments M such that: (i)
M contains assignments to all random variables in X that are not mentioned in
E; and (ii) P(M,E) is maximum over all such sets of assignments. Denote by
MLE(S,E, N) the problem that consists of finding such a set of assignments M.

Theorem 18. Given a relational Bayesian network S based on DLLitenf , a set
of positive assignments to grounded relations E, and a domain size N in unary
notation, MLE(S,E, N) can be solved in polynomial time.

These results on DLLitenf can be directly extended in some important ways.
For example, suppose we allow negative groundings of binary relations in the
query. Then most of the proof of Theorem 17 follows through, but we must re-
sort to approximations for weighted edge cover counting [80] so as to develop a
fully polynomial-time approximation scheme (FPTAS) for inference. Moreover,
the MLE(S,E, N) problem remains polynomial. Similarly, we could allow for
different groundings of the same relation to be associated with different proba-
bilities; the proofs given in Appendix A can be modified to develop a FPTAS
for inference.

We have so far presented results for a number of languages. Table 1 (both
table and caption) summarizes most of our findings; as noted previously, several
results on FFFO with bounded relation arity and on FFFOk have been in essence
derived by Beame et al. [8].

7. Plates, probabilistic relational models, and related specification
languages

In this paper we have followed a strategy that has long been cherished in
the study of formal languages; that is, we have focused on languages that are
based on minimal sets of constructs borrowed from logic. Clearly this plan suc-
ceeds only to the extent that results can be transfered to practical specification
languages. In this section we examine some important cases where our strategy
pays off.

Consider, for instance, plate models, a rather popular specification formal-
ism. Plate models have been extensively used in statistical practice [82] since
they were introduced in the BUGS project [47, 83]. In machine learning, they
have been often used since their first appearance [16].

There seems to be no standard formalization for plate models, so we adapt
some of our previous concepts as needed. A plate model consists of a set of
parvariables, a directed acyclic graph where each node is a parvariable, and a
set of template conditional probability distributions. Parvariables are typed: each
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Language (N in unary notation) Inferential Query Domain
Prop(∧), positive query P P —

Prop(∧,¬), Prop(∧), Prop(∨) PP P —
FFFO PEXP PP PP1

FFFO with bound on relation arity PSPACE PP PP1

FFFOk with k ≥ 3 PP PP PP1

QF with bound on relation arity PP PP P
ALC PP PP P
EL PP PP P

EL, positive query PP PP P
DLLitenf , positive query P P P

Table 1: Inferential, query and domain complexity for relational Bayesian networks based on
various logical languages with domain size given in unary notation. All cells indicate complete-
ness with respect to many-one reductions. On top of these results, note that when domain
size is given in binary notation we have, with respect to many-one reductions: INF[FFFO] is
PEXP-complete (even when restricted to relations of arity 1), QINF[FFFO] is PEXP-complete
(even when restricted to relations of arity 2), and INF[ALC] is PEXP-complete.

parameter of a parvariable is associated with a set, the domain of the parameter.
All parvariables that share a domain are said to belong to a plate. The central
constraint on “standard” plate models is that the domains that appear in the
parents of a parvariable must appear in the parvariable. For a given parvariable
X, its corresponding template conditional probability distribution associates a
probability value to each value of X given each configuration of parents of X.

Even though plate models often specify discrete and continuous random vari-
ables [82, 120], here we focus on parvariables with values 0 and 1, that can thus
be put to correspondence with relations. Dealing with binary random variables
is enough to prove PP-hardness in Theorem 19; the proof of this theorem shows
that membership to PP is obtained even if parvariables have a bounded number
of values that is larger than two.

We can use the same semantics as before to interpret plate models, with a
small change: now the groundings of a relation are produced by running only
over the domains of its associated logvars.

Example 7. Suppose we are interested in a “University World” containing a
population of students and a population of courses [44]. Parvariable Failed?(x , y)
yields the final status of student y in course x ; Difficult?(x ) is a parvariable indi-
cating the difficulty of a course x , and Committed?(y) is a parvariable indicating
the commitment of student y .

A plate model is drawn in Figure 7, where plates are rectangles. Each
parvariable is associated with a template conditional probability distribution:

P(Difficult?(x ) = 1) = 0.3, P
(
Committed?(y) = 1

)
= 0.7,
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Course x

Student y

Failed?(x , y)Difficult?(x ) Committed?(y)

Figure 7: Plate model for the University World. We show logvars explicitly, even though they
are not always depicted in plate models.

P
(

Failed?(x , y) = 1

∣∣∣∣ Difficult?(x ) = d,
Committed?(y) = c

)
=


0.6 if d = 0, c = 0;
0.2 if d = 0, c = 1;
0.9 if d = 1, c = 0;
0.5 if d = 1, c = 1. �

Note that plate models can always be specified using definition axioms in
the quantifier-free fragment of FFFO, given that the logvars of a relation appear
in its parent relations. For instance, the table in Example 7 can be encoded as
follows:

Failed?(x , y) ≡≡


(
¬Difficult?(x ) ∧ ¬Committed?(y) ∧ A1(x , y)

)
∨(

¬Difficult?(x ) ∧ Committed?(y) ∧ A2(x , y)
)
∨(

Difficult?(x ) ∧ ¬Committed?(y) ∧ A3(x , y)
)
∨(

Difficult?(x ) ∧ Committed?(y) ∧ A4(x , y)
)

 , (6)

where we introduced four auxiliary parvariables with associated assessments
P
(
A1(x , y) = 1

)
= 0.6, P

(
A2(x , y) = 1

)
= 0.2, P

(
A3(x , y) = 1

)
= 0.9, and

P
(
A4(x , y) = 1

)
= 0.5.

Denote by INF[PLATE] the language consisting of inference problems as in
Definition 2, where relational Bayesian network specifications are restricted to
satisfy the constraints of plate models. Adopt QINF[PLATE] and DINF[PLATE]
similarly. We can reuse arguments in the proof of Theorem 14 to show that:

Theorem 19. INF[PLATE] and QINF[PLATE] are PP-complete with respect to
many-one reductions, and DINF[PLATE] requires constant computational effort.
These results hold even if the domain size is given in binary notation.

One can find extended versions of plate models in the literature, where a
node can have children in other plates. See for instance the smoothed Latent
Dirichlet Allocation (sLDA) model [10] depicted in Figure 8: here φ(z) has a
child W (x , y). In such extended plates a template conditional probability dis-
tribution can refer to logvars from plates that are not enclosing the parvariable.
If definition axioms are used to specify such template distributions, one gets as
before INF[FFFO], QINF[FFFO], etc; that is, results obtained in previous sections
apply.

Besides plates, several other languages can encode repetitive Bayesian net-
works. Early proposals resorted to object orientation [71, 84], to frames [72], and
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α θ(x ) Z(x , y) W (x , y)

β φ(z)

x y

z

Figure 8: Smoothed Latent Dirichlet Allocation.

Registration z

Failed?(z)

Course x

Difficult?(x )

Student y

Committed?(y)

studentOfcourseOf

Figure 9: PRM for the University World. We show logvars explicitly, even though they are
not always depicted in PRMs. Associations appear as dashed edges [44, 119].

to rules-based statements [5, 49, 55], all inspired by knowledge-based model con-
struction [59, 50, 138]. Some of these proposals coalesced into a family of models
loosely grouped under the name of Probabilistic Relational Models (PRMs) [43].
We here adopt the definition of PRMs by Getoor et al. [44]; again, to simplify
matters, we focus on parvariables that correspond to relations.

Similarly to a plate model, a PRM contains typed parvariables and domains.
A domain is now called a class; each class appears as a box containing parvari-
ables. For instance, Figure 9 depicts a PRM for the University World: edges
between parvariables indicate probabilistic dependence, and dashed edges be-
tween classes indicate associations between elements of the classes. In Figure 9
we have classes Course, Student, and Registration, with associations be-
tween them. Consider association studentOf: the idea is that studentOf(x , z)
holds when x is the student in registration z. Following terminology by Koller
and Friedman [69], we say that relations that encode classes and associations,
such as Course and studentOf , are guard parvariables.

A relational skeleton for a PRM is an explicit specification of elements in each
class, plus the explicit specification of pairs of objects that are associated. That
is, the relational skeleton specifies the groundings of the guard parvariables.

Each parvariable X in a PRM is then associated with a template probability
distribution that specifies probabilities for the parvariable X given a selected set
of other parvariables. The latter are the parents of X, again denoted by pa(X).
In the University World of Figure 9, we must associate with Failed? the template
probabilities for P

(
Failed?(z)|Difficult?(x ),Committed?(y)

)
. But differently from
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Difficult? Failed? Committed?

Course Student courseOf studentOf

A1 A2 A3 A4

Figure 10: Parvariable graph for the University World PRM.

plate models, here the parents of a particular grounding are determined by going
through associations: for instance, to find the parents of Failed?(r), we must find
the course c and the student s such that courseOf(c, r) and studentOf(s, r)
hold, and then we have parents Difficult?(c) and Committed?(s).

All of these types and associations can, of course, be encoded using first-
order logic, as long as all parvariables correspond to relations. For instance,
here is a definition axiom that captures the PRM for the University World:

Failed?(z) ≡≡ ∀x : ∀y :

(
Course(x ) ∧ Student(y)∧

courseOf(x , z) ∧ studentOf(y , z)

)
→

(
¬Difficult?(x ) ∧ ¬Committed?(y) ∧ A1(x , y)

)
∨(

¬Difficult?(x ) ∧ Committed?(y) ∧ A2(x , y)
)
∨(

Difficult?(x ) ∧ ¬Committed?(y) ∧ A3(x , y)
)
∨(

Difficult?(x ) ∧ Committed?(y) ∧ A4(x , y)
)

 ,

using the same auxiliary parvariables employed in Expression (6). The parvari-
able graph for the resulting specification is depicted in Figure 10.

Thus we can take a PRM and translate it into a relational Bayesian network
specification S. As long as the parvariable graph is acyclic, results in the previ-
ous sections apply. To see this, note that a skeleton is simply an assignment for
all groundings of the guard parvariables. Thus a skeleton can be encoded into a
set of assignments S, and our inferences should focus on deciding P(Q|E,S) > γ
with respect to S and a domain that is the union of all classes of the PRM.

Now suppose we have a fixed PRM and we receive as input a skeleton and
a query (Q,E), and we wish to decide whether P(Q|E) > γ: if the template
probability distributions are specified with FFFO, and the parvariable graph
is acyclic, we have that query complexity is PP-complete. We can replay our
previous results on inferential and query complexity this way. The concept of
domain complexity seems less meaningful when PRMs are considered: the larger
the domain, the more data on guard parvariables are needed, so we cannot really
fix the domain in isolation.

We conclude this section with a few observations.

Cyclic parvariable graphs. Our results assume acyclicity of parvariable graphs,
but this is not a condition that is typically imposed on PRMs. A cyclic par-
variable graph may still produce an acyclic grounding, depending on the given

29



Person z

Gene(z)

Person x

Gene(x )

(Mother)
Person y

Gene(y)

(Father)

Figure 11: A PRM for the blood-type model, adapted from a proposal by Getoor et al. [44].
Dashed boxes stand for repeated classes; Getoor et al. suggest that some associations may be
constrained to be “guaranteed acyclic” so that the whole model is consistent for any skeleton
that satisfies the constraints.

skeleton. For instance, one might want to model blood-type inheritance, where
a Person inherits a genetic predisposition from another Person. This creates
a loop around the class Person, even though we do not expect a cycle in any
valid grounding of the PRM. The literature has proposed languages that allow
cycles [44, 58]; one example is shown in Figure 11. The challenge then is to
guarantee that a given skeleton will lead to an acyclic grounded Bayesian net-
work; future work on cyclic parvariable graphs must deal with such a consistency
problem [35].

Other specification languages. There are several other languages that specify
PRMs and related formalisms; such languages can be subjected to the same
analysis we have explored in this paper. A notable formalism is the Proba-
bilistic Relational Language (PRL) [45]. In PRL a logic program is used to
specify a PRM; the specification is divided into logical background (that is,
guard parvariables), probabilistic background, and probabilistic dependencies.
Two other examples of textual formalisms that can be used to encode PRMs
are Logical Bayesian Networks (LBNs) [40, 39] and Bayesian Logic Programs
(BLPs) [67, 110]. Both distinguish between logical predicates that constrain
the grounding into graphs (that is, guard parvariables), and probabilistic or
Bayesian predicates that encode probabilistic assessments [93].

A more visual language, based on Entity-Relationship Diagrams, is DAPER
[58]. Figure 12 shows a DAPER diagram for the University World and a DAPER
diagram for the blood-type model. Another diagrammatic language is given by
Multi-Entity Bayesian Networks (MEBNs), a graphical representation for arbi-
trary first-order sentences [76]. Several other graphical languages mix probabil-
ities with description logics [20, 23, 36, 70], as mentioned in Section 6.

There are other formalisms in the literature that focus on textual speci-
fications. For instance, Jaeger’s Relational Bayesian Networks [60, 61] offer a
solid representation language where the user can directly specify and manipulate
probability values. As a short example, one can specify a Relational Bayesian
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Course

Student

Failed?

Difficult?

Committed?

Registration

Person
(Mother)

Person
(Father)

Person

Family
2dag

Gene

Gene

Gene

Figure 12: Left: A DAPER diagram for the University World. Right: A DAPER diagram
for the blood-type model, as proposed by Heckerman et al. [58]; note the constraint 2dag,
meaning that each child of the node has at most two parents and cannot be its own ancestor.

Network as follows

burglary(x ) = 0.005;

alarm(x ) = 0.95burglary(x ) + 0.01(1− burglary(x ));

cityAlarm = NoisyOr{0.8alarm(x )|x ; x = x };

The first sentence specifies, in our framework, P(burglary(x ) = 1) = 0.005. The
second sentence yields the probability of alarm(x ) as a combination of proba-
bilities and values of burglary(x ) — this sentence actually yields a conditional
probability. Finally the third sentence uses some special syntax to build a Noisy-
Or gate by essentially quantifying over all possible values of logvar x . We have
examined the complexity of Relational Bayesian Networks elsewhere [86]; some
results and proofs, but not all of them, are similar to the ones presented here.

There are also languages that encode repetitive Bayesian networks using
functional programming [85, 89, 100, 123] or logic programming [24, 41, 101,
102, 112, 115], As an example, the functional language Venture allows state-
ments such as flip(0.4) that assigns probability 0.4 to a particular computation
step [85]. Probabilistic logic languages are particularly close to our framework
as they have a declarative style, where rules convey the deterministic operations
that are mixed with probabilities. Consider for instance ProbLog [41], a popular
language that adopts syntactic and semantic conventions usually referred to as
“Sato’s distribution semantics” [115]. In ProbLog one can write

0.005 :: burglary(X).

to mean, in our framework, P(burglary(x ) = 1) = 0.005. And one can write a
rule such as

alarm :− eneryOn, burglary(X).

to mean
alarm ≡≡ energyOn ∧ ∃x : burglary(x ).
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We have examined the complexity of probabilistic logic programming elsewhere
[26]; again, some results and proofs, but not all of them, are similar to the ones
presented here. Finally, we note that there are other languages that look for
relational counterparts of Markov networks, such as relational Markov networks
or Markov logic networks [46]. These formalisms are not directly connected
to our efforts here, but one can usually translate complexity results on models
that employ directed models into results on models that employ undirected
models [69]. We leave the pursuit of this path to future work.

8. A detour into Valiant’s counting hierarchy

We have so far focused on inferences that compare a conditional probability
with a given rational number. However one might argue that the real purpose of
a probabilistic inference is to compute a probability value. While most previous
work on probabilistic databases and lifted inference has looked at the compu-
tation of probability values and has produced results using Valiant’s counting
hierarchy, in this paper we have so far focused on Wagner’s counting hierar-
chy. In this section we justify our strategy and adapt our results to Valiant’s
hierarchy.

