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This paper studies specification languages that describe Bayesian networks using predicates 
and other logical constructs. First, we adopt an abstract syntax for relational Bayesian 
network specifications, and review definability and complexity results. We then propose 
a novel framework to study the descriptive complexity of relational Bayesian network 
specifications, and show that specifications based on function-free first-order logic capture 
the complexity class PP; we also exhibit specification languages, based on second-order 
quantification, that capture the hierarchy of complexity classes PPNP...NP

, a result that does 
not seem to have equivalent in the literature. Finally, we derive zero/one laws for Bayesian 
network specifications based on function-free first-order logic, indicating their value in 
definability analysis.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

One can find a variety of specification languages that resort to predicates and other logical constructs to describe 
Bayesian networks [22,23,34]. In a (propositional) Bayesian network, an “inference” usually refers to the computation of 
the probability of some random variables taking on some value given some observation of other random variables. Re-
lational Bayesian network specifications offer more sophisticated inference facilities, as now the input also describes the 
Bayesian network itself. One should thus expect relational specifications to have significant more expressive power than 
propositional ones, much as first-order logic goes beyond propositional logic.

It is only natural to ask what is the expressivity of relational Bayesian network specifications. This question is the focus 
of this paper, and it can be approached from many directions, following parallel work in finite model theory [25,42,59]. For 
instance, one approach is to compare syntactically distinct specification languages by examining whether one specification 
language can, or cannot, specify all models that are specified by the other. Another approach is to investigate what happens 
to probabilities when the domain size goes to infinity, producing convergence theorems referred to as zero/one laws. Tech-
niques along these lines have actually been examined in pioneering work by Jaeger [49,51,52]. Another approach taken in 
finite model theory is to show which concepts can, and which cannot, be expressed with particular specification languages. 
The goal is to obtain “inexpressibility proofs” that show the expressivity boundaries of languages. Yet another strategy is to 
relate expressivity and complexity; there are two ways to do so.
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Fig. 1. A very simple Bayesian network with three binary random variables.

One possibility is to focus on the computational cost of answering specific questions. For instance: How expensive is it 
to verify that some probability is larger than half when Bayesian networks are described using a particular specification 
language? The goal then is to show the problem of interest to be complete for some complexity class, say NP or PP.

The other possibility is to show that Bayesian networks described using some specification language L can solve all and 
only those problems in some complexity class C . Roughly, that means that a problem in C can be exactly translated into 
a fixed Bayesian network specification; an input to the problem is accepted if and only if a corresponding inference in the 
specification is “accepted” in some appropriate sense. We then say that specification language L captures complexity class 
C . Such an analysis is related to descriptive complexity theory, a central branch of finite model theory that investigates how 
complexity classes are “captured” by logical languages [25,42]. The question is, in short: What sort of Turing machine can 
one precisely describe with such and such logical language?

As a whole, this paper discusses various facets of a finite model theory of Bayesian networks, from definability and complex-
ity of inferences to descriptive complexity and zero/one laws. We adopt an abstract specification language, based on logical 
constructs; we then investigate what can and what cannot be modeled by varying the features of the abstract specification 
language. Because the topic is novel, most of this paper consists of building a framework in which to operate. In particular, 
it does not seem that the descriptive complexity of Bayesian networks has been investigated in previous work.

The rest of the paper is organized as follows. In Section 2 we define precisely what we mean by “Bayesian network 
specification”. In Section 3 we briefly discuss definability and inexpressibility proofs, mostly to provide some context to 
later developments. In Section 4 we present necessary background on complexity theory, including known results on com-
plexity of inferences. We devote considerable space to these sections so as to present our finite model theory from a broad 
perspective, hopefully exhibiting the opportunities afforded by our framework.

After reviewing the main points of descriptive complexity in Section 5, we move to novel contributions in Section 6. 
We show that Bayesian network specifications based on function-free first-order logic capture the complexity class PP. That 
is, a language is in PP if and only if its strings encode valid inferences in a Bayesian network specified with predicates 
and first-order quantifiers. Note that this is a different statement than PP-completeness, as it provides a characterization 
of PP that does not use a model of computation (i.e., a Turing machine). And then we look at specifications that allow 
quantification over predicates, and show that such a restricted version of “second-order” Bayesian networks capture the 
complexity classes PPNP , PPNPNP

, and so on. It does not seem that previous research on descriptive complexity theory has 
reached these complexity classes.

In Section 7 we bring the machinery of zero/one laws to relational Bayesian network specifications, and present connec-
tions with definability issues. Section 8 summarizes our contributions and suggests some avenues for future investigation.

2. Relational Bayesian network specifications

We start off with a long, but well known, definition [20,55]. A Bayesian network is a pair consisting of a directed acyclic 
graph G, where each node is a random variable, and a probability distribution P over all those random variables, such that 
the graph and the distribution satisfy the Markov condition: each random variable X in G is conditionally independent, with 
respect to P , of its nondescendants nonparents given its parents.

Because we are interested in finite objects in this paper, we assume that a Bayesian network has finitely many random 
variables, and that all random variables have finitely many values, so the set of configurations for all random variables is a 
finite set. In that case, the distribution P associated with a Bayesian network always factorizes as follows:

P (X1 = x1, . . . , Xn = xn) =
n∏

i=1

P (Xi = xi | pa(Xi) = πi) ,

where pa(Xi) refers to those random variables that are parents of Xi , and πi is the projection of values {x1, . . . , xn}
on pa(Xi). Whenever pa(Xi) is empty, we take P (Xi = xi |pa(Xi) = πi) to mean P (Xi = xi). The probability values 
P (Xi = xi |pa(Xi) = πi) define the conditional probability table associated with Xi ; that is, a table indicating the probabil-
ity of each value xi of Xi given each configuration πi of the parents of Xi . A very simple Bayesian network is depicted in 
Fig. 1.

It is often the case that a Bayesian network must encode repetitive patterns over large numbers of variables. We present 
here a simple but illuminating example in some detail, so as to justify later definitions. Readers who are convinced of the 
ubiquity of such repetitive patterns may choose to move quickly to Definition 1.
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Fig. 2. A Bayesian network representing a G(3, 0.19) Gilbert-style random graph. Not all nodes are shown: three missing nodes Yi,i are associated with 
conditional probabilities P(

Yi,i = 1
) = 0.1, three nodes Xi,i are identically zero, and three nodes Xi, j for i > j have the same specification as X j,i . Note 

that P(
X1,2 = 1

) =P
(
Y1,2 = 1

) +P
(
Y2,1 = 1

) −P
(
Y1,2 = 1

)
P

(
Y2,1 = 1

) = 0.1 + 0.1 − 0.01 = 0.19, as desired.

Example 1. Consider a Gilbert-style random undirected graph with parameters N and p, usually referred to as G(N, p) [35]. 
There we have sites 1, . . . , N , and for each pair of distinct sites, there is an undirected link between these two sites with 
probability p. That is:

P ( there is an undirected link between distinct nodes i and j ) = p. (1)

Consider specifying a Gilbert-style random graph using, for each pair (i, j), a binary random variable Xi, j to indicate a link 
between i and j. Since the graph is undirected, Xi, j = 1 must imply that X j,i = 1. A possible specification is to use auxiliary 
random variables Yi, j , for each pair of sites (i, j), with:

P
(
Yi, j = 1

) = 1 − √
1 − p. (2)

Then specify P
(

Xi, j |Yi, j, Y j,i
)

such that:

Xi, j =
{

1 if (i �= j) and
(
(Yi, j = 1) or (Y j,i = 1)

)
,

0 otherwise.
(3)

Expression (3) implies Xi, j = X j,i . Moreover, Expressions (2) and (3) imply

P
(

Xi, j = 1
) = P

(
Yi, j = 1

) + P
(
Y j,i = 1

) − P
(
Yi, j = 1

)
P

(
Y j,i = 1

)
= 2(1 − √

1 − p) − (1 − √
1 − p)2

= p,

as required by Expression (1). Hence Expressions (2) and (3) have the desired effect. Fig. 2 depicts part of the Bayesian 
network for the Gilbert-style random graph G(3, 0.19) (the missing part contains specifications for Xi, j with i ≥ j, and for 
Yi,i).

Suppose now that we are interested in the probability that a random graph is fully connected. That is, we want to 
compute the probability that for each pair (i, j) with i �= j we have {Xi, j = 1}. We might introduce a random variable Z to 
indicate the latter event:

Z =
{

1 if for all i, j : (i �= j) implies Xi, j = 1,

0 otherwise.
(4)

Fig. 3 (left) sketches the Bayesian network that is obtained for N = 750 and p = 0.005. In this figure, and later ones, we 
omit probability values. Fig. 3 (right) depicts an instantiated graph obtained by sampling from the Bayesian network. �

There are several tools that can be used to specify a repetitive Bayesian network. A popular strategy is to use plates, as 
introduced in the BUGS project [36,60]. To summarize, a plate represents a set of indexed random variables, and is often 
drawn as a rectangle enclosing the indexed random variables. For instance, a plate representation for Gilbert-style random 
graphs is presented in Fig. 4 (left). Plates usually do not allow the child of a node in a plate to be outside that plate, 
but “extended” plates in the literature allow it [8]. For instance, the plate model in Fig. 4 (right) leaves Z outside of the 
plates, with a parent inside the plates. Several other visual formalisms that mix entity-relationship diagrams with Bayesian 
networks are referred to as Probabilistic Relational Models (PRMs) [33,46,58]. There are also textual specification languages; 
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Fig. 3. Left: The Bayesian network representing a G(750, 0.005) random graph and an indicator Z of full connectedness. Right: A graph generated by 
sampling the random variables in the Bayesian network, with N = 750 (each link in the graph corresponds to a realization of a random variable Xi, j). The 
graph has 1347 links (the expected number of links is 0.005 × 750 × 749/2 = 1404.38); 18 sites are not linked to other sites, and are not shown in the 
figure. The average degree is 3.68, and no site has degree larger than 11.

