
International Journal of Approximate Reasoning 106 (2019) 32–50
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Speeding up parameter and rule learning for acyclic

probabilistic logic programs ✩

Francisco H.O. Vieira de Faria a, Arthur Colombini Gusmão a, Glauber De Bona a,
Denis Deratani Mauá b, Fabio Gagliardi Cozman a,∗
a Escola Politécnica, Universidade de São Paulo, Brazil
b Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 March 2018
Received in revised form 23 October 2018
Accepted 14 December 2018
Available online 21 December 2018

Keywords:
Probabilistic logic programming
Expectation-Maximization algorithm
Rule learning

This paper introduces techniques that speed-up parameter and rule learning for acyclic
probabilistic logic programs. We focus on maximum likelihood estimation of parameters,
and show that significant improvements can be obtained by efficiently handling probabilis-
tic rules. We then move to structure learning, where we learn sets of rules, by introducing
an algorithm that greatly simplifies exact score-based learning. Experiments demonstrate
that our methods can produce orders of magnitude speed-ups over the state-of-art in
parameter and rule learning.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

There is a myriad of ways to combine logic and probability, so as to reason about relational structures coupled with
uncertainty. A few formalisms that pursue this combination are relational Bayesian networks [1] and probabilistic relational
models [2], Markov logic networks [3], probabilistic logic programming [13] and other probabilistic programming languages
[5], as well as a variety of probabilistic logics [6,7]. In this paper we focus on probabilistic logic programming; that is, on
languages that add probabilities to logic programming.

One can find various proposals on how to introduce probabilities in logic programs [2,4,8–14]. A particularly popular
semantics for probabilistic logic programming is due to Sato, and usually referred to as the distribution semantics [12,15].
The idea is that we have rules, as in logic programming, such as

cares(X, Y) :− person(X),person(Y),neighbor(X, Y).

and probabilistic facts such as

0.8 :: neighbor(X, Y)., (1)

meaning that the probability that any X and Y are neighbors is 0.8. Probabilistic facts are assumed independent, and induce
a probability measure over logic programs, consequently inducing a probability measure over interpretations of atoms.

✩ This paper is part of the Virtual special issue on 4th Workshop on Probabilistic Logic Programming, Edited by Christian Theil Have and Riccardo Zese.

* Corresponding author.
E-mail address: fgcozman@usp.br (F.G. Cozman).
https://doi.org/10.1016/j.ijar.2018.12.012
0888-613X/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ijar.2018.12.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:fgcozman@usp.br
https://doi.org/10.1016/j.ijar.2018.12.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2018.12.012&domain=pdf

F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50 33
Expression (1) is written in the syntax of ProbLog, a popular and freely available package for probabilistic logic program-
ming that follows Sato’s distribution semantics [16]. ProbLog also allows for “probabilistic rules”; for instance, one can state
that person(X) and person(Y) yield a proof for cares(X, Y) with probability 0.8, by writing:

0.8 :: cares(X, Y) :− person(X),person(Y)..

ProbLog implements state-of-art inference and learning algorithms for probabilistic logic programs. A closely related
package is ProbFOIL, that implements rule learning (restricted to a single head) in the context of Sato’s distribution seman-
tics [17]. Both packages resort to some of the best techniques available in the literature; however, they require significant
computational power, even on datasets that are small compared to currently available data resources.

If we restrict ourselves to acyclic probabilistic logic programs, we focus on a language that is closely related to Bayesian
networks, with the added benefit that it can handle relational modeling, and the potential benefit that it may require less
parameters to encode some probability distributions — thus offering a language that may be more adept at avoiding over-
fitting. One advantage of acyclic programs is that they can be learned via well-tested techniques usually employed to learn
Bayesian networks. Alas, we see in practice that much more computational effort is needed to learn an acyclic probabilistic
logic program than an apparently equivalent Bayesian network. For instance, we find that even complete databases are usu-
ally processed by the Expectation-Maximization algorithm (EM), due to the insertion of latent random variables associated
with probabilistic rules. Thus the added expressivity of probabilistic logic programs seems to impose a hefty computational
cost.

The goal of this paper is to show that we can greatly simplify existing algorithms for parameter and rule learning in
acyclic logic programs, often obtaining orders of magnitude speed-ups. We introduce a variety of techniques that move us
toward the boundary of what can be done with reasonable computational resources when learning a probabilistic logic
program. We show empirically that substantial gains can be attained, sometimes even by application of relatively simple
ideas.1

We start by investigating parameter learning; that is, we assume that a set of facts and rules is given, and we learn prob-
abilities attached to them. We focus on maximum likelihood, and we show that EM-style iterations can be often avoided;
in particular they can be avoided altogether when the input data has no missing values. We then examine rule learning,
emphasizing score-based methods (in particular, minimum description length). We focus on exact methods; that is, we
want to find a probabilistic logic program that does maximize the score of interest. We show that many operations that are
needed in this optimization problem can be solved in closed-form, while other operations can be just discarded. We spe-
cialize our contributions to the case where each rule is restricted to have at most two literals in its body; this is admitedly
a restricted class of programs, but a class that can encode all “noisy” Boolean circuits, serving well as a starting point for
more ambitious future work.

Section 2 reviews some relevant terminology and notation. In Section 3 we review the algorithms in the ProbLog package,
as they capture the state-of-art in the topic. We present novel techniques for parameter learning in Section 4, and then move
to rule learning in Section 5. Experiments are described in Section 6, together with analysis that reveals the benefits of our
techniques.

2. Background

Most probabilistic logic programs (plps) can be viewed as logic programs containing facts annotated with probabili-
ties. We follow ProbLog’s syntax in our presentation [16,21]. ProbLog’s semantics is directly based on Sato’s distribution
semantics, and it can be used to convey the main semantic conventions adopted by various languages and packages.

2.1. Syntax

Consider a vocabulary with logical variables X, Y , . . . , predicate symbols r, s, . . . and constants a, b, Each predicate
symbol has an associated arity. An atom is an expression of the form r(t1, t2, . . . , tm) where r is a predicate symbol with
arity m, and each ti is a term, which is either a constant or a logical variable. An atom is ground if it has no logical variables.
An atomic proposition is a 0-arity predicate symbol. Clearly a proposition is also a ground atom. A literal is an atom, say A,
possibly preceded by not (that is, not A). A (deterministic) rule is an expression of the form

H :− B1, . . . , Bn.,

where the head H is an atom and each subgoal Bi is a literal, with B1, . . . , Bn being the rule’s body. A fact is a rule with
empty body; instead of writing H :− ., we simply write H .. If an atom is in the head of some rule, it is said to be a derived
atom. A set of rules is a normal logic program.

1 This paper collects material from three previous publications [18–20], with additional experimental validation.

34 F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50
A grounding is a function taking logical variables and returning constants. The grounding of a rule is a ground rule obtained
by applying the same grounding to each atom. The grounding of a program is the propositional program obtained by
applying every possible grounding to each rule and fact, using only the constants in the program.

For a given logic program, the dependency graph contains its ground atoms as nodes and an arc from B to H if there is a
rule grounding with B in the body, possibly negated, and H in the head. A logic program is acyclic if its dependency graph
is acyclic.

A ProbLog program consists of a normal logic program together with probabilistic facts. Each probabilistic fact is written
as

θ :: F .,

where θ ∈ [0, 1] is a real number and F is an atom. Similarly to rules, a probabilistic fact can be grounded to form a set of
ground probabilistic facts.

A pair 〈P,PF〉, where P is a normal logic program and PF is a set of probabilistic facts, is a probabilistic logic program.
We always assume that probabilistic atoms are not derived in P; we also assume that a probabilistic fact does not unify
with another probabilistic fact.

The class of normal logic programs where each rule has at most k atoms in the body is often denoted lp(k) [22]; we
analogously write plp(k) to denote the class of plps where each rule has at most k literals in the body.

2.2. Semantics

The semantics of a probabilistic logic program is defined through the semantics of its grounding, so we can focus on
the semantics of propositional programs. ProbLog’s semantics is inspired by the standard semantics of Prolog, appropriately
modified to take into account the probabilistic framework.

First, it is convenient to view a ground atom A in a program as a random variable taking values in {0, 1} (respectively
standing for false and true). We write P |= {A = 1} (resp., P |= {A = 0}) iff A (resp., not A) is entailed by the logic program
P ; and similarly P |= {Q = q} when Q is a set of atoms.

