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Abstract This paper analyzes concepts of independence and assumptions of con-
vexity in the theory of sets of probability distributions. The starting point is Kyburg
and Pittarelli’s discussion of “convex Bayesianism” (in particular their proposals con-
cerning E-admissibility, independence, and convexity). The paper offers an organized
review of the literature on independence for sets of probability distributions; new
results on graphoid properties and on the justification of “strong independence” (using
exchangeability) are presented. Finally, the connection between Kyburg and Pittarel-
li’s results and recent developments on the axiomatization of non-binary preferences,
and its impact on “complete” independence, are described.

Keywords Sets of probability distributions · Independence · Decision-making ·
Preferences · Convexity

1 Introduction

This paper analyzes concepts of independence in the theory of sets of probability
distributions. Special effort is made to organize the various existing proposals and
arguments into a few strands, and in particular to relate the quest for definitions of
independence with the question of whether to require convexity of sets of probability
distributions.

The starting point of this paper is an analysis of three papers published between
1992 and 1996 by Kyburg and Pittarelli, where they argue against convexity for sets of
probability distributions, and advocate the use of general (not necessarily convex) sets
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of distributions to reason about uncertainty (Kyburg and Pittarelli 1992a,b, 1996).1 In
their arguments against convexity, Kyburg and Pittarelli analyze both E-admissibility
and independence. Their contributions to these two topics are noteworthy and deserve
recognition.

Section 2 presents needed background, in particular on the computation of E-admis-
sible decisions. Sections 3 and 4 move to the main focus of this paper; namely, concepts
of independence for sets of probability distributions. Section 3 organizes the litera-
ture on this topic and introduces new results on graphoid properties and on strong
independence. Section 4 reviews work on axiomatization of non-binary preferences,
including pioneering arguments by Kyburg and Pittarelli, and investigates the connec-
tion between such results and concepts of independence.

2 Convex Bayesianism and E-admissibility

Strict Bayesianism employs a single probability distribution for decision making and
deliberation, while convex Bayesianism employs a convex set of probability distribu-
tions for the same purposes (Levi 1980). A convex Bayesian should take the convex
hull of any given set of distributions; the resulting convex set is the set of permissible
resolutions for the conflict amongst probability distributions.

We refer to a set of probability distributions as a credal set; if a credal set contains
distributions for variable X , then it is denoted by K (X). The same terminology and
notation is used later to refer to sets of full conditional measures. (Convexity here
means that if P1 and P2 are in a credal set, then αP1 + (1 − α)P2 is also in the credal
set for α ∈ (0, 1).)

The use of credal sets is often justified through partially ordered preferences. Sup-
pose one is to buy or sell random variables Xi ; to simplify matters, suppose all Xi

are real valued and bounded. One may postulate a binary relation �, indicating by
X � Y that “X is preferred to Y .” If � is a complete order, a few additional axioms
(Fishburn 1970, Chap. 13) yield a representation for � in terms of a single probability
measure P:

X � Y iff EP [X ] > EP [Y ] .

If � is a partial order, then similar axioms yield a representation for � in terms of a
set of probability measures K (Giron and Rios 1980; Seidenfeld et al. 1990; Walley
1991):

X � Y iff EP [X ] > EP [Y ] for all P ∈ K .

Note that any two credal sets with identical convex hulls produce the same partial
order �. Interest has focused on the unique maximal credal set that represents �,

1 These three papers by Kyburg and Pittarelli were the result of collaboration between the authors at the
University of Rochester, where Pittarelli was a visiting Professor. The joint research grew out of Pittarelli’s
PhD work and Kyburg’s longtime concern about interval/set probabilities (and his friendly rivalry with
Isaac Levi, a pioneer in “convex” Bayesianism).
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as this credal set embodies a “least commitment” strategy: every distribution that is
allowed by � is included in K . Indeed there has been almost unanimous agreement
that only such maximal credal sets have behavioral meaning, and only them can work
as representations for partial preferences. As we will see in Sect. 4, Kyburg and Pit-
tarelli challenge such common wisdom in a clever way that has only recently been
revived.

Another way to produce credal sets is through one-sided betting, a scheme that was
explored by Smith (1961) and Williams (1975, 2007), and later investigated in great
detail by Walley (1991). In this case the lower expectation E[X ] of X is interpreted as
the supremum of prices one is willing to pay for X (Walley refers to X as a gamble).
Conditions usually imposed on the functional E are (Walley 1991):

E[X ] ≥ inf X; E[αX ] = αE[X ] for α ≥ 0; E[X + Y ] ≥ E[X ] + E[Y ] .

Any functional E[X ] satisfying these conditions is the lower envelope of a set of
expectation functionals; equivalently, any functional E[X ] can be represented by a
credal set. The maximal credal set KE that represents E[X ] is convex (Walley 1991,
Sect. 3.6.1). The literature has, for the most part, accepted that only the maximal (con-
vex) credal set is of interest, and that smaller (nonconvex) credal sets have no apparent
behavioral justification. Again, this issue is addressed in Sect. 4.

There are several criteria for decision making with credal sets. To simplify the
discussion, suppose one has a set A of variables and one or more variables must be
selected according to some criterion. Each variable is interpreted as an act with conse-
quences expressed in utiles; that is, higher values of X are more desirable than lower
values of X .

The �-minimax criterion selects any act with maximum lower expected value
(Berger 1985; Gardenfors and Sahlin 1982),

arg sup
X∈A

inf
P∈K

EP [X ] .

The maximality criterion selects any act X such that no other act Y ∈ A is preferred
to X in a binary comparison (Sen 1977; Walley 1991, Sect. 3.9). Maximality focuses
on the maximal elements of the partial order �. That is, X is maximal if

there is no Y ∈ A such that EP [Y − X ] > 0 for all P ∈ K .

Hence maximality of X can be determined by considering all pairs (X, Y ) for Y ∈ A.
Finally, the E-admissibility criterion selects any act X that is maximal under at least

one probability measure P ∈ K (Levi 1980, Sect. 4.8). That is, X is E-admissible if

there is P ∈ K such that EP [X − Y ] ≥ 0 for all Y ∈ A.

Kyburg and Pittarelli characterize E-admissibility as follows. Let KA(X) be the (con-
vex) set of probability distributions relative to which act X maximizes expected value
against acts in A. Then X is E-admissible iff
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KA(X) ∩ K �= ∅.