Fig. 4. Plates for Gilbert-style random graphs (left) and for Gilbert-style random graphs with detector of full connectedness (right).

for instance, proposals based on knowledge-based model construction [38,47,85], on object orientation [57,61], on rule-
based descriptions [6,44], and on logic programming [71,77]. Some of these specification languages are rather powerful, 
such as Jaeger’s Relational Bayesian Networks [48,50]. Quite a few recent specification languages explore probabilistic logic 
programming [30,74], and a surge of interest on probabilistic programming has emphasized both functional programming 
[40,62,64,69,81,86] and combinations of functional and procedural programming [13,39,70]. Another particularly interesting 
mix of probabilities and Bayesian networks has emerged in connection with probabilistic description logics [14,15,26,56], 
where one tries to benefit both from the decidability of description logics [4] and the modularity of specifications based on 
graphs.

This flood of specification languages demands a corresponding toolset for their analysis and synthesis. That is, one must 
have tools to analyze the complexity of specific language features, and to examine what can/cannot be expressed within a 
particular feature set. And one must have an understanding of expressivity and complexity so as to design new specification 
languages that can match practical needs. This is the ultimate goal of our research program.

Each of the specification languages we have mentioned previously offer a different feature set; to proceed with a rea-
sonably general investigation, we need to distill their essential elements into an abstract core. A similar situation is found 
in the theory of computer programming languages: much is learned by focusing on a few logical constructs that carry most 
meaning. Here we also resort to logics; before we move on, we briefly review some relevant concepts.

First, we always assume that there is a vocabulary containing predicates. Each predicate r has a nonnegative arity (a 
predicate of zero arity behaves like a proposition). Formulas may contain the logical connectives: negation (¬), conjunction 
(∧), disjunction (∨), implication (⇒), equivalence (⇔); besides, formulas may contain logical variables such as x , y , and 
both existential quantifiers (∃) and universal quantifiers (∀); finally, formulas may contain equality (=). The set of well-
formed formulas in first-order logic that employ these connectives, logical variables and quantifiers, equality, and arbitrary 
predicates, is referred to as FFFO.

We now describe the abstract specifications that we use in the remainder of the paper. The idea is simple, and certainly 
not new [16,19]; as summarized by Poole, we take “a probabilistic model as a deterministic system with stochastic inputs” 
[73].
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Definition 1. A relational Bayesian network specification, abbreviated relBN, consists of two parts. First, we have a finite 
vocabulary V containing names of predicates, each with arity specified. Then we have, for each predicate in V , either a 
probability assessment or a logical definition, specified as follows:

• A probabilistic assessment for predicate r is written

P (r) = α, (5)

where α is a rational number in [0, 1].
• A logical definition for predicate r with arity k is written

r(x1, . . . , xk) ≡≡ φ(x1, . . . , xk), (6)

where φ(x1, . . . , xk) is a formula in FFFO whose extralogical symbols are only names in V , or free logical variables 
in {x1, . . . , xk}, or possibly other logical variables bound to quantifiers in φ(x1, . . . , xk). We say that r is defined by 
φ(x1, . . . , xk). �

We restrict ourselves to rational numbers so as to avoid difficulties with computing real numbers.
If a predicate r is associated with a probabilistic assessment P (r) = α, then r is a root predicate; otherwise, if r is 

associated with a logical definition, then r is a non-root predicate. The dependency graph of a relBN is a directed graph 
where each node is a predicate of the vocabulary, and where there is an edge from relation s to relation r if and only if 
s appears in the logical definition of r. Thus a root predicate is a root node in the dependency graph. We assume in this 
paper that the dependency graph is acyclic, unless explicitly indicated (we discuss cyclic graphs in Section 8). That is, no 
recursive definitions are allowed in specifications.

Consider a simple example based on Expressions (2), (3), and (4):

Example 2. Take a vocabulary V = {dirlink, link, fullyConnected}. Predicates dirlink and link have arity two, and link(a, b) is 
to be interpreted as denoting a link between a and b. Predicate fullyConnected has arity zero, just indicating whether the 
property of full connectedness holds. The following relBN is well-formed:

P (dirlink) = α,

link(x , y) ≡≡ ¬(x = y) ∧ (dirlink(x , y) ∨ dirlink(y, x )),

fullyConnected ≡≡ ∀x , y : ¬(x = y) ⇒ link(x , y).

(7)

Given the semantics to be introduced shortly, this relBN specifies a Gilbert-style random graph. �
To attach semantics to a given relBN with vocabulary V , we use domains and interpretations, similarly to the semantics of 

first-order logic [27]. A domain D is a finite set whose elements are called constants. For a predicate r of arity k, a grounding
r(a1, . . . , ak) is obtained by selecting k elements from D. Note that if k = 0, there is only one grounding denoted by r itself. 
An interpretation maps each grounding r(a1, . . . , an) either to true or to false. Hence if V contains a single predicate with 
arity 2, then for a domain of size 5 we have 225 possible interpretations. Denote by IV,D the set of all interpretations for 
predicates in V with respect to D.

Example 3. Consider Example 2, and domain D = {a, b}. There are two interpretations for predicate fullyConnected, and 24

interpretations for predicate dirlink (as there are four possible groundings of this predicate) and likewise for link. Hence there 
are 29 possible interpretations. �

The semantics of a relBN τ with vocabulary V is a mapping that takes a domain D and yields a unique probability 
measure over all interpretations of V with respect to D, by creating a Bayesian network out of τ and D. This mapping 
always produces a single measure if the dependency graph of the relBN is acyclic, as follows.

First, produce all groundings of predicates in V . Now associate with each grounding r(a1, . . . , ak) a binary random vari-
able r̂(a1, . . . , ak), such that r̂(a1, . . . , ak) = 1 if r(a1, . . . , ak) is true, and 0 otherwise. These random variables are functions 
from the set of all interpretations to {0, 1}; to be precise, r̂(a1, . . . , ak) is the indicator function of the event

{I ∈ IV,D : I(r(a1, . . . ,ak)) = true}.
Second, take the random variables that correspond to groundings of root predicates. All of those “root” binary ran-

dom variables are assumed independent. And if r is associated with a probabilistic assessment P (r) = α, associate each 
r̂(a1, . . . , ak) with probability P

(
r̂(a1, . . . ,ak) = 1

) = α.
Third, for each random variable r̂(a1, . . . , ak) such that r is a non-root predicate associated with logical definition 

r(x1, . . . , xk) ≡≡ φ(x1, . . . , xk), build a propositional formula ϕr
a1,...,ak

as follows. Replace logical variables x1, . . . , xk by con-
stants to obtain φ(a1, . . . , ak), and then replace each universal quantifier in φ(a1, . . . , ak) by a conjunction over all instances 
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Fig. 5. The Bayesian network that encodes the semantics of the relBN in Example 2, with domain D = {a, b}. The edges out of dirlink(a, a), dirlink(b, b), 
link(a, a), and link(b, b), are actually unnecessary (they could be removed by logical simplication).

of the bound logical variable, and replace each existential quantifier in φ(a1, . . . , ak) by a disjunction over all instances of 
the bound logical variable. The resulting variable-free formula is ϕr

a1,...,ak
.

Now build a graph where each node is a random variable r̂(a1, . . . , ak), for all groundings. Consider each random variable 
r̂(a1, . . . , ak) such that r is a non-root predicate; the random variables that correspond to groundings in ϕr

a1,...,ak
are referred 

to as the parents of r̂(a1, . . . , ak). The conditional probabilities of r̂(a1, . . . , ak) given its parents are just 0 or 1, depending on 
ϕr

a1,...,ak
. Draw a directed edge from each parent of r̂(a1, . . . , ak) to r̂(a1, . . . , ak). By going through all groundings of non-root 

predicates, we obtain a directed graph that is acyclic if the dependency graph of the relBN is acyclic. Together with the 
probabilistic assignments and the logical expressions, we have a Bayesian network that is the promised semantics of the
relBN τ with respect to the domain D.

We denote the Bayesian network just built by τ (D); if all that is known about the domain is its size N , then we write 
τ (N).

We have used special notation to indicate the random variable corresponding to grounding r(a1, . . . , ak); namely, 
r̂(a1, . . . , ak). But in fact there is no need to burden the notation like this; we can easily use r(a1, . . . , ak) both to mean 
the grounding and the random variable that is the indicator of the grounding over the set of possible interpretations. We 
adopt such simplified notation in the remainder of this paper.

Example 4. Consider again Example 2, and domain D = {a, b}. Thus we have random variables dirlink(a, a), dirlink(a, b), 
dirlink(b, a), dirlink(b, b), link(a, a), link(a, b), link(b, a), link(b, b), and fullyConnected. We have

P (dirlink(a,a) = 1) = β, P (dirlink(a,b) = 1) = β,

P (dirlink(b,a) = 1) = β, P (dirlink(b,b) = 1) = β.