Valiant defines, for complexity class A, the class #A to be ∪L∈A(#P)L, where
(#P)L is the class of functions counting the accepting paths of nondeterministic
polynomial-time Turing machines with L as oracle [129]. Valiant declares func-
tion f to be #P-hard when #P ⊆ FPf ; that is, f is #P-hard if any function f ′ in
#P can be reduced to f by the analogue of a polynomial-time Turing reduction
(recall that FP is the class of functions that can be computed in polynomial-time
by a deterministic Turing machine). Valiant’s is a very loose notion of hardness;
as shown by Toda and Watanabe [126], any function in #PH can be reduced to
a function in #P via a Turing reduction (where #PH is a counting class with
the whole polynomial hierarchy as oracle). In fact their result is stronger as the
reduction can be made to compute the function in #P a single time (that is,
a one-Turing reduction). Thus a Turing reduction is too weak to distinguish
classes of functions within #PH. For this reason, other reductions have been
considered for counting problems [7, 38].

A somewhat stringent strategy is to say that f is #P-hard if any function
f ′ in #P can be produced from f by a parsimonious reduction; that is, f ′(`) is
computed by applying a polynomial-time function g to ` and then computing
f(g(`)) [117]. However, such a strategy is inadequate for our purposes: count-
ing classes such as #P produce integers, and we cannot produce integers by
computing probabilities.

A sensible strategy is to adopt a reduction that allows for multiplication by
a polynomial function. This has been done both in the context of probabilistic
inference with “reductions modulo normalization” [73] and in the context of
probabilistic databases [121]. We adopt the reductions proposed by Bulatov
et al. in their study of weighted constraint satisfaction problems [15]. They
define weighted reductions as follows (Bulatov et al. consider functions into the
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algebraic numbers, but for our purposes we can restrict the weighted reductions
to rational numbers):

Definition 8. Consider functions f1 and f2 from an input language L to ratio-
nal numbers Q. A weighted reduction from f1 to f2 is a pair of polynomial-time
functions g1 : L → Q and g2 : L → L such that f1(`) = g1(`)f2(g2(`)) for all `.

We say a function f is #P-hard with respect to weighted reductions if any
function in #P can be reduced to f via a weighted reduction.

Having decided how to define hardness, we must look at membership. As
counting problems generate integers, we cannot really say that probabilistic
inference problems belong to any class in Valiant’s counting hierarchy. In fact,
in his seminal work on the complexity of Bayesian networks, Roth notes that
“strictly speaking the problem of computing the degree of belief is not in #P,
but easily seem equivalent to a problem in this class” [113]. The challenge is to
formalize such an equivalence.

Grove, Halpern, and Koller quantify the complexity of probabilistic infer-
ence by allowing polynomial computations to occur after counting [54, Defini-
tion 4.12]. Their strategy is to say that f is #P-easy if there exists f ′ ∈ #P and
f ′′ ∈ FP such that for all ` we have f(`) = f ′′(f ′(`)). Similarly, Campos, Sta-
moulis and Weyland take f to be #P[1]-equivalent if f is #P-hard (in Valiant’s
sense) and belongs to FP#P[1]. Here the superscript #P[1] means that the or-
acle #P can be called only once. It is certainly a good idea to resort to a new
term (“equivalence”) in this context; however one must feel that membership to
FP#P[1] is too weak a requirement given Toda and Watanabe’s theorem [126]:
any function in #PH can be produced within FP#P[1].

We adopt a stronger notion of equivalence: a function f is #P-equivalent if
it is #P-hard with respect to weighted reductions and g · f is in #P for some
polynomial-time function g.

Also, we need to define a class of functions that corresponds to the complex-
ity class PEXP. We might extend Valiant’s definitions and take #EXP to be
∪L∈EXP(#P)L. However functions in such a class produce numbers whose size
is at most polynomial on the size of the input, as the number of accepting paths
of a polynomial-time nondeterministic Turing machine on input ` is bounded by
2p(|`|) where p is polynomial and |`| is the length of `. This is not appropriate
for our purposes, as even simple specifications may lead to exponentially long
output (for instance, take P(X(x ) = 1) = 1/2 and compute P(∃x : X(x )): we
must be able to write the answer 1 − 1/2N using N bits, and this number of
bits is exponential on the input if the domain size is given in binary notation).
For this reason, we take #EXP to be the class of functions that can be com-
puted by counting Turing machines of exponential-time complexity [96]. We
say that a function f is #EXP-equivalent if f is #EXP-hard with respect to
reductions that follow exactly Definition 8, except for the fact that g1 may be
an exponential-time function, and g · f is in #EXP for some exponential-time
function g.

Now consider polynomial bounds on space. We will use the class \PSPACE
defined by Ladner [75], consisting of those functions that can be computed by
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counting Turing machines with a polynomial-space bound and a polynomial
bound on the number of nondeterministic moves. This class is actually equal
to FPSPACE[poly], the class of functions computable in polynomial space whose
outputs are strings encoding numbers in binary notation, and bounded in length
by a polynomial [75, Theorem 2]. We say that a function is \PSPACE-equivalent
if f is \PSPACE-hard with respect to weighted reductions (as in Definition 8),
and g·f is in #PSPACE for some polynomial-space function g from the input lan-
guage to the rational numbers. Of course we might have used “FPSPACE[poly]-
equivalent” instead, but we have decided to follow Ladner’s original notation.

There is one more word of caution when it comes to adopting Valiant’s
counting Turing machines. It is actually likely that conditional probabilities
P(Q|E) cannot be produced by counting Turing machines, as classes in Valiant’s
counting hierarchy are not likely to be closed under division even by polynomial-
time computable functions [95]. Thus we must focus on inferences of the form
P(Q); indeed this is the sort of computation that is analyzed in probabilistic
databases [121].

Thus the drawback of Valiant’s hierarchy is that a significant amount of
adaptation is needed before that hierarchy can be applied to probabilistic infer-
ence; hence our preference for Wagner’s hierarchy. But after all this preliminary
work, we can easily convert our previous results accordingly. For instance, we
have the following inferential complexity results:

Theorem 20. Consider the class of functions that gets as input a relational
Bayesian network specification based on FFFO, a domain size N (in binary or
unary notation), and a set of assignments Q, and returns P(Q). This class of
functions is #EXP-equivalent.

Theorem 21. Consider the class of functions that gets as input a relational
Bayesian network specification based on FFFO with relations of bounded arity,
a domain size N in unary notation, and a set of assignments Q, and returns
P(Q). This class of functions is \PSPACE-equivalent.

Theorem 22. Consider the class of functions that gets as input a relational
Bayesian network specification based on FFFOk for k ≥ 2, a domain size N in
unary notation, and a set of assignments Q, and returns P(Q). This class of
functions is #P-equivalent.

Theorem 23. Consider the class of functions that get as input a plate model
based on FFFO, a domain size N (either in binary or unary notation), and a set
of assignments Q, and returns P(Q). This class of functions is #P-equivalent.

9. Conclusion

We have presented a framework for specification and analysis of Bayesian
networks, particularly networks containing repetitive patterns that can be cap-
tured using function-free first-order logic. Our specification framework is based
on previous work on probabilistic programs and structural equation models; our
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analysis is based on notions of complexity (inferential, combined, query, data,
domain) that are similar to concepts used in lifted inference and in probabilistic
databases.

Our emphasis was on knowledge representation; in particular we wanted to
understand how features of the specification language affect the complexity of
inferences. Thus we devoted some effort to connect probabilistic modeling with
knowledge representation formalisms, particularly description logics. We hope
that we have produced here a sensible framework that unifies several disparate
efforts, a contribution that may lead to further insight into probabilistic mod-
eling.

Another contribution of this work is a collection of results on complexity
of inferences, as summarized by Table 1 and related commentary. We have
also introduced relational Bayesian network specifications based on the DLLitenf

logic, a language that can be used to specify probabilistic ontologies and a
sizeable class of probabilistic entity-relationship diagrams. In proving results
about DLLitenf , we have identified a class of model counting problems with
tractability guarantees. Finally, we have shown how to transfer our results into
plate models and PRMs, and in doing so we have presented a much needed
analysis of these popular specification formalisms.

There are several avenues open for future work. Ultimately, we must under-
stand the relationship between expressivity and complexity of Bayesian networks
specifications as thoroughly as we understand this relationship for logical lan-
guages. To do so, we may consider Bayesian networks specified by operators
from various description and modal logics, or look at languages that allow ran-
dom variables to have more than two values. In a different direction, we must
look at parameterized counting classes [42], so as to refine the analysis even fur-
ther. There are also several problems that go beyond the inferences discussed
in this paper: for example, the computation of Maximum a Posteriori (MAP)
configurations, and the verification that a possibly cyclic PRM is consistent for
every possible skeleton [35]. There are also models that encode structural uncer-
tainty, say about the presence of edges [69]; novel techniques must be developed
to investigate the complexity of such models.
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L1 L2 L3 B1 B2 B3 B4 B5

0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1
0 1 1 0 0 0 1 1
1 0 0 0 1 0 0 1
1 0 1 0 1 0 1 1
1 1 0 1 0 0 0 0
1 1 1 1 0 0 1 0

Table A.2: Assignments that satisfy the four clauses in Expression (A.1).

Appendix A. Proofs

Appendix A.1. Propositional languages (Section 3)
Proposition 1. Both #3SAT(>) and #(1-in-3)SAT(>) are PP-complete with
respect to many-one reductions.

Proof. Consider first #3SAT(>). It belongs to PP because deciding #φ > k, for
propositional sentence φ, is in PP [117, Theorem 4.4]. And it is PP-hard because
it is already PP-complete when the input is k = 2n/2 − 1 [6, Proposition 1].

Now consider #(1-in-3)SAT(>). Suppose the input is a propositional sen-
tence φ in 3CNF with propositions A1, . . . , An and m clauses. Turn φ into
another sentence ϕ in 3CNF by turning each clause L1 ∨L2 ∨L3 in φ into a set
of four clauses:

¬L1 ∨B1 ∨B2, L2 ∨B2 ∨B3, ¬L3 ∨B3 ∨B4, B1 ∨B3 ∨B5, (A.1)

where the Bj are fresh propositions not in φ. We claim that #ϕ = #(1-in-3)φ;
that is, #(1-in-3)φ > k is equivalent to #φ > k, proving the desired hardness.
To prove this claim, note that for each clause L1 ∨ L2 ∨ L3 in φ, and for each
assignment to (L1, L2, L3) that satisfies the clause, there is only one assignment
to (B1, B2, B3, B4, B5) that satisfies the clauses in Expression (A.1). To prove
this, Table A.2 presents the set of all assignments that satisfy the latter four
clauses.

Theorem 1. INF[Prop(∧)] is in P when the query (Q,E) contains only positive
assignments, and INF[Prop(∨)] is in to P when the query contains only negative
assignments.

Proof. Consider first INF[Prop(∧)]. To run inference with positive assignments
(Q,E), just run d-separation to collect the set of root variables that must be
true given the assignments (note that as soon as a node is set to true, its parents
must be true, and so on recursively). Then the probability of the conjunction of
assignments in Q and in E is just the product of probabilities for these latter
atomic propositions to be true, and these probabilities are given in the network
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specification. Thus we obtain P(Q,E). Now repeat the same polynomial com-
putation only using assignments in E, to obtain P(E), and determine whether
P(Q,E) /P(E) > γ or not.

Now consider INF[Prop(∨)]. For any input network specification, we can
easily build a network specification in INF[Prop(∧)] by turning every variable
X into a new variable X ′ such that X = ¬X ′. Then the root node associ-
ated with assessment P(X = 1) = α is turned into a root node associated with
P(X ′ = 1) = 1−α, and a definition axiom X ≡≡ ∨iYi is turned into a definition
axiom X ′ ≡≡ ∧iY ′i . Any negative evidence is then turned into positive evidence,
and the reasoning in the previous paragraph applies.

Theorem 2. INF[Prop(∧)] and INF[Prop(∨)] are PP-complete with respect to
many-one reductions.

Proof. Membership follows from the fact that INF[Prop(∧,¬)] ∈ PP. We there-
fore focus on hardness.

Consider first INF[Prop(∧)]. We present a parsimonious reduction from
#(1-in-3)SAT(>) to INF[Prop(∧)], following a strategy by Mauá et al. [87].

Take a sentence φ in 3CNF with propositions A1, . . . , An and m clauses. If
there is a clause containing three times the same literal (for instance, (A1∨A1∨
A1)), then the 1-in-3 rule cannot be respected; we assume that such problems
are detected and solved at once, hence we deal with formulas where each clause
does not have three identical literals.

For each literal in φ, introduce a random variable Xij , where i refers to the
ith clause, and j refers to the jth literal (note: j ∈ {1, 2, 3}). The set of all such
random variables is L.

For instance, suppose we have the sentence (A1∨A2∨A3)∧(A4∨¬A1∨A3).
We then make the correspondences: X11  A1, X12  A2, X13  A3, X21  
A4, X22  ¬A1, X23  A3.

Note that {Xij = 1} indicates an assignment of true to the corresponding
literal. Say that a configuration of L is gratifying if Xi1 +Xi2 +Xi3 ≥ 1 for every
clause (without necessarily respecting the 1-in-3 rule). Say that a configuration
is respectful if is respects the 1-in-3 rule; that is, if Xi1 +Xi2 +Xi3 ≤ 1 for every
clause. And say that a configuration is sensible if two variables that correspond
to the same literal have the same value, and two variables that correspond
to a literal and its negation have distinct values (in the example in the last
paragraph, both {X11 = 1, X22 = 1} and {X13 = 1, X23 = 0} fail to produce a
sensible configuration).

For each random variable Xij , introduce the assessment P(Xij = 1) = 1− ε,
where ε is a rational number to be determined later. Our strategy is to introduce
definition axioms so that only the gratifying-respectful-sensible configurations of
L get high probability, while the remaining configurations have low probability.
The main challenge is to do so without negation.

Let Q be an initially empty set of assignments. We first eliminate the con-
figurations that do not respect the 1-in-3 rule. To do so, for i = 1, . . . ,m include
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definition axioms

Yi1i2 ≡≡ Xi1 ∧Xi2, Yi1i3 ≡≡ Xi1 ∧Xi3, Yi3i2 ≡≡ Xi2 ∧Xi3, (A.2)

and add {Yi1i2 = 0, Yi1i3 = 0, Yi2i3 = 0} to Q. This guarantees that configura-
tions of L that fail to be respectful are incompatible with Q.

We now eliminate gratifying-respectful configurations that are not sensible.
We focus on gratifying and respectful configurations because, as we show later,
ungratifying configurations compatible with Q are assigned low probability.

• Suppose first that we have a clause where the same proposition appears
more than once. There are three possibilities (recall that clauses with
three identical literals are not possible at this point). If the ith clause can
be written as (A∨A∨L) for some proposition A and some literal L (that
may even be ¬A), then add {Xi3 = 1} to Q. If instead the ith clause can
be written as (¬A ∨ ¬A ∨ L) for some proposition A and some literal L
(that may even be A), then add {Xi3 = 1} to Q. Finally, if the ith clause
can be written as (A∨¬A∨L) for some proposition A and some literal L
that is unrelated to A, then add {Xi3 = 0} to Q.

