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Abstract

This paper investigates Walley’s concepts of epistemic irrelevance and epistemic indepen-
dence for imprecise probability models. We study the mathematical properties of irrelevance
and independence, and their relation to the graphoid axioms. Examples are given to show
that epistemic irrelevance can violate the symmetry, contraction and intersection axioms, that
epistemic independence can violate contraction and intersection, and that this accords with
informal notions of irrelevance and independence.
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1 Introduction
The objective of this paper is to study the mathematical properties of irrelevance and independence
for imprecise probability models. We consider properties that are based on the graphoid axioms,
as these axioms have been proposed as an abstract model for irrelevance and for independence [7,
8, 22]. We define concepts of epistemic irrelevance and independence for imprecise probabilities,
and investigate which of the graphoid axioms are satisfied by these concepts.

The term imprecise probability refers to mathematical models for uncertainty in which prob-
abilities are not required to have sharp numerical values. These mathematical models include
upper and lower probabilities, belief functions, possibility measures, Choquet capacities, quali-
tative probability orderings, partial preference orderings, upper and lower previsions, and many
other models. Together with the many mathematical models, there are many theories of imprecise
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probability. This paper is based on one of these theories, the theory of coherent lower previsions
[32].1

Imprecise probabilities have many applications in statistics, economics, psychology, engi-
neering, and other fields [1, 11, 12], and there are many applications also in artificial intelligence.
For example, the combination of probability and logic (propositional, first-order, and others) has
always been a theme within artificial intelligence, and most approaches require manipulation of
imprecise probabilities [20, 16, 15]. Qualitative models for uncertainty [9, 21, 36] and several
other imprecise probability models, such as belief functions and possibility measures, have been
extensively studied and applied within artificial intelligence, e.g., for measuring and propagating
uncertainty in expert systems [33]. Imprecise probabilities are needed especially in applications
where there is insufficient evidence to justify precise probability assessments; probabilities based
on little information are highly imprecise, and they tend to become increasingly precise as the
amount of relevant information increases. Imprecision can be generated also by inconsistency
between several sources of information, by vagueness or non-specificity of information, or by
uncertainty about the relevance of information. See [33] for an explanation of why imprecise
probabilities are needed in artificial intelligence, and [32] for a more general discussion.

In this paper, we use two equivalent models for imprecise probability. The first model
involves a set of probability measures, which is called a credal set. A mathematically equivalent
model involves coherent lower previsions. These models are described in Section 2.

The concept of independence is central in most theories of uncertainty. In standard proba-
bility theory, independence is usually defined as factorization of a joint probability measure into
its marginal measures, which we call stochastic independence. Properties of stochastic indepen-
dence have received much attention in the artificial intelligence literature, as it has been argued
that independence judgements are necessary to make statistical models modular and computation-
ally tractable [22]. Markov conditions involving independence relations have been proposed for
a variety of statistical models, and they have also appeared as central features in causality mod-
els [23, 26]. The graphoid axioms are intended to capture the abstract properties that should be
satisfied by any concept of independence.

In theories of imprecise probability, several concepts of independence have been proposed
[2, 10, 32, 34]. See especially [2] for definitions, examples and comparisons of the various con-
cepts of independence.

In this paper, we adopt the concepts of epistemic irrelevance and epistemic independence
that were proposed by Walley [32, Chapter 9] and have been studied by Cozman [5], Vicig [31]
and Moral [19]. These concepts have clear behavioral interpretations but relatively little is known
about their mathematical properties. We show that these two relations can violate several of the
graphoid axioms, and that such violations are supported by intuitive notions of irrelevance and
independence. Our results suggest that graphoids are not sufficiently general to model the informal
concept of irrelevance.

1This theory has recently been called, mistakenly, ’imprecise probability theory’, a term that is not only ambiguous
but also misleading, since there are many theories of imprecise probability and there are many concepts of imprecise
probability that do not satisfy the coherence axioms required in [32].
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2 Credal sets and coherent lower previsions
This section introduces concepts and notation that are used throughout the paper.

A non-empty set of probability measures, all defined on the same collection of events, is
called a credal set.2 A credal set of probability measures for a random variable X is denoted by
M(X).

We assume throughout the paper that all random variables have only finitely many possible
values. Given a random variable X and credal set M(X), lower and upper previsions for any
function f(X) are defined by

E[f(X)] = inf
P∈M(X)

EP [f(X)] , E[f(X)] = sup
P∈M(X)

EP [f(X)] ,

where EP [f(X)] is the expectation of the function f(X) under the probability measure P . Upper
previsions can be obtained from lower previsions through the identity E[f(X)] = −E[−f(X)],
so generally we restrict attention to lower previsions.

If the function f(X) is interpreted as a random reward that has the value f(x) when X = x,
a lower prevision E[f(X)] can be regarded as a supremum price that a subject is prepared to pay
to buy the random reward f(X) [32]. We take two credal sets to be equivalent whenever they have
the same convex hull, because in that case they generate the same lower and upper previsions and
therefore they produce the same behaviour. We denote equivalence of M1 and M2 by M1

∼= M2.
Suppose that E[f(X)] is defined for a collection of functions f that forms a linear space.

The functional E is called a coherent lower prevision when it satisfies the three axioms:

E[f(X)] ≥ inf{f(x) : x is a possible value of X} (convexity)

E[cf(X)] = cE[f(X)] for all c > 0 (positive homogeneity)

E[f(X) + g(X)] ≥ E[f(X)] + E[g(X)] (super-linearity).

This definition of coherence can be extended to conditional lower previsions [32]. In this paper
we make use of several properties that are derived from the coherence axioms. We call these
properties “coherence relationships”; see [32] for proofs and discussion.

There is a one-to-one correspondence between coherent lower previsions (defined on the
linear space of all functions) and closed convex credal sets: lower previsions obtained from a
credal set are coherent lower previsions; and given a coherent lower prevision E, the credal set

{P : EP [f(X)] ≥ E[f(X)] for all functions f} (1)

is closed and convex.
The special case where the credal set M(X) is a singleton set corresponds to equality of

the upper and lower previsions, E[f(X)] = E[f(X)] for all functions f . In that case, we say that
probabilities concerning X are precise.

2Levi [17] used this term to refer to convex sets of probability measures, but here we do not require convexity.
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Lower and upper probabilities for an event A, denoted by P (A) and P (A), are defined
as the lower and upper previsions of the indicator function IA(X), which takes the value one if
X ∈ A and zero otherwise:

P (A) = E[IA(X)] = inf
P∈M(X)

P (A) ,

P (A) = E[IA(X)] = sup
P∈M(X)

P (A) .