Also we have

link(a,b) ⇔ ¬(a = b) ∧ (dirlink(a,b) ∨ dirlink(b,a)),

and likewise for the other groundings of link. Note that we mix here logical notation with groundings/random variables. 
Clearly some basic reasoning can simplify the latter expression to

link(a,b) ⇔ dirlink(a,b) ∨ dirlink(b,a),

but we do not require such simplifications to establish a semantics. Finally we have

fullyConnected ⇔ (¬(a = a) ⇒ link(a,a)) ∧ (¬(a = b) ⇒ link(a,b)) (8)

∧ (¬(b = a) ⇒ link(b,a)) ∧ (¬(b = b) ⇒ link(b,b)) ,

or equivalently, with the obvious simplifications:

fullyConnected ⇔ link(a,b) ∧ link(b,a). (9)

Fig. 5 shows the directed acyclic graph for the generated Bayesian network. Note that we add all edges from instances of 
link to fullyConnected, as required by Expression (8), even though not all edges are needed as shown by Expression (9). �

Matters are rather simple when all predicates have arity zero, in which case the whole specification corresponds to some 
“propositional” Bayesian network. In fact, any Bayesian network with binary random variables can be specified using such 
predicates, as the next example illustrates.

Example 5. Suppose we have three binary random variables X , Y and Z , and the Bayesian network in Fig. 1. We can specify 
this Bayesian network as follows. First, take X , Y and Z to stand for predicates with zero arity. Then introduce probabilistic 
assessments P (X) = 0.2 and P (Z) = 0.9. Now specify P (Y = 1|X = x, Z = z) for each possible pair (x, z) by introducing 
four auxiliary random variables W x,z and the associated logical definition
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Y ≡≡ (¬X ∧¬Z ∧W00) ∨ (¬X ∧ Z ∧W01) ∨ (X ∧¬Z ∧W10) ∨ (X ∧ Z ∧W11),

plus auxiliary probabilistic assessments P
(
W x,z

) =P (Y = 1|X = x, Z = z) for each possible (x, z). The marginal probabilities 
over X , Y , and Z are exactly the probabilities over these random variables as given by the original Bayesian network. �

To conclude this section, we note that rather complex phenomena can be encoded with a relBN using the constructs we 
have so far.

Example 6. Gilbert-style random graphs are rather simplistic models. Many other kinds of random graphs have been devel-
oped, to account for features of real networks [66]. A common feature of real graphs is that the distribution of degrees of 
sites follows a power law; such graphs are broadly referred to as scale-free networks. It is well-known that scale-free net-
works appear when a graph is grown by linking a new site to an older site with a probability that depends on how many 
connections the old site displays (this is a “rich gets richer” type of graph). Another way to generate scale-free networks is 
to use preferential attachment: each site gets a fitness value drawn from a probability distribution, and the probability that 
two sites are linked depends on a function of their fitnesses [11].

Here is one preferential attachment scheme that leads to scale-free behavior [11]. First, assume that the fitness of a 
site is an integer f between 1 and some M , drawn with probability proportional to 1/ f γ for some γ . Second, assume the 
probability of a link between two sites to be f1 f2/M2, where f1 and f2 are the fitness values of the sites. Fig. 6 depicts a 
graph produced by preferential attachment. As described in Appendix A, the whole process can in fact be encoded into a
relBN. Indeed, the graph in Fig. 6 was sampled from the Bayesian network produced by grounding the relBN in Appendix A, 
with 750 sites, adopting M = 64 and γ = 1.6. Note the presence of hubs (highly connected sites) and the heavy tail of the 
distribution of degrees; both properties are found in scale-free random graphs. �
3. Definability, inexpressivity, and the like

A systematic study of probabilistic patterns that can/cannot be expressed with relBNs seems to be missing in the lit-
erature, with few exceptions [9,10,63].1 In this short section we present a few ideas that set the stage for results detailed 
later.

First, note that inexpressibility proofs are indeed central to finite model theory [41,59], and many techniques developed 
for logical languages can also shed light on the definability of purely probabilistic patterns. For instance, note that we can 
specify full connectivity for random graphs with FFFO, as we have shown in Section 2. Now suppose we want to compute 
the probability that a Gilbert-style model generates a 2-colorable graph. Can we do it? Alas, a predicate that stands for 
2-colorability cannot be expressed with first-order logic [59]. But we can write, using existential second-order logic:

colorable ≡≡ ∃red : ∀x , y : link(x , y) ⇒ (red(x ) ⇔ ¬red(y)); (10)

and then P (colorable = 1) yields the desired probability, once we have a definition for link (Expression (7)). Similarly, a 
predicate path(x , y), indicating existence of a path between sites x and y , cannot be defined with FFFO, but it can be 
defined with second-order logic [2]. We return to second-order specification languages in Section 6.2.

One can use results presented later to obtain genuinely probabilistic inexpressibility proofs. To illustrate a probabilis-
tic inexpressibility result, consider Jaeger’s suggestion that we should be able to use the “mean” of probability values in 
specifications [48,50]. For instance, we should be able to specify

P (r(a1) = 1) = P (s(a1) = 1) + P (s(a2) = 1) + P (s(a3) = 1)

3
.

To be more precise, consider a simplified and abstracted version of Jaeger’s proposal, as follows. For a predicate r with arity 
k, write

r(x1, . . . , xk) ∼ mean(φ(x1, . . . , xk, y1, . . . , ym)|ϕ(x1, . . . , xk, y1, . . . , ym))

where φ is a formula containing r and other predicates of the vocabulary and ϕ is a formula without predicates and without 
quantifiers (for instance, ¬(x = y)). The predicates in φ other than r are understood as parents of r in the dependency 
graph. The formula φ must have x1, . . . , xk as free variables, plus other free variables y1, . . . , ym that must all appear in 
ϕ . Mimicking Jaeger’s original proposal, the semantics of such a formula is obtained in two steps. Consider a grounding 
r(a1, . . . , ak). First, collect all groundings of y1, . . . , ym that satisfy ϕ(a1, . . . , ak, y1, . . . , ym). Second, assign to P (r(a1, . . . ,ak))

the mean of the probability of each such grounding. For instance, take

r(x ) ∼ mean(s(x , y)|¬(x = y));

1 Many deep results on the expressivity of Bayesian networks focus on independence relations in propositional settings [24,68,75,78].
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Fig. 6. A graph with 750 sites, generated using the fitness model in Example 6, where fitness is an integer f between 1 and 64, drawn with probability 
proportional to 1/ f 1.6. The graph has 1762 links; 140 sites are not linked to other sites, and are not shown in the figure. The average degree is 5.777, 
and some sites are connected to many other sites (the hubs can be seen at the center of the graph); one particular site has degree 61. The distribution of 
degrees is also shown, displaying a long tail and evidence of a power law over degrees.

for a domain D = {a1, a2, a3}, we obtain

P (r(a1)) = (P (s(a1,a2)) + P (s(a1,a3)) + P (s(a2,a3)))/3.

Is it possible to encode the mean combination function using a relBN? One might suspect that producing a mean operation 
with FFFO is no trivial matter. And in fact, as we show later using probabilistic techniques, it is indeed impossible to do so 
(Theorem 7).

To conclude this section, we note that there are other ways to study expressivity, as indicated in Section 1. We do not 
pursue every possible strategy in this paper; instead in the next sections we focus on the connection between expressivity 
and complexity, and on zero/one laws and their effect on definability.
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4. Some complexity theory, and the complexity of inferences

We adopt standard concepts from complexity theory [67]. A string is a sequence of 0s and 1s. A language is a set of 
strings; a complexity class is a set of languages.

4.1. Turing machines and complexity classes

A non-deterministic Turing machine is specified as (Q , 	, q0, Q a, Q r, δ), a tuple where Q is a set of states; 	 is the 
alphabet (including 0, 1, and blank; the latter cannot be in the input); q0 ∈ Q is the initial state; Q a is the set of accepting 
states; Q r is the set of rejecting states; and δ is the transition function that takes a pair from Q × 	 (that is, current state 
and current symbol in tape) and returns a subset of Q × 	 × {−1, 0, 1} (that is, next state, symbol to be written in tape, 
and head movement where −1 means left, 1 means right, and 0 means no motion); if δ always returns a singleton, the 
machine is in fact deterministic. If an input can lead the machine to stop in an accepting state, then the input is accepted; 
if the input leads the machine to always stop in a rejecting state, then the input is rejected. A language is decided by a 
Turing machine if the machine accepts each string in the language, and rejects each string not in the language. A language 
implicitly defines a decision problem that consists of deciding whether a given input string is in the language. We later use 
complexity classes such as P, NP, PSPACE, respectively the set of languages that can be decided by a deterministic Turing 
machine with a polynomial time bound, by a nondeterministic Turing machine with a polynomial time bound, and by a 
deterministic Turing machine with a polynomial space bound.