• Suppose we have two distinct clauses (A∨Li2∨Li3) and (¬A∨Lj2∨Lj3),
where A is a proposition and the Luv are literals (possibly referring more
than once to the same propositions). Suppose the six literals in these two
clauses correspond to variables (Xi1, Xi2, Xi3) and (Xj1, Xj2, Xj3), in this
order. We must have Xi1 = 1−Xj1. To encode this relationship, we take
two steps. First, introduce the definition axiom

Yi1j1 ≡≡ Xi1 ∧Xj1,

and add {Yi1j1 = 0} to Q: at most one of Xi1 and Xj1 is equal to 1,
but there may still be gratifying-respectful configurations where Xi1 =
Xj1 = 0. Thus the second step is enforce the sentence θ = ¬(Li2 ∨ Li3) ∨
¬(Lj2 ∨ Lj3), as this forbids Xi1 = Xj1 = 0. Note that θ is equivalent to
¬(Li2 ∧Lj2)∧¬(Li2 ∧Lj3)∧¬(Li3 ∧Lj2)∧¬(Li3 ∧Lj3), so introduce the
definition axiom

Yiujv ≡≡ Xiu ∧Xjv

and add {Yiujv = 0} to Q, for each u ∈ {2, 3} and v ∈ {2, 3}. Proceed
similarly if the literals of interest appear in other positions in the clauses.

• Now we focus on any two distinct clauses that share a literal. Say we
have (A ∨ Li2 ∨ Li3) and (A ∨ Lj2 ∨ Lj3) where the symbols are as in
the previous bullet, and where the literals are again paired with vari-
ables (Xi1, Xi2, Xi3) and (Xj1, Xj2, Xj3). If Xi1 = 1, then we must have
Xj1 = 1, and to guarantee this in a gratifying-respectful configuration we
introduce

Yi1j2 ≡≡ Xi1 ∧Xj2, Yi1j3 ≡≡ Xi1 ∧Xj3,
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Is L respectful?

P(L,Q) = 0 Is L gratifying?

P(L,Q) ≤ β Is L sensible?

P(L,Q) = 0 P(L,Q) = α

Figure A.13: Decision tree of the probability assigned to configurations of the network con-
structed in the proof of Theorem 2. Right branch always follows “yes”, while left branch always
follows “no”.

and add {Yi1j2 = 0, Yi1j3 = 0} to Q. Similarly, if Xj1 = 1, we must have
Xi1 = 1, so introduce

Yi2j1 ≡≡ Xi2 ∧Xj1, Yi3j1 ≡≡ Xi3 ∧Xj1,

and add {Yi2j1 = 0, Yi3j1 = 0} to Q. Again, proceed similarly if the
literals of interest appear in other positions in the clauses.

Consider a configuration x11, . . . , xm3 of L. If this is a gratifying-respectful-
sensible configuration, we have that

P(X11 = x11, . . . , Xm3 = xm3) = (1− ε)mε2m = α .

If the configuration is respectful but not gratifying, then

P(X11 = x11, . . . , Xm3 = xm3) ≤ (1− ε)m−1ε2m+1 = β .

The number of respectful configurations is at most 4m, since for each i there
are 4 ways to assign values to (Xi1, Xi2, Xi3) such that Xi1 +Xi2 +Xi3 ≤ 1.

The whole reasoning is illustrated in the decision tree in Figure A.13.
If the number of solutions to the original problem is strictly greater than

k then P(Q) ≥ (k + 1)α. And if the number of solutions is smaller or equal
than k then P(Q) ≤ kα + 4mβ. Now we must choose ε so that (k + 1)α >
kα + 4mβ, so that we can differentiate between the two cases. We do so by
choosing ε < 1/(1 + 4m). Then (ϕ, k + 1) is in the language #(1-in-3)SAT(>)
iff P(Q) > (k + 1)α.

The whole construction is polynomial: the number of definition axioms is
at most quadratic in the number of literals of ϕ, and ε can be encoded with
O(m+ n) bits.

Because the construction just described is somewhat complicated, we present
an example. Consider again the sentence (A1 ∨A2 ∨A3)∧ (A4 ∨¬A1 ∨A3) and
the related variables Xij . We introduce definitions enforcing the 1-in-3 rule:

Y1112 ≡≡ X11 ∧X12 Y1113 ≡≡ X11 ∧X13 Y1213 ≡≡ X12 ∧X13 ,

Y2122 ≡≡ X21 ∧X22 Y2123 ≡≡ X21 ∧X23 Y2223 ≡≡ X22 ∧X23 ,
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and appropriate assignments in Q. We then guarantee that at most one of A1

and ¬A1 is true, by introducing Y1122 ≡≡ X11∧X22, and by adding {Y1122 = 0}
toQ. Note that there are configurations that are not sensible but that satisfy the
previous constraints: for instance, {L13 = L23 = 1, L11 = L12 = L21 = L22 = 0}
is not sensible and has probability α = (1−ε)2ε4. To remove those configurations
that are not sensible but that have “high” probability, we introduce:

Y1221 ≡≡ X12 ∧X21 , Y1223 ≡≡ X12 ∧X23 ,

Y1321 ≡≡ X13 ∧X21 , Y1323 ≡≡ X13 ∧X23 ,

Y1321 ≡≡ X13 ∧X21 , Y1322 ≡≡ X13 ∧X22 ,

Y1123 ≡≡ X11 ∧X23 , Y1223 ≡≡ X12 ∧X23 ,

and we add {E1221 = 0, E1223 = 0, E1321 = 0, E1323 = 0, E1321 = 0, E1322 =
0, E1123 = 0, E1223 = 0} to Q. There are 26 = 64 configurations of X11, . . . , X23,
and 15 of them have Xi1 = Xi2 = Xi3 = 0 for i = 1 or i = 2 (or both). Among
these ungratifying configurations, 8 do not respect the 1-in-3 rule; the remaining
7 that respect the 1-in-3 rule are assigned at most probability β. Among the 49
gratifying configurations (i.e., those that assign Xij = 1 for some j for i = 1, 2),
40 do not respect the 1-in-3 rule. Of the remaining 9 configurations, 7 are not
sensible. The last 2 configurations are assigned probability α. We thus have
that

P(Q) =
∑

x11,...,x23

P(X11 = x11, . . . , X23 = x23,Q) ≤ 2α+ 7β,

which implies that (ϕ, 3) is not in #(1-in-3)SAT(>); indeed, there are 2 < 3
assignments to A1, A2, A3, A4 that satisfy ϕ and respect the 1-in-3 rule.

This concludes our discussion of INF[Prop(∧)], so we move to INF[Prop(∨)].
To prove its PP-completeness, we must do almost exactly the same construction
described before, with a few changes that we enumerate.

First, we associate each literal with a random variable Xij as before, but
now Xij stands for a negated literal. That is, if the literal corresponding to
Xij is A and A is true, then {Xij = 0}. Thus we must associate each Xij

with the assessment P(Xij = 1) = ε. Definitions must change accordingly: a
configuration is now gratifying if Xi1 +Xi2 +Xi3 < 3.

Second, the previous construction used a number of definition axioms of the
form

Yiujv ≡≡ Xiu ∧X ′jv,

with associated assessment {Yiujv = 0}. We must replace each such pair by a
definition axiom

Yiujv ≡≡ Xiu ∨X ′jv
and an assessment {Yiujv = 1}; recall thatXiu is just the negation of the variable
used in the previous construction, so the overall effect of the constraints is the
same.

All other arguments carry, so we obtain the desired hardness.
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It is instructive to look at a proof of Theorem 2 that uses Turing reductions,
as it is much shorter than the previous proof:

Proof. To prove hardness of INF[Prop(∨)], we use the fact that the function
#MON2SAT is #P-complete with respect to Turing reductions [130, Theorem 1].
Recall that #MON2SAT is the function that counts the number of satisfying
assignments of a monotone sentence in 2CNF. So, we can take any MAJSAT
problem where the input is sentence φ and produce (with polynomial effort)
another sentence φ′ in 2CNF such that #φ is obtained from #φ′ (again with
polynomial effort). And we can compute #φ′ using INF[Prop(∨)], as follows.
Write φ′ as

∧m
i=1(Ai1 ∨ Ai2), where each Aij is a proposition in A1, . . . , An.

Introduce fresh propositions/variables Ci and definition axioms Ci ≡≡ Ai1 ∨
Ai2 . Also introduce P(Ai = 1) = 1/2 for each Ai, and consider the query Q =
{C1, . . . , Cm}. Note that P(Q) > γ if and only if #φ′ = 2nP(Q) > 2nγ, so
we can bracket #φ′. From #φ′ we obtain #φ and we can decide whether
#φ > 2n−1, thus solving the original MAJSAT problem.

To prove hardness of INF[Prop(∧)], note that the number of satisfying as-
signments of φ′ in 2CNF is equal to the number of satisfying assignments
of
∧m
i=1(¬Ai1 ∨ ¬Ai2), because one can take each satisfying assignment for

the latter sentence and create a satisfying assignment for φ′ by interchang-
ing true and false, and likewise for the unsatisfying assignments. Introduce
fresh propositions/variables Ci and definition axioms Ci ≡≡ Ai1 ∧ Ai2 . Also
introduce P(Ai = 1) = 1/2 for each Ai, and consider the query where Q =
{¬C1, . . . ,¬Cm}. Again we can bracket the number of assignments that satisfy
φ′, and thus we can solve any MAJSAT problem by using INF[Prop(∧)] and
appropriate auxiliary polynomial computations.

Appendix A.2. Relational languages (Section 5)
Theorem 4. INF[FFFO] is PEXP-complete with respect to many-one reductions,
regardless of whether the domain is specified in unary or binary notation.

Proof. To prove membership, note that a relational Bayesian network specifi-
cation based on FFFO can be grounded into an exponentially large Bayesian
network, and inference can be carried out in that network using a counting Tur-
ing machine with an exponential bound on time. This is true even if we have
unbounded arity of relations: even if we have domain size 2N and maximum
arity k, grounding each relation generates up to 2kN nodes, still an exponential
quantity in the input.

To prove hardness, we focus on binary domain size N as this simplifies
the notation. Clearly if N is given in unary, then an exponential number of
groundings can be produced by increasing the arity of relations (even if the
domain is of size 2, an arity k leads to 2k groundings).

Given the scarcity of PEXP-complete problems in the literature, we have to
work directly from Turing machines. Start by taking any language L such that
` ∈ L if and only ` is accepted by more than half of the computation paths of a
nondeterministic Turing machine M within time 2p(|`|) where p is a polynomial
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σ0 . . . . . . . . . . . . σi−1 (qaσ
i) σi+1 . . . row 2n − 1

...
...

...
...

...
...

...
...

... repeat
σ0 . . . . . . . . . . . . σi−1 (qaσ

i) σi+1 . . . repeat
σ0 . . . . . . . . . . . . σi−1 (qaσ

i) σi+1 . . . acceptance
...

...
...

...
...

...
...

...
... computations

(q0σ
0
∗) σ1

∗ . . . σm−1
∗ xy . . . . . . . . . xy row 0 (input)

Figure A.14: An accepting computation.

and |`| denotes the size of `. To simplify matters, denote p(|`|) by n. The Turing
machine is defined by its alphabet, its states, and its transition function.

Denote by σ a symbol inM’s alphabet, and by q a state ofM. A configuration
of M can be described by a string σ0σ1 . . . σi−1(qσi)σi+1 . . . σ2n−1, where each
σj is a symbol in the tape, (qσi) indicates both the state q and the position of
the head at cell i with symbol σi. The initial configuration is (q0σ

0)σ1
∗ . . . σ

m−1
∗

followed by 2n −m blanks, where q0 is the initial state. There are also states
qa and qr that respectively indicate acceptance or rejection of the input string
σ0
∗ . . . σ

m−1
∗ . We assume that if qa or qr appear in some configuration, then

the configuration is not modified anymore (that is, the transition moves from
this configuration to itself). This is necessary to guarantee that the number of
accepting computations is equal to the number of ways in which we can fill in a
matrix of computation. For instance, a particular accepting computation could
be depicted as a 2n × 2n matrix as in Figure A.14, where xy denotes the blank,
and where we complete the rows of the matrix after the acceptance by repeating
the accepting row.

The transition function δ of M takes a pair (q, σ) consisting of a state and
a symbol in the machine’s tape, and returns a triple (q′, σ′,m): the next state
q′, the symbol σ′ to be written in the tape (we assume that a blank is never
written by the machine), and an integer m in {−1, 0, 1}. Here −1 means that
the head is to move left, 0 means that the head is to stay in the current cell,
and 1 means that the head is to move right.

We now encode this Turing machine using monadic logic, mixing some ideas
by Lewis [77] and by Tobies [124].

Take a domain of size 22n. The idea is that each x is a cell in the com-
putation matrix. From now on, a “point” is a cell in that matrix. Introduce
parvariables X0(x ), . . . , Xn−1(x ) and Y0(x ), . . . , Yn−1(x ) to encode the index
of the column and the row of point x . Impose, for 0 ≤ i ≤ n − 1, the assess-
ments P(Xi(x ) = 1) = P(Yi(x ) = 1) = 1/2.

We need to specify the concept of adjacent points in the computation matrix.
To this end we introduce two macros, EAST(x , y) and NORTH(x , y) (note that
we do not actually need binary relations here; these expressions are just syntactic
sugar). The meaning of EAST(x , y) is that for point x there is a point y that is

42



immediately to the right of x ; the meaning of NORTH(x , y) is that for point x
there is a point y that is immediately on top of x [124].

EAST(x , y) :=

n−1∧
k=0

(∧k−1
j=0Xj(x ))→ (Xk(x )↔ ¬Xk(y)) (A.3)

∧
n−1∧
k=0

(∨k−1
j=0¬Xj(x ))→ (Xk(x )↔ Xk(y))

∧
n−1∧
k=0

(Yk(x )↔ Yk(y)).

NORTH(x , y) :=

n−1∧
k=0

(∧k−1
j=0Yj(x ))→ (Yk(x )↔ ¬Yk(y)) (A.4)

∧
n−1∧
k=0

(∨k−1
j=0¬Yj(x ))→ (Yk(x )↔ Yk(y))

∧
n−1∧
k=0

(Xk(x )↔ Xk(y)).

In these expressions an empty conjunction means true and an empty disjunction
means false.

Now introduce

Z1 ≡≡
(
∀x : ∃y : EAST(x , y)

)
∧
(
∀x : ∃y : NORTH(x , y)

)
,

Z2 ≡≡ ∃x :

n−1∧
k=0

(¬Xk(x ) ∧ ¬Yk(x )).

Now if Z1∧Z2 is true, we “build” a square “board” of size 2n×2n (in fact this is
a torus as the top row is followed by the bottom row, and the rightmost column
is followed by the leftmost column). The intuition is that Z2 guarantees the
existence of an element in the “origin” and then Z1 guarantees that neighbors
exist to the “east” and to the “north”.

Introduce a relation Cj for each triplet (α, β, γ) where each element of the
triplet is either a symbol σ or a symbol of the form (qσ) for our machine M,
and with an additional condition: if (α, β, γ) has β equal to a blank, then γ is a
blank. Furthermore, introduce a relation Cj for each triple (�, β, γ), where β and
γ are as before, and � is a new special symbol (these relations are needed later to
encode the “left border” of the board). We refer to each Cj as a tile, as we are in
effect encoding a domino system [77]. For each tile, impose P(Cj(x ) = 1) = 1/2.

Now each point must have one and only one tile:

Z3 ≡≡ ∀x :

c−1∨
j=0

Cj(x )

 ∧
 ∧

0≤j≤c−1,0≤k≤c−1,j 6=k

¬(Cj(x ) ∧ Ck(x ))

 .
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Having defined the tiles, we now define a pair of relations encoding the
“horizontal” and “vertical” constraints on tiles, so as to encode the transition
function of the Turing machine. Denote by H the relation consisting of pairs of
tiles that satisfy the horizontal constraints and by V the relation consisting of
pairs of tiles that satisfy the vertical constraints.

The horizontal constraints must enforce the fact that, in a fixed row, a tile
(α, β, γ) at column i for 0 ≤ i ≤ 2n − 1 overlaps the tile (α′, β′, γ′) at column
i+ 1 by satisfying

((α, β, γ), (α′, β′, γ′)) : β = α′, γ = β′.