A conditional credal set, denoted by M(X|Z = z), is a set of conditional probability mea-
sures P (·|Z = z) for the variable X . We use M(X|Z) to denote the function whose value when
Z = z is the credal set M(X|Z = z). Similarly we use E[f(X)|Z] to denote the function whose
value when Z = z is E[f(X)|Z = z]. If P (Y = y|Z = z) > 0, the conditional lower prevision
E[f(X)|Y = y, Z = z] is the unique solution of the following equation in λ, called the general-
ized Bayes rule [32, Section 6.4]:

E
[

(f(X) − λ)I{y}(Y )|Z = z
]

= 0. (2)

If the lower probability of the conditioning event {Y = y} is zero, then the conditional
lower prevision E[f(X)|Y = y] may not be uniquely determined by unconditional lower previ-
sions. In that case, there are several ways of proceeding; see [32, Section 6.10] and [6, 35]. In
this paper, we try to avoid this complication by concentrating on examples where all possible joint
outcomes have positive lower probability, so that conditional lower probabilities and lower pre-
visions are uniquely determined through the generalized Bayes rule. Most of the later examples
are of this type. In those few examples which do involve zero lower probabilities, the conditional
credal sets were defined directly, rather than by conditioning a joint (unconditional) credal set.

3 Graphoid properties
Let W , X , Y and Z denote random variables, each of which has only finitely many possible values.
When W and Y are random variables, so is the joint variable (W,Y ). Except where explicitly
noted, we do not make any assumptions about the set of possible values for joint variables such
as (W,Y ). In particular we do not assume that the set of possible values is a product space; i.e.,
saying that “(W,Y ) = (w, y) is possible” is not equivalent to saying that “W = w is possible
and Y = y is possible”. We say that W and Y are logically independent conditional on Z
if (W,Y,Z) = (w, y, z) is possible whenever both (W,Z) = (w, z) and (Y,Z) = (y, z) are
possible; in this case, for each fixed value of z, the set of possible values of (W,Y ) is a product
space.

A ternary relation (X⊥⊥Y |Z) is called a graphoid when it satisfies the following axioms
[7, 14, 22, 28].3

Symmetry: (X⊥⊥Y |Z) ⇒ (Y ⊥⊥X |Z)

3In understanding the meaning of the graphoid axioms, it may help to simplify the axioms by omitting all occur-
rences of the conditioning variable Z. Since this is equivalent to taking Z to be a constant random variable, all the
axioms and later results remain valid when Z is omitted.
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Redundancy: (X⊥⊥Y |X)

Decomposition: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥Y |Z)

Weak union: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥W |(Y,Z))

Contraction: (X⊥⊥Y |Z) & (X⊥⊥W |(Y,Z)) ⇒ (X⊥⊥(W,Y ) |Z)

Intersection: If W and Y are logically independent conditional on Z , then
(X⊥⊥W |(Y,Z)) & (X⊥⊥Y |(W,Z)) ⇒ (X⊥⊥(W,Y ) |Z).4

These axioms are satisfied (under weak assumptions) by stochastic conditional indepen-
dence. The most common definition of stochastic independence, through factorization of joint
probabilities, is as follows. Random variables X and Y are said to be stochastically independent
conditional on Z if

P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z) (3)

whenever both (X,Z) = (x, z) and (Y,Z) = (y, z) are possible.5 In that case we write (X⊥⊥Y |Z).
A slightly different definition is that X and Y are stochastically independent conditional on

Z if
P (X = x|Y = y, Z = z) = P (X = x|Z = z) (4)

whenever (Y,Z) = (y, z) is possible, and

P (Y = y|X = x,Z = z) = P (Y = y|Z = z) (5)

whenever (X,Z) = (x, z) is possible.
The two conditions (4) and (5) say, respectively, that if the value of Z is known, then learn-

ing the value of Y is irrelevant to uncertainty about X , and learning the value of X is irrelevant to
uncertainty about Y . The definition of epistemic independence for imprecise probability that we
give later is a simple generalization of this second definition. The second definition of stochastic
conditional independence agrees with the first definition if all the probabilities P (X = x|Z = z)
and P (Y = y|Z = z) are positive, but the two definitions differ when some of these probabilities
are zero.6

4This axiom is slightly different from the intersection axiom in Pearl [22], which applies to graphical relations such
as d-separation.

5Here and elsewhere in the paper, we define P (W = w|Z = z) to be zero whenever Z = z is possible but
(W, Z) = (w, z) is impossible. That is, impossible (conditional) values of a variable are taken to have (conditional)
probability zero. In the case of (3), (X, Y, Z) = (x, y, z) may be impossible when both (X, Z) = (x, z) and (Y, Z) =
(y, z) are possible, and (3) may still be satisfied provided that either P (X = x|Z = z) = 0 or P (Y = y|Z = z) =
0. That is, X and Y can be stochastically independent conditional on Z even though they are logically dependent
conditional on Z. This indicates a weakness of the standard definition of stochastic independence. As suggested in [32,
Section 9.1], it would be reasonable to strengthen the standard definition by requiring, in addition to the factorization
criterion (3), that X and Y be logically independent conditional on Z. This strengthens the standard definition only
when some probabilities are zero, because if P (X = x|Z = z) and P (Y = y|Z = z) are positive for all possible
(x, z) and (y, z) then (3) implies that X and Y are logically independent conditional on Z.

6Some authors, such as Dawid [7], use a slightly different definition of stochastic conditional independence in which
the factorization condition (3) is required to hold almost everywhere but may fail on a set of probability zero. Similarly
Pearl [22, p. 83] requires (4) to hold only when P (Y = y, Z = z) > 0. With these weaker definitions, stochastic
conditional independence satisfies all the graphoid axioms without further conditions.
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Under either definition, stochastic conditional independence always satisfies four of the
graphoid axioms: symmetry, redundancy, decomposition and contraction. Some weak assump-
tions are needed to guarantee that the other two graphoid axioms (weak union and intersection)
hold. For example, under either definition, it is sufficient for weak union that P (Y = y|Z =
z) > 0 whenever (y, z) is a possible value of (Y,Z). Similar positivity conditions are suf-
ficient for the intersection axiom. If, for every triple of variables (X,Y,Z), every joint event
(X = x, Y = y, Z = z) that is possible has positive probability, then the two definitions of
stochastic conditional independence agree and they satisfy all the graphoid axioms.

As we consider irrelevance relations that are asymmetric, i.e., that violate the symmetry
axiom, we must distinguish between different versions of the other graphoid axioms. For example,
the redundancy axiom has two versions: (X⊥⊥Y |X); and (Y ⊥⊥X |X). The decomposition and
weak union axioms have four possible versions, and the contraction and intersection axioms have
eight possible versions, which are obtained by interchanging the two variables on either side of
each ⊥⊥ symbol. We distinguish between “direct” and “reverse” versions of the graphoid axioms.
The “direct” versions have variables in the same order as the graphoid axioms stated earlier, and
the “reverse” versions have variables in the reverse order.7 As an example, the contraction axiom
leads to:

Direct contraction: (X⊥⊥Y |Z)& (X⊥⊥W |(Y,Z)) ⇒ (X⊥⊥(W,Y ) |Z)

Reverse contraction: (Y ⊥⊥X |Z)& (W ⊥⊥X |(Y,Z)) ⇒ ((W,Y )⊥⊥X |Z).