If a Turing machine is such that, whenever its transition function maps to a non-singleton set, the transition is selected 
with uniform probability within that set, then the Turing machine is a probabilistic Turing machine. The complexity class PP
is the set of languages that are decided by a probabilistic Turing machine in polynomial time, with an error probability 
strictly less than 1/2 for all input strings — that is, if the input is in the language, the machine accepts the input with 
probability strictly larger than half; if the input is not in the language, the machine accepts the input with probability less 
than or equal to half. This complexity class can be equivalently defined as follows: a language is in PP if and only if there 
is a polynomial nondeterministic Turing machine such that a string is in the language if and only if more than half of the 
computation paths of the machine end in accepting states when the string is the input (all other paths end in rejecting 
states). The class PP1 is the set of languages in PP that have a single symbol (say 1) in the input vocabulary (so the input 
is always a sequence of 1s). And the class PEXP is the set of languages that are decided by a probabilistic Turing machine 
with an exponential time bound.

An oracle Turing machine ML , where L is a language, is a Turing machine with additional tapes, such that it can write 
a string � to a tape and obtain from the oracle, in unit time, the decision as to whether � ∈ L or not. If A and B are sets 
of languages, then AB = ∪x∈BAx , where AL is the set of languages that are decided by oracle Turing machines of the same 
sort and bound as A, but with additional oracle access to L. For instance, NPNP is the class of languages that are decided 
by polynomial time nondeterministic Turing machines with access to an oracle in NP, while PPNP is the class of languages 
that are decided by polynomial time probabilistic Turing machines with access to an oracle in NP. Whole hierarchies can 
be built by stacking oracles. For instance, the polynomial hierarchy [80] consists of classes 	p

k+1 = NP	
p
k and its companions 

coNP	
p
k , for k ≥ 0, with 	p

0 = P. That is, the polynomial hierarchy consists of P and, recursively, NPC and coNPC , for any 
class C in the polynomial hierarchy. And Wagner’s counting hierarchy [84] consists of classes P and, recursively, PPC , NPC , 
and coNPC , for any class C in the counting hierarchy [82, Theorem 4.1].

A polynomial-time many-one reduction from language L to language L′ is an algorithm that takes an input string � and 
transforms it into a string �′ such that � ∈ L if and only if �′ ∈ L′ . A language is reduced to another language if and only if 
there is a polynomial time many-one reduction from the former to the latter.

4.2. Data, inferential, query, domain complexity

The complexity of satisfiability for a logical language is the complexity of determining whether a given formula is satisfi-
able. And the complexity of model checking for a logical language is the complexity of determining whether a given formula 
is true with respect to a given domain and a given interpretation; if the formula is fixed and the pair domain/interpretation 
to be checked is the input, then one usually speaks of data complexity. These and other complexity notions have received 
detailed scrutiny in finite model theory [25,42].

An analogous study can be pursued with respect to the complexity of inferences in relBNs. In fact we can distinguish at 
least three ways to quantify such complexity. One of these concepts (query complexity) resembles data complexity, and will 
be implicitly used later in our analysis of descriptive complexity.

The first situation is this. Suppose we take as our input a string describing: a relBN τ specified using a logical language 
L; a domain of size N; a conjunction of groundings Q; another conjunction of groundings E; and a rational γ . Suppose 
further that we accept the input string if and only if P (E) > 0 and P (Q|E) > γ with respect to the Bayesian network τ (N). 
Then the inferential complexity of L is complete for complexity class C if and only if the set of accepted input strings is in 
C , and moreover if every language in C can be reduced to one such set of accepted strings.

Inferential complexity is not the only possible measure of complexity. Suppose that we fix a relBN τ described using 
logical language L, and we have input strings encoding domain of size N , Q, E, and γ . For each fixed τ , the problem is 
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Table 1
Various patterns of inferential, query and domain complexity for relBNs. 
All cells indicate completeness with respect to polynomial-time many-one 
reductions. As we restrict input Q and E to conjunctions of groundings 
(with no negation), we only allow “positive” evidence [16].

Language Inferential Query Domain

Prop(∧) P P —
Prop(∧,¬), Prop(∧), Prop(∨) PP P —
FFFO PEXP PP PP1

FFFO with bound on relation arity PSPACE PP PP1

FFFOk with k ≥ 3 PP PP PP1

DLLitenf P P P

again to decide whether P (E) > 0 and P (Q|E) > γ with respect to τ (N). We say that the query complexity of L is complete 
for complexity class C if and only if the set of accepted input strings is in C for each τ , and every language in C can be 
reduced to the set of accepted strings induced by some τ . We can go one step further and consider domain complexity: here 
we have the same definition as query complexity, but Q and E are also fixed, and the input consists only of domain with 
size N (with γ fixed at 1/2). Domain complexity conveys the cost of doing a fixed inference as the domain grows.

To see that distinct logical languages display varying levels of complexity, consider Table 1 [7,16,79]. The inferential, 
query and domain complexities for several languages are shown: Prop(R) denotes a propositional language (all predi-
cates with arity zero) restricted to operators in R; FFFOk is FFFO restricted to k symbols for logical variables; DLLitenf

corresponds to the negation-free fragment of the description logic DL-Lite [3,12]. In short, DLLitenf consists of all logical def-
initions containing unary predicates, conjunction, and the constructs ∃x : r(x , y) and ∃y : r(x , y) (that is, binary predicates 
only appear in such restricted existential quantification), additionally restricted to only two symbols for logical variables (x
and y). Another point to mention regarding Table 1 is the fact that domain complexity is often related to complexity class 
PP1, because the input can be taken simply as a sequence of identical symbols, one per element of the domain.

The analysis of query and domain complexity is closely related, respectively, to dqe liftability and domain liftability. These 
two concepts have been proposed to study lifted inference; that is, to study inference methods that avoid dealing explicitly 
with all groundings, rather operating with predicates themselves [72,83]. A specification language is domain-liftable when 
its domain complexity is polynomial; it is dqe-liftable when its query complexity is polynomial — in both cases the idea 
is to characterize “liftability” by requiring the complexity of inferences to avoid the blow-up caused by grounding [53,54]. 
Moreover, query complexity is often analyzed in connection with probabilistic databases [7,79].

There are many ways to enlarge Table 1, as we note in Section 8; however, here we are more interested in using 
complexity theory to capture expressivity. This is the goal of descriptive complexity, to which we now turn.

5. A bit of descriptive complexity

Descriptive complexity reveals the expressive power of a logical language by indicating precisely the kind of Turing 
machines that can be described by the language. At the same time, by showing that complexity classes can be described 
solely by logical means, descriptive complexity demonstrates that Turing machines are not needed to define complexity 
classes. The central idea is that a logical language may “capture” a complexity class; to formalize this notion, we need a few 
preliminary concepts.

A pair domain/interpretation is a structure. If φ(x1, . . . , xk) is a first-order formula with free variables x1, . . . , xk , then 
structure A is a model of φ(a1, . . . , ak) if and only if φ(x1, . . . , xk) is true in structure A when the logical variables x1, . . . , xk
are replaced by elements a1, . . . , ak of the domain.

There is an isomorphism between structures A1 and A2 if and only if there is a bijective mapping g between the domains 
such that if r(a1, . . . , ak) is true in A1, then r(g(a1), . . . , g(ak)) is true in A2, and moreover if r(a1, . . . , ak) is true in A2, 
then r(g−1(a1), . . . , g−1(ak)) is true in A1 (g−1 denotes the inverse of g). An isomorphism-closed set of structures is a set of 
structures such that, whenever a structure is in the set, all structures that are isomorphic to it are also in the set.

We assume that every structure is given as a string, encoded as follows for a fixed vocabulary where the maximum 
predicate arity is K [41, Section 3.1.5]. Suppose the domain contains elements a1, . . . , aN . To encode interpretations with 
respect to the domain, we need to order the elements of the domain, say a1 < a2 < · · · < aN ; assume an order is selected. 
The string begins with N symbols 1 followed by N K − N + 1 symbols 0. We take some order for the predicates, r1, . . . , rn . 
We then append, in this order, the encoding of the interpretation of each predicate. Focus on predicate ri of arity k. Using 
the linear ordering on the domain, we can enumerate lexicographically all k-tuples over the domain (there are Nk such 
tuples). We then encode the interpretation of ri by Nk symbols followed by N K − Nk symbols 0; the jth first symbol (up 
to the Nkth symbol) is 1 if the jth k-tuple belongs to the interpretation, and 0 otherwise. Thus we have 1 + (n + 1)N K

symbols in the string.
Logical language L is said to capture complexity class C when exactly two conditions are met. First, the data complexity 

of L is in C . Second, for each isomorphism-closed set of finite structures S , for a non-empty vocabulary V , such that these 
structures are encoded as strings of a language in C , there is a sentence φ in L, with vocabulary V , such that S is exactly 
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the set of all models of φ. Or, more concisely, L captures C if and only if: for any isomorphism-closed set S of finite 
structures of some non-empty finite vocabulary, S is in C if and only if S is the class of finite models of a sentence in L.

Note that descriptive complexity is distinct from data complexity. For example, the data complexity of FFFO is within 
polynomial bounds, but it is not the case that FFFO captures polynomial complexity: 2-colorability of a given graph (a 
graph can be encoded as a structure) can be checked in polynomial time, but 2-colorability cannot be expressed in FFFO.

