
Using Mathematical Programming to Solve

Factored Markov Decision Processes

with Imprecise Probabilities

Karina Valdivia Delgadoa, Leliane Nunes de Barrosb, Fabio Gagliardi
Cozmanc, Scott Sannerd

aEscola de Artes, Ciências e Humanidades, Universidade de São Paulo, SP, Brazil
bInstituto de Matemática e Estat́ıstica, Universidade de São Paulo, SP, Brazil

cEscola Politécnica, Universidade de São Paulo, SP, Brazil
dNICTA and the Australian National University, Canberra, ACT 2601, Australia

Abstract

This paper investigates Factored Markov Decision Processes with Imprecise
Probabilities (MDPIPs); that is, Factored Markov Decision Processes (MDPs)
where transition probabilities are imprecisely specified. We derive efficient ap-
proximate solutions for Factored MDPIPs based on mathematical programming.
To do this, we extend previous linear programming approaches for linear ap-
proximations in Factored MDPs, resulting in a multilinear formulation for ro-
bust “maximin” linear approximations in Factored MDPIPs. By exploiting the
factored structure in MDPIPs we are able to demonstrate orders of magnitude
reduction in solution time over standard exact non-factored approaches, in ex-
change for relatively low approximation errors, on a difficult class of benchmark
problems with millions of states.

Key words: Imprecise Markov Decision Processes (MDPIPs), Probabilistic
Planning, Multilinear programming

1. Introduction

Sequential decision making is an essential activity in many domains, ranging
from operations research [1] and planning [2] to robotics [3]. Markov Decision
Processes (MDPs) provide an elegant mathematical framework for representing
and solving sequential decision problems under uncertainty in completely ob-
servable environments. An MDP encodes the interaction between an agent and
its environment: at every stage, the agent decides to execute an action (with
probabilistic effects) that takes it to a next state and yields a reward. The
agent’s goal is to maximize the expected reward over a sequence of actions.

Traditionally, MDPs assume a “flat” (enumerated) representation of states.
A more compact representation for MDPs uses a state representation factored
into multiple state variables — the so-called Factored MDPs. Such represen-
tations suffer from Bellman’s curse of dimensionality [4]: the size of the state

Preprint submitted to Elsevier March 4, 2011

space grows exponentially in the number of state variables. Recent approximate
solutions for Factored MDPs exploit the factored representation [5, 6, 7] so as
to solve problems that are orders of magnitude larger than those solvable using
classical flat dynamic programming approaches.

Despite their elegance and generality, Markov Decision Processes are often
inadequate to represent real-world problems. In many problems, it is simply
impossible to obtain precise values for all transition probabilities. This may
occur for many reasons, including: (a) imprecise or conflicting transition proba-
bilities elicited from experts, (b) insufficient data to estimate precise transition
models, or (c) abstraction of parts of the model that are too complex to detail,
for instance by omitting variables that cannot be properly measured.

The seminal work by Satia and Lave Jr. [8] studied several optimality criteria
for Markov Decision Processes with Imprecise Probabilities (MDPIPs); that
is, MDPs where transition probabilities may be imprecisely specified. Satia
and Lave Jr. paid significant attention to a maximin criterion: an agent must
choose an action that maximizes the lowest possible future expected reward
(that is, “Nature” is assumed to select transition probabilities in an adversarial
manner). While there have been proposals for exact and approximate solutions
to MDPIPs using this maximin criterion [8, 9, 10], these approaches can only
solve relatively small problems. These algorithms face the difficulty that, to deal
with imprecisely specified probabilities, they have to solve at least one nonlinear
programming problem per state.

The present article makes a number of fundamental contributions to state-
of-the-art solution methods for large MDPIPs:

• We introduce a definition of Factored MDPIPs and a factored specifica-
tion of imprecision in transition probabilities (based on dynamic credal
networks (DCNs) [11]). To the best of the authors’ knowledge, no previ-
ous work has investigated Factored MDPIPs.

• We provide algorithms for approximate solution of Factored MDPIPs
based on mathematical programming, by extending previous work [10, 12].
Specifically, we first give a bilevel programming formulation for the ap-
proximate solution of Factored MDPIPs, and then transform it into mul-
tilinear programming, a well known formalism for which many practical
solvers with strong convergence guarantees exist.

• We extend previous work [12] so as to obtain efficient approximate lin-
ear programming solutions for Factored MDPs. We exploit the Factored
MDPIP structure to reduce the number of constraints generated and to
compactly encode the remaining constraints that empirically leads to an
exponential reduction in the number of constraints for some problems.

Section 2 reviews basic concepts on MDPs and Factored MDPs, and the basic
theory of “flat” MDPIPs. Section 3 defines Factored MDPIPs and gives bilevel
and multilinear programming formulations. Section 4 presents an algorithm,
called FactoredMPA (Factored Multilinear programming-based approxima-
tion), that produces maximin policies by resorting to approximate nonlinear

2

programming. We demonstrate orders of magnitude reduction in solution time
over standard exact non-factored approaches to MDPIPs in exchange for rela-
tively low approximation errors on a difficult class of benchmark problems with
millions of states.

2. Background

In this section we review basic concepts on MDPs and Factored MDPs. We
also define MDPIPs given two flat (i.e., non factored) formulations: i) based on
bilevel programming and ii) based on multilinear programming.

2.1. Flat Markov Decision Processes

In this paper a Markov Decision Process is a tuple M = 〈S,A, T,R, P, γ〉,
where [1, 13]:

• S is a finite set of fully observable states;

• A is a finite set of actions;

• T is a countable set of stages starting at stage 0;

• R : S ×A → R is a fixed reward function associated with every state and
action;

• P (s′|s, a) is the conditional probability of reaching state s′ at stage t+ 1
when in state s ∈ S at stage t, given action a ∈ A is taken at t;

• γ ∈ (0, 1) is a discount factor (the reward obtained t stages into the future
is discounted in the sense that it is multiplied by γt).

A policy returns an action in each state, at any stage. A stationary policy
π : S → A returns an action π(s) in state s (regardless of stage). The value
of a stationary policy π, starting in state s0 at stage 0, and progressing with
an infinite horizon (|T =∞|), is here taken to be the following expected value,
known as the value function:

Vπ(s) = Eπ

[
∞∑

t=0

γtRt|s0 = s

]
, (1)

where Rt is the reward obtained at stage t ∈ T . Equation (1) can be decomposed
and rewritten recursively based on the values of the possible successor states
s′ ∈ S as follows:

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S

P (s′|s, π(s))Vπ(s
′).

The goal is to find a policy π∗ that yields the maximal value in each state:
∀s, π′ : Vπ∗(s) ≥ Vπ′(s). For infinite horizon with discounted cost there always

3

exists such an optimal stationary policy. The optimal value function associated
with an optimal policy, represented by V ∗, can be computed by the Bellman
equation [14]:

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑

s′∈S

P (s′|s, a)V ∗(s′)

}
. (2)

The Bellman equation can be solved through a linear program [15]:

min
V ∗

:
∑

s

V ∗(s) (3)

s.t. : V ∗(s) ≥ R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′), ∀s ∈ S, a ∈ A.

To see that linear program (3) produces the unique fixed-point solution of
Equation (2), note that constraints force V ∗(s) to be greater than or equal
to maxa{R(s, a) + γ

∑
s′∈S P (s′|s, a)V ∗(s′)}, considering all a ∈ A, and then

minimizing
∑
s V

∗(s) to enforce that the minimal V ∗(s) is obtained.