There are six other forms of the contraction property, obtained by interchanging variables in each
pair. We focus our attention on the reverse and direct forms of the graphoid axioms; the examples
in Section 6 show that all other forms of the graphoid axioms can fail for epistemic irrelevance.

A similar situation is faced by Galles and Pearl [13] when presenting axioms for causal
irrelevance. Because causal irrelevance is asymmetric in their system, they introduce “left” and
“right” versions of the graphoid properties. Several researchers have recently considered asym-
metric concepts of independence in connection with imprecise probability [18, 29, 30].

4 Epistemic irrelevance
The informal meaning of “Y is irrelevant to X” is that learning the value of variable Y would
not change our uncertainty about the value of variable X . Our uncertainty about X can be ex-
pressed by a collection of lower previsions of the form E[f(X)], and our uncertainty about X
given an event {Y = y} can be expressed by a collection of conditional lower previsions of
the form E[f(X)|Y = y]. Consequently, we say that Y is epistemically irrelevant to X when
E[f(X)|Y = y] = E[f(X)] for all possible values (y) of Y and all functions (f ) of X [32].

Epistemic irrelevance can also be defined in terms of credal sets [2, 3]. Let M(X) and
M(X|Y ) denote respectively a marginal credal set and a collection of conditional credal sets. We
say that Y is epistemically irrelevant to X when the convex hull of M(X|Y = y) is equal to the
convex hull of M(X) for all possible values y: M(X|Y = y) ∼= M(X). Recall that two credal

7The names “direct” and “reverse” are somewhat arbitrary, because the forms in which we have written the graphoid
axioms are arbitrary.
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sets with the same convex hull are equivalent, because they generate the same upper and lower
previsions.

This definition of epistemic irrelevance can be generalized to allow judgements of irrele-
vance that are conditional on further variables. We say that Y is epistemically irrelevant to X
conditional on Z , written as (Y IR X | Z), when

E[f(X)|Y = y, Z = z] = E[f(X)|Z = z] (6)

for all possible values (y, z) of (Y,Z) and all functions f(X).8

For imprecise probabilities, epistemic irrelevance is an asymmetric relation. For precise
probabilities, assuming that P (X = x|Z = z) > 0 and P (Y = y|Z = z) > 0 for all possible
values (x, z) and (y, z), epistemic irrelevance agrees with stochastic independence (using either
definition from Section 3) and is symmetric.9

Epistemic irrelevance should not be interpreted as causal irrelevance, as used for example
by Galles and Pearl [13]. Epistemic irrelevance is an attempt to model what Galles and Pearl call
informational irrelevance. The probabilistic and deterministic concepts of causal irrelevance in
[13] do not satisfy the symmetry property.

The next theorem summarises the most important properties of epistemic irrelevance. Some
of these properties require the following positivity assumption:

P (Y = y|Z = z) > 0, whenever (Y,Z) = (y, z) is possible. (7)

Theorem 1 Epistemic irrelevance satisfies the following properties, for all random variables
W,X, Y, Z .

Direct redundancy (DR): (X IR Y | X)

Reverse redundancy (RR): (Y IR X | X)

Direct decomposition (DD): (X IR (W,Y ) | Z) ⇒ (X IR Y | Z)

Reverse contraction (RC): (Y IR X | Z)& (W IR X | (Y,Z)) ⇒ ((W,Y ) IR X | Z).
8It is assumed here that P (X = x|Y = y,Z = z) = 0 if X = x is impossible conditional on (Y, Z) = (y, z).

Again, it would be reasonable to strengthen the definition of epistemic irrelevance by requiring also that X and Y

be logically independent conditional on Z, but that is not required in this paper. The examples later in the paper, in
which the variables are logically independent, would be unaffected by such a change. Epistemic irrelevance could be
defined in a different way, by requiring only that the terms E[f(X)|Y = y,Z = z] in (6) do not depend on y. In that
case, it is necessary for coherence that E[f(X)|Y = y,Z = z] ≤ E[f(X)|Z = z], but strict inequality is possible. It
can be verified that the graphoid properties of this modified definition differ from the properties listed in Theorem 1:
the modified definition satisfies the reverse intersection axiom, but it can violate the symmetry, reverse decomposition,
direct and reverse contraction, and direct intersection axioms.

9Pearl [24] discusses examples of asymmetric irrelevance relations of the following type. Consider two variables
X and Y . Suppose we have a single conditional distribution P (Y |X) that is not independent of X , but we are totally
ignorant about X so the credal set M(X) is vacuous. If we condition on Y , we obtain a vacuous credal set for
M(X|Y ). So, Y is irrelevant to X , but X is not irrelevant to Y . Pearl seems to argue that these are the only situations
where asymmetry can occur, but Section 6 contains examples where every atom of a model is assigned positive lower
probability, and still symmetry fails. Another example where all conditioning events have positive lower probability
can be found in [4].
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Under the positivity assumption (7),10 epistemic irrelevance also satisfies:

Reverse decomposition (RD): ((W,Y ) IR X | Z) ⇒ (Y IR X | Z)

Direct weak union (DWU): (X IR (W,Y ) | Z) ⇒ (X IR W | (Y,Z))

Reverse weak union (RWU): ((W,Y ) IR X | Z) ⇒ (W IR X | (Y,Z)) .

Proof.
DR: The proof is trivial since E[h(Y )|X = x,X = x] = E[h(Y )|X = x].

RR: It is necessary for coherence that E[f(X)|X = x] = f(x) = E[f(X)|X = x, Y = y],
hence (Y IR X | X).

DD: Any function, h, of Y can be regarded as a function of Y and W , so E[h(Y )|X,Z] =
E[h(Y )|Z] by hypothesis. Consequently (X IR Y | Z).

RC: Suppose that (w, y, z) is a possible value of (W,Y,Z). Let g be any function of X . Applying
the hypotheses (W IR X | (Y,Z)) and (Y IR X | Z) gives E[g(X)|W = w, Y = y, Z = z] =
E[g(X)|Y = y, Z = z] = E[g(X)|Z = z] , which establishes that ((W,Y ) IR X | Z).