To continue this example, note that 2-colorability can be expressed with existential function-free second-order logic (Ex-
pression (10)). A formula φ in such logic has the form ∃r1 . . .∃rnφ′ , where φ′ is a formula of FFFO containing predicate 
variables r1, . . . , rn , and possibly other predicate variables. If φ has no free predicate variables nor free logical variables, then 
φ is a sentence. A structure A is, as before, a pair domain/interpretation. The set of well-formed formulas in existential 
function-free second-order logic is denoted by ESO.

Possibly the most celebrated result in descriptive complexity is Fagin’s theorem: ESO captures NP [29]. Or, in more 
detail:

Theorem 1. Let S be an isomorphism-closed set of finite structures of some non-empty finite vocabulary. Then S is in complexity class 
NP if and only if S is the class of finite models of a sentence in ESO.

Fagin’s theorem offers a definition of NP that is not tied to any computational model; rather, it is tied to the expressivity 
of ESO. It is actually not surprising that NP contains the problem of deciding whether an input structure is a model of a 
fixed ESO sentence; the surprising part of Fagin’s theorem is that every language in NP can be exactly encoded by an ESO
sentence.2

The proof of Fagin’s theorem employs a predicate < to determine when an element of the domain precedes another 
(elements of the domain are employed as time steps and as positions of a tape). However, this predicate < is not in the 
input vocabulary; its interpretation as a linear order (over the input domain) cannot be given in the input. An important 
point is that a linear order can be generated with ESO by introducing < not as a predicate, but rather as a predicate 
variable that is properly constrained. To guarantee that the predicate variable < indeed behaves as a linear order, call φ<

the universal closure of ¬(x < x ) and (x < y ∧ y < z) ⇒ x < z and (x < y) ∨ (y < x ) ∨ (x = y). Finally, introduce the ESO
sentence ∃ <: φ< , to guarantee that < is built without the need to enlarge the input vocabulary. We later use a similar 
argument when we capture various complexity classes.

6. The descriptive complexity of relational Bayesian network specifications

In this section we show that relBNs capture PP, while second-order extensions of relBNs capture PP	
p
k , for each k. 

Mimicking our previous discussion, an specification language L is said to capture complexity class C if and only if: for any 
isomorphism-closed set S of finite structures of some non-empty finite vocabulary, S is in C if and only if S is the class of 
strings accepted by an specification in L. For this definition to make sense, a preliminary question is how exactly to accept 
an input structure when we have a specification τ based on L.

We adopt the following scheme to accept/reject an input structure A of some non-empty vocabulary V using a speci-
fication τ whose vocabulary contains V . First, note that structure A defines a domain D and consequently a probabilistic 
model τ (D) out of τ . Denote by Pτ (D) the probability measure defined by τ (D). The particular form of Pτ (D) depends on 
L; for instance, for a relBN τ the resulting Pτ (D) is encoded by a Bayesian network. Second, note also that each grounding 
of a predicate in V appears in τ (D) as a random variable; this random variable is set to true or false by the interpretation 
in A. The evidence E induced by A is just the set of these assignments to random variables corresponding to groundings 
of predicates in V . Third, we assume that a specification τ that accepts/rejects input structures contains two distinguished 
predicates of zero arity, A and B; the predicate A is the conditioned predicate, while B is the conditioning predicate. Finally, 
we adopt the following convention: if Pτ (D)(A = 1|B = 1, E) > 1/2, then accept A; otherwise, reject A.

We can now specialize these definitions to particular specification languages.

6.1. Capturing PP

Consider the class of relBNs, where definitions are based on formulas in FFFO. We show that this specification language 
captures PP. The easy part is that the query complexity of relBNs is in PP. The harder part is to show that any language of 
structures in PP can be “decided” by some relBN τ on an extended vocabulary V ′ containing the input vocabulary V plus 
a conditioned predicate A and a conditioning predicate B .

As already noted, from a given structure A we can produce a Bayesian network τ (D) from a relBN τ ; hence Pτ (D) is 
the probability measure encoded by a Bayesian network τ (D). Note that such a probability distribution is over the set of 
interpretations; we still have structures as usual but the focus now is on probability distributions over structures (that is, 
over their interpretations).

Now that we have the proper context, here is the main result:

2 Note that any string in a language in NP can be turned into a structure for some finite vocabulary [41, Section 3.1.5].
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Theorem 2. Let S be an isomorphism-closed set of finite structures of some non-empty finite vocabulary. Then S is in complexity class 
PP if and only if S is the class of finite structures that are accepted by a fixed relBN with fixed conditioned and conditioning predicates.

Proof. If S is the class of structures that are accepted by a fixed relBN, we must show that S can be decided by a 
polynomial time probabilistic Turing machine. This is the same as proving that the query complexity of relBNs based 
on FFFO is in PP, a result already in the literature [16, Theorem 7]. The proof of that result builds a nondeterministic 
Turing machine such that the input structure A is accepted by more than half of the computation paths if and only if 
P (A = 1|B = 1,E) > 1/2. To summarize, the machine starts by guessing a truth assignment for all groundings of root nodes 
(in such a way that a grounding of r, where r is associated with P (r) = α, is assigned true in a fraction α of computation 
paths). Now each complete truth assignment over groundings of root predicates defines an interpretation. Recall that model 
checking of a fixed function-free first-order sentence is in P [59]. Then the machine verifies, in polynomial time, whether 
{B = 1, E} holds: if not, it moves to a state q1; if yes, the machine verifies whether {A = 1, B = 1, E} holds. If the latter check 
is negative, the machine moves to a state q2; if the check is positive, then the machine moves to a state q3. After reaching 
q1 or q2 or q3, the machine branches in a particular way to guarantee that more than half of its computation paths are 
accepted if and only if P (A = 1|B = 1,E) > 1/2 (an identical strategy has been used to prove the complexity of inference 
in Bayesian networks [20, Theorems 11.3 and 11.5]). From q1, branch into a path that accepts and one that rejects; from q2, 
branch into two paths that reject; and from q3, branch into two paths that accept. Denote by Ni the number of computation 
paths that reach qi . The number of accepting computation paths is N1 + 2N3, and the total number of computation paths is 
2(N1 + N2 + N3). The input is accepted by this Turing machine iff (N1 +2N3)/(2(N1 + N2 + N3)) > 1/2, and this is equivalent 
to P (A = 1|B = 1,E) > 1/2 because, by construction, N1/(N1 + N2 + N3) is equal to 1 −P (B = 1,E) and N3/(N1 + N2 + N3)

is equal to P (A = 1, B = 1,E). Thus the machine does decide the input language correctly.
To prove the other direction, we adapt the proof of Fagin’s theorem as described by Grädel [41], similarly to work by 

Saluja et al. [76, Theorem 1]. So, suppose that S is encoded as a language decided by some probabilistic Turing machine. 
Equivalently, there is a nondeterministic Turing machine TM that determines whether the majority of its computation 
paths accept an input, and the input structure is accepted/rejected accordingly. Then there is a first-order sentence φTM , 
with vocabulary consisting of the vocabulary of the input plus some additional predicates, such that each interpretation of 
this joint vocabulary is a model of the sentence if and only if it encodes a computation path of the Turing machine, as 
long as there is an available additional predicate that is guaranteed to be a linear order on the domain. We briefly review 
Grädel’s construction of this sentence φTM , only emphasizing the points that are relevant to the present proof.

First, the size of the input string is polynomial on the size N of the domain D in the input structure A; as TM runs 
for a number of steps that is a known polynomial of the length of the input string, we can assume that TM stops (with 
acceptance or rejection) after exactly N M − 1 steps, where M is some integer. So we must only represent N M − 1 time steps, 
and N M − 1 positions in the machine tape. We create a “time index” by using M logical variables in predicates; there are 
N M ways to substitute these logical variables by elements of D, and therefore we have N M tuples of elements. We refer 
to such a tuple by �x . Similarly, we index tape positions using M logical variables in predicates; we refer to such a tuple of 
logical variables by �y .

Second, the encoding of a Turing machine requires a total order over elements of the domain. As discussed after the 
statement of Fagin’s theorem (Theorem 1), we can express all conditions over a linear order < with a formula φ< in FFFO. 
So, introduce a predicate variable <, later to be forced to behave as a linear order. Using <, it is possible to define with 
FFFO a successor predicate, a predicate first that indicates the first element, and a predicate last that indicates the last 
element (Grädel uses constants to represent these elements, but we do not have constants). For instance, the predicate first
is associated with definition first(x ) ≡≡ ¬∃y : y < x .

We use predicates Xq (one per state), Yσ (one per symbol), and Z : Xq(�x ) means that state is q at time step �x ; Yσ (�x , �y)

means that the symbol in position �y is σ at time step �x ; Z(�x , �y) means that the head is at position �y at time step �x . 
It is necessary to guarantee that, at each step, a single state is true, each tape position holds a single symbol, and the 
head is at a single position; all those conditions can be expressed by a formula φa in FFFO. For instance, we must impose 
∀x : ∨q Xq(x ) ∧ ∧

q′ �=q ¬Xq′(x ) to guarantee that a single state is true at each step.
Grädel introduces two formulas, referred to as START and COMPUTE, such that the universal closure of their conjunction 

encodes the whole behavior of TM using predicates Xq , Yσ and Z , plus the predicates in V and some auxiliary predicates 
as described previously (we do not repeat these two formulas here). Denote by φS the universal closure of START, and 
by φC the universal closure of COMPUTE. Another formula, referred to as φE , is true if and only if an accepting state 
is reached by TM: ∃x : ∨

q∈Q a
Xq(x ). Grädel’s argument shows that, given an interpretation of < that satisfies φ< , each 

interpretation of φ′
TM = φa ∧φS ∧φC corresponds exactly to a computation sequence of TM; moreover, each interpretation 

of φTM = φ′
TM ∧ φE corresponds exactly to a computation sequence of TM that ends up in acceptance. Grädel’s proof of 

Fagin’s theorem is then finished by taking the ESO sentence ∃ <: ∃{Xq} : ∃{Yσ } : ∃Z : φ< ∧ φTM . This last sentence is not 
used in our construction; rather, it is replaced by probabilistic constructs.