Let T = 〈P,PF〉 be a probabilistic program, and let {θi :: Fi |1 ≤ i ≤ n} be the grounding of PF, for θ1, . . . , θn ∈ [0, 1] and a
set of ground facts F = {F1, . . . , Fn}. The semantics of T is given by a probability distribution over normal logic programs,
such that

PPF(P ∪ F′) =
∏

Fi∈F′
θi

∏
Fi∈F\F′

(1 − θi),

where F′ (referred to as a total choice) is any subset of F. Then we define the probability that a given set of ground atoms
Q = {Q 1, . . . , Q n} has respectively truth values q = 〈q1, . . . ,qn〉 ∈ {0, 1}n as follows:

PT (Q = q) =
∑

P∪F′|={Q =q}
PPF(P ∪ F′).

Given some observations {E = e}, where E is a set of ground atoms and e is a set of observed truth values, the conditional
probability PT (Q = q|E = e) is, as usual, PT (Q = q, E = e)/PT (E = e), provided {E = e} has positive probability. If Q is a set
of random variables, PT (Q) denotes the corresponding probability distribution.

Example 1. Consider the following probabilistic logic program T :

0.2 :: burglary.
0.3 :: fire.
alarm :− burglary.
alarm :− fire.

Here we have P = {alarm :− burglary., alarm :− fire.} and four total choices F′ ⊆ {burglary, fire}. Suppose we want to compute
PT (alarm = 1). We must consider PPF(P ∪ F′) for any F′ such that P ∪ F′ |= {alarm = 1} — which are the non-empty F′ in this
case. We obtain PT (alarm = 1) = 0.2 × 0.3 + 0.2 × 0.7 + 0.8 × 0.3 = 0.44. �
2.3. Probabilistic rules

A probabilistic rule is obtained by annotating a deterministic rule with a number p ∈ [0, 1], as follows:

p :: H :− B1, . . . , Bn.,

where H and Bi are as before. We now extend the previous probabilistic logic programs to include probabilistic rules. That
is, now a probabilistic logic program is a pair T = 〈P,PR〉, where P is a normal logic program and PR is a set of probabilistic
rules, some of which may be probabilistic facts.

F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50 35
Grounding the probabilistic rules, one obtains a set {θi :: Ri |1 ≤ i ≤ n}, where R = {R1, . . . , Rn} is a set of ground (deter-
ministic) rules. Then the probability of a total choice R′ ⊆ R entails the probability of a logic program

PPR(P ∪ R′) =
∏

Ri∈R′
θi

∏
Ri∈R\R′

(1 − θi).

For a set of ground atoms Q and corresponding truth values q, we have:

PT (Q = q) =
∑

P∪R′|={Q =q}
PPR(P ∪ R′) . (2)

Example 2. Here is a propositional plp with probabilistic rules, with the corresponding dependency graph presented on the right:

0.1 :: burglary.
0.2 :: earthquake.
0.9 :: alarm :− burglary,earthquake.
0.8 :: alarm :− burglary,not earthquake.
0.7 :: alarm :− not burglary,earthquake.
0.1 :: alarm :− not burglary,not earthquake.

burglary earthquake

alarm

This is clearly an acyclic propositional plp. We have P(alarm) = 0.1 × 0.2 × 0.9 + 0.1 × 0.8 × 0.8 + 0.9 × 0.2 × 0.7 + 0.9 × 0.8 ×
0.1 = 0.28. �

A probabilistic rule p :: H :− B1, . . . , Bn. is equivalent to a pair formed by a deterministic rule H :− B1, . . . , Bn, A. and a
probabilistic fact p :: A., where A is an auxiliary atom that does not appear anywhere else, with the same logical variables as
H [16]. One might look at probabilistic rules as syntactic sugar, even though, as we see later, there are benefits in avoiding
these auxiliary probabilistic facts.

2.4. Bayesian networks and acyclic probabilistic logic programs

There is a close relation between acyclic propositional plps and Bayesian networks, as we explore in our contributed
methods. Recall that a Bayesian network consists of a directed acyclic graph where each node is a random variable, and
a probability joint distribution over the same random variables, such that the distribution satisfies the following Markov
condition: a variable X is independent of its nondescendants nonparents given its parents [23]. The parents of a variable X ,
denoted by pa[X], are the nodes/variables that point to X . For any Bayesian network, its directed acyclic graph is referred
to as its “structure”.

In this paper every random variable has finitely many values (indeed all of them are binary). When a conditional prob-
ability distribution over random variables with finitely many values is encoded using a table, this conditional probability
table is often referred to as a CPT. Typically Bayesian networks are specified by CPTs. Each CPT contains the values of
P(Xi = xij |pa[Xi] = πik) for each variable Xi , each value xij , and each configuration πik of the parents of Xi .

Any Bayesian network over binary variables can be specified using acyclic propositional plps [11,24]. For instance, Exam-
ple 2 specifies a Bayesian network using probabilistic facts and rules, in essence enumerating all entries of relevant CPTs.
Acyclic propositional plps can offer a much more concise specification than a CPT-based Bayesian network, as rules can
encode deterministic effects. For instance, here is a compact specification for a NoisyOr gate [23] that could be used in a
version of Example 2:

0.3 :: alarm :− burglary.
0.6 :: alarm :− earthquake.

Conversely, any acyclic propositional plp can be interpreted as a Bayesian network. This should be clear from Example 2:
the Bayesian network described by the plp has the structure given by the dependency graph, and the parameters of the
network are just the probabilities associated with probabilistic facts and rules, plus some zeros and ones encoding the
minimal model semantics of normal logic programming.

3. Parameter learning in ProbLog

The structure of a probabilistic logic program T = 〈P,PR〉 is the normal logic program P and the deterministic rules (and
facts) R1, . . . , Rn that are annotated with probabilities (without the probabilities themselves). The set of parameters that are
associated with rules R1, . . . , Rn are denoted respectively by θ1, . . . , θn; that is, the probabilistic rules are {θ1 :: R1, . . . , θn ::
Rn}. Denote by � the tuple containing all parameters needed to specify T . Also, denote by T� the result of annotating the
structure of T with parameters θ1, . . . , θn .

36 F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50
Denote by At(T) the set of all ground atoms that can be generated by grounding the structure of T . An observation
{E = e} consists of a set of ground atoms E ⊆ At(T) together with their corresponding truth values e ∈ {0, 1}|E| . A dataset is
a set of observations that are assumed independent; we implicitly assume that the dataset has positive probability for some
selection of rules and parameters.

Now if we have a structure and a dataset, we may wish to estimate the needed parameters �; this is the problem of
parameter learning as addressed by ProbLog [16]. Following ProbLog, we are interested in maximum likelihood estimates;
that is, we have:

• Input: (i) a structure consisting of a normal logic program P and a set of rules/facts {R1, . . . , Rn} to be annotated with
corresponding parameters � = 〈θ1, . . . , θn〉, and (ii) a dataset D = {E1 = e1, . . . , Em = em};

• Output: the maximum likelihood estimates �̂ = 〈θ̂1, . . . , θ̂n〉:

�̂ = arg max
�

PT�
(D) = arg max

�

m∏
i=1

PT�
(Ei = ei) .

Each observation {E j = e j} in the input dataset is a training example. When an observation {E = e} is such that E =
At(T�), we say it is a complete observation. A dataset D is complete if every one of its observations is complete.

Suppose first that we have a structure with a normal logic program P and a set of facts PF, F1, . . . , Fn , to be annotated
with corresponding parameters in �, and we additionally have a complete dataset D = {E1 = e1, . . . , Em = em}. Let {Fij | 1 ≤
j ≤ ni} be the set of possible groundings of Fi , for each 1 ≤ i ≤ n. As no probabilistic fact unifies with the head of a rule or
with another probabilistic fact, the probability of Fij being true is exactly the probability associated with the probabilistic
fact θi :: Fi . in PF:

PT (Fij = 1) = θi .

Then the maximum-likelihood parameters θ̂ = 〈θ̂1, . . . , θ̂n〉 are given by

θ̂i = 1

mni

m∑
k=1

ni∑
j=1

δk
i, j , where δk

i, j =
{

1 if Fij ∈ Ek;
0 otherwise.

(3)

The normalization factor mni is the number of groundings of the probabilistic atom Fi observed through the whole
dataset D . In the propositional case, ni = 1 for every 1 ≤ i ≤ n. For a relational program we often have m = 1 and ni
 1,
the latter guaranteeing many observable groundings for any probabilistic fact θi :: Fi .