RD: Let g be any function of X . It follows from coherence of the conditional lower previsions
and ((W,Y ) IR X | Z) that

E[g(X)|Y = y, Z = z] ≥ minE[g(X)|W = w, Y = y, Z = z] = E[g(X)|Z = z] ,

whenever (Y,Z) = (y, z) is possible, where the minimum is taken over all values w such
that (W,Y,Z) = (w, y, z) is possible. Using this result and applying another general coher-
ence relationship, E[g(X)|Z = z]≥E[E[g(X)|Y,Z = z] |Z = z]≥E[E[g(X)|Z = z] |Z = z]
= E[g(X)|Z = z]. Because the first and last expressions are identical, there must be equal-
ity in each step, so E[E[g(X)|Y,Z = z] |Z = z] = E[g(X)|Z = z]. Using the positivity
assumption and E[g(X)|Y = y, Z = z] ≥ E[g(X)|Z = z] whenever (Y,Z) = (y, z) is
possible, this implies that E[g(X)|Y = y, Z = z] = E[g(X)|Z = z] whenever (Y,Z) =
(y, z) is possible. Thus (Y IR X | Z).

DWU: Suppose that (X,Y,Z) = (x, y, z) is possible. Then (X,Z) = (x, z) and (Y,Z) =
(y, z) are both possible, so the positivity assumption and irrelevance hypothesis imply that
P (Y = y|X = x,Z = z) > 0. Let h be any function of W . By the generalized Bayes rule
(2), E[h(W )|Y = y,X = x,Z = z] is the unique solution λ of the equation

E
[

(h(W ) − λ)I{y}(Y )|X = x,Z = z
]

= 0.

Because E
[

(h(W ) − λ)I{y}(Y )|X = x,Z = z
]

= E
[

(h(W ) − λ)I{y}(Y )|Z = z
]

by
hypothesis, E[h(W )|Y = y,X = x,Z = z] is the unique solution λ of

E
[

(h(W ) − λ)I{y}(Y )|Z = z
]

= 0,

10Example 1 of Section 6 shows that, without the positivity assumption (7), RD and RWU can fail. Recall that
similar positivity assumptions are needed to ensure that stochastic conditional independence satisfies the weak union
and intersection axioms.
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and it is therefore equal to E[h(W )|Y = y, Z = z] because the generalized Bayes rule has
a unique solution. This establishes that (X IR W | (Y,Z)).

RWU: Suppose that (w, y, z) is a possible value of (W,Y,Z). Let g be any function of X .
As ((W,Y ) IR X | Z) by hypothesis, E[g(X)|W = w, Y = y, Z = z] = E[g(X)|Z = z].
Using the positivity assumption and applying property RD gives (Y IR X | Z), so that
E[g(X)|Y = y, Z = z] = E[g(X)|Z = z], and then E[g(X)|W = w, Y = y, Z = z] =
E[g(X)|Y = y, Z = z]. This establishes that (W IR X | (Y,Z)).

Other general properties of epistemic irrelevance can be derived from the properties in the
preceding theorem. Some properties are listed in the following corollary.

Corollary 1 Epistemic irrelevance satisfies, for all random variables W,X, Y, Z:

1. If W is a function of Z then (X IR Y | Z) ⇒ (X IR (W,Y ) | Z).

Under the positivity assumption (7), epistemic irrelevance also satisfies:

2. (W IR X | Z)& (Y IR X | (W,Z)) ⇒ (Y IR X | Z).

3. (W IR X | Z) & (Y IR X | (W,Z)) ⇒ (W IR X | (Y,Z)).

Proof.

1. Suppose that (X,Z) = (x, z) is possible. Given a function h(W,Y ), define the function
h′(y) = h(w(z), y). Then E[h(W,Y )|X = x,Z = z] = E[h(w(z), Y )|X = x,Z = z]
= E[h′(Y )|X = x,Z = z] = E[h′(Y )|Z = z] = E[h(W,Y )|Z = z]. This shows that
(X IR (W,Y ) | Z).

2&3. The assumptions imply that ((W,Y ) IR X | Z) by RC. Using the positivity assumption, this
implies that (Y IR X | Z) by RD, and it also implies that (W IR X | (Y,Z)) by RWU.

As a special case of property 2, consider the case where Z is omitted and Y provides partial
information about W alone, in the sense that (Y IR X | W ). Suppose also that P (Y = y) > 0
for all possible y. Then property 2 implies that if (W IR X) then (Y IR X). In other words, if
W is irrelevant to X then learning partial information about the value of W does not change the
uncertainty concerning X . This property seems necessary for “irrelevance” of W to X in the
intuitive sense. Campos and Moral gave an example which, they claimed, showed that learning
partial information about W could change uncertainty about X [10]. But their example relies, in
an essential way, on conditioning on events of probability zero. The later Example 1 shows that
properties 2 and 3 of the Corollary can fail when the positivity assumption is violated.

Examples will be given later to show that epistemic irrelevance can violate the direct con-
traction and intersection properties. Although epistemic irrelevance does not always satisfy direct
contraction, it does so whenever particular probability distributions are precisely determined.11

11The key to this result is that, because of the precision assumption in the Theorem, the credal set M(W, Y |Z) is
uniquely determined by M(Y |Z) and M(W |Y, Z). A similar argument shows that, if all the credal sets M(X|Y, Z)
are precise, then epistemic irrelevance satisfies the reverse intersection property.
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Theorem 2 Suppose that all the credal sets M(W |Y,Z) are precise, i.e., for all possible values
of (y, z), the credal set M(W |Y = y, Z = z) contains only a single probability distribution. Then
epistemic irrelevance satisfies the direct contraction property: (X IR Y | Z) & (X IR W | (Y,Z)) ⇒
(X IR (W,Y ) | Z).

Proof. Suppose that all the assumptions are satisfied and (x, z) is a possible value of (X,Z). Let
h be any function of (W,Y ). By the precision assumption and the second irrelevance assumption,
the prevision E[h(W,Y )|X = x, Y = y, Z = z] = E[h(W,Y )|Y = y, Z = z] is precisely
determined whenever (X,Y,Z) = (x, y, z) is possible. With all terms conditioned on (X,Z) =
(x, z), it is necessary for coherence of the conditional lower previsions that [32, Property 6.7.3],

E[h(W,Y )|X = x,Z = z] = E[E[h(W,Y )|X = x, Y, Z = z]|X = x,Z = z]

= E[E[h(W,Y )|Y,Z = z]|X = x,Z = z]

= E[E[h(W,Y )|Y,Z = z]|Z = z]

= E[h(W,Y )|Z = z] ,

where the assumption that (X IR Y | Z) is used to eliminate X from the nested prevision
E[E[h(W,Y )|Y,Z = z]|X = x,Z = z]. This establishes that (X IR (W,Y ) | Z).