There are other criteria for decision-making with credal sets, such as �-maximax
and interval dominance (Troffaes 2004). Kyburg and Pittarelli concentrate on E-admis-
sibility, perhaps because their interest in convex Bayesianism led them to focus on
Isaac Levi’s work, where convexity and E-admissibility are deeply interwined.

At this point it is convenient to pause and mention a significant contribution in
Kyburg and Pittarelli longer papers (Kyburg and Pittarelli 1996, 1992b). Suppose one
has a finite set of acts A and a credal set K . It is not immediately clear how one would
determine whether an act X ∈ A is E-admissible; it seems that it would be easier
to determine whether X is a maximal act (just test all binary comparisons). Indeed
one can find a clear statement of this perception in Troffaes excellent 2004 literature
review: “from a computational viewpoint, maximality is apparently to be preferred
over E-admissibility” (Troffaes 2004). As a response to Troffaes’ review, in 2005 two
papers reported on methods that can identify E-admissible acts: Utkin and Augustin
(2005) examined one-step decision problems with pure and mixed acts, while Kikuti
et al. (2005) discussed sequential decision making with independence relations and
pure acts only. In both cases, the central insight was that, to verify whether a given act
X is E-admissible, one must verify whether there is P such that:

1. P ∈ K ;
2. EP [X − Y ] ≥ 0 for all Y ∈ A such that Y �= X .

So, the E-admissibility question is equivalent to feasibility of a set of inequalities.
It turns out that such an insight is already present in Kyburg and Pittarelli’s work

(Kyburg and Pittarelli 1996, Sect. III.B). The feasibility problem is derived from the
condition KA(X) ∩ K �= ∅; their analysis focuses on pure acts without independence
relations, but clearly all the elements of the solution are derived there.

3 Independence and convexity

Kyburg and Pittarelli suggest that convex Bayesianism is unable to cope with natural
constraints one might like to impose on sets of probability distributions. For instance,
they describe situations where one might be willing to adopt a set containing disjoint
sets of distributions; an example is a biased coin where the probability of heads is
either 1/2 or 1/3.

Other situations discussed by Kyburg and Pittarelli involve concepts of indepen-
dence. Their discussion is based on generalizations of the widely used concept of
stochastic independence. Recall that X and Y are stochastically independent if

P(X ∈ A|Y ∈ B) = P(X ∈ A) whenever P(Y ∈ B) > 0, (1)

for all events A and B in appropriate algebras. This definition is equivalent to

P(X ∈ A, Y ∈ B) = P(X ∈ A) P(Y ∈ B)

for all events A and B in appropriate algebras.
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We devote this section to an analysis of the rich literature on independence con-
cepts for credal sets. Section 3.1 reviews the main definitions in the literature, leaving
concerns about conditioning, null events, and countable additivity to Sect. 3.2. Inde-
pendence concepts are briefly compared in Sect. 3.3, and Sects. 3.4 and 3.5 focus on
strong independence.

3.1 Confirmational, complete, strong, epistemic independence… and others

A direct generalization of stochastic independence to the context of credal sets is
complete independence2: X and Y are completely independent if, for each P ∈ K ,

P(X ∈ A|Y ∈ B) = P(X ∈ A) whenever P(Y ∈ B) > 0.

This straightforward definition violates convexity, as emphasized by Kyburg and Pit-
tarelli through an example of Jeffrey’s (1965, Sect. IV.B). Take binary variables X
and Y . Suppose K (X, Y ) is the convex hull of two distributions P1 and P2 such that
P1(X = 0) = P1(Y = 0) = 1/3 and P2(X = 0) = P2(Y = 0) = 2/3. Suppose
X and Y are completely independent; hence X and Y are stochastically independent
with respect to P1 and P2. Now take the distribution P1/2 = P1/2 + P2/2; we have
P1/2 ∈ K (X, Y ) by convexity. However, X and Y are not stochastically independent
with respect to P1/2, as

P1/2(X = 0, Y = 0) = P1(X = 0)P1(Y = 0)

2
+ P2(X = 0)P2(Y = 0)

2
= 5/18

�= 1/4 = P1/2(X = 0)P1/2(Y = 0).

Kyburg and Pittarelli emphasize the failure of convexity by presenting a clever argu-
ment based on Dutch Book (Kyburg and Pittarelli 1996, Sect. IVC): they show that an
agent is sure to lose in the long run by betting using convex combinations of product
measures when she knows that events are actually stochastically independent for every
possible distribution.

The clash between complete independence and convexity is already explicit in
Levi’s pioneering work on convex Bayesianism (Levi 1980, Chap. 10). Levi defines
Y to be confirmationally irrelevant to X if

K (X |Y ∈ B) = K (X) for nonempty {Y ∈ B}, (2)

and notes that confirmational irrelevance is not the same as complete independence.
Levi argues that in the end expectations are not affected by the failure of convexity in
complete independence. His implicit message is that, as expectations are only affected
by the convex hull of a credal set, one is allowed to take the convex hull whenever neces-

2 This term is due to Seidenfeld (2007a).
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sary. This suggests a slightly convoluted definition: X and Y are strongly independent
when K (X, Y ) is the convex hull of a credal set that satisfies complete independence.

Levi refers to strong independence as confirmational irrelevance in the strong sense
and as strong confirmational irrelevance (Levi 1980, Sect. 10.6). The term strong inde-
pendence apparently appears first in a technical report written in 1982 by Walley (1982,
Appendix), where the term refers to a concept that is almost identical to the one we
just defined (the difference lies on the treatment of events with zero lower probability).
Several other terms have been used since then to refer to strong independence; we try
to organize the terminology in the remainder of this section.

A special case of strong independence is obtained when the credal set K (X, Y )

contains every product of a distribution from K (X) and a distribution from K (Y ). In
this case we have, for any bounded function f (X, Y ),

E[ f (X, Y )] = inf
(
EPX ×PY [ f (X, Y )] : PX ∈ K (X) , PY ∈ K (Y )

)
. (3)

The joint credal set K (X, Y ) is then called a strong extension of K (X) and K (Y ).
Walley used the term type-1 product to refer to Expression (3) in his highly influential
1991 book (Walley 1991, Chap. 9).3 Walley reserved the term type-2 product to the
situation where all marginals are equal.