2.2. Factored Markov Decision Processes

In a Factored MDP, states s ∈ S are represented by a set X = {X1,X2, ...,Xn}
of state variables: a state s is represented as a tuple x = (x1, x2, ..., xn) where xi
is the value of the state variable Xi. The cardinality of S is exponential in the
number n of state variables.1 In a Factored MDP, the reward function R(x, a)
is usually defined by the sum of ψ local-reward functions Rj(x, a):

R(x, a) =

ψ∑

j=1

Rj(x, a). (4)

The scope of each local-reward function Rj(·, a) is typically restricted to a subset
of the variables X = {X1, ...,Xn}.

The next step is to encode transition probabilities using Dynamic Bayesian
Networks (DBNs) [18]. That is, we employ a directed acyclic graph with two
layers for each action: one layer represents the variables in the current state
and the other layer represents the next state (Figure 1.a). Nodes Xi and X ′

i

refer to the current and next state respectively. Directed edges are allowed
from nodes in the first layer into the second layer, and also between nodes in
the second layer. We denote by pa(X ′

i) the parents of X ′
i in the graph. The

graph is assumed endowed with the following Markov condition: a variable X ′
i

is conditionally independent of its nondescendants given its parents. This leads
to the following factorization of transition probabilities:

P (x′|x, a) =

n∏

i=1

P (x′i|pa(X ′
i), a), (5)

1Finding an optimal policy is a P-Complete problem for flat MDPs [16, 17]; factored MDPs
introduce an exponential increase in the size of the state space.

4

X
1

current
state

next
state

X 1
’

X
2 X

2
’

X
3 X

3
’

X
n X

n
’

X =1
2
’ X

1
X X’

2

T T T 0.9

T F T 0.01

F T T 0.33

F F T 0.01

1

T T F 0.95

T F F 0.01

F T F 0.35

F F F 0.005

... ...

a) b)

X =0
2
’ X

1
X X’

2

T T T 0.1

T F T 0.99

F T T 0.67

F F T 0.99

1

T T F 0.05

T F F 0.99

F T F 0.65

F F F 0.995

c)

Figure 1: a) A Dynamic Bayesian Network (DBN) for an action a; b) conditional probability
table for X′

2
= 1; c) conditional probability table for X′

2
= 0.

where pa(X ′
i) may be fixed by x. That is, the probability of moving to x′ ∈ S,

given the agent is in state x ∈ S and executes the action a ∈ A, is the product
of conditional probabilities for {X ′

i = x′i} given the configuration of parents of
X ′
i and the action a ∈ A.

Figure 1.b shows the conditional probability table (CPT) for X ′
2 = 1; Fig-

ure 1.c shows the CPT for X ′
2 = 0. The tables include all combinations of

variables values only for the parents of X ′
2, i.e., pa(X ′

2) and the sum of each line
in Figure 1.b and Figure 1.c is 1.

Recent results have shown that it is possible to solve a Factored MDP
with billions of states [5, 17]. The technique of Approximate Linear Pro-
gramming (ALP) [19] has emerged as one of the most promising methods for
solving complex Factored MDPs. The basic idea is to solve an MDP, formu-
lated as Problem (3), by approximating the optimal value function through
basis functions that are provided by domain experts or automatically gener-
ated [17, 20, 21]. The quality of the approximation depends on the set of basis
functions.

The approximate value function is denoted by V̂ (x). Given x ∈ S and a
set of basis functions H = {h1, ..., hk}, V

∗(x) is approximated using a linear
combination:

V̂ (x) =

k∑

j=1

wjhj(x). (6)

The ALP formulation of an MDP, given Expressions (3), (4) and (6), is given

5

by the linear program:

min
w

:
∑

x

k∑

i=0

wihi(x) (7)

s.t. :

k∑

i=0

wihi(x) ≥

ψ∑

j=1

Rj(x, a) + γ
∑

x
′∈S

P (x′|x, a)

k∑

i=0

wihi(x
′),

∀x ∈ S, a ∈ A.

In order to guarantee that this linear program is feasible, a constant basis
function must be included. We denote the constant function by h0, that has the
same constant value for all states. Hence, the sum

∑
i starts from 0 instead of

1.
The number of variables in Expression (7) should be made smaller than |S|

by selecting a relatively small number of basis functions. Note however that the
number of constraints is the same as in Expression (3). In Section 4 we discuss
how to obtain computational gains in ALP by exploiting the factored structure
of the problem.

2.3. Markov Decision Processes with Imprecise Probabilities

An MDPIP is a sequential decision process endowed with state space, ac-
tions, rewards and discount factor as any MDP, but where transition probabil-
ities can be imprecisely specified. For instance, perhaps the tightest bounds on
the probability P (s2|s1, a1) are just P (s2|s1, a1) ∈ [1/3, 1/2]. That is, instead
of a probability measure P (·|s, a) over the state space S, we have a set of prob-
ability measures for a fixed pair state/action. We use the term credal set to
refer to a set of probability measures (or a set of distributions for a random
variable) [22]. A set of distributions for a variable X is denoted by K(X). We
adopt elementwise conditioning: K(X|B) is obtained from K(X) by condition-
ing every distribution in the credal set K(X) on the event B (using Bayes rule).
A credal set containing conditional distributions over the state space, given a
state s and an action a, is referred to as a transition credal set [22] and denoted
by K(s′|s, a).

We assume that all credal sets are closed and convex, an assumption that
is often used in the literature, and that encompasses most of the practical ap-
plications [23, 24, 25]. We further assume stationarity for the transition credal
sets K(s′|s, a); that is, they do not depend on the stage t. Note that a proba-
bility distribution for a complete history of the process (that is, a sequence of
states) may be non-stationary: distributions P (s′|s, a) may be selected from the
corresponding credal sets in a time dependent manner, from stage to stage [26].

There are several criteria of choice regarding policies in MDPIPs. The max-
imin criterion selects the policy that maximizes reward gained under the as-
sumption that Nature minimizes reward; that is, the policy that yields the
supremum of lower expected reward. The maximin criterion is sometimes re-
ferred to Γ-maximin [23], to differentiate it from the maximin criterion used in

6

frequentist decision making [27]. Several other criteria of choice can be found
in the literature. For instance, the “maximax” criterion [8] selects a policy that
yields the supremum of upper expected reward [28], while the “maximix” crite-
rion selects a policy that yields the maximum of α(maxP Vπ)+(1−α)(minP Vπ),
for some α ∈ (0, 1). In this paper we adopt the maximin criterion throughout,
as it is the most prevalent criterion and it offers a reasonable approach when
robust policies are sought for. For a critical appraisal of the maximin criterion,
including an analysis of incoherence in sequential decision making, the reader
may consult the analysis by Seidenfeld [29].

There is always a deterministic stationary policy that is maximin for ex-
pected reward in a discounted infinite horizon [8]; moreover, this policy induces
a value function that is the unique solution of the equation

V ∗(s) = max
a

min
P

(
R(s, a)+γ

∑

s′

P (s′|s, a)V ∗(s′)

)
. (8)

There exist algorithms for solving this equation based on dynamic program-
ming [8, 9]. In particular, value iteration is a straightforward implementation
of Equation (8) using dynamic programming techniques. Although value iter-
ation is a general solution, it is a very inefficient solution that can solve only
small problems. Only a few special cases of MDPIPs do admit efficient solution
schemes [30, 31].

It does not seem possible to reduce the solution of Equation (8) to linear
programming (similar for instance to Problem 3). In our previous work [10]
we have shown that it is possible to solve Equation (8) by resorting to bilevel
and multilinear programming. First, Equation (8) can be reduced to bilevel
programming:

min
V ∗

:
∑

s

V ∗(s) (9)

subject to : V ∗(s) ≥ R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′),∀s ∈ S, a ∈ A

P (s′|s, a) = arg min
Q

∑

s′∈S

Q(s′|s, a)V ∗(s′)

subject to : Q(s′|s, a) ∈ Ka(s
′|s).