5 Epistemic independence
Epistemic independence of two variables requires that uncertainty about each of the variables be
unchanged by information about the other variable. Consequently, we say that two variables X and
Y are epistemically independent conditional on Z , denoted by (X IN Y | Z), when (X IR Y | Z)
and (Y IR X | Z), i.e., each variable is epistemically irrelevant to the other variable. In terms of
lower previsions, (X IN Y | Z) is equivalent to: E[f(X)|Y = y, Z = z] = E[f(X)|Z = z] for all
functions f(X) and all possible values of (y, z), and E[g(Y )|X = x,Z = z] = E[g(Y )|Z = z]
for all functions g(Y ) and all possible values of (x, z) [2, 31, 32].12 The definition of epistemic
independence can again be expressed in terms of equivalence of credal sets.

Unlike epistemic irrelevance, epistemic independence is a symmetric relation. In the special
case of a precise probability model, epistemic independence agrees with the second definition of
stochastic independence that was given in Section 3.

Because epistemic independence is the symmetric version of epistemic irrelevance, its prop-
erties follow directly from the properties of irrelevance that were listed in Theorem 1. The next
theorem summarises the valid graphoid properties of epistemic independence.

Theorem 3 Epistemic independence satisfies, for all random variables W,X, Y, Z:

Symmetry: (X IN Y | Z) ⇒ (Y IN X | Z)

Redundancy: (X IN Y | X).
12Again, it would be reasonable to strengthen this definition of epistemic independence by requiring also that X and

Y be logically independent conditional on Z. The relationship between epistemic independence and logical indepen-
dence is discussed in [32, Section 9.1].
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Under the positivity assumption (7), epistemic independence also satisfies:

Decomposition: (X IN (W,Y ) | Z) ⇒ (X IN Y | Z)

Weak union: (X IN (W,Y ) | Z) ⇒ (X IN W | (Y,Z)).

6 Examples of relevance and irrelevance
The main purpose of the examples in this section is to show that there are simple models in
which epistemic irrelevance violates the symmetry, direct contraction and intersection axioms,
and epistemic independence violates contraction and intersection, and that this behaviour accords
with informal notions of irrelevance. The examples show that, except for the properties listed in
Theorem 1, all versions of the graphoid axioms (not just the “direct” and “reverse” versions) can
be violated by epistemic irrelevance. The most important conclusions from the examples are:

• The symmetry axiom for epistemic irrelevance fails in Examples 1, 2, 3 and 4.

• When the positivity condition (7) fails, the reverse decomposition and reverse weak union
axioms for epistemic irrelevance can fail, as shown in Example 1.

• The direct contraction axiom for epistemic irrelevance fails in Examples 1, 2 and 3, and the
contraction axiom for epistemic independence fails in Example 1.

• The direct and reverse intersection axioms for epistemic irrelevance fail in Examples 4 and
5, and the intersection axiom for epistemic independence fails in Example 5.

Example 1 The first example shows that irrelevance can be asymmetric, and that both irrelevance
and epistemic independence can violate the contraction axiom. The example involves one toss of
a fair coin and one drawing of a ball from an urn of unknown composition.

Let Y denote the outcome of the coin toss, with possible values h (heads) and t (tails). Let
W denote the colour of the ball drawn from the urn, with possible values r (red) and b (blue).
There are two urns from which the ball can be drawn: urn R contains 2 red balls and 1 blue ball;
urn B contains 1 red ball and 2 blue balls. The probability distributions associated with the two
urns, PR and PB , are determined by PR(r) = 2/3 or PB(r) = 1/3.

Suppose that there is a selection rule that determines which urn the ball will be drawn from,
as a function of the outcome of the coin toss. Using R and B to refer to the urn that is selected,
there are four possible selection rules:

Y = h Y = t

S = S1 R R

S = S2 B B

S = S3 R B

S = S4 B R

Let X be a variable that gives partial information about the selection rule: X = s if the same urn
is used whatever the outcome of the coin toss, and X = d if a different urn is used in the two
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possible cases (heads or tails). Initially we are completely ignorant about the selection rule, and
therefore we are completely ignorant about the value of X .

In this example, it is clear that W is irrelevant to X , i.e., learning the colour of the ball that
was drawn (W ) tells us nothing about whether a different urn would have been chosen if the coin
had landed differently. But it is also clear that X is relevant to W . Initially we are completely
ignorant about which urn will be selected, so we know only that the chance of drawing a red
ball (i.e., W = r) lies between 1/3 and 2/3. But if we learn that X = d, i.e., that the selected
urn differs according to whether the coin lands heads or tails, then we know that the chance of
drawing a red ball is precisely (1/2)(1/3) + (1/2)(2/3) = 1/2. Learning that X = d changes
our uncertainty about W , so that X is relevant to W . Epistemic irrelevance therefore violates the
symmetry property: (W IR X) ⇒ (X IR W ).

It is also clear that X is irrelevant to Y , i.e., learning partial information about the selection
rule, or indeed the complete rule, does not change our uncertainty about whether the coin will
land heads or tails. Also X is irrelevant to W given Y , i.e., whatever the outcome of the coin
toss, learning whether or not the selected urn depends on the outcome does not give us any useful
information about which urn will be selected. But we have already established that X is relevant
to W . Since X is therefore relevant to (W,Y ) by the direct decomposition property, epistemic
irrelevance violates the direct contraction axiom: (X IR Y ) & (X IR W | Y ) ⇒ (X IR (W,Y )).

Furthermore, learning the outcome of the coin toss (Y ) does not change uncertainty about
X , and, given the outcome of the coin toss, learning the colour of the ball that was drawn (W )
gives no information about X . Thus Y is irrelevant to X , and W is irrelevant to X given Y . Com-
bining these with previously established relations, X is epistemically independent of Y , and X is
independent of W given Y . Epistemic independence therefore violates the contraction property:
(X IN Y ) & (X IN W | Y ) ⇒ (X IN (W,Y )).

These conclusions can be confirmed by defining the appropriate credal sets. The four pos-
sible selection rules produce four possible joint probability distributions for (W,Y ), which are
denoted by Q1, Q2, Q3, Q4. These four distributions are the extreme points of M(W,Y ). They
are determined, for w = r or w = b, by: Q1(w, h) = Q1(w, t) = PR(w)/2 (corresponding
to S1); Q2(w, h) = Q2(w, t) = PB(w)/2 (corresponding to S2); Q3(w, h) = PR(w)/2 and
Q3(w, t) = PB(w)/2 (corresponding to S3); Q4(w, h) = PB(w)/2 and Q4(w, t) = PR(w)/2
(corresponding to S4).

Using this notation, M(W,Y |X = s) = {Q1, Q2}, M(W,Y |X = d) = {Q3, Q4}, M(W |X,Y ) =
M(W |Y ) = {PR, PB} ∼= M(W ), M(Y |X) = M(Y ) = {U} where U is the probability dis-
tribution that assigns probability 1/2 each to heads and tails, and M(X|W,Y ) = M(X|W ) =
M(X|Y ) = M(X) = {(0, 1), (1, 0)}. By comparing the appropriate credal sets, we see that
(X IR Y ), (X IR W | Y ), (Y IR X), (W IR X) and (W IR X | Y ). Hence (X IN Y ) and (X IN W | Y ).
But X is relevant to W since, for example, the upper and lower probabilities of drawing a blue
ball are P (b) = 2/3 and P (b) = 1/3 before observing the value of X , but they change to
P (b|X = d) = P (b|X = d) = 1/2 after learning that X = d.