Closed-form solutions for maximum likelihood estimates cannot be found in general when some atoms are not observed
in the training dataset. The Expectation-Maximization algorithm (EM) [25] has been the main tool to learn parameters
with missing data. The idea behind EM is to iterate two steps: in the E-step, the algorithm uses parameters θ t

i to com-
pute the probability of each missing ground fact given observations; in the M-step, the algorithm maximizes the expected
log-likelihood using the probabilities from the E-step, thus arriving at parameters θ t+1

i .
ProbLog’s parameter learning implementation, called LFI-ProbLog, takes as input a normal logic program P, a set of facts

{F1, . . . , Fn} and a dataset D = {E1 = e1, . . . , Em = em} that may not be complete. As before, Fij is a grounding of fact Fi , and
T� = 〈P, {θ1 :: F1, . . . , θn :: Fn}〉 is the probabilistic program produced by the parameters 〈θ1, . . . , θn〉. To begin, LFI-ProbLog
sets each θ0

i randomly, and iterates as follows until PT�
(D) changes less than a threshold:

E-step for 1 ≤ i ≤ n, 1 ≤ j ≤ ni, 1 ≤ k ≤ m, set δk
i, j = PT�t (Fij =1|Ek =ek);

M-step for each 1 ≤ i ≤ n, θ t+1
i = 1

mni

m∑
k=1

ni∑
j=1

δk
i, j .

When Fij is in Ek , PT�
(Fij = 1|Ek = ek) in the E-step is simply 1 or 0, and there is no need for inference. In all other cases

ProbLog must compute PT t
�
(Fij = 1|Ek = ek), although some optimizations are possible. For instance, ProbLog can detect

when Fij is independent from Ek , thus avoiding various inference computations [16].
Only probabilistic facts have been considered in this section so far. When probabilistic rules are allowed, ProbLog converts

each probabilistic rule θ :: H :− B1, . . . , Bn. into a deterministic rule H :− B1, . . . , Bn, A. and an auxiliary probabilistic fact
θ :: A., for some A that does not appear anywhere else. Such a translation is semantically correct (Section 2.3). Note that
this translation introduces a latent random variable for each grounding of the auxiliary atom A, hence the input dataset
is always incomplete with respect to the model actually handled by LFI-ProbLog. Thus any plp whose structure contains a
probabilistic rule must be learned by EM in ProbLog’s approach.

4. Speeding-up parameter learning

Consider first that one wishes to learn the parameters of an acyclic plp that contains probabilistic rules, using a complete
dataset as training data. The structure of the plp is given, so we must only estimate the parameters.

F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50 37
If we were to learn a Bayesian network with analogous structure, but specified with CPTs, we would need estimates
for each probability ϑi jk = P(Xi = xij |pa[Xi] = πik). Given a complete dataset, the maximum likelihood estimates for such
probabilities can be computed in closed-form [26]: ϑ̂i jk = Nijk/Nik , where Nijk is the number of times that {Xi = xij, pa[Xi] =
πik} is observed in the training dataset, and Nik is the number of times that {pa[Xi] = πik} is observed in the training
dataset.

Unfortunately, even for an acyclic and propositional plp we must maximize likelihood functions that may be significantly
more complex than the ones that apply to CPT-based Bayesian networks. For instance, suppose our input structure consists
of three probabilistic rules:

θ1 :: A3.
θ2 :: A3 :− A1,not A2.
θ3 :: A3 :− not A1,not A2.

(4)

in addition to two probabilistic facts:

0.3 :: A1. 0.5 :: A2..

The three probabilistic rules induce the following CPT:

A1 A2 P(A3 = 1|A1, A2)

0 0 θ1 + θ3 − θ1θ3
0 1 θ1
1 0 θ1 + θ2 − θ1θ2
1 1 θ1

Now suppose we have a complete dataset with N independent observations of A1, A2 and A3, and Na1a2a3 denotes the
number of times we observe {A1 = a1, A2 = a2, A3 = a3}. The likelihood is proportional to

(θ1;3)N001(1 − θ1;3)N000(θ1;2)N101(1 − θ1;2)N100θ
N011+N111
1 (1 − θ1)

N010+N110 , (5)

where we adopt, here and in the remainder of the paper,

θi; j := θi + θ j − θiθ j .

Expression (5) is not decomposable like the likelihood obtained for CPT-based Bayesian networks; one solution is to intro-
duce latent variables and resort to EM, as done for instance by LFI-ProbLog.

However, it is in fact possible to maximize, in closed-form, Expression (5). By setting derivatives to zero and solving the
resulting equations, we obtain:

θ̂1 = K2

K1 + K2
, θ̂2 = K1N101 − K2N100

K1(N101 + N100)
, θ̂3 = K1N001 − K2N000

K1(N001 + N000)
,

where K1 = N010 + N110 and K2 = N011 + N111.
Similarly, if we take the following structure, where a NoisyOr gate is encoded:

θ1 :: A1.
θ2 :: A2.
θ3 :: A3 :− A1.
θ4 :: A3 :− A2.

(6)

and we collect a complete dataset, we obtain maximum likelihood estimates in (somewhat complicated) closed-form, as
discussed in Appendix A.

Even though the likelihood of a complete dataset with respect to an acyclic plp does not decompose parameter-wise in
the same way as the likelihood of CPT-based Bayesian networks, the former likelihood does decompose as a product, each
factor related to a “family” of atoms. That is, for dataset D , we have PT�

(D) = ∏
j PT�

(d j), where each d j is a complete
observation, and PT�

(d j) in turn is the product of “local” probabilities PT�
(Xi |pa[Xi]) that are induced by rules. Now

each probability PT�
(Xi |pa[Xi]) depends only on the head atom corresponding to Xi , and atoms that appear in the bodies

of all rules sharing Xi as head. These latter atoms, denoted by pa[Xi], are indeed the parents of the head atom in the
program’s dependency graph; the family of Xi is Xi itself and its parents. Thus we can produce closed-form solutions for
maximum likelihood estimates in a piecemeal fashion, examining each family separately: parameters for distinct families
can be obtained independently of each other.

The higher the number of probabilistic rules that share a head, the more complex the likelihood with respect to pa-
rameters associated with those rules. We cannot expect to find closed-form expressions for estimates as we increase the

38 F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50
size of rules and the number of rules sharing a head; in our implementation (described in Section 6) we have explicitly
coded every closed-form solution for two or three rules that share a head, when those rules have two or three atoms in the
body. We have run through all possible rule patterns, relying on a symbolic computation system2 to look for closed-form
solutions.

Even though this strategy is necessarily limited as we cannot find closed-form solutions for every possible structure, it
is well known that Bayesian networks tend to have a relatively low average number of parents per variable [27], possibly
because the elicitation of a densely connected structure is too difficult. It is often the case that simplifying model fragments,
such as the NoisyOr gate, are employed in practice, thus emphasizing the importance of relatively simple local patterns. Thus
it seems reasonable to spend effort fishing for closed-form solutions that handle relatively small rule patterns.

What can be done to handle rule patterns that defy closed-form maximization? In that case one must resort to nu-
merical optimization; the insertion of “local” latent variables and EM is an option. Another option is to directly maximize
the likelihood associated with each rule head that resists closed-form solution, for example by gradient ascent or similar
techniques, as we describe later.

Thus, in short, there is no need to introduce latent variables, as done by LFI-ProbLog, when a complete dataset is avail-
able. As we show in Section 6, much can be gained by dispensing with EM when the input dataset is complete.