This bilevel program can be transformed to an equivalent multilinear pro-
gram [10]:

min
V ∗,P

:
∑

s

V ∗(s) (10)

s.t. : V ∗(s) ≥ R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′),∀s ∈ S, a ∈ A

P (s′|s, a) ∈ Ka(s
′|s).

Lemma 1. Problem (9) and Problem (10) produce the optimal value function,
V ∗(s).

7

Proof: To verify that Problem (9) produces V ∗(s), i.e, that Problem (9) finds
the unique fixed-point solution of Equation (8), V ∗(s), we use the constraints
to force V ∗(s) to be greater than or equal to:

max
a

{
R(s, a) + γmin

P

∑

s′∈S

P (s′|s, a)V ∗(s′)

}
,

and then minimizing
∑
s V

∗(s) to enforce that the minimal V ∗(s) (at equality)
is obtained. Because Problems (9) and (10) are equivalent from [10], we can
find V ∗(s) by solving the multilinear program in Expression (10). �

Note that the solution of multilinear programs is far from trivial; only rela-
tively small flat MDPIPs can be tackled directly through Expression (10) [10].

3. Defining and Representing Factored MDPIPs

A Factored MDPIP is essentially a Factored MDP where transition proba-
bilities are not unique. We propose Dynamic Credal Networks (DCNs) as the
adequate language to express factored transition credal sets. A DCN has the
same structure as a DBN (Figure 1); however, each variable Xi is associated
with credal sets Ka(Xi|pa(Xi) = πk) for each value πk of pa(Xi). We assume
that a DCN represents a joint credal set over all of its variables consisting of all
distributions that satisfy the factorization

P (x′|x, a) =

n∏

i=1

P (x′i|pa(X ′
i), a), (11)

where each P (x′i|pa(X ′
i), a) comes from an appropriate credal set associated

with the DCN. This sort of joint credal set is called the strong extension of the
credal network in the literature [11, 32]. The entries in the CPT are specified by
parameters pijk, for {X ′

i = x′ij} given {pa(X ′
i) = πk}; note that each pijk may

be free rather than a fixed number. Figure 2 shows a Dynamic Credal Network
for action a1 ∈ A, the CPT for state variable X ′

1 that depends on X1 and the
constraints over the parameters pijk, where i = 1 is the index of X ′

1, j ∈ {1, 2}
indicates the possible values of X ′

1 and k the possible values of pa(X ′
1). Note

that Ka(X
′
i|pa(X ′

i)) are defined, indirectly, by a set of constraints C over the
probability values pijk (inequations in Figure 2).

3.1. Bilevel and Multilinear Approximate Formulations

To derive maximin policies for Factored MDPIPs, we begin by the bilevel
formulation (Problem (9)). The factored value function of a Factored MDPIP
is given by taking Equation (6) and restricting the scope of each basis function
to some subset of state variables ℵi ⊂ X = {X1, ...,Xn}. We can then insert
this new factored value function plus the reward function (4) and the transition
probabilities (11) into Problem (9) to obtain:

8

Figure 2: a) Dynamic Credal Network for action a1 ∈ A. b) The (symbolic) conditional
probability table for the state variable X′

1
and the constraints on probability values.

min
w

∑

x

k∑

i=0

wihi(x) (12)

subject to :

k∑

i=0

wihi(x) ≥ R(x, a) +

γ
∑

x
′∈S

P (x′|x, a)

k∑

i=0

wihi(x
′),∀x ∈ S, a ∈ A

P (x′|x, a) = arg min
Q

∑

x
′∈S

Q(x′|x, a)

k∑

i=0

wihi(x
′)

where Q(x′|x, a) =
∏

i

Q(x′i|pa(X
′
i), a)

subject to:

Q(x′i|pa(X
′
i), a) ∈ Ka(X

′
i|pa(X

′
i)).

which is the bilevel formulation of a Factored MDPIP. In this formulation the
first level minimizes w and the second level minimizes Q. Some characteristics
of Problem (12) are worth mentioning:

• there are |S| ∗ |A| constraints at the first level;

• the constraints in the first level are non-linear, since the weights wi are
multiplied by P (x′|x, a);

• the objective in the second level is non-linear whenever the basis functions
are based on more than one variable;

• the first level and the second level share the same free optimization vari-
ables (i.e., the probability values).

9

Thus, Problem (12) is not a trivial bilevel problem, and most existing meth-
ods to solve bilevel problems do not apply; for instance, there are obstacles to
applying the following methods: K-th Best [33], Branch-and-bound [34], Trust-
Region [35], Inexact Restoration [36] and Steepest Descent Direction [37]. (For
a more detailed discussion on the difficulties faced by these methods, see the
paper by Delgado et al [38].)

We can also use the factored value function and replace it in the multilinear
formulation (Problem (10)) of an MDPIP so as to obtain the factored multilinear
programming problem:

min
w,P

∑

x

k∑

i=0

wihi(x) (13)

subject to :

k∑

i=0

wihi(x) ≥ R(x, a) +

γ
∑

x
′∈S

P (x′|x, a)

k∑

i=0

wihi(x
′),∀x ∈ S, a ∈ A

where P (x′|x, a) =
∏

i

P (x′i|pa(X
′
i), a)

P (x′i|pa(X
′
i), a) ∈ Ka(X

′
i|pa(X

′
i)).

In Problem (13), if the set of basis functions is such that V ∗(x) =
∑k
j=1 wjhj(x),

we say the basis functions attain the exact solution.

Theorem 1. If the set of chosen basis functions attains the exact solution, the
exact solution is obtained by solving Problem (13).

Proof: By replacing V ∗ in Problem (13), we obtain Problem (10) and by Lemma
1 we guarantee that solving problem (13) we will find the exact solution: V ∗(s).
�

Notice that in Problem (13), even though we can efficiently compute the
coefficients of the objective function and the constraints, we are still working
with the complete set of constraints (|S| ∗ |A|+m2), where m2 is the number of
constraints in C related to the probabilities pijk (used to define the credal sets
Ka). The direct use of general non-linear solvers [39, 40], geometric solvers [41]
or multilinear solvers [42] for Factored-MDPIPs, can only solve problems of type
(13) with small state space.

Local Optimization Solution. We can use local optimization algorithms [43] to
solve the Multilinear Problem (13). Such an algorithm divides the variables
in groups and, at each iteration, fixes the values of each group to obtain a
linear problem. A Factored-MDPIP formulated as a multilinear programming
problem can be solved by this local optimization algorithm if and only if the
basis functions have scope restricted to one state variable, because we can then
divide the variables in two groups (for instance we can define one group with

10

the wi variables for i = 1 to k and the other group with w0) and the variables
related with the probabilities. Whenever basis functions have more than one
variable, it is not possible to divide the variables in order to obtain a linear
problem at each iteration, so the algorithm [43] cannot be applied.

Reducing the Number of Constraints. We can also try to reduce the number of
constraints in the problem and call a nonlinear solver only once. This idea is
the same one that has been used to efficiently solve Factored MDPs [5].

Given the mentioned difficulties in solving an MDPIP formulated as a bilevel
problem (Problem (12)), in this paper we explore solutions to the multilinear
Problem (13) by applying techniques to reduce the number of constraints. In
the next section we present the main contribution of this paper: an algorithm
for the generation of maximin policies in Factored MDPIPs that solves Problem
(13) by reducing the number of constraints, so as to tackle large state spaces.