The vertical constraints must encode the possible computations. To do so,
consider a tile t = (α, β, γ) at row j, for 0 ≤ j ≤ 2n − 1, and tile t′ = (α′, β′, γ′)
at row j + 1, both at the same column. The pair (t, t′) is in V if and only if
(a) t′ can be reached from t given the states in the Turing machine; and (b)
if t = (�, β, γ), then t′ = (�, β′, γ′) for β′ and γ′ that follow from the behavior
of M.

We distinguish the last row and the last column, as the transition function
does not apply to them:

DX(x ) ≡≡
n−1∧
k=0

Xk(x ), DY (x ) ≡≡
n−1∧
k=0

Yk(x ).

We can now encode the transition function:

Z4 ≡≡ ∀x : ¬DX(x )→

c−1∧
j=0

Cj(x )→ (∀y : EAST(x , y)→ ∨k:(j,k)∈HCk(y))

 ,

Z5 ≡≡ ∀x : ¬DY (x )→

c−1∧
j=0

Cj(x )→(∀y : NORTH(x , y)→ ∨k:(j,k)∈V Ck(y))

.
We create a parvariable that signals the accepting state:

Z6 ≡≡ ∃x :
∨

j:Cjcontains qa

Cj(x ).

Finally, we must also impose the initial conditions. Take the tiles in the
first row so that symbols in the input of M are encoded as m tiles, with the
first tile t0 = (�, (q0σ

0
∗), σ

1
∗) and the following ones tj = (σj−1

∗ , σj∗, σ
j+1
∗ ) up to

tm−1 = (σm−2
∗ , σm−1

∗ , xy). So the next tile will be (σm−1
∗ , xy, xy), and after that

all tiles in the first row will contain only blanks. Now take individuals ai for
i ∈ {0, . . . ,m − 1} and create an assignment {C0

i (ai) = 1} for each ai, where
C0
i is the ith tile encoding the initial conditions. Denote by E the set of such

assignments.
Now P

(
Z6 = 1|E ∧

∧5
i=1{Zi = 1}

)
> 1/2 if and only if the number of correct

arrangments of tiles that contain the accepting state is larger than the total
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number of possible valid arrangements. Hence an inference with the constructed
relational Bayesian network specification decides the language L we started with,
as desired.

Theorem 5. INF[ALC] is PEXP-complete with respect to many-one reductions
when domain size is given in binary notation.

Proof. Membership follows from Theorem 4.
To prove hardness, we simplify a previous proof by Cozman and Polastro [27],

using as much as possible the construction in the proof of Theorem 4. So as-
sume we have the input ` and the Turing machine M as described in that proof,
as well as the domain of size 22n. Assume also that we have the parvariables
X0(x ), . . . , Xn−1(x ), Y0(x ), . . . , Yn−1(x ), together with their associated assess-
ments P(Xi(x ) = 1) = P(Yi(x ) = 1) = 1/2, and the parvariables Cj(x ) with
their associated assessments P(Cj(x ) = 1) = 1/2. Then note that, using the
arguments around Expression (5), we can “create” quantification patterns such
as ∃y : X(x , y) and ∃y : Y (y) with probability one. We can use these pat-
terns to write all expressions defining Z1, Z2, . . . , Z6 in the proof of Theorem
4, except for the fact that macros EAST and NORTH (respectively Expressions
(A.3) and (A.4)) cannot be written directly with ALC. Thus we could, except
for the macros EAST and NORTH, repeat here the proof of Theorem 4, at the
end making our desired decision P

(
Z6 = 1|E ∧

∧5
i=1{Zi = 1}

)
> 1/2.

To reproduce the behavior of the macros EAST and NORTH, we resort to
techniques developed by Tobies [124]. First we introduce two binary relations,
east(x , y) and north(x , y); these relations will be forced to behave as the missing
macros. The groundings of east and north will be set to specific values given
the evidence on Z1, . . . , Z5, but to complete the specification we just introduce
P
(
east(x , y) = 1

)
= 1/2 and P

(
north(x , y) = 1

)
= 1/2. Then introduce:

Z7(x ) ≡≡
n−1∧
k=0

(∧k−1
j=0Xj(x ))→

 Xk(x )→ ∀y : east(x , y)→ ¬Xk(y)
∧

¬Xk(x )→ ∀y : east(x , y)→ Xk(y)


∧
n−1∧
k=0

(∨k−1
j=0¬Xj(x ))→

 Xk(x )→ ∀y : east(x , y)→ Xk(y)
∧

¬Xk(x )→ ∀y : east(x , y)→ ¬Xk(y)


∧
n−1∧
k=0

 Yk(x )→ ∀y : east(x , y)→ Yk(y)
∧

¬Yk(x )→ ∀y : east(x , y)→ ¬Yk(y)

 ,
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Z8(x ) ≡≡
n−1∧
k=0

(∧k−1
j=0Yj(x ))→

 Yk(x )→ ∀y : north(x , y)→ ¬Yk(y)
∧

¬Yk(x )→ ∀y : north(x , y)→ Yk(y)


∧
n−1∧
k=0

(∨k−1
j=0¬Yj(x ))→

 Yk(x )→ ∀y : north(x , y)→ Yk(y)
∧

¬Yk(x )→ ∀y : north(x , y)→ ¬Yk(y)


∧
n−1∧
k=0

 Xk(x )→ ∀y : north(x , y)→ Xk(y)
∧

¬Xk(x )→ ∀y : north(x , y)→ ¬Xk(y)

 .

Now replace EAST by east and NORTH by north in the definitions of Z1, Z4

and Z5, and introduce
Z9 = ∀x : Z7(x ) ∧ Z8(x ).

If Z1 ∧Z2 ∧Z9 is true, we ‘build” a torus as in the proof of Theorem 4; this is a
consequence of the fact that each one of the 22n cells of the torus must contain
at least an element of the domain [124, Lemma 3.5], and the fact that we have
exactly 22n elements in the domain. Hence we produce the desired decision by
P
(
Z6 = 1|{Z9 = 1} ∧E ∧

∧5
i=1{Zi = 1}

)
> 1/2.

Theorem 6. QINF[FFFO] is PEXP-complete with respect to many-one reduc-
tions when domain size is specified in binary notation.

Proof. Membership is obvious as the inferential complexity is already in PEXP.
To show hardness, take a Turing machine M that solves some PEXP-complete
problem within 2n steps, where n is polynomial on the size of the input ` (as in
the proof of Theorem 4). That is, there is a PEXP-complete language L such
that ` ∈ L if and only if the input string ` is accepted by more than half of the
computation paths of M within time 2n.

Such a Turing machine M has alphabet, states and transitions as in the proof
of Theorem 4. Assume that M repeats its configuration as soon as it enters into
the accepting or the rejecting state, as in the proof of Theorem 4.

To encode M we resort to a construction by Grädel [52] where relations of
arity two are used. We use: (a) for each state q of M, a unary relation Xq;
(b) for each symbol σ in the alphabet of M, a binary relation Yσ; (c) a binary
relation Z. The idea is that Xq(x ) means that M is in state q at computation
step x , while Yσ(x , y) means that σ is the symbol at the yth position in the
tape at computation step x , and Z(x , y) means that the machine head is at
the yth position in the tape at computation step x . Impose P(Xq(x ) = 1) =
P
(
Yσ(x , y) = 1

)
= P

(
Z(x , y) = 1

)
= 1/2.

We use a distinguished relation <, assumed not to be in the vocabulary.
This relation is to be a linear order on the domain; to obtain this behavior, just
introduce P

(
<(x , y) = 1

)
= 1/2 and

Z1 ≡≡ (∀x : ¬(x < x )) ∧
(∀x : ∀y : ∀z : (x < y ∧ y < z)→ x < z) ∧
(∀x : ∀y : (x < y) ∨ (y < x ) ∨ (x = y)).
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We will later set evidence on Z1 to force < to be a linear order. The important
point is that we can assume that a domain of size 2n is given and all elements
of this domain are ordered according to <.

Clearly we can define a successor relation using <:

successor(x , y) ≡≡ (x < y) ∧
(
¬∃z : (x < z) ∧ (z < y)

)
.

Also, we can define a relation that signals the “first” individual:

first(x ) ≡≡ ¬∃y : y < x .

We must guarantee that at any given step the machine is in a single state,
each cell of the tape has a single symbol, and the head is at a a single position
of the tape:

Z2 ≡≡ ∀x :
∨
q

Xq(x ) ∧
∧
q′ 6=q

¬Xq′(x )

 ,

Z3 ≡≡ ∀x : ∀y :
∨
σ

Yσ(x , y) ∧
∧
σ′ 6=σ

¬Yσ′(x , y)

 ,

Z4 ≡≡ ∀x : (∃y : Z(x , y) ∧ ∀z : (z 6= y)→ ¬Z(x , z)).

We also have to guarantee that computations do not change the content of
a cell that is not visited by the head:

Z5 ≡≡ ∀x : ∀y : ∀z :
∧
σ

(
¬Z(x , y) ∧ Yσ(x , y) ∧ successor(x , z)

)
→ Yσ(z, y).

We must encode the changes made by the transition function:

Z6 ≡≡ ∀x : ∀y : ∀z :
∧
q,σ

(
Z(x , y) ∧ Yσ(x , y) ∧Xq(x ) ∧ successor(x , z)

)
→

∨
(q′σ′,1)∈δ(q,σ)

(
Xq′(z) ∧ Yσ′(z, y) ∧ (∀w : successor(y ,w)→ Z(z,w))

)
∨

∨
(q′σ′,0)∈δ(q,σ)

(
Xq′(z) ∧ Yσ′(z, y) ∧ Z(z, y)

)
∨

∨
(q′σ′,1)∈δ(q,σ)

(
Xq′(z) ∧ Yσ′(z, y) ∧ (∀w : successor(w , y)→ Z(z,w))

)
.

We must also guarantee that all cells to the right of a blank cell are also
blank:

Z7 ≡≡ ∀x : ∀y : ∀z : Yxy(x , y) ∧ successor(y , z)→ Yxy(x , z).

Finally, we must signal the accepting state:

Z8 ≡≡ ∃x : Xqa(x ).

47



We have thus created a set of formulas that encode the behavior of the Turing
machine. Now take the input string `, equal to σ0

∗, σ
1
∗, . . . , σ

m−1
∗ , and encode

it as a query as follows. Start by “creating” the first individual in the ordering
by taking the assignment {first(a0) = 1}. Then introduce {Z(a0, a0) = 1} to
initialize the head. Introduce {Yσ0

∗
(a0, a0) = 1} to impose the initial condition

on the first cell, and for each subsequent initial condition σi∗ we set {Yσi
∗
(a0, ai) =

1} and {successor(ai−1, ai) = 1} where ai is a fresh individual. Finally, set
{Yxy(a0, am) = 1} and {successor(am−1, am) = 1} and {Xq0(a0) = 1}. These
assignments are denoted by E.

Now P
(
Z8 = 1|E ∧

∧7
i=1{Zi = 1}

)
> 1/2 for a domain of size 2n if and only

if the number of interpretations reaching the accepting state is larger than the
total number of possible interpretations encoding computation paths.

Theorem 7. QINF[FFFO] is PP-complete with respect to many-one reductions
when domain size is specified in unary notation.

Proof. To prove hardness, take a MAJSAT problem where φ is in CNF with m
clauses and propositions A1, . . . , An. Make sure m = n: if m < n, then add
trivial clauses such as A1 ∨ ¬A1; if instead n < m, then add fresh propositions
An+1, . . . , Am. These changes do not change the output of MAJSAT. Introduce
unary relations sat(x ) and impose P(sat(x )) = 1/2. Take a domain {1, . . . , n};
the elements of the domain serve a dual purpose, indexing both propositions and
clauses. Introduce relations sat(x ), positiveLit(x , y) and negativeLit(x , y), as-
sessments P(sat(x ) = 1) = P

(
positiveLit(x , y) = 1

)
= P

(
negativeLit(x , y) = 1

)
=

1/2, and definition axioms:

clause(x ) ≡≡ ∃y : (positiveLit(x , y) ∧ sat(y)) ∨
∃y : (negativeLit(x , y) ∧ ¬sat(y)), (A.5)

query ≡≡ ∀x : clause(x ). (A.6)

Take evidence E as follows. For each clause, run over the literals. Consider the
ith clause, and its non-negated literal Aj : set positiveLit(i, j) to true. And con-
sider negated literal ¬Aj : set negativeLit(i, j) to true. Set all other groundings
of positiveLit and negativeLit to false. Note that P(E) = 2−2n2

> 0. Now decide
whether P(query = 1|E) > 1/2. If YES, the MAJSAT problem is accepted, if
NO, it is not accepted. Hence we have the desired polynomial reduction (the
query is quadratic on domain size; all other elements are linear on domain size).

To prove membership in PP, we describe a Turing machine M that decides
whether P(Q|E) > γ. The machine guesses a truth assignment for each one
of the polynomially-many grounded root nodes (and writes the guess in the
working tape). Note that each grounded root node X is associated with an
assessment P(X = 1) = c/d, where c and d are the smallest such integers. Then
the machine replicates its computation paths out of the guess on X: there are c
paths with identical behavior for guess {X = 1}, and d− c paths with identical
behavior for guess {X = 0}.
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Now the machine verifies whether the set of guessed truth assignment sat-
isfies E; if not, move to state q1. If yes, then verify whether the guessed truth
assignment fails to satisfy Q; if not, move to state q2. And if yes, then move to
state q3. The key point is that there is a logarithmic space, hence polynomial-
time, algorithm that can verifiy whether a set of assignments holds once the
root nodes are set [78, Section 6.2].

Suppose that out of N computation paths that M can take, N1 of them
reach q1, N2 reach q2, and N3 reach q3. By construction,

N1/N = 1− P(E) , N2/N = P(¬Q,E) , N3/N = P(Q,E) , (A.7)

where we abuse notation by taking ¬Q to mean that some assignment in Q is
not true. Note that up to this point we do not have any rejecting nor accepting
path, so the specification of M is not complete.

The remainder of this proof just reproduces a construction by Park in his
proof of PP-completeness for propositional Bayesian networks [33, Theorem
11.5]. Park’s construction adds rejecting/accepting computation paths ema-
nating from q1, q2 and q3. It uses numbers

a =

{
1 if γ < 1/2,
1/(2γ) otherwise, b =

{
(1− 2γ)/(2− 2γ) if γ < 1/2,
0 otherwise,

and the smallest integers a1, a2, b1, b2 such that a = a1/a2 and b = b1/b2.
Now, out of q1 branch into a2b2 computation paths that immediately stop at
the accepting state, and a2b2 computation paths that immediately stop at the
rejecting state.8 Out of q2 branch into 2a2b1 paths that immediately stop at the
accepting state, and 2(b2 − b1)a2 paths that immediately stop at the rejecting
state. Out of q3 branch into 2a1b2 paths that immediately stop at the accepting
state, and 2(a2−a1)b2 paths that immediately stop at the rejecting state. For the
whole machineM, the number of computation paths that end up at the accepting
state is a2b2N1+2a2b1N2+2a1b2N3, and the total number of computation paths
is a2b2N1 + a2b2N1 + 2b1a2N2 + 2(b2 − b1)a2N2 + 2a1b2N3 + 2(a2 − a1)b2N3 =
2a2b2N . Hence the number of accepting paths divided by the total number of
paths is (N1(1/2) + (b1/b2)N2 + (a1/a2)N3)/N . By combining this construction
with Expression (A.7), we obtain

N1

2 + b1N2

b2
+ a1N3

a2

N
> 1/2 ⇔ 1− P(E)

2
+ bP(¬Q,E) + aP(Q,E) > 1/2

⇔ aP(Q,E) + bP(¬Q,E) > P(E) /2 ⇔ aP(Q|E) + bP(¬Q|E) > 1/2,

8The number of created paths may be exponential in the numbers a2 and b2; however it
is always possible to construct a polynomial sequence of steps that encodes an exponential
number of paths (say the number of paths has B bits; then build B distinct branches, each
one of them multiplying alternatives so as to simulate an exponential). This sort of branching
scheme is also assumed whenever needed.
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as we can assume that P(E) > 0 (otherwise the number of accepting paths is
equal to the number of rejecting paths), and then{

if γ < 1/2 : P(Q|E) + 1−2γ
2−2γ (1− P(Q|E)) > 1/2 ⇔ P(Q|E) > γ;

if γ ≥ 1/2 : (1/(2γ))P(Q|E) > 1/2 ⇔ P(Q|E) > γ.