Now suppose that the input dataset D is not complete. We must then compute the likelihood by summing over the
missing data, thus obtaining an expression that usually fails to yield closed-form maximizing estimates. In this case we
resort to EM, but note that we need not insert latent variables to accommodate probabilistic rules. Suppose we have a
probabilistic program T� = 〈P,PR〉 and an incomplete observation {E = e}. Let Z E = At(T�) \ E be the set of unobserved
ground atoms for a given observation E = e. For each complete observation {E = e, Z E = z}, we can express the likelihood
using parameters 〈θ1, . . . , θn〉 as explained previously in this section. Clearly, a probability distribution over Z E induces an
expected value for the log-likelihood. By starting with θ0

i = 0.5 for each parameter θi , we can apply the EM algorithm as
follows, iterating until some convergence criterion is met:

E-step given a set of parameters �t , for each {Ek = ek} ∈ D , compute PT�
(Z Ek = z|Ek = ek) for each z ∈ {0, 1}|Z Ek

|;
M-step find the set of parameters �t+1 that maximize the expected log-likelihood:

m∑
k=1

∑
z∈{0,1}|Z Ek

|
PT�t

(
Z Ek = z|Ek = ek

)
ln

(
PT

�t+1 (Ek = ek, Z Ek = z)
)

. (7)

To compute each term PT�t (Z Ek = z|Ek = ek), we must run some inference algorithm; in our implementation we simply
call ProbLog’s inference service whenever necessary. In principle, for each {Ek = ek}, each z would yield an inference in
the E-step, but we can do much better. Let F(Ai) denote the family of a ground atom Ai . If q ∈ {0, 1}|Q | is a vector of
truth values associated to a set Q of ground atoms ({Q = q}), we use qQ ′ ∈ {0, 1}|Q ′| to denote the vector of truth values
corresponding to the subset Q ′ ⊆ Q . As PT�t (Z Ek = z|Ek = ek) = PT�t (Z Ek = z, Ek = ek|Ek = ek) and PT�t (Z Ek = z, Ek =
x|Ek = ek) = 0 for all x �= ek , the inner sum in Expression (7) can be rewritten as:∑

q∈{0,1}|At(T�)|
PT�t (At(T�) = q|Ek = ek) ln

(
PT

�t+1 (At(T�) = q)
)

. (8)

Let A denote At(T�). The likelihood PT
�t+1 (At(T�) = q) above can be factored through the families of the ground atoms Ai ,

as usual:

PT
�t+1 (A = q) =

∏
Ai∈A

PT
�t+1 (Ai = qAi |pa[Ai] = qpa[Ai]). (9)

Now we can rewrite Expression (8) as:∑
q∈{0,1}|A|

PT�t (A = q|Ek = ek)
∑
Ai∈A

ln
(
PT

�t+1 (Ai = qAi |pa[Ai] = qpa[Ai])
)

. (10)

The expression above is the sum of 2|A| × |A| terms, each in the form PT�t (A = q|Ek = ek) ln
(
PT

�t+1 (Ai = qAi |pa[Ai] =
qpa[Ai])

)
. For a fixed Ai and given 〈qAi ,qpa[Ai]〉 = qF(Ai) , we can group the 2|A|−|F(Ai)| terms sharing the common factor

ln
(
PT

�t+1 (Ai = qAi |pa[Ai] = qpa[Ai])
)

, yielding:

ln
(
PT

�t+1 (Ai = qAi |pa[Ai] = qpa[Ai])
) ∑

q′∈{0,1}|A||q′
F(Ai)

=qF(Ai)

PT�t (A = q′|Ek = ek). (11)

2 We have used Mathematica (version 9) for those calculations.

F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50 39
As the latter sum equals PT�t (F(Ai) = qF(Ai)|Ek = ek), the expected log-likelihood, for each {Ek = ek}, can be rewritten as:
∑

Ai∈At(T�)

∑
q∈{0,1}|F(Ai)|

(
PT�t (F(Ai) = q|Ek = ek) × ln

(
PT

�t+1 (Ai = qAi |pa[Ai] = qpa[Ai])
))

. (12)

Thus, assuming the observations are consistent with the model, we only need to make inferences PT�
(F(Ai) = q|Ek = ek)

for those q such that PT
�t+1 (Ai = qAi |pa[Ai] = qpa[Ai]) is a (non-constant) function of the parameters, as the others can be

ignored during the maximization.
For instance, suppose that the ground atom H is the head of a single ground probabilistic rule θ :: H :− B1, B2.. There are

eight possible values for q regarding H ’s family {H, B1, B2}. However, we have to consider only two of them, q = 〈0,1,1〉
and q = 〈1,1,1〉, for the other values of q yield either PT

�t+1 (H = qH |pa[H] = qpa[H]) = 1 (e.g. q = 〈0,0,1〉) or PT
�t+1 (H =

qH |pa[H] = qpa[H]) = 0 (e.g. q = 〈1,1,0〉).
It is worth noting that, both with complete and incomplete data, our approach via direct maximization of likelihood does

not require the assumption that probabilistic atoms cannot be derived from deterministic rules. If probabilistic atoms are in
fact derived, we just have to change the likelihood to accommodate it.

5. Learning the structure of probabilistic programs

The techniques described in the previous section are quite effective in speeding up parameter learning, as we demon-
strate later. It is only natural to ask whether some of these techniques, perhaps enlarged with other insights, can lead to
gains in structure learning. In this section we focus on this question, concentrating on exact structure learning; that is, on
structure learning that pursues exact maximization of likelihood. The goal is to learn, from data, both probabilistic rules/facts
and their associated probabilities.

A common strategy in structure learning is to resort to techniques from Inductive Logic Programming [4,13,14]. Typically
one runs a search over the space of rules, under the assumption that some training examples are “positive” and must receive
high probability, while other training examples are “negative” and must receive low probability. Search schemes vary and
are almost universally based on heuristic measures, to guarantee that large datasets can be processed [17,28–30]. These
techniques attempt to maximize appropriate scores by local moves that stop when some criterion is met.

Another general strategy for rule learning is to maximize a score that quantifies the fit between model and data, usually
combining likelihood and penalties for model complexity [31–34]. Here we follow this strategy: we look for structures and
parameters that maximize scores imported from Bayesian network learning. Unlike previous work [31,33,34], we do not
introduce unnecessary latent or auxiliary variables; this allow us to exploit the parameter learning techniques described in
the previous section to efficiently compute optimal local scores (when data is complete and rule size is bounded).

We start by summarizing a few relevant ideas in score-based structure learning.

5.1. Score-based structure learning of Bayesian networks

A score s(B, D) gets a Bayesian network structure B and a dataset D , and yields a number that indicates the fit between
both. Assume that D is complete with N observations of all random variables of interest. Sensible scores balance the desire
to maximize likelihood against the need to constrain the number of learned parameters (it is well-known that if one
maximizes only the likelihood, then the densest networks are always obtained) [26]. One particularly popular score, that we
adopt throughout the paper, is based on minimum description length:

sMDL(B, D) = LLD(B) − |B| log N

2
, (13)

where |B| is the number of parameters needed to specify the network and LLD(B) is the log-likelihood of D at the max-
imum likelihood estimates. The latter estimates are denoted �̂B,D = arg max� P�(D|B). The MDL score is decomposable in
that it is a sum of local scores, each one a function of a variable’s family.

The current technology on structure learning of Bayesian networks can handle relatively large sets of random variables
if the maximum number of parents (or family size) is small [35–38]. Most existing methods proceed in two steps: first
calculate the local score for every possible family (pruning provable suboptimal families); then maximize the global score
while avoiding cycles, usually by integer programming [35], heuristic search [38] or constraint programming [36]. When one
deals with structure learning of Bayesian networks where conditional probability distributions are encoded by CPTs, then
maximum likelihood estimates �̂B,D are obtained in closed form: they are, in fact, simply relative frequencies, as noted at
the beginning of Section 4. Thus the calculation of the scores is not really taxing for CPT-based Bayesian networks; the real
computational effort is spent running the global optimization step.

5.2. A score-based learning algorithm for acyclic propositional plps

We now focus on propositional settings, and the goal is to learn an acyclic probabilistic logic program from a complete
dataset. As before, we move freely between atoms and random variables, as each atom defines a random variable with values
1 (true) and 0 (false). Thus the dataset contains truth values for propositions, and observed values for random variables.

40 F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50
Because the MDL score is decomposable as a product of functions, each depending on a family of random variables,
we can globally maximize it by first maximizing each local score separately, and then running a global maximization step
that selects a family for each variable. Thus we can follow the two-step scheme described in the previous section: first
the local score is computed for each possible family, by locally maximizing likelihood, and then a global maximization step
produces the whole plp. Note that this scheme can be used even if the MDL score is enlarged with penalties that focus on
single families (for instance, number of literals per rule or number of atoms shared by rules with identical head); exploring
enhancements for the MDL score is a promising path for future work.

There is however a difference between this procedure and the analogous one for Bayesian network: within a family, we
are not just optimizing for parameters, but also for the rule pattern itself. That is, within a family we must choose the rule
pattern that best relates a head atom with its parents. For instance, suppose that we evaluate the family {A1, A2, A3}, where
A1 is to be the head atom. Do we select the rule pattern conveyed by Expression (4), or a simple rule pattern

θ :: A1 :− A2, A3.,

thus relying on a single rule? Note that both rule patterns admit closed-form maximum likelihood estimates, so the problem
is not the increased complexity of local likelihood expressions. Indeed we have already dealt with maximization of local
likelihood when discussing parameter learning (Section 4), and that material applies here. Rather, the problem is that we
have freedom in selecting how many parameters we use in each family, and how these parameters interact.