4. An Efficient Solution for Factored MDPIPs: FactoredMPA

We wish to solve Factored MDPIPs by exploiting ideas that have been suc-
cessfully applied to MDPs; namely, by pursuing analogues of Approximate Lin-
ear Programming (ALP). There has been significant evidence [44] that if one is
interested in Factored MDPs, and thus interested in solving Problem (7), two
conditions must be fulfilled so as to apply ALP successfully. First, it is neces-
sary to restrict the scope of each basis function to some small subset of state
variables. Second, it is necessary to assume a relatively sparse set of depen-
dencies in the DBNs that encode the factorization of probabilities. Guestrin [5]
has demonstrated that these conditions are fulfilled in a variety of applications,
and has exploited these conditions to develop efficient algorithms for Factored
MDPs.

The success of Guestrin’s FactoredLPA algorithm to solve MDPs is related
with the set of constraints of the approximate linear program (Problem (7)): (i)
the exploitation of factored structure to avoid the generation of unnecessarily
complex constraints and (ii) the generation of compact sets of constraints.2 Our
goal is to solve Factored MDPIPs (Problem (13)) by developing some form of
approximate multilinear programming. Even though the same techniques used
in connection with Guestrin’s algorithm [17, 45, 46] cannot be applied directly
to the multilinear problem, the FactoredLPA algorithm can be generalized to
a FactoredMPA algorithm to solve factored MDPIPs, as we show next.

To solve a Factored MDPIP we have to simplify the set of constraints in
Problem (13) by applying the same ideas used by Guestrin in his FactoredLPA
algorithm: it creates a new and smaller equivalent set of constraints for each
action in the Linear Programming Problem (7) before calling a linear solver with
the new minimization problem. This is done in two steps: (i)a simplification
step and (ii) a contraction step.

2There are variants of these techniques in the literature, exploiting various schemes from
linear programming [17, 45, 46].

11

4.1. Simplification Step: Exploiting the Factored Structure of an MDPIP

Let an MDPIP be defined by 〈S,A, T,R,K, γ〉, where S is a set of states,
A is a set of actions, T is a countable set of stages, R is a reward function
associated with every state and action and is defined by local-reward functions
Rj , K(s′|s, a) is the transition credal set defined by DCNs and probability con-
straints C and γ ∈ (0, 1) is a discount factor. The computing of constraints in
Problem (13) must benefit from the fact that our MDPIP is factored and that
the basis functions H have a restricted scope. So, the purpose of this step is
to precompute some values to simplify the constraints. Take Problem (13); we
have the following set of constraints:

∑

i

wihi(x) ≥

ψ∑

j=1

Rj(x, a)+γ
∑

x
′∈S

P (x′|x, a)
∑

i

wihi(x
′),∀x ∈ S, a ∈ A. (14)

We can rearrange terms as follows:

∑

i

wihi(x) ≥

ψ∑

j=1

Rj(x, a) + γ
∑

i

wig
a
i (x,p), (15)

where
gai (x,p) =

∑

x
′∈S

P (x′|x, a)hi(x
′); (16)

we use p to denote a vector containing all probability values that are free to vary
within the given credal sets (i.e., that satisfy the probability constraints C in the
DCN). That is, p contains all probability values that define the distributions
we seek.

Koller and Parr [44] showed that if hi has scope restricted to a subset of state
variables ℵi ⊂ X = {X1, ...,Xn}, then gai has scope restricted to the parents of
ℵi in the DBN of action a (these parents are denoted by Γ).

Intuitively, in
∑

x
′∈S P (x′|x, a)hi(x

′) we can push the sum over variables
x′j /∈ Γ inwards to obtain:

∑

x′

i
∈Γ

P (x′i|x, a)hi(x
′)
∑

x′

j
/∈Γ

P (x′j |x, a).

As the inwards sum adds up to 1, we have:

∑

x′

i
∈Γ

P (x′i|x, a)hi(x
′).

For MDPIPs, gai (x,p) is a polynomial expression and has scope restricted to the
parents of ℵi in the DCN. That is, it is described in terms of probability values
and has the canonical form d0+

∑
i di
∏
j pijk, where d0 and di are constants and

pijk are parameters. Thus, to avoid repeated calculations, it is only necessary to

12

calculate gai for each assignment z of Γ. For further computational improvement,
the set of constraints can be rewritten as:

0 ≥

ψ∑

j=1

Rj(x, a) +
∑

i

wic
a
i (x,p), (17)

where:
cai (x,p) = γgai (x,p)− hi(x). (18)

This latter term can be precomputed resulting also in a polynomial form and
has scope restricted to Θ = ℵi ∪ Γ. Finally, we obtain:

0 ≥

ψ∑

j=1

Rj(x, a) +
∑

i

wic
a
i (x,p),∀x ∈ S, a ∈ A. (19)

Algorithm 1 named computecai has as input an MDPIP given by 〈S,A, T,R,K, γ〉
and a set of basis functions H and returns the set of functions Ca. computecai
computes gai and cai for each basis function hi as in Expressions (16) and (18)
respectively, note that the term gai has scope restricted to the parents of ℵi in
the DCN (denoted by Γ) and cai has scope restricted to Θ = ℵi ∪ Γ.

Although precomputing the expression cai helps to simplify the constraints,
note that we still have the complete set of constraints (that is, |S| ∗ |A|+m2).
Because general non-linear solvers applied to Problem (13) can only solve prob-
lems with small state space, we must further reduce the number of constraints
(Section 4.2).

4.2. Contraction Step: Generating a Compact Set of Constraints

Guestrin [5] generates a compact set of linear constraints to efficiently solve
Factored MDPs; we can also generate a compact set of multilinear constraints to
solve Factored MDPIPs (Problem (13)). The basic idea is first to replace the set
of constraints in Expression (19) by an equivalent set of non-linear constraints
(maximizing over x), as follows:

0 ≥ max
x






ψ∑

j=1

Rj(x, a) +
∑

i

wic
a
i (x,p)




 ,∀a ∈ A. (20)

So, for each action a, we have to satisfy

0 ≥ max
x






ψ∑

j=1

Raj (x) +
∑

i

wic
a
i (x,p)




 . (21)

where Raj (x) stands for Rj(x, a). Now we show how to transform the constraint
given by the Inequation (21) into a set of simpler constraints. Since in Expres-
sion (21) we have to solve the maximization over the complete state space, its
computation is too expensive. Instead of adding up all terms and performing

13

Algorithm 1: computecai (MDPIP ,H, a)

input : MDPIP (given by 〈S,A, T,R,K, γ〉),
H (set of basis functions hi),
a (action)

output: Ca (set of functions cai , with 1 ≤ i ≤ |H|)

begin
//k is the number of basis functions;
k = |H|;
for i = 1 to k do

//compute gai
ℵi = scope of hi;
Γ=parents of ℵi in the DCN;
foreach assignment z of Γ do

calculate gai (z,p) //Equation (16)
//compute cai using gai
Θ = ℵi ∪ Γ;
foreach assignment θ of Θ do

cai (θ,p) = γgai (θ,p)− hi(θ);

return Ca ;

end

this maximization over all states in S, we can maximize over state variables one
at a time. To do so, we modify the version of the variable elimination algorithm
proposed by Guestrin [5].

For instance, suppose that we want to perform the maximization over vari-
able X1 ∈ x. In order to eliminate this variable, we do as follows: if Ra1 is the
only local-reward function for action a that depends on X1; c

a
1 is a function

that depends, for instance, on X1 and X4 and there is no other function cai that
depends on X1 in the Inequation (21); then we can push the maximization over
X1 inwards the sum to obtain:

0 ≥ max
X2...Xn

8

<

:

ψ
X

j=2

Raj (x) + w0ca0 +
X

i=2

wic
a
i (x,p) + maxX1

˘

Ra
1
(X1) + w1ca

1
(X1, X4,p)

¯

9

=

;

.