Hence the number of accepting computation paths of M is larger than half the
total number of computation paths if and only if P(Q|E) > γ. This completes
the proof of membership.

Theorem 8. Suppose NETIME 6= ETIME. Then DINF[FFFO] is not solved in
deterministic exponential time when domain size is given in binary notation.

Proof. Jaeger describes results implying, in case NETIME 6= ETIME, that there
is a sentence φ ∈ FFFO such that the spectrum of φ cannot be recognized in
deterministic exponential time [63]. Recall: the spectrum of a sentence is a set
containing each integer N , in binary notation, such that φ has a model whose
domain size is N [52]. So take N in binary notation, the relational Bayesian
network specification A ≡≡ φ, and decide whether P(A) > 0 for domain size N ;
if yes, then N is in the spectrum of φ.

Theorem 9. DINF[FFFO] is PP1-complete with respect to many-one reductions
when domain size is given in unary notation.

Proof. To prove membership, just consider the Turing machine used in the proof
of Theorem 7, now with a fixed query. This is a polynomial-time nondetermin-
istic Turing machine that gets the domain size in unary (that is, as a sequence
of 1s) and produces the desired output.

To prove hardness, take a Turing machine with input alphabet consisting
of symbol 1, and that solves a PP1-complete problem in Nm steps for input
consisting of N symbols 1. Take the probabilistic assessment and the definition
axioms for successor, first, and Z1 as in the proof of Theorem 6. Now introduce
relations Xq, Yσ and Z as in that proof, with the difference that x is substituted
for m logvars xi, and likewise y is substituted for m logvars xj . For instance,
we now have Z(x1, . . . , xm, y1, . . . , ym). Repeat definition axioms for Z2, . . . , Z8

as presented in the proof of Theorem 6, with appropriate changes in the arity
of relations. In doing so we have an encoding for the Turing machine where the
computation steps are indexed by a vector [x1, . . . , xm], and the tape is indexed
by a vector [y1, . . . , ym]. The remaining problem is to insert the input. To do
so, introduce:

Z ′ ≡≡ ∀x : ∀y1 : . . . ∀ym : first(x )→ ∧
i∈{2,...,m}

first(yi)→ Y1(

m logvars︷ ︸︸ ︷
x , . . . , x , y1, . . . , ym)


∧

¬ ∧
i∈{2,...,m}

first(yi)→ Yxy(

m logvars︷ ︸︸ ︷
x , . . . , x , y1, . . . , ym)

 .
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Now P
(
Z8 = 1|{Z ′ = 1} ∧

∧7
i=1{Zi = 1}

)
> 1/2 for a domain of size N if and

only if the number of interpretations that set an accepting state to true is larger
than half the total number of interpretations encoding computation paths.

Theorem 10. INF[FFFO] is PSPACE-complete with respect to many-one re-
ductions when relations have bounded arity and domain size is given in unary
notation.

Proof. To prove membership, construct a Turing machine that goes over the
truth assignments for all of the polynomially-many grounded root nodes. The
machine generates an assignment, writes it using polynomial space, and verifies
whether E can be satisfied: there is a polynomial-space algorithm to do this, as
we basically need to do model checking in first-order logic [52, Section 3.1.4].
While cycling through truth assignments, keep adding the probabilities of the
truth assignments that satisfy E. If the resulting probability for E is zero, reject;
otherwise, again go through every truth assignment of the root nodes, now
keeping track of how many of them satisfy {Q,E}, and adding the probabilities
for these assignments. Then divide the probability of {Q,E} by the probability
of E, and compare the result with the rational number γ.

To show hardness, consider the definition axiom Y ≡≡ Q1x1 : . . . Qnxn :
φ(x1, . . . , xn), where each Qi is a quantifier (either ∀ or ∃) and φ is a quantifier-
free formula containing only Boolean operators, a unary relation X, and logvars
x1, . . . , xn. The relation X is associated with assessment P(X(x ) = 1) = 1/2.
Take domain D = {0, 1} and evidence E = {X(0) = 0, X(1) = 1}. Then
P(Y = 1|E) > 1/2 if and only if Q1x1 : . . . Qnxn : φ(x1, . . . , xn) is satisfiable.
Deciding the latter satisfiability question is in fact equivalent to deciding the
satisfiability of a Quantified Boolean Formula, a PSPACE-complete problem [78,
Section 6.5].

Now consider the bounded variable fragment FFFOk. It is important to
notice that if the body of every definition axiom belongs to FFFOk for an integer
k, then all definition axioms together are equivalent to a single formula in FFFOk.
Hence results on logical inference for FFFOk can be used to derive inferential,
query and domain complexities.

Theorem 11. INF[FFFOk] is PP-complete with respect to many-one reductions
for all k ≥ 0 when domain size is given in unary notation.

Proof. Hardness is trivial: even Prop(∧,¬) is PP-hard. To prove membership,
use the Turing machine described in the proof of membership in Theorem 7, with
a small difference: when it is necessary to check whether E (or Q ∪ E) holds
given a guessed assignment for root nodes, use the appropriate model checking
algorithm [135], as this verification can be done in polynomial time.

Theorem 12. QINF[FFFOk] is PP-complete with respect to many-one reduc-
tions for all k ≥ 2 when domain size is given in unary notation.
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Proof. To prove membership, note that QINF[FFFO] is in PP by Theorem 7.
To prove hardness, note that the proof of hardness in Theorem 7 uses only
FFFO2.

Theorem 13. DINF[FFFOk] is PP1-complete with respect to many-one reduc-
tions for k > 2 and polynomial for k ≤ 2 when domain size is given in unary
notation.

Proof. For k ≤ 2, results in the literature show how to count the number of
satisfying models of a formula in polynomial time [132, 134].

For k > 2, membership is shown as the proof of Theorem 9. Hardness has
been in essence proved by Beame et al. [8, Lemmas 3.8, 3.9]; our only con-
tribution is to simplify their arguments by removing the need to enumerate
the counting Turing machines. Take a Turing machine M that solves a #P1-
complete problem in Nm steps for an input consisting of N ones. By padding
the input, we can always guarantee that M runs in time linear in the input. To
show this, consider that for the input sequence with N ones, we can generate
another sequence S(N) consisting of f(N) = (2N + 1)2mdlog2Ne ones. Because
(21+log2N )m ≥ 2mdlog2Ne, we have (2N + 1)2mNm > f(N), and consequently
S(N) can be generated in polynomial time. Modify M so that the new machine
proceeds as follows:
(a) it receives S(N);
(b) in linear time it produces the binary representation of S(N), using an aux-
iliary tape;9
(c) it then discards the trailing zeroes to obtain 2N + 1;
(d) it computes N ;
(e) it writes N ones in its tape;
(f) and then it runs the original computation in M.
Because 2mdlog2Ne ≥ Nm, we have f(N) > Nm, and consequently the new
machine runs in time that is overall linear in the input size f(N), and in space
within f(N). Suppose, to be concrete, that the new machine runs in time that is
smaller than Mf(N) for some integer M . We just have to encode this machine
in FFFO3, by reproducing a clever construction due to Beame et al. [8]. We now
briefly replay that construction in a simplified form.

We use the Turing machine encoding described in the proof of Theorem 8,
but instead of using a single relation Z(x , y) to indicate the head position at

9For instance: go from left to right replacing pairs 11 by new symbols ♣♥; if a blank is
reached in the middle of such a pair, then add a 1 at the first blank in the auxiliary tape, and
if a blank is reached after such a pair, then add a 0 at the first blank in the auxiliary tape;
then mark the current end of the auxiliary tape with a symbol ♠ and return from the end of
the main tape, erasing it and adding a 1 to the end of the auxiliary tape for each ♥ in the main
tape; now copy the 1s after ♠ from the auxiliary tape to the main tape (and remove these 1s
from the auxiliary tape), and repeat. Each iteration has cost smaller than (U + U + logU)c
for some constant c, where U is the number of ones in the main tape; thus the total cost from
input of size f(N) is smaller than 3c(f(N) + f(N)/2 + f(N)/4 + . . . ) ≤ 6cf(N).
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step x , we use

Z1,1(x , y), . . . , ZM,1(x , y), Z1,2(x , y), . . . , ZM,2(x , y),

with the understanding that for a fixed x we have that Zi,j(x , y) yields the
position y of the head in step x and sub-step i, either in the main tape (tape
1) or in the auxiliary tape (tape 2). So, Z1,j is followed by Z2,j and so on until
ZM,j for a fixed step x . Similarly, we use Xt

q(x ), Y t,1σ (x , y) and Y t,2σ (x , y) for
t ∈ {1, . . . ,M}. Definition axioms must be changed accordingly; for instance,
we have

Z2 ≡≡ ∀x :
∧
t

∨
q

Xt
q(x ) ∧

∧
q′ 6=q

¬Xt
q′(x )

 ,

and

Z3 ≡≡ ∀x :
∧
t

∀y :
∧

j∈{1,2}

∨
σ

Y t,jσ (x , y) ∧
∧
σ′ 6=σ

¬Y t,jσ′ (x , y)

 .

As another example, we can change Z4 as follows. First, introduce auxiliary
definition axioms:

W t
1(x ) ≡≡ ∃y : Zt,1(x , y) ∧ (∀z : (z 6= y)→ ¬Zt,1(x , z)) ∧ (∀z : ¬Zt,2(x , z)),

W t
2(x ) ≡≡ ∃y : Zt,2(x , y) ∧ (∀z : (z 6= y)→ ¬Zt,2(x , z)) ∧ (∀z : ¬Zt,1(x , z)),

and then write:
Z4 ≡≡ ∀x :

∧
t

W t
1(x ) ∧W t

2(x ).

Similar changes must be made to Z7:

Z7 ≡≡ ∀x :
∧
t

∀y :
∧

j∈{1,2}

∀z : Y t,jxy (x , y) ∧ successor(y , z)→ Y t,jxy (x , z).

The changes to Z5 and Z6 are similar, but require more tedious repetition; we
omit the complete expressions but explain the procedure. Basically, Z5 and Z6

encode the transitions of the Turing machine. So, instead of just taking the
successor of a computation step x , we must operate in substeps: the successor
of step x substep t is x substep t + 1, unless t = M (in which case we must
move to the successor of x , substep 1). We can also capture the behavior of the
Turing machine with two transition functions, one per tape, and it is necessary
to encode each one of them appropriately. It is enough to have M different
versions of Z5 and 2M different versions of Z6, each one of them responsible for
one particular substep transition.

We must then encode the initial conditions. Introduce:

last(x ) ≡≡ ¬∃y : x < y
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and

Z8 ≡≡
(
∀x : ∀y : (first(x ) ∧ ¬last(y))→ Y 1,1

1 (x , y)
)

∧
(
∀x : ∀y : (first(x ) ∧ last(y))→ Y 1,1

xy (x , y)
)

∧
(
∀x : ∀y : first(x )→ Y 1,2

xy (x , y)
)
.

Finally, we must detect acceptance:

Z9 ≡≡ ∃x :
∨
t

Xt
qa(x ).

Now P
(
Z9 = 1|

∧8
i=1{Zi = 1}

)
> 1/2 for a domain of size f(N) + 1 if and

only if the number of interpretations that set an accepting state to true is larger
than half the total number of interpretations encoding computation paths.

Theorem 14. Suppose relations have bounded arity. INF[QF] and QINF[QF]
are PP-complete with respect to many-one reductions, and DINF[QF] requires
constant computational effort. These results hold even if domain size is given in
binary notation.

Proof. Consider first INF[QF]. To prove membership, take a relational Bayesian
network specification S with relations X1, . . . , Xn, all with arity no larger than
k. Suppose we ground this specification on a domain of size N . To compute
P(Q|E), the only relevant groundings are the ones that are ancestors of each of
the ground atoms in Q ∪E. Our strategy will be to bound the number of such
relevant groundings. To do that, take a grounding Xi(a1, . . . , aki) in Q ∪ E,
and suppose that Xi is not a root node in the parvariable graph. Each parent
Xj of Xi in the parvariable graph may appear in several different forms in the
definition axiom related to Xi; that is, we may have Xj(x2, x3), Xj(x9, x1), . . . ,
and each one of these combinations leads to a distinct grounding. There are in
fact at most kkii ways to select individuals from the grounding Xi(a1, . . . , aki) so
as to form groundings of Xj . So for each parent of Xi in the parvariable graph
there will be at most kk relevant groundings. And each parent of these parents
will again have at most kk relevant groundings; hence there are at most (n−1)kk

relevant groundings that are ancestors of Xi(a1, . . . , aki). We can take the union
of all groundings that are ancestors of groundings of Q ∪E, and the number of
such groundings is still polynomial in the size of the input. Thus in polynomial
time we can build a polynomially-large Bayesian network that is a fragment of
the grounded Bayesian network. Then we can run a Bayesian network inference
in this smaller network (an effort within PP); note that domain size is actually
not important so it can be specified either in unary or binary notation. To prove
hardness, note that INF[Prop(∧,¬)] is PP-hard, and a propositional specification
can be reproduced within QF.

Now consider QINF[QF]. To prove membership, note that even INF[QF] is in
PP. To prove hardness, take an instance of #3SAT(>) consisting of a sentence φ
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in 3CNF, with propositions A1, . . . , An, and an integer k. Consider the relational
Bayesian network specification consisting of eight definition axioms:

clause0(x , y , z) ≡≡ ¬sat(x ) ∨ ¬sat(y) ∨ ¬sat(z),

clause1(x , y , z) ≡≡ ¬sat(x ) ∨ ¬sat(y) ∨ sat(z),

clause2(x , y , z) ≡≡ ¬sat(x ) ∨ sat(y) ∨ ¬sat(z),

...
...

...
clause7(x , y , z) ≡≡ sat(x ) ∨ sat(y) ∨ sat(z),

and P(sat(x ) = 1) = 1/2. Now the query is just a set of assignments Q (E is
empty) containing an assignment per clause. If a clause is ¬A2∨A3∨¬A1, then
take the corresponding assignment {clause2(a2, a3, a1) = 1}, and so on. The
#3SAT(>) problem is solved by deciding whether P(Q) > k/2n with domain of
size n; hence the desired hardness is proved.

And DINF[QF] requires constant effort: in fact, domain size is not relevant
to a fixed inference, as can be seen from the proof of inferential complexity
above.

Appendix A.3. Description logics (Section 6)
Theorem 15. Suppose the domain size is specified in unary notation. Then
INF[ALC] and QINF[ALC] are PP-complete with respect to many-one reductions,
and DINF[ALC] is in P.

Proof. Because ALC is in FFFO2, both INF[ALC] and QINF[ALC] are in PP by
Theorems 11 and 12, and DINF[ALC] is in P. A simple proof for PP-hardness
of INF[ALC] and QINF[ALC] can be extracted from the proof of Theorem 7:
reproduce that proof, except that Expression (A.6) must be discarded and the
inference now asks whether P(clause(1) = 1, . . . , clause(n) = 1|E) > 1/2. This
shows the desired hardness as Expression (A.5) belongs to ALC.