In a long technical report published in 1982, Walley (1982) proposed the concept
of epistemic independence. In his 1991 book Walley prefers to build epistemic inde-
pendence out of the concept of epistemic irrelevance, as we do now.4 As defined in
Walley’s book,5 Y is epistemically irrelevant to X if for any bounded function f (X),

E[ f (X)|Y ∈ B] = E[ f (X)] for nonempty {Y ∈ B}.

If credal sets are closed and convex, then epistemic irrelevance is identical to
Levi’s confirmational irrelevance. Indeed, definitions involving equalities among
lower expectations tend to produce closed convex sets.

Epistemic irrelevance is not symmetric: Y may be epistemically irrelevant to X
while X is not epistemically irrelevant to Y (Cozman and Walley 2005; Walley 1991).
The clever idea in Walley’s book is to create a symmetric concept out of epistemic
irrelevance, following Keynes’ approach to independence (Keynes 1921): X and Y are
epistemically independent if Y is epistemically irrelevant to X and X is epistemically
irrelevant to Y .

3 In 1982 Walley and Fine considered a similar expression where constraints are restricted to
events (Walley and Fine 1982, Sect. 3.1); that is, they require only that K (X, Y ) satisfies, for any
event A(X) defined by X and any event B(Y ) defined by Y , the constraint P(A(X)B(Y )) =
inf (PX (A(X)) × PY (B(Y )) : PX ∈ K (X) , PY ∈ K (Y )). The credal set is then called an independent
product; Weichselberger refers to independent products by the term mutual independence (Weichselberger
2000; Weichselberger et al. 2001).
4 There is actually a small difference between the treatment of conditioning between the 1982 and the 1991
versions of epistemic independence, but for now we ignore this difference.
5 Epistemic irrelevance is what Smith refers to just as independence in his pioneering work on medial
odds (Smith 1961). The weaker pair of conditions P(A|B) = P(A) , P(A|B) = P(A) is termed canonical
independence of B to A by Weichselberger (2000) and Weichselberger et al. (2001).
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Walley’s book is contemporary with Kuznetsov’s book on interval probabilities and
interval expectations (Kuznetsov 1991). Kuznetsov proposed yet another concept of
independence with a nice interpretation in terms of interval arithmetic [it seems Kuz-
netsov took strong independence as the main concept of independence and proposed
his new concept as a secondary idea (Kuznetsov 1995)]. Denote by E I [X ] the inter-
val [E[X ] , E[X ]]; X and Y are Kuznetsov independent if, for any bounded functions
f (X) and g(Y ),

E I [ f (X)g(Y )] = E I [ f (X)] × E I [g(Y )], (4)

where × is interval multiplication (that is, if a = [a, a] and b = [b, b], a × b =
[min γ, max γ ] for γ = {ab, ab, ab, ab}).

To some extent, Expressions (3) and (4) are conceptually similar, particularly if the
credal sets are closed. However, the expressions are not equivalent in general (Cozman
2001).

Many variations on the previous definitions are possible. Indeed, several variations
appeared in the literature between 1990 and 2000, and terminology became somewhat
confusing. Part of this research activity was motivated by results in Dempster–Sha-
fer and possibility theories, where concepts of conditioning and independence were
intensely debated during that decade. For instance, one may take Dempster condi-
tioning (indicated by a subscript D in the conditioning bar) and require P(X |DY ) =
P(X, Y ) /P(Y ) = P(X) whenever P(X) > 0; that is, P(X, Y ) = P(X) P(Y ). This
is related (mathematically at least) to Shafer’s concept of cognitive independence
(Shafer 1976; Yaghlane et al. 2002a,b). In the present paper we do not discuss theories
that are not based on probability distributions.

In 1995 de Campos and Moral tried to organized the field into a small number of
distinct concepts of independence (de Campos and Moral 1995). Their type-2 inde-
pendence is strong independence as defined previously (that is, K (X, Y ) is the convex
hull of a set where each distribution satisfies stochastic independence). Their type-3
independence obtains when K (X, Y ) is the convex hull of all product distributions
PX PY , where PX ∈ K (X) and PY ∈ K (Y ). So in fact type-3 independence is just a
name for the strong extension of marginal sets K (X) and K (Y ). Finally, de Campos
and Moral have a variation on confirmational irrelevance: Y is type-5 irrelevant to X
if

R(X |Y ∈ B) = K (X) whenever P(Y ∈ B) > 0, (5)

where R(X |Y ∈ B) denotes the set

{P(·|Y ∈ B) : P ∈ K (X, Y ) and P(Y ∈ B) > 0}. (6)

The set R defined in Expression (6) is often used as a definition of conditioning
(Weichselberger 2000), and it is related to what Walley calls regular extension (Walley
1991) (however, regular extension is different in that it defines conditioning even if
P(Y ∈ B) = 0).
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The following example is given by de Campos and Moral (1995), to show that
strong and type-5 irrelevance differ in notable ways in the presence of zero probabili-
ties. Suppose X and Y are binary, and K (X, Y ) is the convex hull of two distributions
P1 and P2 such that

P1(X = 0, Y = 0) = P2(X = 1, Y = 1) = 1.

Even though strong independence obtains, neither Y is type-5 irrelevant to X nor X
is type-5 irrelevant to Y .

It is natural to define type-5 independence by “symmetrizing” type-5 irrelevance;
that is, type-5 independence of X and Y is type-5 irrelevance of X to Y and type-5
irrelevance of Y to X . Curiously, type-5 independence is very similar to Walley’s 1982
definition of epistemic independence (Walley 1982).

In 1999, Couso et al. presented an influential review of independence concepts
(Couso et al. 1999, 2000). They used yet another terminology: their independence
in the selection is strong independence as defined previously, and their strong inde-
pendence is de Campos and Moral’s type-3 independence (that is, strong extension).
Finally, their repetition independence refers to Walley’s type-2 product.6

To conclude this section, the following summary may be useful.

– Complete independence is an intuitive generalization of stochastic independence,
but it fails convexity.

– Strong independence is an ad hoc combination of stochastic independence and
convexity; several special cases of strong independence have been investigated.

– Epistemic independence is quite elegant, and several related concepts been pro-
posed (most notably confirmational irrelevance).

– Kuznetsov independence is a rather different concept that is inspired by interval
arithmetic.

3.2 Conditional independence, null events, and full conditional measures

In this section we discuss conditional independence and null events, two issues that
have grown in importance through the years, and have become a laboratory for all sorts
of foundational problems regarding credal sets. To avoid technical issues concerning
the definition of conditional probability, assume all spaces are finite.