For our purposes we must impose a uniform probability measure over all interpretations of Xq , Yσ , and Z , to obtain a 
uniform probability measure over all possible computations. Assume for a moment that a linear order < is given (satisfying 
φ<). Introduce, for all states q and all symbols σ ,

P
(

Xq
) = 1/2, P (Yσ ) = 1/2, P (Z) = 1/2, (11)
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interpreted as if we were specifying a relBN. Of course not all interpretations of these predicates satisfy φ′
TM and E. 

To guarantee that we are only dealing with interpretations satisfying φ′
TM and E, we must condition on the event that 

both φ′
TM and E hold. Also, we are interested in deciding whether, among those satisfying interpretations, more than half of 

them correspond to accepting computations. So we introduce B through the logical definition B ≡≡ φ′
TM , and introduce A

through the logical definition

A ≡≡ φE ; (12)

then P (A = 1|B = 1,E) yields

P
(
φE |φ′

TM ∧ E
) = P

(
φE ∧ φ′

TM ∧ E
)

P
(
φ′
TM ∧ E

) = P (φTM ∧ E)

P
(
φ′
TM ∧ E

) .

In the previous paragraph we assumed the interpretation of < to be given as input. In Fagin’s theorem, the interpretation 
of < is “internalized” by the second-order quantification ∃ <. Here we must instead resort to probabilities. We introduce 
the probabilistic assessment

P (<) = 1/2, (13)

and add the linear order to the definition of B:

B ≡≡ φ′
TM ∧ φ<. (14)

Take the relBN τ consisting of Expressions (11), (12), (13), and (14); by producing the Bayesian network τ (D) where D is 
the domain in the input structure A, we have:

Pτ (D)(A = 1|B = 1,E) = P (φ< ∧ φTM ∧ E)

P
(
φ< ∧ φ′

TM ∧ E
) ,

as desired. Note that there are actually N! linear orders that satisfy φ< , but for each one of these linear orders we have 
corresponding interpretations for all other predicates, hence the ratio between accepting computations and all computations 
is as desired. Thus the input structure is accepted by the majority of computations in TM if and only if Pτ (D)(A = 1|B =
1, E) > 1/2. �
6.2. Moving to second-order

Suppose we have a specification that follows the syntax of relBN, except for the fact that one logical definition contains, 
in its right hand side, a formula in ESO without free predicate variables. For instance, consider the specification of a 
Gilbert-style random graph with an indicator of 2-colorability, produced by putting together Expressions (7) and (10):

P (dirlink) = α,

link(x , y) ≡≡ ¬(x = y) ∧ (dirlink(x , y) ∨ dirlink(y, x )),

colorable ≡≡ ∃red : ∀x , y : link(x , y) ⇒ (red(x ) ⇔ ¬red(y)).

We denote this set of specifications by 1esoBNs. To be more precise, a 1esoBN consists of three parts. First, we have a 
finite vocabulary V containing names of predicates. Some predicates in V are associated with probabilistic assessments as 
in relBNs (such as Expression (5)), while the remaining predicates are associated with logical definitions as in relBNs (6), 
except for one predicate r in V . The third part of the specification is a single second order existential definition associated 
with r:

r(x1, . . . , xk) ≡≡ ∃s1 . . .∃sm : φ(x1, . . . , xk, s1, . . . , sm), (15)

where s1, . . . , sm are predicate variables, and φ(x1, . . . , xk, s1, . . . , sm) is a formula of FFFO whose extralogical symbols 
are only names in V , or predicate variables in {s1, . . . , sm}, or free logical variables x1, . . . , xk , or possibly other logical 
variables that are bound to quantifiers in φ(x1, . . . , xk, s1, . . . , sm). Note that at this point we have in essence abandoned 
the graph-based scheme of Bayesian networks; the syntax of these second-order Bayesian networks is entirely based on 
textual formulas that are not easily translated into graphs (even though one can certainly create a dependency graph for a 
second-order Bayesian network).

What kind of complexity class is captured by 1esoBNs? We adopt a strategy for acceptance/rejection that mimicks the 
strategy for acceptance/rejection we adopted for relBNs. That is, we have an input structure on a vocabulary V , and we 
assume that there is a conditioned predicate A and a conditioning predicate B in the 1esoBN; we also assume that quan-
tified predicates are not in V . The decision as to whether to accept or reject the input structure is based on whether the 
probability of A given B and E (the evidence conveyed by the input structure) is larger than 1/2 or not.
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We have3:

Theorem 3. Let S be an isomorphism-closed set of finite structures of some non-empty finite vocabulary. Then S is in complexity 
class PPNP if and only if S is the class of finite structures that are accepted by a fixed 1esoBN with fixed conditioned and conditioning 
predicates.

Proof. To prove that a class of finite structures that are accepted by a fixed 1esoBN can be decided within PPNP , put 
together the argument in the first paragraph of the proof of Theorem 2 and the fact that an ESO sentence can be evaluated 
with an NP oracle [80]. That is, there is a “base” Turing machine that gets an input structure and proceeds as the machine 
in the proof of Theorem 2, with the proviso that model checking is not in P anymore; rather, one must resort to an oracle 
to do the model check. Because an NP oracle suffices to model check an ESO sentence, the desired query complexity is 
proved.

To prove the other direction, the proof of Theorem 2 must be modified. We use again the same predicates Xq , Yσ and Z
for the base machine, plus predicates Y ′

σ and Z ′ that control the content of the auxiliary tape where strings are written to 
and received from the oracle. All of those predicates are root predicates associated with probability 1/2, to guarantee again 
that all interpretations have identical probability. The predicates are used in constraints following the machinery of Grädel’s 
proof of Fagin’s theorem [41]. That is, again we have a linear order and predicates that define a first element and a successor 
relation. The elements of the domain are used both to mark the time steps and to indicate tape positions. Formulas φS and 
φE are just as before, respectively setting up all predicates, and detecting acceptance. And the COMPUTE formula has the 
same behavior as before, except that now it must deal with transitions from the base Turing machine to the oracle Turing 
machine.

So, there must be a distinguished state q′ such that, once the machine is in this state, its next transition depends on the 
result of the oracle machine. The behavior of the oracle machine is then encoded with a single ESO formula with quantified 
predicate variables Xo

q , Y o
σ , Zo (the superscript o refers to the “oracle”), with access to Y ′

σ and Z ′ . This formula is exactly 
the formula built in Grädel’s proof of Fagin’s theorem, so we avoid repeating it here.

In the proof of Theorem 2 it was necessary to introduce logical variables that “mark the steps” of the Turing machine 
(these steps are ordered by the introduced linear order), and similarly to refer to the position in the tape. Here we also need 
a set of logical variables to mark the steps, but we also need logical variables that mark the steps of the oracle machine; 
also we need two sets of logical variables, one to refer to the position in the base tape, the other to refer to the position 
in the oracle tape. And of course a linear order over the domain must also be built as in the proof of Theorem 2. Again, 
an input structure is accepted by the majority of computation paths in the (base) Turing machine if and only if we have 
P (A = 1|B = 1,E) > 1/2, where A, B and E are as in the proof of Theorem 2. Note that the number of possible structures 
satisfying the second-order sentence that describes the oracle machine may be very large, but this number is not counted 
(only the computations in the base machine are counted). �

Note that by allowing an increasing number of second-order quantifier blocks, we can capture other complexity classes 
in the counting hierarchy. For instance, we may allow k logical definitions that use ESO, using negation to produce univer-
sal quantification whenever necessary. For this scheme to increase expressivity, we must allow logical definitions to have 
free predicate variables; these predicate variables must be bound at some level in the definitions, and if included in the 
dependency graph they cannot create a cycle. Alternatively, we may allow a single logical definition to use a formula from 
second-order logic that starts with k alternating quantifier blocks. In both cases we say that we have a specification in
kesoBN. With such a specification we can write down formulas in 	1

k ; that is, formulas that consist of a FFFO formula 
preceded by k blocks of distinct quantifiers, each block either existential or universal, and the first block existential. In fact, 
	1

k captures the complexity class 	p
k in the polynomial hierarchy [80], so we can capture various classes in the counting 

polynomial hierarchy:

Theorem 4. Let S be an isomorphism-closed set of finite structures of some non-empty finite vocabulary. Then S is in complexity class 
PP	

p
k if and only if S is the class of finite structures that are accepted by a fixed kesoBN with fixed conditioned and conditioning 

predicates.

Proof. The proof of this theorem is similar to the proof of Theorem 3; hence we only indicate the necessary changes.