Both the reverse decomposition and reverse weak union properties of Theorem 1 are vio-
lated in this example, since (X,Y ) is irrelevant to W , but X is relevant to W , and Y is relevant
to W given X . Similarly, properties 2 and 3 of Corollary 1 are also violated here. This shows that
these properties can fail when the positivity assumption (7) is violated, as it is in this example:
because we are completely ignorant about X , each possible value of X has lower probability zero.
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The irrelevance and independence properties that are satisfied in this example are:

(X IN Y ) , (Y IR W ) , (W IR X) , ((X,Y ) IR W ) ,

((W,Y ) IR X) , (X IN W | Y ) , (Y IR X | W ) .

All the other irrelevance properties of this type (involving W,X, Y ) are violated. The following
versions of the contraction axiom are violated:
(X IR Y ) & (W IR X | Y ) ⇒ (X IR (W,Y )) ; (Y IR X) & (X IR W | Y ) ⇒ (X IR (W,Y )) ;
(Y IR X) & (W IR X | Y ) ⇒ (X IR (W,Y )).

Example 2 To show that the violation of symmetry and direct contraction in Example 1 can oc-
cur when all possible configurations of the variables (W,X, Y ) have positive lower probability,
consider the following modification. The problem is exactly as in Example 1 except that now we
know that the value of X is determined by tossing a second fair coin, unrelated to the first coin
toss: if the second coin lands heads then X = s, and otherwise X = d. That is, Y and X are
determined independently by tossing two fair coins. If X = s then the urn is selected by either
selection rule S1 or S2, and we are completely ignorant about which rule will be used. If X = d
then the urn is selected by either S3 or S4, and again we are completely ignorant about which rule.
Finally, a ball is drawn from the selected urn to determine W .

In this modified problem, both X and Y have precise marginal probability distributions,
since each value is determined by tossing a fair coin. The only imprecision is in the probability
distribution of W conditional on (X,Y ).

Let T denote the overall rule that is used to choose an urn. There are four possible rules T ,
where S1, S2, S3 and S4 are the selection rules used in Example 1:

X = s X = d

T1,3 S1 S3

T1,4 S1 S4

T2,3 S2 S3

T2,4 S2 S4

Define the probability distributions Qi for (W,Y ) as in Example 1. The joint credal set
M(W,X, Y ) has four extreme points (one for each rule Ti,j), which correspond to the pairs
(Qi, Qj) with i = 1, 2 and j = 3, 4. For each such extreme point, the marginal distribution of X
is uniform on {s, d}, the distribution of (W,Y ) conditional on X = s is Qi, and the distribution of
(W,Y ) conditional on X = d is Qj . Since each Qi assigns positive probability to every possible
pair (w, y), it follows that all 8 possible outcomes (w, x, y) now have positive lower probability.

When the value of X becomes known, this modified example is identical to Example 1.
Consequently the credal sets M(Y |X), M(W |X,Y ), M(W,Y |X = s) and M(W,Y |X = d)
are exactly as in Example 1. We find that M(Y ) = M(Y |X) and M(W |Y ) ∼= M(W |X,Y ). It
follows that, as in Example 1, irrelevance violates the direct contraction axiom.

However, other credal sets differ from those in Example 1. We find that M(X|Y ) =
M(X) = {U} 6∼= {PR, PB} = M(X|W,Y ), so that W is relevant to X given Y . Because
X and W are no longer independent given Y , epistemic independence satisfies the contraction
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axiom in this example, unlike Example 1. Because (X IR W | Y ) but not (W IR X | Y ), epistemic
irrelevance again violates the symmetry axiom.

The marginal upper and lower probabilities of drawing a blue ball are now P (b) = 7/12
and P (b) = 5/12, whereas the conditional upper and lower probabilities are still P (b|X = s) =
2/3, P (b|X = s) = 1/3, and P (b|X = d) = P (b|X = d) = 1/2. Because M(W ) differs from
Example 1, (X,Y ) is now relevant to W and properties RD and RWU of Theorem 1 are satisfied.

Although this example involves only a small modification to Example 1, the modification
destroys most of the irrelevance properties that were satisfied in Example 1. The only irrelevance
properties involving W,X, Y that are satisfied in the modified problem are

(X IN Y ) , and (X IR W | Y ) .

The following versions of the contraction property are violated:
(X IR Y ) & (X IR W | Y ) ⇒ ((W,Y ) IR X) ; (Y IR X) & (X IR W | Y ) ⇒ ((W,Y ) IR X) .

Example 3 Consider another modification of Example 1. Suppose that a second fair coin is tossed
in a way that is unrelated to the first coin toss. Let V denote the outcome of the second toss.
The introduction of V does not alter the irrelevance relations discussed in Example 1, but now
the following versions of the decomposition, weak union and contraction axioms are violated:
(W IR (X,V )) ⇒ (X IR W ); ((X,V ) IR W ) ⇒ (W IR X); (W IR (X,V )) ⇒ (X IR W | V );
((X,V ) IR W ) ⇒ (W IR X | V ); and (W IR X) & (V IR W | X) ⇒ ((X,V ) IR W ).

Example 4 In the preceding examples, epistemic irrelevance satisfies the direct intersection and
reverse intersection properties. This example shows that these, and all other, versions of the inter-
section property can fail in simple cases.

Again W,X, Y are binary variables. Let W and Y denote the outcomes of two stochasti-
cally independent tosses of a fair coin, each with possible values h and t. Let X denote the colour
of a ball that is drawn from an urn, with possible values r (red) and b (blue). The urn contains one
red ball, one blue ball, and one other ball whose colour depends on the outcomes of the coin tosses.
The third ball is selected to be red if a particular coin lands in a particular way, and to be blue if
this coin lands in the other way, but we are completely ignorant about which coin determines the
colour and about which outcome is associated with which colour.