3.2.1 Conditional independence

Any concept of independence can be modified to express conditional independence,
simply by conditioning on every value of some variable. For instance, conditional

6 Couso et al also discuss two other situations that are not directly relevant to the concerns of the present
paper: (1) the set K (X, Y ) is the largest set with given marginals K (X) and K (Y ) and no further constraints;
(2) the set K (X, Y ) is specified through a belief function such that the joint mass assignment satisfies sto-
chastic independence. Couso et al call this latter concept random set independence [a similar concept had
been called a belief function product by Walley and Fine (1982)].

123



Synthese (2012) 186:577–600 585

complete independence imposes elementwise conditional stochastic independence7:
every probability distribution must satisfy

P(X ∈ A, Y ∈ B|Z = z) = P(X ∈ A|Z = z) P(Y ∈ B|Z = z)

whenever P(Z = z) > 0.

We adopt the same scheme for conditional strong independence; that is, strong inde-
pendence conditional on every value z of Z . Also, conditional epistemic irrelevance
of Y to X given Z obtains when, for all bounded functions f (X),

E[ f (X)|Y ∈ B, Z = z] = E[ f (X)|Z = z]

for nonempty {Y ∈ B, Z = z}.

Conditional epistemic independence is then the “symmetrized” concept. Finally, con-
ditional Kuznetsov independence of X and Y given Z obtains when for all bounded
functions f (X), g(Y ),

E I [ f (X)g(Y )|Z = z] = E I [ f (X)|Z = z] × E I [g(Y )|Z = z]
for nonempty {Z = z}.

3.2.2 Full conditional measures

This review has so far presented concepts of irrelevance/independence with little care
concerning null events; that is, events of zero probability. For instance, it may seem
strange that the definition of confirmational irrelevance, given by Expression (2), does
not contain a clause discarding conditioning events that have zero probability. The
usual attitude in probability theory is to discard null events as these events almost
surely do not obtain. But one cannot ignore an event with zero lower probability but
nonzero upper probability. We must somehow allow conditioning on events that may
be null.

In fact, there exists a perfectly reasonable way to condition on null events. The solu-
tion is to resort to full conditional measures, where one takes conditional probability
as a primitive concept (de Finetti 1974; Dubins 1975). A full conditional measure is
a set function P(·|·) on E × E\∅, where E is an algebra of events, such that for events
A, B in E and C in E\∅ we have

P(A|C) ≥ 0; P(�|C) = 1;
P(A ∪ B|C) = P(A|C) + P(B|C) if A ∩ B = ∅; and

P(A ∩ B|C) = P(A|B ∩ C) P(B|C) if B ∩ C �= ∅.

7 Moral and Cano describe three variants on conditional complete independence (Moral and Cano 2002),
basically by considering ways to extend given marginal and conditional credal sets on X and Y given Z ; these
alternative concepts are perhaps better understood as forms of extension given marginal and conditional
credal sets.
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Unsurprisingly, both Levi’s and Walley’s theories adopt full conditional measures:
confirmational and epistemic irrelevance/independence are defined without any clause
concerning zero lower or upper probabilities.

Full conditional measures are extremely elegant and have been advocated for a vari-
ety of reasons (Coletti and Scozzafava 2002; Dubins 1975; Hajek 2003; Seidenfeld
2001), but they do have an associated cost. The usual assumption of countable addi-
tivity ties conditioning (in general spaces) to Radon-Nikodym derivatives; but these
derivatives may fail to be full conditional measures (Seidenfeld et al. 2001). Charac-
terizing the situations where full conditional measures exist under countable additivity
seems to be a hard (and mostly open) problem (Armstrong 1989; Krauss 1968). Even
though some authors have preferred to ignore these existence problems (Cowell et al.
1999), it seems that in general one is forced into finite additivity when full conditional
measures are adopted (Seidenfeld 2001).

In short, confirmational and epistemic irrelevance/independence seem to require a
combination of full conditional measures and finite additivity. This is indeed the path
taken by Levi and Walley (the latter imposes additional conditions of conglomerability
on lower expectations).

3.2.3 Full conditional measures and complete/strong independence

Once one adopts full conditional measures, it seems advisable to base any concept of
independence on conditioning instead of on product measures. For if one requires only
the product P(X ∈ A, Y ∈ B) = P(X ∈ A) P(Y ∈ B) for independence, then it may
happen that X and Y are declared independent while P(X ∈ A|Y ∈ B) �= P(X ∈ A)

for some A and B such that P(Y ∈ B) = 0.
Complete and strong independence can be adapted to the specificities of full con-

ditional measures as follows.

– Full complete irrelevance of Y to X is elementwise epistemic irrelevance of Y
to X ; that is, epistemic irrelevance of Y to X for each P ∈ K . Full complete
independence of X and Y is full complete irrelevance of Y to X and full complete
irrelevance of X to Y .

– And likewise for full strong irrelevance and full strong independence (that is, they
are “convexified” versions of full complete irrelevance and full complete indepen-
dence).

At this point the reader may despair as it seems we are quickly exhausting the possi-
ble names for concepts of irrelevance/independence. However, difficulties with null
events have not been exhausted yet. Several authors have noted that epistemic inde-
pendence is a relatively weak concept even when applied to a single full conditional
measure, and for this reason various modifications to epistemic irrelevance (for a
single measure) have been proposed (Cozman and Seidenfeld 2007; Halpern 2001;
Hammond 1994; Vantaggi 2001). It does not seem that such modified concepts of
irrelevance/independence have been applied to credal sets yet, but they offer possible
paths to follow.
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3.2.4 Conditional regular irrelevance and independence

One way to avoid the complexities of full conditional measures is to take de Campos
and Moral’s type-5 irrelevance as the basis for conditional irrelevance: Y is condition-
ally regularly irrelevant to X given Z if

R(X |Y ∈ B, Z = z) = R(X |Z = z) whenever P(Y ∈ B, Z = z) > 0. (7)

Conditional regular independence is then the “symmetrized” concept. It does not seem
that conditional regular independence has been explored in the literature; Sect. 3.3
presents an initial analysis of its properties.