(22)

Let Ra1(X1) and w1c
a
1(X1,X4,p) in Expression (22), in our hypothetical exam-

ple, be called relevant function to the variable X1 (since in the example Ra1 is the
only local-reward function that depends onX1 and the same for the function ca1).
In general, let be a relevant function, a function whose scope contains a variable
Xl that we want to eliminate. In the above example, the relevant functions,
renamed as uf1Z1

, · · · , ufL

ZL
, are uf1X1 = Ra1(X1) and uf2X1,X4 = w1c

a
1(X1,X4,p)

(we call these expressions as equality constraints). Note that Zi is the scope of
each relevant function.

14

So, for each variable Xi we want to eliminate (under some order criterion O),
FactoredMP selects L relevant functions. Then we can replace the maximization
over these relevant functions by:

uer

Z = max
Xl

L∑

j=1

u
fj

Zi
, (23)

where Z is the union of all variables in functions uf1Z1
, · · · , ufL

ZL
minus Xl, since

after performing max, the new function is independent of Xl.
Back to our example (Expression (22)), the term uer

Z given by the maximiza-
tion in the box where Z = {X1} ∪ {X1,X4}\{X1}, is renamed with relevant
functions, as follows:

uer

X4
= max

X1

{
uf1X1

+ uf2X1,X4

}
, (24)

resulting in the following expression:

0 ≥ max
X2...Xn






ψ∑

j=2

Raj (x) + w0c
a
0 +

∑

i=2

wic
a
i (x,p) + uer

X4




 .

Note that, in our example, to eliminate X1 means to simplify the computation
of Expression (22) once there are few relevant functions for X1. But to enforce
the definition of uer

x4
as in Expression (24) we must introduce four new inequality

constraints, one for each combination of the configuration of X4 and X1, i.e.:

uer
x4
≥ uf1x1

+ uf2x1,x4
.

uer

x4
≥ uf1x1

+ uf2x1,x4
.

uer
x4
≥ uf1x1

+ uf2x1,x4
.

uer

x4
≥ uf1x1

+ uf2x1,x4
.

In the general case, to enforce the definition of uer

Z as the maximum over Xl

(Expression (23)), the FactoredMP algorithm introduces a new constraint for
each assignment z of Z; i.e.:

uer
z ≥

L∑

j=1

ufj
z,xl
∀xl. (25)

This procedure is repeated until all variables have been eliminated. At the end,
all the remaining functions uei have an empty scope and the following inequality
constraint must be added:

0 ≥
∑

i

uei . (26)

that is, at the end of this variable elimination process, we transform the orig-
inal set of inequality constraints (Expression (21)) to a new set of constraints

15

(Expression (25) and (26)) plus the equality constraints for renamed functions,
which corresponds to a smaller set of simpler constraints (i.e., without maxi-
mization).

FactoredMP (Algorithm 2) implements the contraction step by creating
a smaller equivalent set of constraints J for one action a ∈ A, as we just
described. It has as input the set of functions Ca, the set of local-reward Ra,
an order criterion O and the MDPIP. The algorithm starts with F = {} and
J = {} , where F is the set of new functions that will be created during the
process (such as the renamed relevant functions and the new functions created
in Expression (25)) and J = {} is the set of new constraints, initially empty,
that will be of two types: equality and inequality constraints. FactoredMP

calls the following functions in order to generate the set of equality constraints:

• generateEqualityConsForReward (Algorithm 3) generates a set of
equality constraints, uer

Z = Raj (Z), for each assignment z of Z(scope) of
each local-reward Raj and

• generateEqualityConsForci (Algorithm 4) generates an equality con-
straint uer = ca0 ∗ w0 and a set of multilinear equality constraints, uer

Z =
cai (Z,p) ∗ wi, for each assignment z of Z(scope) of each cai function.

Finally, it generates a set of inequality constraints calling the function gen-

erateInequalityCons (Algorithm 5), which eliminates the state variables one
by one. These variables must be ordered by some criterion O (for instance, by
removing first the variables that produce the smallest functions). For each elim-

inated variable Xl, the relevant functions uf1Z1
, · · · , ufL

ZL
are selected and for each

assignment z of Z a new inequality constraint, uer
z ≥

∑L
j=1 u

fj
z,xl ∀xl, is added

to J. Finally an inequality constraint with the sum over of all empty scope
functions, 0 ≥

∑
i u

ei (Expression (26)), is added and the new set of constraints
J is returned.

4.3. The FactoredMPA Algorithm

FactoredMP must be applied for all actions a ∈ A. This is done by the
main algorithm FactoredMPA (Algorithm 6) that solves Problem (13) by
generating a new (smaller) set of constraints for all action a ∈ A. By doing
so, the FactoredMPA algorithm reduces the structured multilinear programming
Problem (13) with exponentially many constraints into a new smaller equivalent
set of constraints. (This property is in fact inherited from the FactoredLP
algorithm [5].)

Algorithm 6 has as input an MDPIP, the set of basis functions H and the
order criterion O; and returns w and p. Note that with these values we can
compute the value function for each state.

FactoredMPA first calls the function calculateObjective that con-
structs the objective function of Problem (13). This is done by creating an
expression that is the sum of the linear combination of the basis function
(
∑

x

∑k
i=0 wihi(x)) as it was done in [17]. Then, for each action a and each

16

Algorithm 2: FactoredMP(Ca,Ra, O,MDPIP)

input : Ca (set of functions cai),
Ra (set of local-reward Raj),
O (order criterion),
MDPIP (given by 〈S,A, T,R,K, γ〉)

output: J (set of constraints)

begin
J = {};
F = {}; //set of new functions
J,F← generateEqualityConsForReward (J,Ra,F);
//Algorithm 3
J,F← generateEqualityConsForci (J,Ca,F,MDPIP);
//Algorithm 4
n =number of state variables in the MDPIP;
J← generateInequalityCons (J,F, O, n); //Algorithm 5
return J;

end

Algorithm 3: generateEqualityConsForReward(J,Ra,F)

input : J (set of constraints),
Ra (set of local-reward Raj , with 1 ≤ j ≤ ψ),
F (set of new functions)

output: J, F

begin
r = |F|+ 1;
for j = 1 to ψ do

//create a constraint for each assigment to the scope of Raj
Z=scope of Raj ;

foreach assignment z of Z do
create a new variable uer

z ;
add an equality constraint uer

z = Raj (z) to J ;
F = F ∪ {uer

z };
r=r+1;

return J,F ;

end

17

Algorithm 4: generateEqualityConsForci(J,Ca,F)

input : J (set of constraints),
Ca (set of functions cai , with 1 ≤ j ≤ k),
F (set of new functions),
MDPIP (given by 〈S,A, T,R,K, γ〉)

output: J, F

begin
r = |F|+ 1;
//create a new constraint for the constant basis function h0

calculate ca0 for h0; //Eq.(16) and (18)
add an equality constraint uer = ca0 ∗ w0 to J;
F = F ∪ {uer};
r=r+1;
//create a set of constraints for each cai
for i = 1 to k do

//create a new constraint for each assigment to the scope of cai
Z=scope of cai ;
foreach assignment z of Z do

create a new variable uer
z ;

add a multilinear equality constraint uer
z = cai (z,p) ∗ wi to J;

F = F ∪ {uer
z };

r=r+1;

return J,F ;

end

18

Algorithm 5: generateInequalityCons(J,F, O, n)

input : J (set of constraints),
F (set of new functions),
O (order criterion),
n (number of state variables)

output: J

begin
r = |F|+ 1;
for i = 1 to n do

//select the variable to be eliminated
Xl = O(i);
//select the relevant functions

select uf1Z1
, · · · , ufL

ZL
from F whose scope contains Xl;