How many different rule sets must we consider? Suppose first that we have a family containing only the head A.
Then there is a single rule, the probabilistic fact θ :: A.. If we instead have a family containing the head A and the body
proposition B , there are six other options to consider:

θ :: A :− B. θ :: A :− not B.
θ1 :: A :− B.

θ2 :: A.

θ1 :: A :− not B.
θ2 :: A.

θ1 :: A :− B.
θ2 :: A :− not B.

θ1 :: A :− B.
θ2 :: A :− not B.

θ3 :: A.

Now suppose we have a head A with parents B and C . First, there are 9 possible rules where A is the head and no
proposition other than B or C appears in the body.3 Each one of the 29 subsets of these rules is a possible rule set for this
family; however, 14 of these subsets do not mention either B or C . Thus there are 29 − 14 = 498 new rule sets to evaluate.

We discuss the search for a local rule pattern in the next section. Once all rule patterns are selected and local scores
are computed, the relevant families and their scores are delivered to the second step consisting of a global optimization.
In our implementation we resort to the constraint-programming algorithm (CPBayes) by Van Beek and Hoffmann [36] to
run the global optimization step, thus selecting families so as to have an acyclic plp — a selection of families specifies
a plp, as each family is associated with the rule set that maximizes the local score. The CPBayes algorithm defines a set
of constraints that must be satisfied in the Bayesian network learning problem, and seeks for an optimal solution based
on a depth-first BnB search. When trying to expand a node in the search tree, two conditions are verified: (1) whether
constraints are satisfied, and (2) whether a lower bound estimate of the cost does not exceed the current upper bound. The
constraint model includes dominance constraints, symmetry-breaking constraints, cost-based pruning rules, and a global
acyclicity constraint. We remark that other approaches for the global optimization could be used, and our contribution is
certainly not due to our use of CPBayes in the global optimization step. Thus we do not dwell on this second step.

5.3. Computing the local score

In this section we address the main novel challenge posed by exact score-based learning of acyclic plps; namely, the
computation of local scores. There are too many rule patterns to consider, and each rule pattern may require a specific
maximizing expression (a challenge we have faced in Section 4). We now reduce the burden of searching through rule
patterns by pruning rules during search according to three insights listed below; in doing so we are inspired by methods
that prune structures in Bayesian network learning, but our techniques are entirely different from those [37].

First of all, we can easily discard rule sets that assign zero probability to some configuration observed in the dataset.

Insight 1. Rule sets that are inconsistent with some observation can be ignored while maximizing the local score.

For instance, observation {A1 = 1, A2 = 0} eliminates from further analysis a rule pattern consisting of a single rule
θ :: A1 :− A2..

3 These 9 rules are: θ :: A., θ :: A :− B., θ :: A :− not B., θ :: A :− C., θ :: A :− not C., θ :: A :− B, C., θ :: A :− B, not C., θ :: A :− not B, C., θ :: A :−
not B, not C..

F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50 41
Second, and more importantly, suppose that we are learning rules with at most k literals in the body. Using 2k rules,
we can write a rule for each configuration of the parents: Example 2 illustrates this scenario. Note that for such “disjoint”
rules, likelihood maximization is simple as it is the same as for usual CPT-based Bayesian networks. And because any CPT
can be exactly built with such 2k rules, any set of rules with more than 2k rules cannot have higher likelihood, and thus
cannot be optimal (as the penalty for the number of parameters increases). In fact, any other rule set with 2k rules that
are not disjoint can be also discarded; these sets can only produce the same likelihood, and will pay the same penalty on
parameters, but they will be more difficult to handle.

Insight 2. While maximizing the local score for a family with k parents, rule sets with size greater then 2k can be ignored; furthermore,
one needs to consider only one set with exactly 2k rules.

That is, we must only deal with rule sets with at most 2k − 1 rules, plus the one set of 2k “disjoint” rules. Hence:

• If we have a family with k = 1, we only need to look at sets of one rule plus one set containing two disjoint rules; that
is, we only have to consider:

θ :: A :− B. θ :: A :− not B. θ1 :: A :− B.
θ2 :: A :− not B.

Note that the last of these three rule sets corresponds to a typical CPT, while the first two rule sets genuinely reduce
the number of parameters in the model. Estimates that maximize likelihood are easily computed in all three cases.

• Now if we have a family with k = 2, say pa[A1] = {A2, A3}, we only need to look at sets of up to three rules, plus
one set containing four disjoint rules. Let Ci denote the set of rules with exactly i literals in the body. There are 4
sets consisting of one rule each, which are the four disjoint rules in C2. There are 30 sets consisting of two rules
each: 4 × 5 = 20 sets containing 1 element from C2 and 1 from C0 ∪ C1, 6 subsets of C2 and 4 sets with the form
{θ1 :: A1 :− (not) A2., θ2 :: A1 :− (not) A3.}. There are 82 sets consisting of three rules each: 4 subsets of C2, 6 × 5 = 30
sets containing exactly 2 elements from C2, 4 × 10 = 40 sets containing exactly one element from C2, 4 subsets of C1
and 4 sets with the form {θ1 :: A1 :− (not) A2., θ2 :: A1 :− (not) A3., θ3 :: A1.}. Probability values may have nonlinear
expressions as discussed in connection with Expression (4). And we still have a challenging optimization problem,
where we must select a rule set out of many.

To address the difficulty mentioned in the previous sentence, we resort to a third insight: many of the rule sets obtained
for k = 2 are actually restricted versions of a few patterns. As an example, consider Table 1. There we find four different sets
of rules, some with two rules, and one with three rules. The shape of their likelihoods is the same, sans some renaming
of parameters. Note in this particular example that the maximum likelihood of the first three sets of rules can always be
attained by the likelihood of the last set of rules; consequently, it makes sense only to retain the last rule set (in this case
the last pattern consists of disjoint rules that lead to simple maximum likelihood estimation, but more complex rule sets
may be selected in general).

Insight 3. During the maximization of the local score for a family F(A) = {A} ∪ pa[A], a rule set T� can be ignored if there is another
rule set T ′

�′ , with |T ′
�′ | ≤ |T�|, such that, for any value of �, there is a value for �′ yielding PT ′

�′ (A | pa[A]) = PT�
(A | pa[A]) for all

assignments to F(A).

The equivalent patterns can be detected by inspection, by writing down the possible symbolic expressions and checking
whether parameter renaming operations would make them equivalent.

By doing this additional pruning, we reach 27 distinct rule sets for k = 2 (see Appendix B); amongst them we must find
a rule pattern that maximizes likelihood. To do so, the maximization techniques discussed in Section 4 can be employed.

We have discussed in detail the case k = 2; one can of course consider larger values of k, but the computational cost is
sure to increase quickly. In our implementation and experiments we restricted ourselves to k = 2; this is a rather limited
class but note that it includes all circuits with noisy two-input logical gates, a very general class. We denote by ap-plp(2)
the class of acyclic propositional probabilistic logic programs with at most two atoms in the body of rules. Larger rules
and larger rule patterns should be addressed in future work, as well as extensions into the relational setting and into the
missing data regime.

The procedure we have developed is summarized by Algorithm 1. It starts by generating, for each possible family (a vari-
able and its candidate parents), the set of all possible rules, and then building its subsets (combinations of rules). These
combinations are partitioned into patterns, according to their likelihood functions — Table 1 shows an example of a pattern.
Within each pattern, only one combination with the minimum number of parameters (ensured lower score) need to be
considered, and the others are pruned, as are those with zero likelihood. Parameters are then locally optimized for each of
the combinations left. Each family is then associated with the combination of rules that gives it the highest score. Finally,
a global score maximization algorithm is used to select the best family candidates.

42 F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50
Table 1
Likelihood patterns shared by several rule sets; the first column presents the rule set, and the following columns
display the conditional probability P (A1 | A2, A3) for the configurations of A1, A2, A3.

Sets of rules 000 001 010 011 100 101 110 111

θ1 :: A1 :− A2.
θ2 :: A1 :− A2, A3.
θ3 :: A1 :− A2,not A3.