3.3 Comparing concepts: laws of large numbers and graphoid properties

The previous sections listed about a dozen concepts of (conditional) irrelevance/inde-
pendence, and a number of variants and special cases. These concepts are not identical;
for instance, epistemic independence, Kuznetsov independence and strong indepen-
dence generate distinct constraints (Cozman 2001). We revisit the summary at the end
of Sect. 3.1, now with additional commentary:

1. Complete independence is easy to state and obviously close to stochastic inde-
pendence; however it violates convexity (thus failing to have a behavioral inter-
pretation through partial preferences and one-sided betting).

2. Strong independence has some of the appeal of complete independence and satis-
fies convexity; however it is the most difficult to justify: Why should one start with
a nonconvex concept and take the convex hull of the resulting set of measures?
We examine this question in Sects. 3.4 and 3.5.

3. Confirmational/epistemic irrelevance/independence seem to be the most intui-
tive concepts once convexity is required. Conditional regular irrelevance/inde-
pendence is a viable alternative if one wishes to stay away from full conditional
measures.

4. Kuznetsov independence appears as an “interval” generalization of the product
form of stochastic independence, but it is hard to imagine a behavioral justification
for it.

It is instructive to compare these concepts. For instance, we might try to classify
concepts on the basis of which laws of large numbers they imply, if any. This particular
question has been mostly settled by de Cooman and Miranda (2008), who have pro-
duced quite general laws of large numbers for assumptions of epistemic irrelevance.
Their results can be extended even to unbounded variables (Cozman 2009). As such
laws of large numbers are derived from very weak assumptions of epistemic irrele-
vance, they are valid for most, if not all, concepts of irrelevance/independence one
might contemplate. Consequently, we must look for other potential differences among
concepts.

One possibility is to compare concepts of independence using the graphoid prop-
erties (Dawid 1979, 2001; Pearl 1988). Graphoid properties are stated for a ternary
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relation (X ⊥⊥Y | Z) that should be understood as “independence of X and Y given
Z” (Geiger et al. 1990):

Symmetry (X ⊥⊥Y | Z) ⇒ (Y ⊥⊥ X | Z)

Decomposition (X ⊥⊥(W, Y ) | Z) ⇒ (X ⊥⊥Y | Z)

Weak union (X ⊥⊥(W, Y ) | Z) ⇒ (X ⊥⊥W |(Y, Z))

Contraction (X ⊥⊥Y | Z) & (X ⊥⊥W |(Y, Z)) ⇒ (X ⊥⊥(W, Y ) | Z)

(These properties are often called semi-graphoid properties (Pearl 1988), and the term
graphoid is then reserved for a larger set of properties.)

Several results on the relationship between concepts of independence and graphoid
properties can be found in the literature. Conditional complete and strong indepen-
dence satisfy all graphoid properties (Cozman 2000a). Conditional confirmational/epi-
stemic independence and conditional Kuznetsov independence fail contraction (Coz-
man and Walley 2005) even when all probabilities are positive.8

Full conditional measures introduce additional complications. Confirmational/epi-
stemic independence may then fail even decomposition and weak union when zero
probabilities are present (Cozman and Walley 2005). In fact confirmational/epistemic
independence may fail weak union even for a single full conditional measure when
zero probabilities are present (Cozman and Seidenfeld 2007; Vantaggi 2001). Conse-
quently, failure of weak union can be also observed in full complete and full strong
irrelevance/independence in the presence of events of zero probability. As noted at
the end of Sect. 3.2.3, other concepts of independence have been proposed for a sin-
gle full conditional measure (Cozman and Seidenfeld 2007; Hammond 1994), but no
study of such concepts has been conducted in the context of sets of full conditional
measures.

In Sect. 3.2.4 we introduced conditional regular independence, a concept of inde-
pendence that might behave appropriately in the presence of zero probabilities. How-
ever, conditional regular independence does not fare well with respect to graphoid
properties. Symmetry holds by definition and contraction fails as it can fail already
for epistemic independence with positive lower probabilities. More troubling is the
fact that conditional regular independence can fail decomposition and weak union
when lower probabilities are zero [by adapting previous examples aimed at epistemic
independence (Cozman and Walley 2005, Example 1)]. The frustrating fact is that,
while stochastic independence satisfies decomposition and weak union by resorting
to clauses forbidding conditioning events of zero probability (Expression 1), similar
clauses used in conditional regular independence do not have a similar effect. While
it is possible to add assumptions of positivity on lower probabilities and then to prove
versions of decomposition and weak union [by adapting the proofs for epistemic inde-
pendence (Cozman and Walley 2005, Theorem 1)], the value of conditional regular
independence, if any, is yet to be determined.

As a digression, note that failure of the contraction property greatly affects the the-
ory of statistical models such as Markov chains and Bayesian networks (Pearl 1988).

8 Moral has investigated a version of epistemic irrelevance for sets of desirable gambles (related but not
equivalent to credal sets), satisfying a different set of graphoid properties (Moral 2005). Also the variants of
complete/strong independence proposed by Moral and Cano (2002) fail different sets of graphoid properties.
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Consider a simple Markov chain W → X → Y → Z . The usual theory prescribes
that any variable is stochastically independent of its predecessors given its immediate
predecessor. From this assumption, other independences can be derived; for instance,
W and Z are conditionally stochastically independent given X . Failure of contrac-
tion destroys such implications. For instance, if we replace stochastic independence
by epistemic independence, then it is possible to construct a Markov chain where
W and Z are not conditionally epistemically independent given X (Cozman 2000b,
Example 1).

There might be other valuable ways to compare concepts of irrelevance/indepen-
dence. For instance, we might look at computational properties: what is the com-
plexity of inference under each one of the concepts. However there are very few
results in the literature: only strong independence has received attention (de Campos
and Cozman 2005), and some algorithms have been produced for epistemic inde-
pendence (de Campos and Cozman 2007). The verdict on this matter is yet to be
decided.

3.4 Justifying strong independence

The previous subsections attempted to present, in a somewhat organized form, the
current landscape concerning concepts of independence for credal sets. Most of this
landscape has been produced after the collaboration between Kyburg and Pittarelli.
However, their questions are as sharp as ever; in particular, how can we stay close to
stochastic independence while keeping convexity? A possible solution is to properly
justify strong independence.