To prove that a class of finite structures that are accepted by a fixed kesoBN can be decided within PP	
p
k , take a “base” 

Turing machine that gets an input structure and proceeds as the machine in the proof of Theorem 2, with the proviso that 
model checking is not in P anymore; rather, one must resort to an oracle to do the model check. Because a 	p

k oracle 
suffices to model check an sentence in 	1

k [80], the desired query complexity is proved.

3 In a previous publication we argued that second-order Bayesian network specifications capture PPNP , failing to state the necessary restriction to a 
single logical definition based on a second-order formula [17]. We correct that mistake here.
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To prove the other direction, use again the same predicates Xq , Yσ and Z for the base machine, plus predicates Y ′
σ

and Z ′ that control the content of the auxiliary tape where strings are written to and received from the oracle. Again, all 
of those predicates are root predicates associated with probability 1/2, and the predicates are used in constraints as in 
Grädel’s proof of Fagin’s theorem; there is a linear order and associated predicates, and the elements of the domain mark 
both the time steps and tape positions (for the base and the oracle machines). Formulas φS and φE are built as before; also 
the COMPUTE formula deals with transitions, including transitions between base and oracle machines. And there must be 
a distinguished state q′ such that, once the machine is in this state, its next transition depends on the result of the oracle 
machine. The behavior of the oracle machine is then encoded with a single 	1

k formula with access to Y ′
σ and Z ′; this 

formula can be built as 	1
k captures 	p

k [80]. Again, an input structure is accepted by the majority of computation paths in 
the (base) Turing machine if and only if we have P (A = 1|B = 1,E) > 1/2, where A, B and E are as before. �
6.3. A comment

These results on descriptive complexity can be interpreted intuitively as follows: suppose we have a (physical, social, 
economic) phenomenon that can be simulated by a probabilistic Turing machine in polynomial time: given an input, the 
machine runs for a number of steps that is polynomial in the length of the input, and the machine produces an output 
probabilistically, distributed exactly as the corresponding output of the phenomenon. Our first theorem shows that this 
phenomenon can be modeled by a relational Bayesian network specification in the sense that, given the input as evidence, 
then an inference with the network will manipulate the same probabilities as the phenomenon.

But what happens if the phenomenon is so complex that it requires even more computational power to be simulated? 
For instance, what happens if the phenomenon is so complicated as to require, for its simulation, a polynomial time prob-
abilistic Turing machine with another nondeterministic Turing machine as oracle? This phenomenon cannot be modeled 
by a “first-order” Bayesian network specification, unless widely accepted assumptions about complexity classes collapse. 
However, our second theorem shows that this phenomenon can be modeled by a suitable “second-order” Bayesian network 
specification.

7. Zero/one laws for relational Bayesian network specifications

Suppose we have a vocabulary and that, for each domain, we assign a uniform probability measure over all interpreta-
tions. Take the probability of a function-free first-order sentence φ to be simply the probability of the set of interpretations 
that satisfy φ. Amazingly, the probability of φ converges, as the domain grows, either to 0 or to 1 under rather general 
circumstances. To be more precise, Fagin’s zero/one law states that if φ is any sentence in FFFO with predicates of positive 
arity,4 then P (φ) converges, if we adopt uniform probabilities over all interpretations, either to 0 or to 1 [29,37]. Similar 
convergence properties have been proved for many logics; indeed the search for zero/one laws is a major topic in finite 
model theory [25,42].

One must be surprised: Why do these results appear in finite model theory at all, when they clearly belong to finite 
probabilistic model theory? In any case, little work is needed to transfer the zero/one law for FFFO into a zero/one law for 
relational Bayesian network specifications. We do it at once.

For a relBN τ , where τ (N) is the Bayesian network produced by a domain of size N , denote by Pτ (N) the corresponding 
probability measure. We are interested in the probability of some sentence φ, denoted by Pτ (N)(φ); that is, the probability, 
with respect to τ (N), of the set of interpretations that satisfy φ.

We have:

Theorem 5. If τ is a relBN containing only predicates of positive arity, then limN→∞Pτ (N)(φ) exists and is either 0 or 1.

Proof. The proof has two parts. First, we show that τ can be turned into another relBN τ ′ such that all interpretations 
receive identical probability, and that we can build a sentence ϕ containing only the root predicates of the latter relBN, 
such that Pτ ′(N)(ϕ) =Pτ (N)(φ). Second, we invoke the zero/one law for FFFO to obtain the desired limit.

So, start with the input τ . If all root predicates are associated with probabilities 1/2, then all interpretations have 
identical probabilities and we make τ ′ = τ . So suppose some root predicates are not associated with probability 1/2. Take 
a root predicate r associated with a probabilistic assessment P (r) = α where α �= 1/2. Suppose α = a/b where a and b are 
the smallest possible nonnegative integers, both encoded in binary notation with less than B bits. Introduce B predicates, 
each one representing a bit, and each one of them associated with probability 1/2. Thus a realization of these predicates is 
a nonnegative integer c with B bits. To generate a sample of r, it is then enough to decide whether a/b < c; if yes, then the 
sample assigns true to r; if no, then the sample assigns false to r. Deciding a/b < c can be done by deciding a < bc; to do so, 
we need to multiply two binary numbers b and c and compare the result with a binary number a. These operations can be 
encoded with digital circuits, hence they can be translated into first-order logic (this sort of encoding is used in Appendix A

4 Hence φ has no free variables and no functions, and consequently no constants, and also no propositions.
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to produce samples). We can therefore transform τ into an enlarged relBN τ ′ where all root predicates are associated with 
probability 1/2. Hence in τ ′ the probability measure over all grounded root predicates is uniform for any domain.

To compute Pτ (N)(φ), we can recursively replace each non-root predicate of τ ′ that appears in φ by its definition, until 
we only have root predicates. Call the resulting sentence ϕ; clearly Pτ ′(N)(ϕ) =Pτ (N)(φ).

So, we have a uniform probability measure over the interpretations of the root predicates, and a single first-order sen-
tence ϕ whose probability is just Pτ ′(N)(ϕ), for whatever N . The zero/one law for FFFO yields the desired convergence 
result. �

A simple example is given by the relBN τ in Expression (7), by considering the probability of full connectedness:

lim
N→∞Pτ (N)(∀x , y :¬(x =y)⇒ link(x , y)) =

⎧⎨
⎩

lim
N→∞αN(N−1)/2 = 0 if α < 1,

lim
N→∞ 1N(N−1)/2 = 1 if α = 1.

In fact the same construction described in the proof of Theorem 5 can be used to handle a sentence φ containing 
constants; in that case the basic convergence theorem by Glebskii et al. [37] implies convergence, but not necessarily 
convergence to 0 or 1.

A previous result on the convergence properties of Jaeger’s relational Bayesian networks [49] similarly establishes con-
vergence of probabilities (not necessarily to 0 or 1). Jaeger imposes some conditions on combination functions and focuses 
on the probability of groundings, adapting steps of Fagin’s proof of the zero/one law as needed. Here we have a simpler 
specification language and therefore we can directly use Fagin’s zero/one law in our proof.

Another byproduct of the construction in the proof of Theorem 5 is that we can easily pinpoint the complexity of 
computing the limiting value of a probability given a relBN.

Theorem 6. Consider a decision problem where the input is a relBN τ , containing only predicates of positive and bounded arity, and 
a sentence φ on that vocabulary, and such that this input is accepted if and only if limN→∞Pτ (N)(φ) = 1. This decision problem is 
PSPACE-complete.

Proof. Use the construction in the proof of Theorem 5, and then apply Grandjean’s complexity analysis [43]. �
This theorem shows that the complexity of limiting inference with relBNs with bounded arity is the same as their 

inferential complexity (indicated in Table 1).
These results just scratch the surface of what can be explored concerning the convergence properties of relBNs. For 

instance, we have not discussed the convergence of conditional probabilities. Also, one can consider various other specifi-
cation languages, based both on fragments and extensions of FFFO, so as to map which specification languages guarantee 
convergence. Finally, one can embark on a classification of specification languages concerning the complexity of computing 
limiting probabilities: for instance, what is this complexity for relBNs restricted to the two-variable fragment of FFFO?

Instead of pursuing such possibilities, we want to end this section by establishing a connection with the previous discus-
sion of definability. Indeed, zero/one laws are already used to prove logical inexpressibility; an example suffices to illustrate 
the method. Suppose we want to define a concept even, that is true exactly when the size of the domain is even. But 
Pτ (N)(even) is 1 if the domain size is even, and 0 otherwise; there is no limiting probability, hence even cannot be defined 
with FFFO [59]. We can use the same reasoning to extract inexpressibility results from the zero/one law for relBNs. For 
instance, consider the combination function mean described in Section 3.

Theorem 7. It is impossible to define the combination function mean with a relBN (that is, with a specification based on FFFO).

Proof. Suppose we could in fact define mean within a relBN. Then consider a relBN as follows. First, take auxiliary pred-
icate one, of arity one, associated with probabilistic assessment P (one) = 1, and add a logical definition for a predicate 
equal:

equal(x , y) ≡≡ (x = y) ∧ one(y).

Now introduce a dirlink predicate, associated with a mean combination function:

dirlink(x , y) ∼ mean (equal(x , z)|(z = z)) .