1 1 1 − θ1;3 1 − θ1;2 0 0 θ1;3 θ1;2

θ1 :: A1 :− A2.
θ2 :: A1 :− A2, A3. 1 1 1 − θ1 1 − θ1;2 0 0 θ1 θ1;2

θ1 :: A1 :− A2.
θ3 :: A1 :− A2,not A3. 1 1 1 − θ1;3 1 − θ1 0 0 θ1;3 θ1

θ2 :: A1 :− A2, A3.
θ3 :: A1 :− A2,not A3. 1 1 1 − θ3 1 − θ2 0 0 θ3 θ2

Algorithm 1 Structure learning algorithm for acyclic propositional plps.
1: collect variables from dataset
2: for each family of variables in dataset do
3: build all possible rules
4: build all possible sets of rules
5: gather rule sets into patterns
6: for each pattern do
7: prune combinations with ensured lower score
8: prune combinations with zero likelihood
9: for each combination left do

10: if the likelihood maximization problem has an exact solution then
11: calculate parameters
12: else
13: run numeric (exact or approximate) likelihood maximization

14: calculate local scores
15: for each family do
16: associate best rule set with family

17: call CPBayes algorithm to maximize global score

6. Experiments

Methods for parameter and for structure learning were tested separately. For parameter learning, we could compare our
techniques with ProbLog’s implementation, in terms of likelihood and running time. For structure learning, the experiments
were aimed at validating the method and exploring the reduction in the number of parameters that plps may yield over
Bayesian networks.

To simplify the text, we refer to our scheme for direct maximization of likelihood, as described in Section 4, as PL-direct.

6.1. Learning parameters

The goal of these experiments was to compare PL-direct with the LFI-ProbLog algorithm for varying dataset sizes and
rates of missing data. To accomplish this we generated data from two different plps, one propositional and one relational,
and used the data to learn parameters. To generate the datasets for the propositional plp, we sampled atoms a number of
times; for the relational plp, we sampled atoms once, but we varied the number of constants in the program (hence the
meaning of “dataset size” differs in the propositional and relational settings).

Experiments were run using machines with identical processors at Amazon Web Services, and at a local server with 8
CPUs, 4.2 GHz, and 32 GB RAM. The implementation was coded in Python, using the optimization library scipy.optimize.4

We tested two different algorithms for numeric optimization: (1) the Limited-memory BFGS (L-BFGS) algorithm and (2) the
Basin-hopping algorithm [39]. The L-BFGS algorithm approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
[40], an iterative method for solving unconstrained nonlinear optimization problems. The L-BFGS algorithm represents with
a few vectors an approximation to the inverse Hessian matrix; this approach leads to a significant reduction on memory
use. Nevertheless, it has a quite strong dependence on the initial guess. The Basin-hopping is a stochastic algorithm that
usually provides a better approximation of the global maximum. The algorithm iteratively chooses an initial guess at ran-
dom, proceeds to the local minimization and finally compares the new coordinates with the best ones found so far. This
latter algorithm often required more time for convergence than L-BFGS, never finding a better likelihood value, and some-
times finding worse values; thus, even though we tested our methods with the Basin-hopping algorithms, we refrain from

4 The implementation of PL-direct, together with datasets used in experiments, is publicly available at https://github .com /arthurcgusmao /asteroidea.

https://github.com/arthurcgusmao/asteroidea

F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50 43
0.85 :: a1. 0.95 :: a3. 0.95 :: a2. 0.8 :: ll2.
0.8 :: pl2. 0.8 :: ll3. 0.8 :: pl3.
0.8 :: low_load :− ll1,pl1. 0.8 :: low_load :− ll2,pl2.
0.8 :: low_load :− ll3,pl3. 0.95 :: high_supply :− a2,a3.
0.95 :: high_supply :− a2,a4. 0.95 :: high_supply :− a3,a4.
0.7 :: ll1 :− emergency. 0.7 :: pl1 :− emergency.
0.95 :: low_load :− high_load. 0.6 :: high_load :− ll2, ll3,pl2,pl3.
0.95 :: low_supply :− a1. 1.0 :: low_supply :− high_supply.
0.98 :: emergency :− not a2,not a3.
0.75 :: a4 :− a2. 0.75 :: a4 :− a3.
0.95 :: failure :− high_load,not high_supply.
0.95 :: failure :− low_load,not low_supply.

Fig. 1. A plp encoding a ship’s energy plant (top), and a diagram of the ship’s energy plant (bottom).

0.3 :: fire(X) :− person(X).
0.4 :: burglary(X) :− person(X).
0.7 :: alarm(X) :− fire(X).
0.8 :: calls(X,Y) :− cares(X,Y),alarm(Y),not samePerson(X,Y).
0.9 :: alarm(X) :− burglary(X).
0.8 :: cares(X,Y) :− person(X),person(Y).

Fig. 2. A relational plp with the alarm/earthquake problem.

extensively reporting on those tests. In particular, experiments reported in this section focus on L-BFGS (in the context of
parameter learning the values reached by both methods were essentially identical, while for structure learning there were
some differences as we indicate later in Table 3).

The propositional plp we have used consists of 16 propositions, 17 probabilistic rules, and 7 probabilistic facts that en-
code a ship’s energy plant. The model can be understood as an “almost” deterministic system, mostly specified through
Boolean operators, together with probabilistic disturbances, as presented in Fig. 1. The model was built by the first author
from a technical description in a specialized web site.5 There are various kinds of elements: power loads, lighting loads,
alternators, transformers and switches. Note that we must differentiate between the (demanded) power load and the (pro-
vided) power supply; when the load exceeds the supply, a failure ensues. Domain knowledge was translated as follows.
First, when a block of lighting/power loads is operating, the load demanded from alternators is low. Second, to provide a
high supply, at least two alternators must be operating (and one alternator is left for emergencies). Third, when the system
provides (demands) a high supply (load), then a low supply (load) can also be provided (demanded); also, if the required
power load is larger than the power supply, a failure is to be expected. And if the second and third blocks of lighting/power
loads are operating, a high load is needed. Also, during an emergency the first block of lighting/power loads must be avail-
able; an emergency appears if two specific alternators do not operate. Finally, if one of the diesel alternators operate, then
probably the turbo alternator operates as well.

For the relational datasets a variation of the alarm/earthquake problem was used; the plp appears in Fig. 2.

5 http://www.machineryspaces .com /emergency-power-supply.html.

http://www.machineryspaces.com/emergency-power-supply.html

44 F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50
Fig. 3. Time to learn parameters (note log-scale!) in the propositional dataset with complete data. Both algorithms reached similar log-likelihood values.
Dataset size corresponds to the number of observations for all atoms.

Table 2
Comparison of wall-clock time (in seconds) for PL-direct with the use of
closed-form solutions, PL-direct without closed-form solutions, and LFI-
ProbLog, in the alarm/earthquake problem, for various population sizes.

Population size 5 10 15 20

PL-direct 0.19 0.79 2.81 8.06
PL-direct, no closed-form 0.29 0.88 2.90 8.10
LFI-ProbLog 1.07 16.29 62.06 206.06

6.1.1. Complete data
Our first experiment tested the performance of PL-direct and LFI-ProbLog in complete datasets. Remember that PL-direct

does not require EM when the data are complete, hence a significant difference between PL-direct and LFI-ProbLog is to be
expected. In this experiment, ProbLog was set to stop whenever the log-likelihood improvement dropped below 10−3. Fig. 3
shows the learning time for both algorithms for the propositional case (note the log-scale!), where both algorithms reached
similar log-likelihood values. Indeed, PL-direct outperforms ProbLog by orders of magnitude. We limited the learning time
to 120 minutes (after that period we aborted the run if the algorithm was still iterating), so in this experiment we only have
ProbLog results for datasets with at most 55 observations. The results from the larger dataset that ProbLog could handle
shows that it was more than 3600 times slower than PL-direct. Significant performance differences can also be seen for the
relational case with no missing data, as can be seen in Fig. 4 (a).

There are two sources of speed-up here: the use of closed-form solutions whenever possible, and the use of direct
optimization methods whenever closed-form solutions cannot be found. The relative effect of these two techniques clearly
depends on the particular problem: if a model is such that many fixed sets of rules yield closed-form solutions, the overall
running time is bound to be short, with closed-form expressions guaranteeing most of the speed up. However if many sets
of rules cannot be tackled by closed-form solutions, then the speed-up comes from the optimization method.