One might try to justify strong independence using what Walley calls the sensi-
tivity interpretation of credal sets (Walley 1991). Suppose several experts agree that
X and Y are stochastically independent; however they disagree on specific probabil-
ity values. The experts then adopt a credal set containing distributions that factorize
according to stochastic independence, plus the convex combinations of these distri-
butions. They do so by accepting that such convex combinations do not affect their
collective preferences. As far as preferences are represented by binary comparisons,
as in Sect. 2, this argument for convex combinations is a powerful one. However the
argument breaks down when one notes, as we do in Sect. 4, that convex combinations
do affect non-binary preferences.

An alternative strategy is to obtain strong independence directly, without even men-
tioning stochastic independence. Proposals to this effect were independently concocted
around 2000 by Moral and Cano (2002) and by Cozman (2000b). To understand the
proposals, consider the following example. Take two binary variables X and Y so that

P(X = 0) ∈ [2/5, 1/2] and P(Y = 0) ∈ [2/5, 1/2].

The largest credal set K (X, Y ) satisfying these assessments and epistemic indepen-
dence of X and Y has six vertices (Walley 1991, Sect. 9.3.4):
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[1/4, 1/4, 1/4, 1/4], [4/25, 6/25, 6/25, 9/25],
[1/5, 1/5, 3/10, 3/10], [1/5, 3/10, 1/5, 3/10],
[2/9, 2/9, 2/9, 1/3], [2/11, 3/11, 3/11, 3/11],

where each vector denotes a distribution as

[P(X =0, Y =0) , P(X =0, Y =1) , P(X =1, Y =0) , P(X =1, Y =1)].

Suppose we learn that P(Y = 0) = 4/9. What should we do with this new assessment?
One option is to “intersect” K (X, Y ) with the constraint {P : P(Y = 0) = 4/9}; that
is, to form a new credal set

K ′(X, Y ) = K (X, Y ) ∩ {P : P(Y = 0) = 4/9}. (8)

However, X and Y are not epistemically independent with respect to K ′(X, Y ):
the distribution [2/9, 2/9, 2/9, 1/3] belongs to K ′(X, Y ), and for this distribution
P(Y = 0|X = 1) = 2/5; so, with respect to K ′(X, Y ),

P(Y = 0|X = 1) ≤ 2/5 < 4/9 = P(Y = 0) .

Epistemic independence of X and Y , satisfied by K (X, Y ), is not preserved through
Expression (8).

The situation just outlined reminds one of Jeffrey’s rule (1965). In Jeffrey’s rule we
start with a distribution PX,Y , we change PY but we keep the conditional distribution
PX (·|Y ) intact. If we have a single distribution P , then X and Y are stochastically
independent iff PX does not change through Jeffrey’s rule for any change in PY and
vice-versa (Diaconis and Zabell 1982, Theorem 3.3). A similar result holds for credal
sets, as follows (Cozman 2000b). Suppose we change either K (X) or K (Y ) into a
new marginal credal set, and we modify K (X, Y ) by pointwise application Jeffrey’s
rule: if X and Y are still epistemically independent after any such change, then X and
Y are fully strongly independent.

Moral and Cano follow the same idea (Moral and Cano 2002), but use a better
strategy that avoids potential controversies on how to apply Jeffrey’s rule on credal
sets. Their approach uses two definitions, where f (X) is a bounded function:

– Assessment E[ f (X)] ≥ α is compatible with marginal credal set K (X) if there is
P ∈ K (X) that satisfies EP [ f (X)] ≥ α.

– Joint credal set K (X, Y ) is combined with assessment E[ f (X)] ≥ α by eliminat-
ing all distributions in K (X, Y ) that do not satisfy the assessment.

The following theorem generalizes somewhat the basic result by Moral and Cano
(2002, Theorem 2):

Theorem 1 Variables X and Y are conditionally fully strongly independent given Z
iff they are conditionally epistemically independent given Z after K (X, Y |Z = z) is
combined with an arbitrary collection of assessments that are compatible with K (X)

or with K (Y ) for any value z of Z.
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The proof of this theorem is obtained by following all steps in Moral and Cano’s
proof of their Theorem 2. Note that Moral and Cano formulate their theorem so as
to generate the strong extension of K (X) and K (Y ) (that is, the largest credal sets
satisfying strong independence and the assessments defining K (X) and K (Y )). There
is no reason to restrict attention to this situation. Note also that conditional full strong
independence is obtained from epistemic independence.

While Theorem 1 is a viable strategy to justify (full) strong independence, this
approach does have a conceptual weakness. For suppose we have a credal set K (X, Y )

that is the largest set satisfying both: (1) a set of assessments (that is, a set of constraints
on probabilities); and (2) epistemic independence of X and Y . Now we receive a new
compatible assessment on Y . Should we:

– combine this new assessment with K (X, Y ) by intersection, as done in Expres-
sion (8); or

– construct the largest credal set that simultaneously satisfies the original assess-
ments, the new assessment, and epistemic independence of X and Y ?

These two approaches may lead to different credal sets. Cano and Moral assume that
the first approach is the natural one; that is, a new assessment is always combined
with the currently held credal set. However, we might choose to recompute the joint
credal set with all available assessments and judgements of independence. This latter
approach breaks the argument embedded in Theorem 1.

3.5 Strong independence through partial exchangeability

An alternative way to justify (at least some varieties of) strong independence is to
employ exchangeability. In the remainder of this section we investigate this idea; it
does not seem that it has been explored yet in the literature. To simplify the discussion,
countable additivity is assumed, but similar conclusions hold if countable additivity
is dropped.

3.5.1 Exchangeability for binary variables

To start, consider a vector of m binary variables X = [X1, . . . , Xm]. Denote by πm

a permutation of integers {1, . . . , m}, and by πm(i) the i th integer in the permuta-
tion. Denote by {X = x} the event ∩m

i=1{Xi = xi }, and by {πmX = x} the event
∩m

i=1{Xπm (i) = xi }. Following de Finetti, we do not differentiate between an event
and its indicator function.

Variables X1, . . . , Xm are exchangeable when (Walley 1991, Chap. 9):

E[{X = x} − {πmX = x}] = 0 for any permutation πm . (9)

That is, the order of variables does not matter: trading {X = x} for {πmX = x} does
not seem advantageous in the one-sided betting interpretation of E .
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As noted by Walley, we have

0 = E[{X = x} − {πmX = x}] ≤ E[{X = x} − {πmX = x}]
= −E[{πmX = x} − {X = x}] = 0.