Theorem 16. Suppose the domain size is specified in unary notation. Then
INF[EL] and QINF[EL] are PP-complete with respect to many-one reductions,
even if the query contains only positive assignments, and DINF[EL] is in P.

Proof. INF[EL] belongs to PP by Theorem 11 as EL belongs to FFFO2. Hardness
is obtained from hardness of query complexity.

So, consider QINF[EL]. Membership follows from membership of INF[EL], so
we focus on hardness. Our strategy is to reduce #(1-in-3)SAT(>) to QINF[EL],
using most of the construction in the proof of Theorem 2. So take a sentence φ in
3CNF with propositions A1, . . . , An and m clauses, and an integer k. The goal
is to decide whether #(1-in-3)φ > k. We can assume that no clause contains a
repeated literal.

We start by adapting several steps in the proof of Theorem 2. First, associate
each literal with a random variable Xij (where Xij stands for a negated literal).
In the present proof we use a parvariable X(x ); the idea is that x is the integer
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3(i− 1) + j for some i ∈ {1, . . . , n} and j ∈ {1, 2, 3} (clearly we can obtain (i, j)
from x and vice-versa). Then associate X with the assessment

P(X(x ) = 1) = ε,

where ε is exactly as in the proof for INF[Prop(∨)].
The next step in the proof of Theorem 2 is to introduce a number of definition

axioms of the form Yiuv ≡≡ Xiu ∨Xiv, together with assignments {Yiuv = 1}.
There are 3m such axioms. Then additional axioms are added to guarantee that
configurations are sensible. Note that we can compute in polynomial time the
total number of definition axioms that are to be created. We denote this number
by N , as we will use it as the size of the domain. In any case, we can easily
bound N : first, each clause produces 3 definition axioms as in Expression (A.2);
second, to guarantee that configurations are sensible, every time a literal is
identical to another literal, or identical to the negation of another literal, four
definition axioms are inserted (there are 3m literals, and for each one there may
be 2 identical/negated literals in the other m − 1 clauses). Thus we have that
N ≤ 3m+ 4× 3m× 2(m− 1) = 24m2− 21m. Suppose we order these definition
axioms from 1 to N by some appropriate scheme.

To encode these N definition axioms, we introduce two other parvariables
Y (x ) and Z(x , y), with definition axiom

Y (x ) ≡≡ ∃y : Z(x , y) ∧X(y)

and assessment
P
(
Z(x , y) = 1

)
= η,

for some η to be determined later. The idea is this. We take a domain with size
N , and for each x from 1 to N , we set Z(x , y) to 0 if X(y) does not appear in
the definition axiom indexed by x , and we set Z(x , y) to 1 if X(y) appears in
the definition axiom indexed by x . We collect all these assignments in a set E.
Note that E in effect “creates” all the desired definition axioms by selecting two
instances of X per instance of Y .

Note that if we enforce {Y (x ) = 1} for all x , we obtain the same construction
used in the proof of Theorem 2, we one difference: in that proof we had 3m
variables Xij , while here we have N variables X(x ) (note that N ≥ 3m, and in
fact N > 3m for m > 1).

Consider grounding this relational Bayesian network specification and com-
puting

P(X(1) = x1, . . . , X(N) = xN , Y (1) = y1, . . . , Y (N) = yN |E) .

This distribution is encoded by a Bayesian network with nodes X(1), . . . , X(N)
and nodes Y (1), . . . , Y (N), where all nodes Z(x , y) are removed as they are set
by E; also, each node Y (x ) has two parents, and all nodes X(3m + 1), . . . , X(N)
have no children. Denote by L a generic configuration of X(1), . . . , X(3m), and
by Q a configuration of Y (1), . . . , Y (N) where all variables are assigned value
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1. As in the proof of Theorem 2, we have P(L) = α if L is gratifying-sensible-
respectful, and P(L) ≤ β if L is respectful but not gratifying. If #(1-in-3)φ > k,
then P(Q|E) =

∑
L P(L,Q) ≥ (k+ 1)α. And if #(1-in-3)φ ≤ k, then P(Q|E) ≤

kα+ 4mβ. Define δ1 = (k+ 1)α and δ2 = kα+ 4mβ and choose ε < 1/(1 + 4m)
to guarantee that δ1 > δ2, so that we can differentiate between the two cases
with an inference.

We have thus solved our original problem using a fixed Bayesian network
specification plus a query (Q,E). Hence PP-hardness of QINF[EL] is obtained.
However, note that Q contains only positive assignments, but E contains both
positive and negative assignments. We now constrain ourselves to positive as-
signments.

Denote by E1 the assignments of the form {Z(x , y) = 1} in E, and denote
by E0 the assignments of the form {Z(x , y) = 0} in E. Consider:

P(Q|E1) = P(Q|E0,E1)P(E0|E1) + P(Q|Ec0,E1)P(Ec0|E1) ,

where Ec0 is the event consisting of configurations of those variables that appear
in E0 such that at least one of these variables is assigned 1 (of course, such
variables are assigned 0 in E0).

We have that P(Q|E0,E1) = P(Q|E) by definition. And variables in E0

and E1 are independent, hence P(E0|E1) = P(E0) = (1 − η)M where M is the
number of variables in E0 (soM ≤ N2). Consequently, P(Ec0|E1) = 1−(1−η)M .
Thus we reach:

P(Q|E1) = (1− η)MP(Q|E) + (1− (1− η)M )P(Q|Ec0,E1) .

Now reason as follows. If #(1-in-3)φ > k, then P(Q|E1) ≥ (1− η)Mδ1. And
if #(1-in-3)φ ≤ k, then P(Q|E1) ≤ (1−(1−η)M )+(1−η)Mδ2. To guarantee that
(1−η)Mδ1 > (1−(1−η)M )+(1−η)Mδ2, we must have (1−η)M > 1/(1+δ1−δ2).
We do so by selecting η appropriately. Denote 1/(1 + δ1 − δ2) by δ3, and note
that δ3 ∈ (0, 1) by our choice of ε. We must select η so that 1 − η > δ

1/M
3 ; to

guarantee this, we find a quantity δ4 that is guaranteed to be larger than δ1/M
3 ,

and impose 1− η > δ4. Note that 1 + (x− 1)/M > x1/M for any x ∈ (0, 1), so
take δ4 = 1 + (δ3 − 1)/M and impose

1− η > δ4 = 1 + (δ3 − 1)/M = 1 +

(
1

1 + δ1 − δ2
− 1

)
/M ;

that is,

η < 1− δ4 =

(
1− 1

1 + δ1 − δ2

)
/M.

By doing so, we can differentiate between the two cases with an inference, so
the desired hardness is proved.

Domain complexity is polynomial because EL is in FFFO2 [132, 134].

Theorem 17. Suppose the domain size is specified in unary notation. If in
addition the query (Q,E) contains only positive assignments, then INF[DLLitenf ]
and QINF[DLLitenf ] and DINF[DLLitenf ] are in P.
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Proof. We prove the polynomial complexity of INF[DLLitenf ] with positive queries
by a quadratic-time reduction to multiple problems of counting weighted edge
covers with uniform weights in a particular class of graphs. Each one of these
counting problems can be in turn solved in quadratic time; thus the whole effort
is polynomial.

We describe techniques to compute the probability of a set of positive as-
signments. One must first compute the probability of all assignments in (Q,E),
then the probability of assignments in E, and finally divide both numbers. From
now on Q refers to a set of positive assignments whose probability is of interest;
this set may include or be restricted to E as needed.

We first simplify a bit the notation, as follows. Introduce er(x ) ≡ ∃y : r(x , y)
and e−r (x ) ≡ ∃y : r(y , x ). Then replace each appearance of the formula ∃y :
r(x , y) by er(x ) (or ∃x : r(y , x ) by er(y)), and each appearance of ∃y : r(y , x ) by
e−r (x ) (or ∃x : r(x , y) by e−r (y)). This transformation allows us to easily refer
to groundings of existentially quantified formulas as groundings of er and e−r ,
respectively.

Observe that only the nodes with assignments in Q and their ancestors
are relevant for the computation of P(Q), as every other node in the Bayesian
network is barren [33]. Hence, we can assume without loss of generality that Q
contains only leaves of the network. If Q contains only root nodes, then P(Q)
can be computed trivially as the product of marginal probabilities which are
readily available from the specification. Thus assume that Q assigns a positive
value to at least one non-root leaf grounding s(a), where a is some individual
in the domain. Suppose s(a) is associated with a logical sentence X1 ∧ · · · ∧Xk,
where each Xi is a grounding of a unary relation in a. It follows that P(Q) =
P(s(a) = 1|X1 = 1, . . . , Xk = 1)P(Q′) = P(Q′), where Q′ is Q after removing
the assignment {s(a) = 1} and adding the assignments {X1 = 1, . . . , Xk = 1}.
The problem of computing P(Q) boils down to computing P(Q′). By repeating
this procedure for all non-root nodes which are not groundings of er or e−r , we
end up with a set A containing positive assignments of groundings of relations,
including of auxiliary relations er and e−r . Each root node is is marginally
independent from all other groundings in A; hence P(A) = P(B|C)

∏
i P(Ai),

where each Ai is an assignment to a root node, B are (positive) assignments
to groundings of relations er and e−r for relations r, and C ⊆ {A1, A2, . . . }
are groundings of binary relations (if C is empty then assume it expresses a
tautology). Because the marginal probabilities P(Ai) are available from the
specification,

∏
i P(Ai) can be computed in linear time from the input. We thus

focus on computing P(B|C). To recap, B is a set of assignments er(a) = 1 and
e−r (b) = 1 and C is a set of assignments r(c, d) = 1 for arbitrary binary relations
r and individuals a, b, c and d. Note that if B is empty, we are done.

For a binary relation r, let Dr be the set of individuals a ∈ D such that
er(a) = 1 is in B, and let D−r be the set of individuals a ∈ D such that B
contains e−r (a) = 1. Let gr(r) be the set of all groundings of relation r, and let
r1, . . . , rk be the binary relations in the (relational) network. By the factorization
property of Bayesian networks it follows that
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P(B|C) =
∑
gr(r1)

· · ·
∑
gr(rk)

k∏
i=1

∏
a∈Dri

P(eri(a) = 1|pa(eri(a)),C)×

∏
a∈D−ri

P
(
e−ri (a) = 1|pa(e−ri (a)),C

)
P(gr(ri)|C) ,

noting that we only write down the groundings from gr(ri) that affect groundings
eri and e−ri (using the Markov condition on the grounded Bayesian network).

By distributing the products over sums in the last expression, we obtain:

P(B|C) =

k∏
i=1

∑
gr(ri)

∏
a∈Dri

P(eri(a)=1|pa(eri(a)),C)×

∏
a∈D−ri

P
(
e−ri (a)=1|pa(e−ri (a)),C

)
P(gr(ri)|C) .

Now consider an assignment r(a, b) = 1 inC. By construction, the children of
the grounding r(a, b) are er(a) and e−r (b). Moreover, the assignment r(a, b) = 1
implies that P(er(a) = 1|pa(er(a)),C) = 1 (for any assignment to the other
parents) and P(e−r (b) = 1|pa(er(a)),C) = 1 (for any assignment to the other
parents). This is equivalent in the factorization above to removing r(a, b) from
C (as it is independent of all other groundings), and removing individuals a
from Dr and b from D−r . So repeat this procedure for every grounding in C
until this set is empty (this can be done in polynomial time). The inference
problem becomes one of computing

γ(ri) =
∑
gr(ri)

∏
a∈Dri

P(eri(a) = 1|pa(eri(a)))
∏
a∈D−ri

P
(
e−ri (a) = 1|pa(e−ri (a))

)
P(gr(ri))

for every relation ri, i = 1, . . . , k, with properly adapted sets Dri and D−ri . We
will show that this problem can be reduced to a tractable instance of counting
weighted edge covers. To this end, we need to introduce some notation and
terminology that we also use in the next section.

A black-and-white graph (bw-graph) is a triple G = (V,E, χ) where (V,E)
is a simple undirected graph and χ : V → {0, 1} is a binary-valued function on
the node set (assume 0 means white and 1 means black). Denote by EG(u) the
set of edges incident on a node u ∈ V , and by NG(u) the open neighborhood of
u (i.e., not including u). An edge cover of a bw-graph is a subset of the edges
C ⊆ E such that for each black node u we have that EG(u)∩C 6= ∅ (i.e., there is
at least one edge incident in each black node). Denote by EC(G) the set of edge
covers of G. For any C ∈ EC(G) and real λ > 0, we say that λ|C| is the weight
of cover C. The partition function of a bw-graph G is the total sum of cover
weights (a.k.a. the weighted edge cover counting): Z(G,λ) =

∑
C∈EC(G) λ

|C|.
Note that Z(G, 1) = |EC(G)| counts the number of edge covers.

We recast marginal inference in DL-Lite Bayesian networks as the compu-
tation of the partition function of the bw-graph Gr = (V1 ∪ V2 ∪ V3 ∪ V4, E, χ)
such that:
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e−r (a)

e−r (d)

e−r (e)

er(a)

er(b)

er(d)

e−r (b)

e−r (c)

er(c)

er(e)

r(d, e) r(d, c
)

r(c, b)

Figure A.15: Representing assignments by graphs. Columns of nodes correspond respectively
to V1, V2, V3 and V4; black nodes are in B, and white nodes are not in B. Each edge
corresponds to a grounding of r; for clarity’s sake, we label only three edges.

• V1 = {e−r (a) : a ∈ D \ D−r } and χ(v) = 0 for all v ∈ V1,

• V2 = {er(a) : a ∈ Dr} and χ(v) = 1 for all v ∈ V2,

• V3 = {e−r (a) : a ∈ D−r } and χ(v) = 1 for all v ∈ V3,

• V4 = {er(a) : a ∈ D \ Dr} and χ(v) = 0 for all v ∈ V4,

• for i = 1, 2, 3 the subgraph with nodes Vi∪Vi+1 is bipartite complete (i.e.,
every node in Vi is connect to a node in Vi+1, and no two nodes in Vi or
in Vi+1 are connected).

The graph Gr is called the intersection graph of B with respect to r and D.
In this graph an edge with endpoints er(a) and e−r (b) represents the grounding
r(a, b); the parents of a node correspond exactly to the parents of the related
node in the Bayesian network. For example, the graph in Figure A.15 represents
the assignments B = {er(a) = 1, er(b) = 1, er(d) = 1, e−r (b) = 1, e−r (c) = 1},
with respect to domain D = {a, b, c, d, e}. The black nodes (resp., white nodes)
represent groundings in (resp., not in) B.

The following result connects marginal inference and weighted edge cover
counting:

Lemma 1. Let Gr = (V1, V2, V3, V4, E) be the intersection graph of B with
respect to a relation r and domain D. Then γ(r) = Z(Gr, α/(1−α))/(1−α)|E|,
where α = P

(
r(x , y)

)
.

Proof of Lemma 1. Consider an edge cover C of the graph. The assignment
that sets to true all groundings r(a, b) corresponding to edges in C, and sets to
false the remaining groundings of r makes

P(er(a) = 1|pa(er(a))) = P
(
e−r (b) = 1|pa(e−r (b))

)
= 1

for every a ∈ Dr and b ∈ D−r ; it makes P(gr(r)) = P(r)|C| (1 − P(r))|E|−|C| =
(1−α)|E|α|C|/(1−α)|C|, which is the weight of the cover C scaled by (1−α)|E|.
Now consider a set of edges C which is not an edge cover and that yields an
assignment to groundings gr(r) as before. There is at least one node in V2 ∪ V3

60



that does not contain any incident edges in C. Assume that node is e(a); then all
parents of e(a) are assigned false, which implies that P(er(a) = 1|pa(er(a))) = 0.
The same is true if the node not covered is a grounding e−(a). Hence, for each
edge cover C the probability of the corresponding assignment equals its weight
up to the factor (1− α)|E|. And for each edge set C which is not an edge cover
its corresponding assignment has probability zero.