Z = ∪Lj=1Zj\{Xl};
r=r+1;
//define a new function uer

Z

foreach assignment z of Z do
create a new variable uer

z ;

add a constraint uer
z ≥

∑L
j=1 u

fj

{z,xl} ∀xl to J;

//add the new function and remove the relevant functions

F = F ∪ {uer
z }\{u

f1
Z1
, · · · , ufL

ZL
};

//at the end all variables have been eliminated
//all remaining functions uei have empty scope
add a constraint 0 ≥

∑
ei∈F

uei to J;
return J ;

end

19

Algorithm 6: FactoredMPA(MDPIP ,H,O)

input : MDPIP (given by 〈S,A, T,R,K, γ〉,
H (set of basis functions),
O (order criterion)

output: {w,p}

begin
obj = calculateObjective(MDPIP ,H);
foreach action a ∈ A do
Ca=computecai (MDPIP ,H, a);//where Ca = {ca1 , · · · , c

a
k}

//initialize the set of constraints J with the probability constraints C

J = C;
//the set of constraints J is expanded for each action a ∈ A
foreach action a ∈ A do

J = J ∪ factoredMP({ca1 , · · · , c
a
k}, {R

a
1 , · · · , R

a
ψ}, O,MDPIP);

//the nonlinear solver is called with the new set of constrains J

{w,p}=callNonLinearSolver(obj , J);
return {w,p} ;

end

basis function hi ∈ H, FactoredMPA calculates cai calling computecai (Algo-
rithm 1). The set of constraints J is initialized with the probability constraints
C. Next, for each action a the FactoredMP algorithm is called to compute a
new smaller set of constraints that are added to J. Finally, a nonlinear solver
is called (algorithm callNonLinearSolver) with the objective function and
the new set of constraints J, to solve a simpler and smaller multilinear problem,
returning w and p.

5. Experimental Results

To run our experiments we used the well-known System Administrator Prob-
lem [5], named SysAdmin, where we have n computers c1, . . . , cn connected via
two different directed graph topologies: unidirectional-ring and star (Figure
3). The administrator can execute n+ 1 actions: reboot(c1), . . . , reboot(cn) and
notreboot(), which means not reboot any machine.

Let variable Xi denote whether computer ci is up and running (Xi = 1) or
not (Xi = 0). Let Conn(cj , ci) denote a connection from cj to ci. Formally, the
CPTs in the transition DCN for this domain have the following form:

P (X ′
i = 1|x, a) =






if a = reboot(ci) : then 1
if a 6= reboot(ci) ∧Xi = 1 : then

pi ·
|{xj |j 6=i∧Xj=1∧Conn(cj ,ci)}|+1

|{xj |j 6=i∧Conn(cj ,ci)}|+1

if a 6= reboot(ci) ∧Xi = 0 : then

p′i ·
|{xj |j 6=i∧Xj=1∧Conn(cj ,ci)}|+1

|{xj |j 6=i∧Conn(cj ,ci)}|+1

,

(27)

20

Figure 3: a)Unidirectional-ring and b)star connection topologies for the SysAdmin [5] example
used in this paper.

and the constraints over the probability variables are:

0.85 + p′i ≤ pi ≤ 0.95, 1 < i < n.

The transition model tells that if a computer is rebooted then its probability
of running in the next time step is 1, else the probability depends on its current
status and the number of running computers with incoming connections. The
probability variables pi, p

′
i and the constraint over them define the credal sets.

Additionally, the reward is the number of computers that are running at the
current time step: R(x, a) =

∑n
i=1 xi. An optimal policy in this problem will

reboot the computer that has the most impact on the expected future discounted
reward, given the network configuration. For example, in the star configuration
on Figure 3, if the computers c0 and c22 are not running, the administrator
should reboot c0 since it will have the most impact on the whole network, that
is, there are more machines depending on c0 than c22.

The instances of the above SysAdmin problem can be considered complex
given the transition model defined by Expression (27), which has many tran-
sitions with imprecise probabilities. We have solved problems using two types
of basis functions: (1) basis functions over single variables hi(Xi = 1) = 1 and
hi(Xi = 0) = 0 and (2) basis functions over pairwise variables, that contain
indicators for each neighboring pair of machines (xi, xi+1) as follows:

h1(xi, xi+1) = xi ∧ xi+1

h2(xi, xi+1) = ¬xi ∧ xi+1

h3(xi, xi+1) = xi ∧ ¬xi+1

h4(xi, xi+1) = ¬xi ∧ ¬xi+1

in both cases we have the constant basis function h0 = 1.
We have implemented the FactoredMPA algorithm in Java calling MI-

NOS [39] as the nonlinear solver (to solve the reduced multilinear program). In
order to analyze the scalability of the proposed algorithm, we have calculated

21

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 c

on
st

ra
in

ts
 (

lo
g

sc
al

e)

Number of computers

Multilinear Solution

Original
MPA pairwise basis

MPA simple basis

Figure 4: The number of constraints for the System Administrator domain with unidirectional-
ring topology: (1) the original number of constraints; (2) the constraints after applying the
FactoredMPA algorithm with simple basis functions; and (3) with pairwise basis functions.

the number of constraints before (i.e, the original number of constraints) for
the SysAdmin problems and after applying the algorithm FactoredMPA.
Figure 4 shows the number of constraints for unidirectional-ring problems in-
volving different numbers of computers. As we can notice the number of original
constraints grows exponentially with the number of computers, while the con-
straints generated after applying the FactoredMPA algorithm grows quadrat-
ically. We can also notice that the number of constraints generated by Fac-

toredMPA with simple basis functions (i.e., single variable functions) and
pairwise basis functions have the same growing rate. Even though, the number
of constraints for each problem in these two cases has a constant factor dif-
ference (≈ 4), the problems approximated by pairwise functions involve more
complex constraints. We can see this by the time results obtained by applying
our algorithms to solve those problems (Figure 5).

In Figures 5 and 6 we show the running time for problems with unidirectional-
ring and star topology using the FactoredMPA algorithm for simple set and
pairwise set of basis functions. We compare those results with the exact solu-
tions given by our implementation of Value Iteration algorithm [8]. The results
show that the exact solution is very time consuming when compared with the
solution given by the FactoredMPA algorithm, that is able to solve large
and complex problems (up to 220 states). Thus, FactoredMPA algorithm is
many orders of magnitude faster than the exact solution, due to its capability
to generate a compact set of constraints and therefore, solving a less complex
problem.

For unidirectional-ring configuration (Figure 5), the running time to solve
problems with 16 computers (which would involve originally 216 times 17 con-
straints) was less than 17 minutes and for problems with more than 16 com-

22

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
on

ds
)

Number of computers

Unidirectional-Ring

pairwise basis
simple basis

exact solution

Figure 5: Running time of FactoredMPA algorithm using simple and pairwise basis func-
tions, and an exact solution for the Unidirectional-Ring configuration of the System
Administrator Domain.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Number of computers

Star

pairwise basis
simple basis

exact solution

Figure 6: Running time of FactoredMPA algorithm using simple and pairwise basis functions,
and an exact solution for the Star configuration of the System Administrator Domain.

puters the cpu-time grows quickly. A possible reason for this sudden change
of behavior is that we have achieved the limit of complex constraints that the
multilinear solver can handle. For star configuration (Figure 6), the running
time to solve problems with 16 computers (with 216 times 17 constraints) was
less than 5 minutes.