In order to understand the main source of the speed up — whether it came from avoiding the latent variables or adding
closed form solutions on top of that — in a particular problem, we performed another experiment using the alarm/earth-
quake problem.6 We set up our implementation to always run the optimization procedure for all families, regardless of
whether they have a closed-form solution or not. Table 2 conveys some interesting results, where each numeric value is the
average of eight runs. The vast majority of the gain is due to removing the latent variables employed in ProbLog (as they
introduce a significant computational burden); some gains, small but not insignificant, are due to the use of closed-form
solutions.

6.1.2. Incomplete data
The effect of missing data was investigated by randomly discarding individual observations. Each test was run eight

times, each time with a new independently sampled dataset; hence each datapoint in the following figures corresponds to
the average computation time of eight runs; error bars indicate the standard deviation. In all tests, LFI-ProbLog was run

6 We thank a reviewer for suggestions that led to this experiment.

F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50 45
Fig. 4. Average time to learn parameters (log-scale) of eight independently sampled relational datasets (for each different missing data rate, new data
samples were generated). Solid squares were generated by ProbLog; empty circles were generated by PL-direct. The number of constants in the program
appears in the horizontal axis; this number is akin to “dataset size”. The error bars represent the standard deviation of the mean.

until the log-likelihood variation between subsequent iterations was smaller than an arbitrary value (10−3); then PL-direct
was run until it reached an equal or better log-likelihood value than ProbLog. We had to limit ourselves to 25 constants
because that is the limit for ProbLog (larger problems lead to numerical problems in ProbLog).

From Fig. 4 we can see that PL-direct tends to surpass LFI-ProbLog as the size of the dataset increases (graphs in that
figure were obtained with the relational plp). Overall, PL-direct outperformed ProbLog in the vast majority of cases, only
displaying worse computation time averages for very small datasets (with 5 constants) that are subject to high missing
rates (above 20%). Fig. 5 offers a better assessment on how the missing rate affects the performance of both algorithms.
The more missing data, the more numeric computation is done by PL-direct, and the more PL-direct behaves as LFI-ProbLog
with regard to computation time.

6.2. Learning structure

To validate our methods for structure learning, we have implemented Algorithm 1, and tested it with a number of
datasets. Our goal here was to examine whether the algorithm actually produces sensible plps with less parameters than
corresponding CPT-based Bayesian networks.

46 F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50
Fig. 5. ProbLog’s learning time relative to PL-direct’s, for similar log-likelihood values. Only datasets (sampled from the relational plp) with the size of
15, 20 and 25 constants were considered, as larger datasets cannot be handled by ProbLog. The datapoints represent the average relative learning time of
ProbLog of twenty-four runs (the sum of eight different runs for each dataset size). The error bars represent the respective standard error of the mean.

Table 3
Binary adder experiment results. The symbol |�| denotes the number of learned parame-
ters.

L-BFGS

Instances CPT-based Any combination of rules

Training Testing Log-Likelihood |�| Log-Likelihood |�|
30 10000 −317590.82 61 −190592.57 48
60 10000 −282860.54 63 −211535.40 51
90 10000 −231096.56 61 −200086.83 48
120 10000 −281571.16 61 −197029.87 51
250 10000 −244887.02 65 −251489.19 51
500 10000 −228617.04 66 −217608.84 52
1000 10000 −188236.10 80 −177049.65 62

Basin-hopping

Instances CPT-based Any combination of rules

Training Testing Log-Likelihood |�| Log-Likelihood |�|
30 10000 −344580.91 61 −190652.02 48
1000 10000 −188236.10 80 −177049.52 62

The algorithm was implemented in Python and experiments were performed on a Unix Machine with Intel core i5
(2.7 GHz) processor and 8 GB 1867 MHz DDR3 SDRAM. For local optimization of the likelihood scores, in the cases where
that was needed, we again compared (1) Limited-memory BFGS (L-BFGS) and (2) Basin-hopping.

We tested our implementations for three different applications described in the remainder of this section. Each test
compares plps learned with Algorithm 1 and CPT-based Bayesian networks learned by exact score maximization.

Binary adder This first test aimed at learning an ap-plp(2) to represent a (simulated) faulty Boolean circuit, designed to add
two 4-bit numbers. To generate binary datasets for training and testing, we took a number of pairs of randomly selected
4-bit numbers; each pair was processed by an adder circuit with 18 logic gates (XOR, OR, AND). Each gate was associated
with a 1% probability of failure. This probability of failure indicates how often gates should output random values, instead of
the values expected. Training datasets contain 30, 60, 90, 120, 250, 500 and 1000 examples and the testing dataset contains
10000 examples. Examples contain 24 observations: 8 entry bits and 18 output values, one for each gate. For the optimiza-
tion steps, we used the L-BFGS algorithm. A few tests were repeated using Basin-hopping optimization algorithm, which
is much more time-consuming, but no improvements were observed in terms of log-likelihood and number of parameters.
Results obtained are listed in Table 3.

F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50 47
Table 4
Heart Diagnosis experiment results.

L-BFGS

Complete CPT Any combination of rules

Log-Likelihood # Parameters Log-Likelihood # Parameters

−1281.78 63 −1263.85 55

Basin-hopping

Complete CPT Any combination of rules

Log-Likelihood # Parameters Log-Likelihood # Parameters

−1281.78 63 −1263.85 55

Table 5
Movie Genres experiments results.

Complete CPT Any combination of rules

Log-Likelihood # Parameters Log-Likelihood # Parameters

−2032.38 62 −2031.49 42

For smaller datasets, plps produced by Algorithm 1 scored better than CPT-based Bayesian networks, and required fewer
parameters. For larger datasets, both approaches tended to converge in terms of log-likelihood, but there was still a signif-
icant reduction on the number of parameters with Algorithm 1. As this is a nearly-deterministic plp, it should be expected
that logic rules would encode the local probability distributions much more compactly than complete CPT’s.

Heart diagnosis This second test aimed at learning an ap-plp(2) to reason over diagnosis made from observation of cardiac
Single Proton Emission Computed Tomography (SPECT) images, using a standard dataset from the UCI repository [41]. The
training and testing datasets contain 80 and 187 instances respectively. The 23 binary attributes are observed for each
example, so there is no missing data. The learning algorithm was tested with both L-BFGS and Basin-Hopping optimization
methods. Results obtained are listed in Table 4. Both CPT-based Bayesian networks and Algorithm 1 tended to produce
equivalent results in terms of log-likelihood, but there was still a significant reduction on the number of parameters with
Algorithm 1. In addition, we note that results obtained with both optimization methods, L-BFGS and Basin-Hopping, were
identical.

Movie genres The third test aimed at learning an ap-plp(2) to reason over movie genres; here the idea was to learn a
relatively large program. Labels result from previous multi-classification of movies according to the genres they represent,
with information extracted from the MovieLens dataset.7 Training and testing datasets are obtained from a random 70/30
split of the original dataset, which contains 3449 movies. Algorithm 1 was tested with L-BFGS optimization method. Results
are listed in Table 5; the resulting ap-plp(2) and the corresponding dependency graph are shown in Figs. 6 and 7.

In this experiment we do not observe a significant improvement in terms of log-likelihood from CPT-based learning to
Algorithm 1, but the number of parameters produced by the latter algorithm was considerably smaller than the number
produced by the former. In this context the restriction of having at most two parents per variable may be too strong, but
the dependency graph still gives us an idea of which labels are more correlated.

7. Conclusions

We have presented novel techniques to the problems of learning parameters and structure in acyclic probabilistic logic
programs. We have put forward a new method to learn the parameters when dealing with probabilistic rules, showing
how one can avoid the insertion of latent variables. We have also described techniques that can learn a whole plp from a
complete dataset by exact score maximization, by adapting techniques from CPT-based Bayesian networks.

In the complete data scenario, experiments indicate that our approach to parameter learning yields orders of magnitude
gains when compared to LFI-ProbLog, a reasonable contender for the current state-of-art. Even when there is missing data,
the smaller number of latent variables guarantees significant improvements in efficiency.

This paper offers initial results on learning whole plps via exact score maximization, presenting cases where closed-form
solutions are viable. We have also implemented and tested our structure learning methods, and we have shown that learned
plps contain less parameters than the corresponding CPT-based Bayesian networks, as intuitively expected. Whenever the
model is nearly deterministic, the expressive power of rules leads to improved accuracy.