We have thus established that, if a particular class of weighted edge cover
counting problems is polynomial, then marginal inference in DL-Lite Bayesian
networks is also polynomial for positive assignments in the input. Because the
problem of weighted edge cover counting is of independent interest, we deal with
it in the next subsection; by describing there a polynomial counting algorithm,
we finish the proof of Theorem 17.

Theorem 18. Given a relational Bayesian network S based on DLLitenf , a set
of positive assignments to grounded relations E, and a domain size N in unary
notation, MLE(S,E, N) can be solved in polynomial time.

Proof. In this theorem we are interested in finding an assignment X to all
groundings that maximizes P(X ∧E), where E is a set of positive assignments.
Perform the substitution of formulas ∃y : r(x , y) and ∃y : r(y , x ) by logically
equivalent concepts er and e−r as in the proof of Theorem 17. Consider a non-
root grounding s(a) in E which is not the grounding of er or e−r ; by construction,
s(a) is logically equivalent to a conjunction X1 ∧ · · · ∧Xk, where X1, . . . , Xk are
unary groundings. Because s(a) is assigned to true, any assignment X with
nonzero probability assigns X1, . . . , Xk to true. Moreover, since s(a) is a non-
root node, its corresponding probability is one. Hence, if we include all the
assignments {Xi = 1} to its parents in E, the MPE value does not change.
Assume we repeate this procedure until E contains all ancestors of the original
groundings that are groundings of unary relations. Note that at this point we
only need to assign values to nodes that are either not ancestors of any node in
the original set E, and to groundings of (collapsed) binary relations r.

Consider the groundings of primitive unary relations r that are not ancestors
of any grounding in E. Setting their value to maximize the marginal probabil-
ity does not introduce any inconsistency with respect to E. Moreover, for any
assignment to these groundings, we can find a consistent assignment to the re-
maining groundings (which are internal nodes and not ancestors of E), that
is, an assignment which assigns positive probability. Because this is the maxi-
mum probability we can obtain for these groundings, this is a partial optimum
assignment.

We are thus only left with the problem of assigning values to the groundings
of relations r that are ancestors of E. Consider a relation r such that P(r) ≥ 1/2.
Then assigning all groundings of r to true maximizes their marginal probability
and satisfies the logical equivalences of all groundings in E. Hence, this is a
maximum assignment (and its value can be computed efficiently). So assume
there is a relation r with P(r) < 1/2 such that a grounding of er or e−r appear
in E. In this case, the greedy assignment sets every grounding of r; however,
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such an assignment is inconsistent with the logical equivalence of er and e−r ,
hence it gets probability zero. Now consider an assignment that assigns exactly
one grounding r(a, b) to true and all the other to false. This assignment is
consistent with er(a) and er(b), and maximizes the probability; any assignment
that sets more groundings to true has a lower probability since it replaces a term
1− P(r) ≥ 1/2 with a term P(r) < 1/2 in the joint probability. More generally,
to maximize the joint probability we need to assign to true as few groundings
r(a, b) which are ancestors of E as possible. This is equivalent to a minimum
cardinality edge covering problem as follows.

For every relation r in the relational network, construct the bipartite com-
plete graph Gr = (V1, V2, E) such that V1 is the set of groundings er(a) that
appears and has no parent r(a, b) in E, and V2 is the set of groundings e−r (a)
that appears and has no parents in E. We identify an edge connecting er(a) and
e−r (b) with the grounding r(a, b). For any set C ⊆ E, construct an assignment by
attaching true to the groundings r(a, b) in C and false to every other grounding
r(a, b). This assignment is consistent with E if and only if C is an edge cover;
hence the minimum cardinality edge cover maximizes the joint probability (it
is consistent with E and attaches true to the least number of groundings of r).
This concludes the proof of Theorem 18.

Appendix A.4. Counting edge covers in polynomial time
This section focuses on weighted edge cover counting as needed in the proof

of Theorem 17. Even though there has been significant work in connecting model
counting with graph-theoretical representations of formulas [11, 108, 128, 131,
140], the class of problems discussed here seems to have escaped these previous
efforts.

Recall the notation and terminology introduced right before Lemma 1: a
black-and-white graph (bw-graph, for short) is a triple G = (V,E, χ), where G =
(V,E) is a simple undirected graph and χ is a {0, 1}-valued function partitioning
the node set into white (χ(v) = 0) and black nodes (χ(v) = 1); EG(u) denotes
the set of edges incident in a node u, and NG(u) the open neighborhood of u.
An edge e = (u, v) ∈ E can be classified into one of three categories:10

• free edge: if χ(u) = χ(v) = 0;

• dangling edge: if χ(u) 6= χ(v); or

• regular edge: if χ(u) = χ(v) = 1.

In the graph in Figure A.16(b), the edge (f, g) is a dangling edge while the edge
(g, j) is a free edge. The edge (f, g) in the graph in Figure A.16(a) is a regular
edge.

10The classifications of edges given here are analogous to those defined in [79, 80], but not
fully equivalent. In fact, in [79] and [80], graphs are uncolored, but edges might contain empty
endpoints. These are analogous to white node endpoints in our terminology. Regular edges
are analogous to the normal edges defined in [79, 80].
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Figure A.16: (a) A graph G in B. (b) The graph G − EG(h) − (i, g) − h − g. (c) The graph
G− EG(g)− (i, h)− g − h.

The set EC(G) contains the edge covers of a bw-graph G, that is, the
subsets C ⊆ V such that for each black node v ∈ V , χ(v) = 1, it follows
that C ∩ EG(v) 6= ∅. An edge cover for the graph in Figure A.16(a) is C =
{(a, d), (d, g), (e, g), (f, g), (h, j)}.

We are interested in computing the partition function Z(G,λ) =
∑
C∈EC(G) λ

|C|

of a certain class of bw-graphs G, given a fixed real λ > 0. This problem is #P-
complete in general [17], and admits an FPTAS [79, 80]. To simplify notation,
we assume in the rest of this section that λ is fixed, and we write Z as function
of the graph alone.

So consider the following class of graphs, collectively denoted by B, that are
clearly inspired by the contents of the previous proof. A bw-graph G = (V,E, χ)
in B has a set of nodes that can be partitioned into four disjoint sets V1, V2, V3,
V4, such that V1∪V4 contain only white nodes, V2∪V3 contain only black nodes,
and for i = 1, 2, 3 the subgraph over nodes Vi ∪ Vi+1 is bipartite complete.

We now present a dynamic programming approach to computing the parti-
tion function of graphs in B. As we have discussed elsewhere [88], a much larger
class of graphs can be tackled by the following results or by various extensions
or approximation techniques.

Let e be an edge and u be a node in bw-graph G. We define the following
operations and notation:

• edge removal: G− e = (V,E \ {e}, χ).

• node whitening: G− u = (V,E, χ′), where χ′(u) = 0 and χ′(v) = χ(v)
for v 6= u.

Note that these operations do not alter the node set, and that they are associa-
tive (e.g., G−e−f = G−f−e, G−u−v = G−v−u, and G−e−u = G−u−e).
Hence, if E = {e1, . . . , ed} is a set of edges, we can write G − E to denote
G− e1− · · ·− ed applied in any order. The same is true for node whitening and
for any combination of node whitening and edge removal. These operations are
illustrated in the examples in Figure A.16.

The following result shows that the partition function can be decomposed
in terms of two simpler problems:
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Proposition 2. Let e = (u, v) be a dangling edge with u colored black. Then:

Z(G) = (1 + λ)Z(G− e− u)− Z(G− EG(u)− u) .

Proof. Consider the graph G′ = G− e− u. Let A denote the set of edge covers
of G that contain e and B denote the set of edge covers that do not contain e.
Since A is exactly the set of edge covers of G′ (after removing e) and B is exactly
the set of edge covers of G−e, we have that Z(G) =

∑
C∈A λ

|C|+
∑
C∈B λ

|C| =
λZ(G′)+Z(G−e). Similarly, let A′ be the set of edge covers of G′ that contain at
least one edge of EG′(u), and B′ be the set of edge covers that contain no edge of
EG′(u). Then Z(G′) =

∑
C∈A′ λ

|C|+
∑
C∈B′ λ

|C| = Z(G−e)+Z(G−EG(u)−u).
Isolating the term Z(G− e) and substituting for it in the first identity gives us
the desired result.

Free edges can be removed by adjusting the partition function accordingly:

Proposition 3. Let e = (u, v) be a free edge of G. Then Z(G) = (1+λ)Z(G−e).

Proof. If C is an edge cover of G− e then both C and C ∪ {e} are edge covers
of G. Hence, the sum of the weights of edge covers containing e equals the sum
of weights Z(G− e) of edge covers not containing e up to a factor λ.

We can use the formulas in Propositions 2 and 3 to compute the partition
function of a bw-graph recursively. Each recursion computes Z(G) as a function
of the partition function of two graphs obtained by the removal of edges and
whitening of a node. Such a naive approach however requires an exponential
number of recursions (in the number of edges or nodes of the initial graph)
and finishes after exponential time. We can transform such an approach into a
polynomial-time algorithm by exploiting the symmetries of the graphs produced
during the recursions. In particular, we take advantage of the invariance of the
partition function to isomorphisms of a graph, as we discuss next.

We say that two bw-graphs G = (V,E, χ) and G′ = (V ′, E′, χ′) are iso-
morphic if there is a bijection γ from V to V ′ (or vice-versa) such that (i)
χ(v) = χ′(γ(v)) for all v ∈ V , and (ii) (u, v) ∈ E if and only if (γ(u), γ(v)) ∈ E′.
In other words, two bw-graphs are isomorphic if there is a color-preserving re-
naming of nodes that preserves the binary relation induced by E. The function
γ is called an isomorphism from V to V ′. The graphs in Figures A.16(b) and
A.16(c) are isomorphic by an isomorphism that maps g to h and maps any other
node to itself. If C is an edge cover of G and γ is an isomorphism between G
and G′, then C ′ = {(γ(u), γ(v)) : (u, v) ∈ C} is an edge cover for G′ with the
same weight. Hence, Z(G) = Z(G′). The following result shows how to obtain
isomorphic graphs with a combination of node whitenings and edge removals.

Proposition 4. Consider a bw-graph G with nodes v1, . . . , vn, where NG(v1) =
· · · = NG(vn) 6= ∅ and χG(v1) = · · · = χG(vn). For any node w ∈ NG(v1),
bijection γ : {v1, . . . , vn} → {v1, . . . , vn}, and nonnegative integers k1 and k2

such that k1 +k2 ≤ n the graphs G′ = G−EG(v1)−· · ·−EG(vk1)− (w, vk1+1)−
· · ·−(w, vk1+k2)−v1−· · ·−vk1+k2 and G′′ = G−EG(γ(v1))−· · ·−EG(γ(vk1))−
(w, γ(vk1+1))− · · · − (w, γ(vk1+k2))− γ(v1)− · · · − γ(vk1+k2) are isomorphic.
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Proof. Let γ′ be the bijection on the nodes ofG that extends γ, that is, γ′(u) = u
for u 6∈ {v1, . . . , vn} and γ′(u) = γ(vi), for i = 1, . . . , n. We will show that γ′ is
an isomorphism fromG′ toG′′. First note that χG(u) = χG(γ(u)) for every node
u. The only nodes that have their color (possibly) changed in G′ with respect to
G are the nodes v1, . . . , vk1+k+2, and these are white nodes in G′. Likewise, the
only nodes that would (possibly) changed color in G′′ were γ(v1), . . . , γ(vk1+k2)
and these are white in G′′. Hence, χG′(u) = χG′′(γ(u)) for every node u.

Now let us look at the edges. First note that sinceNG(vi) is constant through
i = 1, . . . , n, G′ and G′′ have the same number of edges. Hence, it suffices
to show that for each edge (u, v) in G′ the edge (γ′(u), γ′(v)) is in G′′. The
only edges modified in obtaining G′ and G′′ are, respectively, those incident
in v1, . . . , vk1+k2 and in γ(v1), . . . , γ(vk1+k2). Consider an edge (u, v) where
u, v 6∈ {v1, . . . , vn} (hence not in EG(vi) for any i). If (u, v) = (γ′(u), γ′(v))
is in G′ then it is also in G′′. Now consider an edge (u, vi) in G where u 6∈
{w, vk1+1, . . . , vn} and k1 < i ≤ k1 + k2. Then (u, vi) is in G′ and (γ′(u), γ′(vi))
is in G′′. Note that u could be in NG(vi) for k1 + k2 < i ≤ n.

According to the proposition above, the graphs in Figures A.16(b) and
A.16(c) are isomorphic by a bijection between g and h (and with w = i). Hence,
the partition function of either graph is the same.

The algorithms RightRecursion and LeftRecursion described in Figures A.17
and A.18, respectively, exploit the isomorphisms described in Proposition 4 in
order to achieve polynomial-time behavior when using the recursions in Propo-
sitions 2 and 3. Either algorithm requires a base white node w and integers k1

and k2 specifying the recursion level (with the same meaning as in Proposition
4). Unless k1 + k2 equals the number of neighbors of w in the original graph,
a call to either algorithm generates two more calls to the same algorithm: one
with the graph obtained by removing edge (w, vh) and whitening vh, and an-
other by removing edges E(vh) and whitening vh. Assume that |V2| ≥ |V3| (if
|V3| > |V2| we can simply manipulate node sets to obtain an isomorphic graph
satisfying the assumption). The RightRecursion algorithm first checks whether
the value for the current recursion level has been already computed; if yes, then
it simply returns the cached value; otherwise it uses the formula in Proposi-
tion 2 (and possibly the isomorphism in Proposition 4) and generates two calls
of the same algorithm on smaller graphs (i.e. with fewer edges) to compute the
partition function for the current graph and stores the result in memory. The
recursion continues until the recursion levels equates with the number of nodes
in V3, in which case it checks for free edges, removes them and computes the
correction factor (1 + λ)k, where k is the number of free edges, and calls the
algorithm LeftRecursion to start a new recursion. At this point the graph in the
input is bipartite complete and contains only nodes in V1 and V2. The latter
algorithm behaves very similarly to the former except at the termination step.
When all neighbors vh of w have been whitened the graph no longer contains
black nodes, and the corresponding partition function can be directly computed
using the formulas in Proposition 3. Note that a different cache function must
be used when we call LeftRecursion from RightRecursion (this can be done by in-
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1: if Cache(w, k1, k2) > 0 then
2: return Cache(w, k1, k2)
3: else
4: if k1 + k2 < n then
5: Let h← k1 + k2 + 1
6: Cache(w, k1, k2) ← (1 + λ) × RightRecursion(G − (vh, w) −

vh, w, k1, k2 + 1)− RightRecursion(G− EG(vh)− vh, w, k1 + 1, k2)
7: return Cache(w, k1, k2)
8: else
9: Let k = |{(u, v) : u ∈ V4}| be the number of free edges

10: Remove any edges with an endpoint in V4

11: Set V1 ← V1 ∪ V3, V3 ← ∅
12: if V1 is empty then
13: return 0
14: end if
15: Select an arbitrary w′ ∈ V1

16: return (1 + λ)k × LeftRecursion(G,w′, 0, 0)
17: end if
18: end if

Figure A.17: Algorithm RightRecursion: Takes a graph G = (V1, V2, V3, V4, E) with V3 =
{v1, . . . , vn}, n > 0, a node w ∈ V4, and nonnegative integers k1 and k2; outputs Z(G).

stantiating an object at that point and passing it as argument; we avoid stating
the algorithm is this way to avoid cluttering).