In Figure 7 we show the percentage true approximation error, that is given
by (maxx|V

∗(x) − Vapprox(x)|) divided by the maximum discount reward sum
(RMAX/1 − γ) using pairwise basis functions and simple basis functions. To
calculate V ∗(x) we used our implementation of Value Iteration algorithm. Since

23

 6

 8

 10

 12

 14

 16

 18

 20

 22

 4 5 6 7 8 9T
ru

e
A

pp
ro

xi
m

at
io

n
E

rr
or

 (
%

)

Number of computers

Unidirectional-Ring

pairwise basis
simple basis

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 6 7 8 9T
ru

e
A

pp
ro

xi
m

at
io

n
E

rr
or

 (
%

)

Number of computers

Star

pairwise basis
simple basis

Figure 7: Percentage true Approximation Error (maxx|V ∗(x) − Vapprox(x)| divided by the
maximum discount reward sum) of FactoredMPA for the Unidirectional-Ring config-

uration and the Star configuration of the System Administrator Domain using pairwise
basis functions and simple basis functions.

 30

 35

 40

 45

 50

 55

 4 5 6 7 8 9

R
ew

ar
d

fr
om

 s
im

ul
at

io
n

Number of computers

Unidirectional-Ring

pairwise basis
simple basis

exact solution

 48

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 6 7 8 9

R
ew

ar
d

fr
om

 s
im

ul
at

io
n

Number of computers

Star

pairwise basis
simple basis

exact solution

Figure 8: Value of policy estimated from simulation (average over 50 trials of 100 steps
for 4 initial states) of an exact solution and FactoredMPA for the Unidirectional-Ring

configuration and the Star configuration of the System Administrator Domain using
pairwise basis functions and simple basis functions.

it can only solve small size problems, we show results only for problems where
the exact solution [8] takes up to 10 hours. Note that the percentage in value
loss incurred by using an approximation is up to 18% and, as expected, the
use of pairwise basis functions resulted in better approximations (except for the
problem with 5 computers with unidirectional configuration).

In Figure 8 we show the value of the policy estimated from simulation of
an exact solution and FactoredMPA using pairwise basis functions and sim-
ple basis functions. We observe that the exact solution is a little better in
some cases and the use of pairwise basis functions resulted in equal or better
approximations.

If we additionally observe the time (Figures 5 and 6) and the percentage in
value loss (Figures 7 and 8), we can conclude that this percentage incurred by
using an approximation is up to 18% in exchange for a 1000 speedup.

24

6. Related Work

The Bounded-parameter Markov Decision Process (BMDP) [30] is a special
case of an MDPIP, where the probabilities and rewards are specified by constant
intervals. Exploiting the specific structure available in a BMDP given by the
intervals, the algorithm in [30] can directly derive the solution without requiring
expensive optimization techniques. Recent solutions to BMDPs include exten-
sions of real-time dynamic programming (RTDP) [47] and LAO* [48, 49] that
search for the best policy under the worst model. The Markov Decision Pro-
cess with Set-valued Transitions (MDPSTs) [50] is another subclass of MDPIPs
where probability distributions are given over finite sets of states. Since BMDP
and MDPST are special cases of MDPIPs, we can represent both by “flat” MD-
PIPs. Then the algorithms defined in this paper clearly apply to both BMDPs
and MDPSTs, however their solutions do not generalize to the factored MDPIPs
we examined in this paper, which allow for general linear constraints between
probabilities, which are prohibited in interval bounded probability settings like
BMDPs. This use of general linear constraints is particularly useful when we
do not know the probabilities or the interval they belong to, but only relative
constraints between them.

Models involving imprecision have also been applied in the related field of
Markov Chains with the work of Damjan Skulj [51].

7. Conclusion

In this work we have investigated Markov Decision Processes with Imprecise
Probabilities (MDPIPs), a class of models that adds considerable flexibility
and realism to probabilistic planning allowing the representation of imprecise
transition probabilities. Inspired by the ideas of Guestrin’s work on Factored
MDPs, we first propose a compact Factored MDPIP model, which represents
states throughout state variables and uses Dynamic Credal Networks to specify
the imprecise transition probabilities. A Factored MDPIP is a more natural
and compact representation of an MDPIP; it can reveal the structure of an
application domain and allows for the construction of efficient and approximate
solutions.

Second, based on mathematical programming formulation for MDPIPs [10]
and Factored MDPs [5], we have proposed an approximate solution to Factored
MDPIPs formulated as a multilinear program and we implement a new algo-
rithm, named FactoredMPA, as an extension of the FactoredLPA (Fac-
tored Linear Programming-based Approximation) algorithm used to solve ef-
ficiently MDPs [5, 17]. The proposed algorithm finds maximin policies for
Factored MDPIPs by resorting to approximate nonlinear programming and ex-
ploiting the domains structure in order to reduce the number of constraints of
the multilinear program. We evaluated the FactoredMPA algorithm solving
a difficult class of benchmark problems with up to 220 states. Our experiments

25

show that by exploiting the factored representation, we gain orders of magni-
tude reduction in solution time over exact non-factored approach in exchange
for less than 18% of approximation error.

To the best of our knowledge, this is the first work in the literature on
MDPIPs that shows experimental results for problems with large state space
sizes. MDPIPs were proposed in 1970, but have lacked general application
for many decades, largely due to their computational complexity. Thus, we
believe this is a significant contribution to both, the planning and operations
research communities as well as to specific application domains where robust
policies are important. A preliminary version of this paper was published in [52].
We are currently working on an extended version of our work on approximate
solutions to solve Factored MDPIPs based on dynamic programming [53], in
order to compare it with the multilinear approach. Our preliminary results show
that, although with the dynamic programming approach we can give some error
guarantees, with our FactoredMPA algorithm and the right choice of basis
functions, we can solve larger problems.

Acknowledgements

This work has been supported by FAPESP grant 2008/03995-5; the first
author was supported by CAPES, the third author is partially supported by
CNPq and the fourth author is supported by NICTA.

References

[1] M. L. Puterman, Markov Decision Processes, John Wiley and Sons, New
York, 1994.

[2] C. Boutilier, S. Hanks, T. Dean, Decision-theoretic planning: Structural
assumptions and computational leverage, Journal of Artificial Intelligence
Research 11 (1999) 1–94.

[3] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, The MIT Press,
2005.

[4] R. E. Bellman, Dynamic Programming, Princeton University Press, USA,
1957.

[5] C. Guestrin, Planning under uncertainty in complex structured environ-
ments, Ph.D. thesis, Stanford University, adviser-Daphne Koller (2003).

[6] J. Hoey, R. St-Aubin, A. Hu, C. Boutilier, SPUDD: Stochastic planning
using decision diagrams, in: Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence (UAI), Morgan Kaufmann, 1999, pp.
279–288.

26

[7] R. St-Aubin, J. Hoey, C. Boutilier, APRICODD: Approximate policy con-
struction using decision diagrams, in: Advances in Neural Information Pro-
cessing Systems (NIPS), MIT Press, 2000, pp. 1089–1095.

[8] J. K. Satia, R. E. Lave Jr., Markovian decision processes with uncertain
transition probabilities, Operations Research 21 (1973) 728–740.

[9] C. C. White III, H. K. El-Deib, Markov decision processes with imprecise
transition probabilities, Operations Research 42 (4) (1994) 739–749.

[10] R. Shirota, F. G. Cozman, F. W. Trevizan, C. P. de Campos, L. N. de Bar-
ros, Multilinear and integer programming for Markov decision processes
with imprecise probabilities, in: Proceedings of the 5th International Sym-
posium on Imprecise Probability: Theories and Applications (ISIPTA),
Prague,Czech Republic, 2007, pp. 395–404.

[11] F. G. Cozman, Graphical models for imprecise probabilities, International
Journal of Approximate Reasoning 39 (2-3) (2005) 167–184.