There are four possible selection rules:

W = h W = t

S = S1 R B

S = S2 B R

Y = h Y = t

S = S3 R B

S = S4 B R

The joint credal set M(W,Y,X) contains four probability distributions, one corresponding
to each selection rule, which are defined as follows. Let PR and PB denote the two possible
probability distributions for X , determined by PR(r) = 2/3 or PB(r) = 1/3. Each probability
distribution in M(W,Y,X) has a uniform distribution for (W,Y ), since these are the outcomes
of independent tosses of a fair coin, and the probability distribution of X conditional on (W =
w, Y = y) in each case is: (1) PR if W = h, PB if W = t; (2) PB if W = h, PR if W = t; (3)
PR if Y = h, PB if Y = t; (4) PB if Y = h, PR if Y = t. It follows that W,X, Y are logically
independent and all 8 possible outcomes (w, y, x) have positive lower probability.
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It can be verified that M(X|W,Y ) = {PR, PB} ∼= M(X|W ) = M(X|Y ). Consequently
(W IR X | Y ) and (Y IR X | W ). But M(X) contains only the uniform distribution on {r, b},
and therefore (W,Y ) is relevant to X . It follows that epistemic irrelevance violates the reverse
intersection property: if W and Y are logically independent, (W IR X | Y ) & (Y IR X | W ) ⇒
((W,Y ) IR X).13

Also M(Y |W,X) = M(Y |X) ∼= {PR, PB}, so that (W IR Y | X). But since M(X|W ) 6∼=
M(X), W is relevant to X , and by the direct decomposition property of Theorem 1, W is relevant
to (X,Y ). It follows that epistemic irrelevance violates the direct intersection property: if W and
Y are logically independent, (W IR Y | X) & (W IR X | Y ) ⇒ (W IR (X,Y )).

This failure of direct and reverse intersection again accords with intuition. First consider
reverse intersection. Before we learn the outcomes of the coin tosses, there is probability 1/2 that
the third ball in the urn will be red, whatever the selection rule, because of the randomness in
each coin toss. So, initially, there is precise probability 1/2 of drawing a red ball from the urn:
P (X = r) = P (X = r) = 1/2. But after we learn the outcome of one or both coin tosses, some
of the randomness disappears, and the four selection rules assign different probabilities, ranging
from 1/3 to 2/3, to drawing a red ball: P (X = r|W = w) = P (X = r|W = w, Y = y) = 1/3
and P (X = r|W = w) = P (X = r|W = w, Y = y) = 2/3 for all possible values h, t of w and
y.14 Learning the outcome of one or both coin tosses (W,Y ) changes our uncertainty about the
outcome of the drawing (X). That is, (W,Y ) is relevant to X . But after learning the outcome of
one coin toss, we are completely ignorant about the colour of the third ball in the urn, and learning
the outcome of the second coin toss does not change this state of ignorance. Thus W is irrelevant
to X given Y , and Y is irrelevant to X given W .

The argument for violation of direct intersection is similar. The preceding argument shows
that W is irrelevant to X given Y , and also that W is relevant to X which implies that W is
relevant to (X,Y ). Finally, W is irrelevant to Y given X because, given the colour of the ball that
was drawn (X), learning the outcome of one coin toss tells us nothing about the outcome of the
other coin toss.

The direct contraction axiom is also violated here: W is irrelevant to Y because the two coin
tosses are stochastically independent, W is irrelevant to X given Y by the previous argument, but
W is relevant to (X,Y ).

The following irrelevance and independence properties are satisfied in this example:

(W IN Y ) , (W IN Y | X) , (Y IR X | W ) and (W IR X | Y ) .

All the other irrelevance properties involving W,X, Y are violated. From this we can see that all
8 possible versions of the intersection property fail in this example. The symmetry property also
fails because (Y IR X | W ) but not (X IR Y | W ).

13Despite this example, irrelevance must ‘almost’ satisfy reverse intersection: if W and Y are logically indepen-
dent, (W IR X | Y ) and (Y IR X | W ), then, for every function f(X), E[f(X)|W = w, Y = y] must be constant
(independent of w and y), and the constant value must be less than or equal to E[f(X)].

14This behaviour, in which conditioning on a variable W makes probabilities less precise whatever value W may
take, is called dilation in [25]. The preceding footnote shows that dilation occurs whenever the reverse intersection
property is violated, since then conditioning on (W, Y ) must make probabilities concerning X less precise. Dilation
also occurs in Example 5.
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Example 5 In all the preceding examples, epistemic independence satisfies the intersection ax-
iom. This final example shows that intersection can fail for epistemic independence. The example
involves three tosses of a fair coin with unknown interaction between the tosses. Each of the
variables W,X, Y represents the outcome of a different coin toss, with possible values h (heads)
and t (tails). The variables W,X, Y are logically independent. The joint credal set M(W,X, Y )
contains all probability distributions for (W,X, Y ) under which the marginal probability distribu-
tion for each variable is uniform on {h, t}. Let (S,U, V ) be any permutation of (W,X, Y ). The
joint credal set is invariant under such a permutation. By definition of the joint credal set, M(S)
contains just the uniform distribution on {h, t}.

One possible type of interaction between the tosses is that toss U is fair, but the outcomes
of tosses S and V are always identical to the outcome of U . This would produce a probability
distribution with P (S = h|U = h) = 1. Another possibility is that the outcomes of S and
V are always different from the outcome of U , which would produce P (S = h|U = h) = 0.
Hence P (S = h|U = h) = 1, P (S = h|U = h) = 0, and the conditional credal set M(S|U)
is vacuous, i.e., it contains all the probability distributions on {h, t}. A similar argument shows
that M(S|U, V ) is also vacuous. Since M(S|U, V ) = M(S|U), we have (V IR S | U) for each
permutation (S,U, V ) of (W,X, Y ). Hence (X IN W | Y ) and (X IN Y | W ).

But X is not independent of (W,Y ), since M(X) is precise whereas M(X|W,Y ) is vac-
uous, i.e., P (X = h) = P (X = h) = 1/2 but P (X = h|W = w, Y = y) = 1 and
P (X = h|W = w, Y = y) = 0 for all possible values of w and y. Initially we know that
the probability of heads on toss X is precisely 1/2, but, because we know nothing about the inter-
action between tosses, learning the outcome of one or both of the other tosses produces complete
ignorance about the probability of heads on toss X . (This is another example of dilation.) It
follows that epistemic independence violates the intersection axiom.

The 6 extreme points of M(W,X, Y ) are listed in the Appendix. The only irrelevance
relations that hold are (V IR S | U) for each permutation (S,U, V ) of (W,X, Y ).

Under this model, P (W = w, Y = y) = 0 for all possible values of w and y. To show
that the intersection axiom can fail even when all possible configurations of the variables (w, x, y)
have positive lower probability, we can modify the example by putting an upper bound on the
degree of interaction between tosses. To be specific, suppose that we reduce the joint credal set
M(W,X, Y ) by imposing the extra constraint: P (S = s|U = u, V = v) ≥ 1/3 whenever
(S,U, V ) is a permutation of (W,X, Y ) and s, u, v take values in {h, t}.