Consequently, for every distribution P ∈ K (X1, . . . , Xn),

EP [{X = x} − {πmX = x}] = 0;

hence P(X = x) = P(πmX = x) for any permutation πm .
In words: Expression (9) implies elementwise exchangeability in the usual de Fi-

netti’s sense (de Finetti 1974).
Fix a distribution P satisfying exchangeability for a moment. If we examine a sub-

set X1, . . . , Xn of variables, for n ≤ m, these n variables are also exchangeable. Then
(Heath and Sudderth 1976),

P(X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) =
m−n+k∑

r=k

(
m − n
r − k

)

(
m
r

) P

(
m∑

i=1

Xi = r

)

.

Now if an infinitely long sequence of exchangeable variables is contemplated (m →
∞), de Finetti’s representation theorem yields (Heath and Sudderth 1976; Schervish
1995):

P(X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) =
1∫

0

θk(1 − θ)n−kd F(θ).

Here θ is the probability of {X1 = 1}, and the distribution function F(θ) acts as a
“prior” over θ .

3.5.2 Strong independence from exchangeability: binary variables

With this machinery in hand, we return to the problem of justifying strong indepen-
dence. Suppose we have binary variables X1, . . . , Xn , and we judge these variables
to be the initial fragment of an infinite sequence of exchangeable variables. By de Fi-
netti’s representation theorem, each distribution in the joint credal set K (X1, . . . , Xn)

is a mixture of factorizing distributions, and the mixture is characterized by a distri-
bution function F(θ). It should be noted that exchangeability is a “convex” concept
in the sense that if two distributions P1 and P2 satisfy exchangeability of X1, . . . , Xn ,
then any convex combination αP1 + (1 − α)P2 of these distributions also satisfy
exchangeability. Hence if F1(θ) and F2(θ) are distribution functions obtained through
exchangeability, then so is the distribution αF1(θ) + (1 − α)F2(θ).
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Strong independence of X1, . . . , Xn obtains when we select a convex set K (θ)

such that each vertex of K (θ) assigns probability 1 to a particular value of θ . By
doing so, we produce a type-2 product in Walley’s terminology (Sect. 3.1), as every
vertex of K (X1, . . . , Xn) becomes a product measure with identical marginals. In
short, we have produced a judgement of strong independence from a judgement of
exchangeability plus a condition on K (θ). One may even produce subsets of the strong
extension by selecting a smaller K (θ).

3.5.3 Strong independence from exchangeability

The previous argument can be extended to non-binary variables, using suitable ver-
sions of de Finetti’s representation theorem (Schervish 1995). Similarly, one can also
modify the argument to obtain “convexified” sets of Markov chains, using judgements
of Markov exchangeability (Diaconis and Freedman 1980; Zaman 1986).

With some additional imagination, the previous argument can also be modified to
obtain strong independence of variables that do not necessarily have identical marginal
credal sets. Consider two binary variables X1 and Y1 with values 0 and 1, such that
K (X1) and K (Y1) are different. Imagine that we observe X1 and Y1 repeatedly, creat-
ing a sequence of exchangeable variables X = [X1, . . . , Xm] with marginals K (X1),
and a sequence of exchangeable variables Y = [Y1, . . . , Ym] with marginals K (Y1).
What else could we impose on these sequences? Consider the following judgement
of partial exchangeability (Bernardo and Smith 1994; de Finetti 1974; Lad 1996): for
any permutations π ′

m, π ′′
m ,

E
[{X = x}{Y = y} − {π ′

mX = x}{π ′′
mY = y}] = 0.

Then, as m → ∞, we have (Bernardo and Smith 1994, Theorem 4.13) a convex set of
distribution functions F(θ, ϑ) such that for every P we can write for some F(θ, ϑ):

P(X1 = x1, Y1 = y1) =
∫

[0,1]2

θ x1(1 − θ)1−x1ϑ y1(1 − ϑ)1−y1d F(θ, ϑ).

If each vertex of this set assigns probability one to a pair (θ, ϑ), we obtain strong
independence of X1 and Y1.

This argument for strong independence of X1 and Y1 may not be as appealing as the
previous one for type-2 products, but the central idea is rather simple: X1 and Y1 are
strongly independent if, whatever we do to an exchangeable sequence of observations
of X1, probabilities for exchangeable observations of Y1 are not affected.

4 Set-based Bayesianism and non-binary preferences

In the previous section we examined recent work on the connection between cre-
dal sets, independence concepts, and convexity. It is time to examine Kyburg and
Pittarelli’s suggestion: that we should drop convexity altogether and adopt complete
independence. The difficulty with this prescription is that general credal sets do not
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seem to have a justification based on partial preferences/one-sided betting.9 Even
though Kyburg and Pittarelli did not solve this problem completely, they did touch on
a few critical elements of the solution.

The main insight here lies on the computation of E-admissible acts amongst several
acts. Kyburg and Pittarelli discuss the following example (Kyburg and Pittarelli 1996,
Sect. IVD). Consider a possibility space with three states {s1, s2, s3}. Suppose a credal
set contains two distributions P1 and P2 such that

P1(s1) = 1/8, P1(s2) = 3/4, P1(s3) = 1/8,

P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8,

and consider the selection of an E-admissible act amongst acts {a1, a2, a3}, with deci-
sion matrix

s1 s2 s3

a1 3 3 4
a2 2.5 3.5 5
a3 1 5 4.

Now with respect to P1 and P2, a1 and a3 are E-admissible but a2 is not; with respect
to the convex hull of {P1, P2}, all acts are E-admissible. That is,

there is a difference between a set of distributions and its convex hull when one
chooses amongst several acts using E-admissibility.

The amusing irony here is that E-admissibility is a concept advanced by Isaac Levi,
the main proponent of convex Bayesianism; Kyburg and Pittarelli basically take one
of Levi’s proposals against the other.

One might then ask: Can we axiomatize preferences amongst sets of acts, so as
to obtain general credal sets? This is in fact the path followed by Seidenfeld et al in
important recent work (Seidenfeld et al. 2007) that greatly advances previous efforts
(Kadane et al. 2004; Schervish et al. 2003).

A quick summary of Seidenfeld et al’s theory is as follows (Seidenfeld et al. 2007).
Consider a closed set A of acts. For any subset D of A, a rejection function R identifies
the subset of D containing all acts that are not admissible within D. This subset is
denoted by R(D). Seidenfeld et al impose a set of axioms on rejection functions and
prove that a rejection function satisfies their axioms if and only if it can be represented
through non-E-admissible acts with respect to a set of pairs of utilities/probabilities
(Seidenfeld et al. 2007, Theorems 3 and 4).