The reading of this assertion is this: for a substitution x \a, y\b, where a and b are elements of the domain, all possible 
groundings for z satisfy (z = z); thus we have to collect the probability of equal(a, c) for each element c of the domain. 
When c is just equal to a, we get probability 1; otherwise we get probability 0. Hence the result of mean is probability 1/N
where N is the size of the domain. As in Expression (7), define predicate link:

link(x , y) ≡≡ ¬(x = y) ∧ (dirlink(x , y) ∨ dirlink(y, x )),
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so that the probability of link between two elements of the domain is (2/N) − (1/N2). We can interpret, as before, each 
element of the domain as a site and each grounding link(a, b) as a link between sites a and b.

Finally, consider a sentence φ that is true if and only if the graph consisting of these sites and links contains a triangle:

∃x , y, z : ¬(x = y) ∧ ¬(y = z) ∧ ¬(z = x ) ∧ link(x , y) ∧ link(y, z) ∧ link(z, x ).

By a well-known result from the theory of random graphs we obtain limN→∞Pτ (N)(φ) = 1 − e−23/6 (this limit was 
originally obtained for the evolution of the Erdös-Rényi graph with N sites and N − 1 links [28, Theorem 3a]; this random 
graph is asymptotically equivalent to G(N, 2/N − 1/N2)). Because the limit is neither zero nor one, we conclude that mean
cannot be defined using FFFO. �
8. Conclusion: a finite model theory of Bayesian networks?

We hope this paper is useful not only in presenting some novel results on descriptive complexity and zero/one laws 
for relational Bayesian network specifications, but also as a chart for a finite model theory for Bayesian networks. Thus we 
have included a relatively long presentation of relBNs, and also a discussion of definability issues and known results about 
complexity of inferences.

We have introduced a theory of descriptive complexity for Bayesian networks, a topic that does not seem to have received 
due attention so far. To summarize, we have shown that relBNs capture PP, and we have indicated how we can go beyond 
PP in our modeling tools. Specifically, we added existential second-order quantification to capture the complexity classes 
PP	

p
k .

We have also indicated how zero/one laws can be applied to relBNs so as to obtain useful insights, as we have demon-
strated in our inexpressibility proof for the mean combination function.

Altogether these results should offer some understanding about the expressivity of relational languages that specify 
Bayesian networks.

Our contributions can also be appreciated from two broad perspectives. First, there has been, for decades, significant 
study of model theory for probabilistic logics [1,5,31,32,45]. By dealing with domains of arbitrary cardinality, and with 
logics that include too many constructs (for instance, functions) and that exclude valuable tools (for instance, independence 
relations), these previous investigations arrive at results that are often too weak — for instance, almost always obtaining 
undecidability or very high computational complexity. By focusing on modular tools such as Bayesian networks, and by 
focusing on finite domains, we are able to obtain much sharper results, nailing down specific complexity classes such as PP
and PPNP . From a second perspective, we note that despite significant interest in relational variants of Bayesian networks 
during the last twenty years [34,57], there has been surprisingly little systematic study of their theoretical properties, with 
the exception of Jaeger’s efforts [51]. By importing ideas and tools from finite model theory, we can explore several fruitful 
research questions that clarify the expressive power of these relational specification languages.

Our results are also interesting from a point of view centered on complexity theory. There has been little work on 
capturing counting/probabilistic classes; the most significant previous results capture #P using counting [76]. We offer a 
more concrete modeling language that captures PP, and we move into the counting hierarchy — we are not aware of any 
similar result in the literature. Our results show how classes in the counting hierarchy can be tied to the expressivity of 
modeling tools, not to any particular computational model (much as Fagin’s theorem does for NP).

Much work is yet to be done to build a complete finite model theory of Bayesian networks. In Section 3 we have sketched 
a possible research program concerning inexpressibility of combination functions and other probabilistic patterns; such a 
program is largely open. Our discussion of complexity (both the complexity of inferences, and descriptive complexity) only 
dealt with some fragments of FFFO and ESO. There are many other possible fragments of these logical languages, and also 
many other extensions. For instance, finite model theory pays considerable attention to fixed-point logics, as those languages 
offer recursion and can be related to logic programming [25,59]; the addition of fixed-point operators to relBNs can build a 
bridge to probabilistic logic programming [18]. In a different direction, counting quantifiers are very useful, for instance in 
description logics [4], and they should be investigated in depth. It would be particularly interesting to consider description 
logics that are fragments of first-order logic, so as to understand the expressivity and complexity of their probabilistic 
counterparts.

The analysis of complexity (in various forms) can be enlarged not only by investigating more specification languages, but 
also by contemplating other decision problems. For instance, one might check the complexity of Most Probable Explanations 
(MPE), or the expressivity that can be attained by computing Maximum-A-Posteriori configurations (MAP). Such decision 
problems are called “elementary problems” by Jaeger [51], as they are defined with respect to a particular grounding of a 
Bayesian network specification.

There are “non-elementary inference problems” that deserve attention as well. For instance, Jaeger’s relational Bayesian 
networks may fail to produce a grounded Bayesian network; deciding whether this is the case for a particular relational 
specification is a global semantics problem. Even though there are algorithms that solve the global semantics problem in 
special cases [33,65], the general problem has been conjectured to be undecidable by Jaeger [51]. A precise translation of 
the global semantics problem into first-order logic with an added transitive closure operator has been produced recently 



124 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 110 (2019) 107–126
[21], but decidability remains an open problem. In this paper we have avoided questions of global semantics by requiring 
the dependency graph of any relBN to be acyclic; with cycles, decisions about global semantics may be nontrivial.

Finally, we have only glanced over the theory of zero/one laws; there are many possible laws to be found by examining 
various specification languages, and it would also be important to investigate the computational complexity of computing 
limiting probabilities in those cases. Note that cycles in definitions, once incorporated in the study, allow one to specify 
dynamic models; in that context zero/one laws would be very interesting as they would be connected to convergence of 
state trajectories over time.5
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Appendix A. A relational Bayesian network specification for scale-free random graphs

Caldarelli et al. [11] show that the following abstract procedure generates graphs with scale-free behavior, with input N
(number of sites) and γ . First, to each site x assign a fitness value f (x ) with probability proportional to f (x )−γ . Then, for 
each pair of sites (x , y), introduce a link between them with probability f (x ) f (y)/F 2, where F is the largest fitness value. 
Here we instantiate this general method by taking any fitness value to be an integer between 1 and some integer M that is 
a power of 2, and by taking the probability of a link between sites x and y to be f (x ) f (y)/M2.

To create a relational Bayesian network specification that can reproduce these steps, we must encode various arithmetic 
operations using logical constructs. Hence we can only operate with binary numbers.

Our strategy is, for each site, to generate a uniformly distributed integer in binary notation from 0 to 2B − 1, for a 
selected number of bits B; then we use this integer to generate a fitness value with appropriate distribution; we then 
generate another uniformly distributed integer from 0 to M2 − 1, and use this second integer and the fitness value to 
produce a link probability. We now explain each one of these steps in more detail.

To produce a uniformly distributed integer (in binary notation) from 0 to 2B − 1, we simply introduce predicates bit1(x )

to bitB(x ), where x stands for a site. For each site, a configuration of the corresponding B random variables can be read as 
a binary number. Now associate the assessment P (biti) = 1/2 with each predicate biti . Once we fix a domain (that is, a set 
of sites), we have a uniformly distributed random integer per site. Of course we are not interested in these random integers 
themselves; we wish to generate a fitness value per site. But once we have a uniformly distributed random integer W , we 
can generate a fitness value with a desired distribution, using some pre-computed numbers. For instance, suppose we have 
parameter γ = 3 and M = 4 (that is, possible fitness values are 1, 2, 3, 4). The probability that the fitness of a node is 
equal to f is (1/ f 3)ν , where ν is a normalization constant such that ν−1 = ∑4

j=1(1/ j3) = 2035/1728. Now suppose B = 13

and we have an integer w that is a realization of a uniformly distributed random integer between 0 and 213 − 1. We must 
compare w with 213 ∑k

j=1(1/ j3)ν for increasing values of k, until we find k such that w ≤ k; at that point we stop and 
declare f (x ) to be k. In general we can pre-compute numbers 2B ∑k

j=1(1/ jγ )ν for k from 1 to M and ν−1 = ∑M
j=1(1/ jγ ), 

so the necessary operations are comparisons with fixed numbers, and an encoding of the result of these comparisons can be 
produced with log2 M predicates. It is actually simple to encode such operations with a digital circuit (parameterized by x ), 
performing comparisons and some additional binary encoding of the fitness value. Clearly a digital circuit can be encoded 
through logical expressions that are all parameterized by x .

The final step is to multiply the binary numbers encoding f (x ) and f (y) for distinct sites x and y , and then to compare 
the result with a random integer w ′ between 0 and M2 − 1 (w ′ can be produced just as w , by a series of predicates similar 
to the biti predicates; hence our requirement that M is a power of 2). If, and only if, w ′ ≤ f (x ) f (y), the corresponding 
grounding of a predicate link(x , y) must be set to true. Again, all of those operations (binary multiplication and comparison) 
can be done with digital circuits and thus encoded with logical constructs parameterized by x and y .

The graph presented in Fig. 6 was produced by selecting γ = 1.6, M = 64, and B = 13, and by taking 750 sites. These 
parameters were selected so as to produce a reasonably large graph that could still be reasonably printed and viewed.

5 We thank a reviewer for bringing this possibility to our attention.
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