The following argument shows that, in this modified example, M(S|U, V ) = M(S|U). It
suffices to show that P (S = s|U = u, V = v) = P (S = s|U = u) = 1/3 for all possible values
of s, u, v, since S has only two possible values and therefore the lower probabilities determine
the corresponding credal sets. By definition of the model, P (S = s|U = u, V = v) ≥ 1/3.
Using a general coherence relationship, P (S = s|U = u) ≥ E[P (S = s|U = u, V )|U =
u] ≥ E[1/3|U = u] = 1/3. To show that P (S = s|U = u, V = v) ≤ 1/3 and P (S =
s|U = u) ≤ 1/3, it suffices to find a probability distribution P ∗ in M(S,U, V ) that satisfies
P ∗(S = s|U = u, V = v) = P ∗(S = s|U = u) = 1/3. Define P ∗ so that V is stochastically
independent of (S,U), the marginal distribution of V is uniform on {h, t}, and the distribution
of (S,U) is: P ∗(s, u) = P ∗(s′, u′) = 1/6 and P ∗(s, u′) = P ∗(s′, u) = 1/3, where (s, s′) and
(u, u′) are permutations of (h, t). It can be verified that P ∗ has the required properties.

Hence, in the modified example, (X IN W | Y ) and (X IN Y | W ). But again (W,Y ) is
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relevant to X , since P (X = h) = P (X = h) = 1/2 but P (X = h|W = w, Y = y) = 1/3 and
P (X = h|W = w, Y = y) = 1 − P (X = t|W = w, Y = y) = 2/3, for all possible values of w
and y. Again the intersection property fails for epistemic independence. The epistemic irrelevance
relation in this case violates all 8 possible versions of the intersection axiom, including direct
intersection and reverse intersection.

The 16 extreme points of M(W,X, Y ) in this modified example are listed in the Appendix.
Again, the only irrelevance relations that hold are (V IR S | U) for each permutation (S,U, V ) of
(W,X, Y ).

7 Conclusion
The mathematical properties of Walley’s concepts of epistemic irrelevance and epistemic inde-
pendence depart in several ways from the properties of stochastic independence. The most basic
difference is that irrelevance and independence are not identical in Walley’s framework. This dis-
tinction is not commonly made in formal studies. For example, both Dawid [7] and Pearl [22],
in defending the graphoid axioms, use the terms “irrelevance” and “independence” almost inter-
changeably. Dawid introduces the graphoid axioms, excluding the intersection axiom, by saying
that “we can rephrase these as assertions of irrelevance” and he suggests that we can consider them
“as a reasonable set of axioms for a general concept of irrelevance” [7].

But irrelevance and independence do not have the same meaning in ordinary language. The
concept of irrelevance is asymmetric: X may be irrelevant to Y without Y being irrelevant to X .
On the other hand, symmetry seems to be essential to any concept of independence, since two
variables are independent only when they are irrelevant to each other.

Such considerations of symmetry are crucial to appreciate the results in this paper. For
example, consider the contraction property. The failure of direct contraction may seem strange at
first, but all that is necessary about contraction is contained in the irrelevance property of reverse
contraction. In fact, Dawid and Pearl, in discussing the contraction axiom, defend only reverse
contraction. To quote Pearl [22, p. 85]:

The contraction axiom states that if we judge W irrelevant to X after learning some
irrelevant information Y , then W must have been irrelevant before we learned Y .

This property of reverse contraction is indeed a desirable property of irrelevance, but the quite
different property of direct contraction seems necessary only if a preconceived notion of symmetry
is combined with reverse contraction.

The examples in Section 6 show that epistemic irrelevance can violate the symmetry, direct
contraction and intersection axioms, that epistemic independence can violate the contraction and
intersection axioms and that these violations are consistent with our intuitive understanding of
irrelevance. This suggests that structures that are more general than graphoids, and especially
ones that weaken the symmetry, contraction and intersection axioms, deserve further attention.
The properties of epistemic irrelevance that are listed in Theorem 1 could be taken as basic axioms
for a more general concept of irrelevance. It seems unlikely that the properties listed in Theorem 1
completely characterize epistemic irrelevance, especially as there is no finite system of axioms that
characterizes stochastic independence [27]. It may be necessary to add further properties to those
listed in Theorem 1, in order to produce a mathematical structure that is interesting and useful.
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A Extreme points for Example 5
The extreme probability distributions in Example 5 were computed using the software lrs. In the
first version of the example, M(W,X, Y ) consists of all probability distributions P such that
P (S = h) = 1/2 when S is either W , X or Y . The extreme points of M(W,X, Y ) are listed in
Table 1. The modified version of the example adds the constraints: P (S = s|U = u, V = v) ≥
1/3 whenever (S,U, V ) is a permutation of (W,X, Y ) and s, u, v take values in {h, t}. The
extreme points of M(W,X, Y ) in this case are listed in Table 2.

TABLES 1 AND 2 GO HERE
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P (W,X, Y ) P (hhh) P (hht) P (hth) P (htt) P (thh) P (tht) P (tth) P (ttt)

P1 0 0 0 1/2 1/2 0 0 0
P2 0 0 1/2 0 0 1/2 0 0
P3 0 1/2 0 0 0 0 1/2 0
P4 1/2 0 0 0 0 0 0 1/2
P5 0 1/4 1/4 0 1/4 0 0 1/4
P6 1/4 0 0 1/4 0 1/4 1/4 0

Table 1: The 6 extreme points of M(W,X, Y ) for the first version of Example 5.

P (W,X, Y ) P (hhh) P (hht) P (hth) P (htt) P (thh) P (tht) P (tth) P (ttt)

P1 1/12 1/12 1/6 1/6 1/6 1/6 1/12 1/12
P2 1/12 1/6 1/12 1/6 1/6 1/12 1/6 1/12
P3 1/12 1/6 1/6 1/12 1/12 1/6 1/6 1/12
P4 1/12 1/6 1/6 1/12 1/6 1/12 1/12 1/6
P5 1/6 1/12 1/12 1/6 1/12 1/6 1/6 1/12
P6 1/6 1/12 1/12 1/6 1/6 1/12 1/12 1/6
P7 1/6 1/12 1/6 1/12 1/12 1/6 1/12 1/6
P8 1/6 1/6 1/12 1/12 1/12 1/12 1/6 1/6
P9 1/14 1/7 1/7 1/7 1/7 1/7 1/7 1/14
P10 1/7 1/14 1/7 1/7 1/7 1/7 1/14 1/7
P11 1/7 1/7 1/14 1/7 1/7 1/14 1/7 1/7
P12 1/7 1/7 1/7 1/14 1/14 1/7 1/7 1/7
P13 1/10 1/10 1/10 1/5 1/5 1/10 1/10 1/10
P14 1/10 1/10 1/5 1/10 1/10 1/5 1/10 1/10
P15 1/10 1/5 1/10 1/10 1/10 1/10 1/5 1/10
P16 1/5 1/10 1/10 1/10 1/10 1/10 1/10 1/5

Table 2: The 16 extreme points of M(W,X, Y ) for the second version of Example 5.
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