Figure A.19 shows the recursion diagram of a run of RightRecursion. Each
box in the figure represents a call of the algorithm with the corresponding graph
as input. The left child of each box is the call RightRecursion(G − (vh, w) −
vh, w, k1, k2 + 1), and the right child is the call RightRecursion(G − EG(vh) −
vh, w, k1 +1, k2). The number of the graph in each box corresponds to the order
in which each call was generated. Solid arcs represent non-cached calls, while
dotted arcs indicate cached calls. The recursion diagram for LeftRecursion is
shown in Figure A.20 (the semantics is analogous). Note that the recursion
of LeftRecursion eventually reaches a graph with no black nodes, for which the
partition function can be computed efficiently in closed-form.

Without the caching of computations, the algorithm would perform exponen-
tially many recursive calls (and its corresponding diagram would be a binary
tree with exponentially many nodes). The use of caching allows us to com-
pute only one call of RightRecursion for each configuration of k1, k2 such that
k1 +k2 ≤ n, resulting in at most

∑n
i=0(i+1) = (n+1)(n+2)/2 = O(n2) calls for

RightRecursion, where n = |V3|. Similarly, each call of LeftRecursion requires at
most

∑m
i=0(i+1) = (m+1)(m+2)/2 = O(m2) recursive calls for LeftRecursion,

where m = |V2|. Each call to RightRecursion with k1 +k2 = n generates a call to
LeftRecursion (there are n + 1 such configurations). Hence, the overall number
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1: if Cache(w, k1, k2) is undefined then
2: if k1 + k2 < m then
3: Let h← k1 + k2 + 1
4: Cache(w, k1, k2)← (1+λ)×LeftRecursion(G−(uh, w)−uh, k1, k2 +

1)− LeftRecursion(G− EG(uh)− uh, k1 + 1, k2)
5: else
6: Cache(w, k1, k2)← (1 + λ)|E|

7: end if
8: end if
9: return Cache(w, k1, k2)

Figure A.18: Algorithm LeftRecursion: Takes a bipartite graph G = (V1, V2, E) with V2 =
{u1, . . . , um}, m > 0, a node w ∈ V1, nonnegative integers k1 and k2; outputs Z(G).
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RightRecursion(G0, w, 0, 0)

Z(G0)
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RightRecursion(G1, w, 0, 1)

Z(G1)

w

RightRecursion(G24, w, 1, 0)

Z(G24)

w

RightRecursion(G2, w, 0, 2)
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LeftRecursion(G26, w, 0, 0)
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Figure A.19: Example of simulation of RightRecursion(G0, w, 0, 0).
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LeftRecursion(G3, w, 0, 0)

Z(G3)

LeftRecursion(G4, w, 0, 1)

Z(G4)

LeftRecursion(G5, w, 0, 2)

Z(G5)

LeftRecursion(G6, w, 0, 3)

Z(G6)

LeftRecursion(G7, w, 1, 2)

Z(G7)

LeftRecursion(G8, w, 1, 1)

Z(G8)

LeftRecursion(G9, w, 2, 1)

Z(G9)

LeftRecursion(G10, w, 1, 0)

Z(G10)

LeftRecursion(G11, w, 2, 0)

Z(G11)

LeftRecursion(G12, w, 3, 0)

Z(G12)

Figure A.20: Example Simulation of LeftRecursion(G3, w, 0, 0).

of recursions (i.e., call to either function) is

(n+ 1)(n+ 2)

2
+ (n+ 1)

(m+ 1)(m+ 2)

2
= O(n2 + n ·m2) .

This leads us to the following result.

Proposition 5. Let G be a graph in B with w ∈ V4 6= ∅. Then the call
RightRecursion(G,w, 0, 0) outputs Z(G) in time and memory at most cubic in
the number of nodes of G.

Proof. Except when k1 + k2 = n, RightRecursion calls the recursion given in
Proposition 2 with the isomorphisms in Proposition 4 (any graph obtained from
G by k1 operations −EG(vi) and k2 operations −(w, vi) are isomorpohic). For
k1+k2, any edge left connecting a node in V3 and a node in V4 must be a free edge
(since all nodes in V4 have been whitened), hence they can be removed accord-
ing to Proposition 3 with the appropriate correction of the partition function.
By the same result, any isolated node can be removed. When the remaining
nodes in V3 are transfered to V1, the resulting graph is bipartite complete (with
white nodes in one part and black nodes in the other). Hence, we can call
LeftRecursion, which is guaranteed to compute the correct value by the same
arguments.

The cubic time and space behavior is due to RightRecursion and LeftRecursion
being called at most O(n2) and O(nm2), respectively, and by the fact that each
call consists of local operations (edge removals and node whitenings) which take
at most linear time in the number of nodes and edges of the graph.

The algorithm RightRecursion requires the existence of a dangling edge. Now
it might be that the graph contains no dangling edges; this happens when V1
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and V4 are empty. The next result shows how to decompose the computation
of the partition function into smaller graphs that either contain dangling edges
(so that we can apply the previous algorithm), or are also bipartite complete.

Proposition 6. Let G be a bipartite complete bw-graph with all nodes colored
black and e = (u, v) be some edge. Then Z(G) = (1 + λ)Z(G − e − u − v) −
Z(G− EG(v)− v)− Z(G− EG(u)− u)− Z(G− EG(u)− EG(v)− u− v).

Proof. The edge covers of G can be partitioned according to whether they con-
tain the edge e: the weight of edge covers that contain e equal the weight
of edge covers that do not contain e up to the factor λ. Thus, Z(G) =
λZ(G− e− u− v) +Z(G− e). Consider an edge cover C of G− e− u− v, and
let A = EG−e(u) ∩ C and B = EG−e(v) ∩ C. We have four cases: if A ⊃ ∅ and
B ⊂ ∅, then C is also an edge cover for G − e with the same weight in either
graph; conversely, if C is an edge cover for G−e, then it is also an edge cover for
G−e−u−v (with equal weight). If A ⊃ ∅ and B = ∅ then C is an edge cover for
G−EG(v)−v with same weight; and any edge cover for G−EG(v)−v is an edge
cover for G− e−u−v with equal weight. If A = ∅ and B ⊃ ∅ then C is an edge
cover for G−EG(u)−u with equal weight; and any edge cover for G−EG(u)−u
is an edge cover for G− e− u− v (same weight). Finally, if A = B = ∅, then C
is an edge cover for G − EG(u) − EG(v) − u − v, and any cover for this latter
graph is an edge cover for G− e− u− v. We thus have that Z(G− e− u− v) =
Z(G−e)+Z(G−EG(v)−v)+Z(G−EG(u)−u)+Z(G−EG(u)−EG(v)−u−v).
Substituting Z(G− e) into the first equation leads to the desired result.

In the result above, the graph G−e−u−v contains dangling edges, while the
graphs G−EG(v)−v, G−EG(u)−u and G−EG(u)−EG(v)−u−v are bipartite
complete. Proposition 4 can be applied to show that altering the edges on which
the operations are applied lead to isomorphic graphs. Therefore, a very similar
algorithm to LeftRecursion, implementing the recursion in the result above in
polynomial time can be easily derived.

Proposition 7. Let G be a graph in B (possibly with V1 = V4 = ∅. Then Z(G)
can be computed in time and memory at most polynomial in the number of nodes
of G.

Appendix A.5. Plates (Section 7)
Theorem 19. INF[PLATE] and QINF[PLATE] are PP-complete with respect to
many-one reductions, and DINF[PLATE] requires constant computational effort.
These results hold even if the domain size is given in binary notation.

Proof. Consider first INF[PLATES]. To prove membership, take a plate model
with relations X1, . . . , Xn. Suppose we ground this specification on a domain
of size N . To compute P(Q|E), the only relevant groundings are the ones that
are ancestors of each of the ground atoms in Q ∪ E. Our strategy will be to
bound the number of such relevant groundings. To do that, take a grounding
Xi(a1, . . . , aki) in Q ∪E, and suppose that Xi is not a root node. Each parent
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Xj of Xi may appear once in the definition axiom related to Xi. And each
parent of these parents will again have a limited number of parent groundings;
in the end there are at most (n − 1) relevant groundings that are ancestors of
Xi(a1, . . . , aki). We can take the union of all groundings that are ancestors of
groundings of Q ∪ E, and the number of such groundings is still polynomial in
the size of the input. Thus in polynomial time we can build a polynomially-large
Bayesian network that is a fragment of the grounded Bayesian network. Then
we can run a Bayesian network inference in this smaller network, an effort within
PP; note that each random variable may actually have more than two values
and membership to PP is still obtained (that is, if we were to consider “relations”
with values other than true and false, the grounding into a Bayesian network
would still yield an inference problem within PP). Note also that domain size is
actually not important so it can be specified either in unary or binary notation.
To prove hardness, note that INF[Prop(∧,¬)] is PP-hard, and a propositional
specification can be reproduced within PLATES.

Now consider QINF[PLATES]. First, to prove membership, note that even
INF[PLATES] is in PP. To prove hardness, reproduce the proof of Theorem 14
by encoding a #3SAT(>) problem, specified by sentence φ and integer k, with
the definition axioms:

clause0(x , y , z) ≡≡ ¬left(x ) ∨ ¬middle(y) ∨ ¬right(z),

clause1(x , y , z) ≡≡ ¬left(x ) ∨ ¬middle(y) ∨ right(z),

clause2(x , y , z) ≡≡ ¬left(x ) ∨middle(y) ∨ ¬right(z),

...
...

...
clause7(x , y , z) ≡≡ left(x ) ∨middle(y) ∨ right(z),

equal(x , y , z) ≡≡ left(x )↔ middle(y)↔ right(z),

and P(left(x ) = 1) = P(middle(x ) = 1) = P(right(x ) = 1) = 1/2. The resulting
plate model is depicted in Figure A.21. The query is again just a set of as-
signments Q (E is empty) containing an assignment per clause. If a clause is
¬A2 ∨A3 ∨¬A1, then take the corresponding assignment {clause2(a2, a3, a1) =
1}, and so on. Moreover, add the assignments {equal(ai, ai, ai) = 1} for each
i ∈ {1, . . . , n}, to guarantee that left, middle and right have identical truth as-
signments for all elements of the domain. The #3SAT(>) is solved by deciding
whether P(Q) > k/2n with domain of size n; hence the desired hardness is
proved.

And DINF[PLATES] requires constant effort: in fact, domain size is not rele-
vant to a fixed inference, as can be seen from the proof of inferential complexity
above.

Appendix A.6. Valiant’s counting hierarchy (Section 8)
Theorem 20. Consider the class of functions that gets as input a relational
Bayesian network specification based on FFFO, a domain size N (in binary or
unary notation), and a set of assignments Q, and returns P(Q). This class of
functions is #EXP-equivalent.
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Figure A.21: A plate model that decides a #3SAT(>) problem.

Proof. Build a relational Bayesian network specification as in the proof of The-
orem 4. Note that the p = P

(
E ∧

∧6
i=1 Zi

)
is the probability that a tiling of

the torus is built satisfying all horizontal and vertical restrictions and the initial
condition, and moreover containing the accepting state qa.

If we can recover the number of tilings of the torus from this probability, we
obtain the number of accepting computations of the exponential-time Turing
machine we started with. Assume we have p. There are 22n elements in our
domain; if the plate model is grounded, there are 22n(2n+c) grounded root ran-
dom variables, hence there are 222n(2n+c) interpretations. Hence p× 222n(2n+c)

is the number of truth assignments that build the board satisfying all horizontal
and vertical constraints and the initial conditions. However, this number is not
equal to the number of tilings of the board. To see this, consider the grounded
Bayesian network where each a in the domain is associated with a “slice” con-
taining groundingsXi(a), Yi(a), Cj(a) and so on. If a particular configuration of
these indicator variables corresponds to a tiling, then we can produce the same
tiling by permuting all elements of the domain with respect to the slices of the
network. Intuitively, we can fix a tiling and imagine that we are labelling each
point of the torus with an element of the domain; clearly every permutation of
these labels produces the same tiling (this intuition is appropriate because each
a corresponds to a different point in the torus). So, in order to produce the
number of tilings of the torus, we must compute p×222n(2n+c)/(22n!), where we
divide the number of satisfying truth assignments by the number of repeated
tilings.

Theorem 21. Consider the class of functions that gets as input a relational
Bayesian network specification based on FFFO with relations with bounded arity,
a domain size N in unary notation, and a set of assignments Q, and returns
P(Q). This class of functions is \PSPACE-equivalent.

Proof. First we describe a counting Turing machine that produces a count
proportional to P(Q) using a polynomial number of nondeterministic guesses.
This nondeterministic machine guesses a truth assignment for each one of the
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polynomially-many grounded root nodes (and writes the guess in the working
tape). Note that each grounded root node X is associated with an assessment
P(X = 1) = c/d, where c and d are integers. The machine must replicate its
computation paths to handle such rational assessments exactly as in the proof
of Theorem 7. The machine then verifies, in each computation path, whether
the guessed truth assignment satisfies Q; if it does, then accept; if not, then
reject. Denote by R the number of grounded root nodes and by #A the number
of accepting paths of this machine; then P(Q) = #A/2R.

Now we show that Q is \PSPACE-hard with respect to weighted reduc-
tions. Define ϕ(x1, . . . , xm) to be a quantified Boolean formula with free logvars
x1, . . . , xm:

∀y1 : Q2y2 : . . . QMxM : φ(x1, . . . , xm),

where each logvar can only be true or false, each Qj is a quantifier (either
∀ or ∃). And define #ϕ to be the number of instances of x1, . . . , xm such
that ϕ(x1, . . . , xm) is true. Denote by \QBF the function that gets a formula
ϕ(x1, . . . , xm) and returns #ϕ; Ladner shows that \QBF is \PSPACE-complete
[75, Theorem 5(2)]. So, adapt the hardness proof of Theorem 10: introduce the
definition axiom

Y ≡≡ ∀y1 : . . . Qmym : φ′(X1, . . . , Xm),

where φ′ has the same structure of φ but logvars are replaced as follows. First,
each xj is replaced by a relation Xj of arity zero (that is, a proposition). Sec-
ond, each logvar yj is replaced by the atom X(yj) where X is a fresh unary
relation. These relations are associated with assessments P(Xj = 1) = 1/2 and
P(X(x ) = 1) = 1/2. This completes the relational Bayesian network specifi-
cation. Now for domain {0, 1}, first compute P(Q) for Q = {Y = 1, X(0) =
0, X(1) = 1} and then compute 2m(P(Q) /(1/4)). The latter number is the de-
sired value of \QBF; note that P(Q) /(1/4) = P(Y = 1|X(0) = 0, X(1) = 1).

Theorem 22. Consider the class of functions that gets as input a relational
Bayesian network specification based on FFFOk for k ≥ 2, a domain size N in
unary notation, and a set of assignments Q, and returns P(Q). This class of
functions is #P-equivalent.

Proof. Hardness is trivial: even Prop(∧,¬) is #P-equivalent, as Prop(∧,¬) suf-
fices to specify any propositional Bayesian network, and equivalence is then
obtained [113]. To prove membership, use the Turing machine described in the
proof of membership in Theorem 11 without assignments E (that is, the ma-
chine only processes Q), without the final computations in Park’s construction.
This machine produces the number #A of computation paths that satisfy Q;
then return #A/2R, where R is the number of grounded root nodes.

Theorem 23. Consider the class of functions that get as input a plate model
based on FFFO, a domain size N (either in binary or unary notation), and a set
of assignments Q, and returns P(Q). This class of functions is #P-equivalent.
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Proof. Hardness is trivial: a propositional Bayesian network can be encoded
with a plate model. To prove membership, build the same fragment of the
grounded Bayesian network as described in the proof of Theorem 19: inference
with the plate model is then reduced to inference with this polynomially large
Bayesian network.
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