To understand the kinds of axioms that are proposed by Seidenfeld et al, consider
their first axiom: An inadmissible act cannot become admissible (a) when new acts

9 Another potential difficulty with general credal sets is the computational cost of dealing with nonconvex
sets. However, the computational experience of the last decade has shown that whenever independence
relations are used, for whatever concept of independence we have described, the computational benefits of
convexity are rather diminished. For instance, when all vertices of a credal set factorize, the computational
cost is dominated by factorization and convexity is not important (Berger and Moreno 1994; Fagiuoli and
Zaffalon 1998; de Campos and Cozman 2004).
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are added to the set of acts; and (b) when inadmissible acts are deleted from the set
of acts.10 Another axiom states that if d ∈ R(convexhull(D)), then d ∈ R(D). That
is, an inadmissible act amongst a set of mixed acts cannot become admissible just
by removing the mixtures. Three additional axioms are imposed, paralleling the sure-
thing, Archimedean and dominance axioms typically adopted in standard decision
theory (Fishburn 1970). The axioms are not simple to state, and perhaps an exercise
for the future is to trim down Seidenfeld et al’s theory to a small set of intuitive axioms.
In any case, their approach is entirely successful, as their axioms do yield general sets
of probability distributions.

We now explore these ideas again in the context of independence. Suppose we wish
to determine whether events A and B are completely independent, under the assump-
tion that 0 < P(A) , P(B) ≤ P(A) , P(B) < 1. Construct five acts a0, . . . , a4 as
follows:

AB Ac B ABc Ac Bc

a0 0 0 0 0
a1 1 − α −α 0 0
a2 −(1 − α) α 0 0
a3 0 0 1 − β −β

a4 0 0 −(1 − β) β

These five acts serve as a test for complete independence11: if we observe that for
every α, β ∈ (0, 1) such that α �= β we have some act rejected, we can conclude
that A and B are completely independent. For suppose otherwise; that is, suppose
∀α, β ∈ (0, 1) : α �= β → R(a0, . . . , a4) �= ∅ but A and B are not completely
independent. Then there is P such that P(A|B) �= P(A|Bc). Take α = P(A|B) and
β = P(A|Bc) and note that EP [ai ] = 0 for a0, . . . , a4; so all acts are E-admissible
and R(a0, . . . , a4) = ∅, a contradiction. Conversely, note that when A and B are
completely independent, then for each P we have EP [a0] =0, EP [a1] =(P(A) −
α)P(B) , EP [a2] =(α − P(A))P(B) , EP [a3] =(P(A) − β)P(B) , EP [a4] =(β −
P(A))P(B), so if α �= β we indeed have a0 ∈ R(a0, . . . , a4) �= ∅ (using the fact that
lower and upper probabilities are neither zero nor one).

As a short digression, at this point one might consider revisiting confirmational
irrelevance/independence (Expression (2)) in the context of general credal sets. That
is, we might consider

K (X |Y ∈ B) = K (X)

as a condition that applies for arbitrary credal sets (not worrying, for the moment, about
how to handle events of zero probability). Alas, the resulting irrelevance concept and

10 More precisely: If D2 ⊆ R(D1), then: (a) if D1 ⊆ D3, then D2 ⊆ R(D3); and (b) if D3 ⊆ D2, then
D2\D3 ⊆ R(closure(D1\D3)).
11 This discussion is based on a very compact example produced by Teddy Seidenfeld. In his example
complete independence is generated without any assumption on the marginal probabilities of A and B, with
only four acts that have a very intuitive meaning. His derivation seems not to be published at this point.
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its symmetrized independence version do not seem very interesting. Conditional con-
firmational independence fails all graphoid properties except symmetry even when
probabilities are all positive. Contraction already fails for convex credal sets (Cozman
and Walley 2005, Example 1); failure of decomposition and weak union is depicted
in Table 1.

5 Conclusion

Kyburg and Pittarelli’s joint papers touch on many central issues in uncertain reasoning.
Their papers critically evaluate strict Bayesianism, qualitative and interval probabil-
ity, maximum entropy methods, and, with special emphasis, convex Bayesianism. A
notable byproduct of their discussion of convex Bayesianism is a method to compute
E-admissible strategies, as discussed in Sect. 2.

Kyburg and Pittarelli present three drawbacks of convex Bayesianism. First, its
inability to deal with common kinds of assessments such as (complete) independence.
Second, its vulnerability to “long run” forms of Dutch Book when (complete) inde-
pendence is assessed. Third, the sensitivity of E-admissibility (and consequently of
decision making) to lack of convexity. Kyburg and Pittarelli argue that convexity
should not be required, and that one should represent uncertainty through general
credal sets; they call this prescription “Set-Based Bayesianism.”

The present paper focused on the relationship between independence and convex-
ity. Section 3 reviewed and tried to organize the existing literature on the issue; that
section also contributed with an analysis of conditional regular independence and a
proposal for connecting exchangeability with strong independence. Section 4 focused
on the use of E-admissibility to justify general sets of distributions, an idea hinted at
by Kyburg and Pittarelli, and taken to fruition by Seidenfeld et al. (2007).

To conclude, a few words on some notable concepts of independence for credal
sets:

– Epistemic irrelevance/independence is quite intuitive and simple to state for con-
vex credal sets. However, it is difficult to handle computationally, and it fails the
contraction property even when all probabilities are positive. Moreover, epistemic
irrelevance and independence require full conditional measures and their associ-
ated challenges (then failing other graphoid properties when zero probabilities are
present). Someone disinclined to use full conditional measures might adopt con-
ditional regular independence (however most difficulties with graphoid properties
persist).

– Complete independence is simple to state and inherits all the familiar properties of
stochastic independence. Due to the now available axiomatization of general credal
sets, complete independence can be given behavioral substance. Someone inclined
to full conditional measures might adopt full complete independence; however,
currently there is no axiomatization of general credal sets that produces a set of
full conditional measures, and future work on this issue would be welcome.

As for strong independence, it stays uncomfortably between the more intuitive concept
of epistemic independence and the easier to handle concept of complete independence.
The popularity of strong independence seems to be due solely to a desire to keep at
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once stochastic independence and convexity. Section 3.5 presented a perhaps more
positive argument where strong independence is a consequence of exchangeability.
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