[12] C. Guestrin, D. Koller, R. Parr, S. Venkataraman, Efficient solution al-
gorithms for factored MDPs, Journal of Artificial Intelligence Research 19
(2003) 399–468.

[13] D. P. Bertsekas, J. N. Tsitsiklis, An analysis of stochastic shortest path
problems, Mathematics of Operations Research 16 (3) (1991) 580–595.

[14] R. A. Howard, Dynamic Programming and Markov Process, The MIT
Press, 1960.

[15] A. S. Manne, Linear programming and sequential decision models, in: Man-
agement Science, Vol. 6(3), 1960, pp. 259–267.

[16] C. Papadimitriou, J. N. Tsitsiklis, The complexity of Markov decision pro-
cesses, Mathematics of Operations Research 12 (3) (1987) 441–450.

[17] R. Patruscu, Linear approximations for factored Markov decision processes,
Ph.D. thesis, University of Waterloo (2004).

[18] T. Dean, K. Kanazawa, A model for reasoning about persistence and cau-
sation, Computational Intelligence 5 (3) (1990) 142–150.

[19] P. J. Schweitzer, A. Seidmann, Generalized polynomial approximations in
Markovian decision processes, Journal of Mathematical Analysis and Ap-
plications 110 (1985) 568–582.

[20] S. Mahadevan, Samuel meets Amarel: Automating value function approx-
imation using global state space analysis, in: Proceedings of the 20th Na-
tional Conference on Artificial Intelligence, 2005, pp. 1000–1005.

27

[21] A. Kolobov, Mausan, , D. S. Weld, Hidden structure of factored MDPs, in:
Doctoral Consortium in International Conference on Automated Planning
and Scheduling (ICAPS), Canada, 2010.

[22] I. Levi, The Enterprise of Knowledge, MIT Press, Cambridge, Mas-
sachusetts, 1980.

[23] J. Berger, Statistical Decision Theory and Bayesian Analysis, Springer-
Verlag, 1985.

[24] P. J. Huber, Robust Statistics, Wiley, New York, 1980.

[25] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman
and Hall, London, 1991.

[26] A. Nilim, L. El Ghaoui, Robust control of Markov decision processes
with uncertain transition matrices, Oper. Res. 53 (5) (2005) 780–798.
doi:http://dx.doi.org/10.1287/opre.1050.0216.

[27] A. Wald, Statistical Decision Functions, Wiley, New York, 1950.

[28] L. V. Utkin, T. Augustin, Powerful algorithms for decision making under
partial prior information and general ambiguity attitudes, in: Proceedings
of the 3th International Symposium on Imprecise Probability: Theories
and Applications (ISIPTA), Prague,Czech Republic, 2005, pp. 349–358.

[29] T. Seidenfeld, A contrast between two decision rules for use with convex
sets of probabilities: Γ-maximin versus E-admissibility, Synthese 140 (1-2)
(2004) 69–88.

[30] R. Givan, S. Leach, T. Dean, Bounded-parameter Markov decision pro-
cesses, Artificial Intelligence 122 (1-2) (2000) 71–109.

[31] F. W. Trevizan, F. G. Cozman, L. N. de Barros, Planning under risk
and Knightian uncertainty, in: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI), Hyderabad, India, 2007, pp.
2023–2028.

[32] F. G. Cozman, Credal networks, Artificial Intelligence 120 (2) (2000) 199–
233.

[33] W. Bialas, M. Karwan, Multilevel linear programming, Tech. Rep. 78-1,
Operations Research Program, Department of Industrial Engineering, State
University of New York at Buffalo (1978).

[34] J. F. Bard, Convex two-level optimization, Mathematical Programming
40 (1) (1988) 15–27.

[35] B. Colson, P. Marcotte, G. Savard, A trust-region method for nonlinear
bilevel programming: Algorithm and computational experience, Computa-
tional Optimization and Applications 30 (3) (2005) 211–227.

28

[36] R. Andreani, S. L. C. Castro, J. L. Chela, A. Friedlander, S. A. Santos, An
inexact-restoration method for nonlinear bilevel programming problems,
Computational Optimization and Applications.

[37] G. Savard, J. Gauvin, The steepest descent direction for the nonlinear
bilevel programming problem, Operations Research Letters 15 (5) (1994)
265–272.

[38] K. V. Delgado, L. N. Barros, Usando programação em dois ńıveis para
resolver processos de decisão markovianos com probabilidades imprecisas,
in: Congresso Brasileiro de Automática (CBA), Brazil, 2010, pp. 5284–
5291.

[39] B. A. Murtagh, M. A. Saunders, MINOS 5.5 user’s guide, Tech. Rep. SOL
83-20R, Systems Optimization Laboratory, Department of Operations Re-
search, Stanford University, California (1998).

[40] R. Andreani, E. G. Birgin, J. M. Martinez, M. L. Schuverdt, Augmented
Lagrangian methods under the constant positive linear dependence con-
straint qualification, Mathematical Programming 111 (1) (2007) 5–32.

[41] S. Boyd, S.-J. Kim, L. Vandenberghe, A. Hassibi, A tutorial on geometric
programming, http://www.stanford.edu/∼boyd/papers/gp tutorial.html
(December 2009).

[42] H. D. Sherali, C. H. Tuncbilek, A global optimization algorithm for polyno-
mial programming problems using a reformulation-linearization technique,
Global Optimization 2 (1992) 101–112.

[43] A. M. Lukatskii, D. V. Shapot, Problems in multilinear programming, Com-
putational Mathematics and Mathematical Physics 41 (5) (2000) 638–648.

[44] D. Koller, R. Parr, Computing factored value functions for policies in struc-
tured MDPs, in: Proceedings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI), 1999, pp. 1332–1339.

[45] D. P. de Farias, B. V. Roy, On constraint sampling in the linear program-
ming approach to approximate dynamic programming, Mathematics of Op-
erations Research 29 (3) (2004) 462–478.

[46] D. A. Dolgov, E. H. Durfee, Symmetric approximate linear programming
for factored MDPs with application to constrained problems, Annals of
Mathematics and Artificial Intelligence 47 (3-4) (2006) 273–293.

[47] O. Buffet, D. Aberdeen, Robust planning with LRTDP, in: International
Joint Conference on Artificial Intelligence (IJCAI), 2005, pp. 1214–1219.

[48] S. Cui, J. Sun, M. Yin, S. Lu, Solving uncertain Markov decision problems:
An interval-based method, in: Second International Conference Advances
in Natural Computatation (ICNC), 2006, pp. 948–957.

29

[49] M. Yin, J. Wang, W. Gu, Solving planning under uncertainty: quantitative
and qualitative approach, in: IFSA (2), 2007, pp. 612–620.

[50] F. W. Trevizan, F. G. Cozman, L. N. de Barros, Planning under risk and
Knightian uncertainty., in: International Joint Conference on Artificial In-
telligence (IJCAI), 2007, pp. 2023–2028.

[51] D. Skulj, Discrete time Markov chains with interval probabilities, Interna-
tional Journal of Approximate Reasoning 50 (8) (2009) 1314 – 1329.

[52] K. V. Delgado, L. N. de Barros, F. G. Cozman, R. Shirota, Representing
and solving factored Markov decision processes with imprecise probabilities,
in: Proceedings of the 6th International Symposium on Imprecise Probabil-
ity: Theories and Applications (ISIPTA), Durham, United Kingdom, 2009,
pp. 169–178.

[53] K. V. Delgado, S. Sanner, L. N. de Barros, F. G. Cozman, Efficient solutions
to factored MDPs with imprecise transition probabilities, in: Proceedings of
the 19th International Conference on Automated Planning and Scheduling
(ICAPS), Thessaloniki, Greece, 2009, pp. 98–105.

30