In future work we intend to extend our structure learning techniques to relational but still acyclic programs, and to cope
with missing data in those cases. We also wish to explore parameter and structure learning for cyclic programs. For those

7 Available at http://grouplens .org /datasets /movielens/.

http://grouplens.org/datasets/movielens/

48 F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50
0.04 :: war.
0.00 :: children.
0.14 :: comedy.
0.31 :: comedy :− thriller,war.
0.00 :: thriller :− war.
0.17 :: thriller :− war.
0.13 :: action :− comedy.
0.24 :: action :− thriller.
0.06 :: action :− comedy, thriller.
0.27 :: drama.
0.53 :: drama :− action, comedy.
0.01 :: western.
0.03 :: western :− comedy,drama.
0.03 :: horror.
0.23 :: horror :− comedy,drama.
0.00 :: documentary.
0.08 :: documentary :− comedy,drama.
0.03 :: sciFi :− drama.
0.27 :: sciFi :− action,drama.
0.07 :: sciFi :− action,drama.
0.27 :: adventure :− action.

0.10 :: adventure :− drama.
0.03 :: adventure :− action,drama.
0.02 :: romance.
0.16 :: romance :− documentary,horror.
0.09 :: animation :− adventure.
0.00 :: animation :− drama.
0.04 :: animation :− drama.
0.02 :: crime :− horror.
0.27 :: crime :− horror, thriller.
0.06 :: crime :− horror, thriller.
0.17 :: fantasy :− adventure.
0.23 :: fantasy :− animation.
0.03 :: fantasy :− adventure,animation.
0.00 :: musical :− thriller.
0.33 :: musical :− animation, thriller.
0.03 :: musical :− animation, thriller.
0.01 :: filmNoir.
0.13 :: filmNoir :− action, crime.
0.22 :: mystery :− filmNoir.
0.13 :: mystery :− thriller.
0.02 :: mystery :− filmNoir, thriller.

Fig. 6. Probabilistic logic program learned in the Movie Genres experiment. Some probabilities are zero due to rounding.

Fig. 7. Dependency graph of the ap-plp(2) learned in the Movie Genres experiment.

cases non-trivial extensions will have to be developed as the direct relationship with Bayesian network learning is lost, and
it is not obvious how to express the likelihood function.

Acknowledgements

The first author was supported by a scholarship from Toshiba Corporation. The second author was supported by a
scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and was also supported by
a scholarship from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant 2017/19007-6. The third au-
thor was supported by FAPESP grant 2016/25928-4. The fourth author is partially supported by CNPq grants 303920/2016-5
and 420669/2016-7. The fifth author is partially supported by CNPq grant 308433/2014-9. Support was also provided in part
by FAPESP grants 2016/01055-1, 2015/21880-4, and 2016/18841-0, and in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES) — finance code 001.

Appendix A. Closed-form estimation of a NoisyOr gate

Here we focus on the structure given by Expression (6):

θ1 :: A1., θ2 :: A2., θ3 :: A3 :− A1., θ4 :: A3 :− A2.,

to be learned from a complete dataset with N complete observations; we use the notation Na1a2a3 to denote the number of
times we observe {A1 = a1, A2 = a2, A3 = a3}. The likelihood is

θ
N ′

1(1 − θ1)
N ′

0θ
N ′′

1 (1 − θ2)
N ′′

0 θ
N101(1 − θ3)

N100θ
N011(1 − θ4)

N010θ
N111(1 − θ3;4)N110 ,
1 2 3 4 3;4

F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50 49
where N ′
1 = N100 + N101 + N110 + N111, N ′

0 = N − N ′
1, N ′′

1 = N010 + N011 + N110 + N111, N ′′
0 = N − N ′′

1 . By operating with
terms in θ1 and θ2, we easily obtain θ̂1 = N ′

1/N and θ̂2 = N ′′
1/N . Expressions for θ̂3 and θ̂4 are much more complicated; for

instance we have θ̂3 to be either (−K1 + √
K2)/K3 or (−K1 − √

K2)/K3, where

K1 = N011N100 − N010N101 + N011N101 + 2N100N101 + 2N2
101 +

N011N110 + N101N110 − N010N111 + N100N111 + 2N101N111

K2 = 4(N010 − N100 − N101)N101(N011 + N101 + N111)(N100 + N101 + N110 + N111) +
(2N100N101 + 2N2

101 + N101N110 + N011(N100 + N101 + N110) +
N100N111 + 2N101N111 − N010(N101 + N111))

2,

K3 = 2(N010 − N100 − N101)(N100 + N101 + N110 + N111).

Appendix B. Distinct rule sets with two parents

After pruning redundant sets (see Table 1), we are left with 27 sets of rules for a head (A1) with two parents (A2, A3):

{θ1 :: A1 :− A2, A3.}, {θ1 :: A1 :− A2,not A3.}
{θ1 :: A1 :− not A2, A3.}, {θ1 :: A1 :− not A2,not A3.}

{θ1 :: A1 :− A2., θ2 :: A1 :− A3.}
{θ1 :: A1 :− A2., θ2 :: A1 :− not A3.}
{θ1 :: A1 :− not A2., θ2 :: A1 :− A3.}

{θ1 :: A1 :− not A2., θ2 :: A1 :− not A3.}
{θ1 :: A1 :− not A2, A3., θ2 :: A1 :− A2,not A3.}
{θ1 :: A1 :− A2, A3., θ2 :: A1 :− not A2,not A3.}

{θ1 :: A1 :− A2, A3., θ2 :: A1 :− A2,not A3.}
{θ1 :: A1 :− not A2, A3., θ2 :: A1 :− not A2,not A3.}

{θ1 :: A1 :− A2, A3., θ2 :: A1 :− not A2, A3.}
{θ1 :: A1 :− A2,not A3., θ2 :: A1 :− not A2,not A3.}

{θ1 :: A1 :− not A2., θ2 :: A1 :− A2, A3., θ3 :: A1 :− A2,not A3}
{θ1 :: A1 :− A2., θ2 :: A1 :− not A2, A3., θ3 :: A1 :− not A2,not A3}

{θ1 :: A1 :− not A3., θ2 :: A1 :− A2, A3., θ3 :: A1 :− not A2, A3}
{θ1 :: A1 :− A3., θ2 :: A1 :− A2,not A3., θ3 :: A1 :− not A2,not A3}
{θ1 :: A1 :− A2, A3., θ2 :: A1 :− A2,not A3., θ3 :: A1 :− not A2, A3}

{θ1 :: A1 :− A2, A3., θ2 :: A1 :− A2,not A3., θ3 :: A1 :− not A2,not A3}
{θ1 :: A1 :− A2, A3., θ2 :: A1 :− not A2, A3., θ3 :: A1 :− not A2,not A3}

{θ1 :: A1 :− A2,not A3., θ2 :: A1 :− not A2, A3., θ3 :: A1 :− not A2,not A3}
{θ1 :: A1 :− A2., θ2 :: A1 :− not A2., θ3 :: A1 :− A3}

{θ1 :: A1 :− A2., θ2 :: A1 :− not A2., θ3 :: A1 :− not A3}
{θ1 :: A1 :− A2., θ2 :: A1 :− A3., θ3 :: A1 :− not A3}

{θ1 :: A1 :− not A2., θ2 :: A1 :− A3., θ3 :: A1 :− not A3}
{θ1 :: A1 :− not A2, A3., θ2 :: A1 :− A2,not A3.,

θ3 :: A1 :− A2, A3., θ4 :: A1 :− not A2,not A3.}

50 F.H.O. Vieira de Faria et al. / International Journal of Approximate Reasoning 106 (2019) 32–50
References

[1] M. Jaeger, Relational Bayesian networks, in: Conference on Uncertainty in Artificial Intelligence, 1997, pp. 266–273.
[2] L. Getoor, B. Taskar, Introduction to Statistical Relational Learning, MIT Press, 2007.
[3] M. Richardson, P. Domingos, Markov logic networks, Mach. Learn. 62 (1) (2006) 107–136.
[4] L. De Raedt, Logical and Relational Learning, Springer Science & Business Media, 2008.
[5] A.D. Gordon, T.A. Henzinger, A.V. Nori, S.K. Rajmani, Probabilistic programming, in: Future of Software Engineering, ACM, 2014, pp. 167–181.
[6] J.Y. Halpern, An analysis of first-order logics of probability, Artif. Intell. 46 (3) (1990) 311–350.
[7] Z. Ognjanovic, M. Raškovic, Some first-order probability logics, Theor. Comput. Sci. 247 (1) (2000) 191–212.
[8] N. Fuhr, Probabilistic Datalog — a logic for powerful retrieval methods, in: ACM SIGIR Conference on Research and Development in Information

Retrieval, ACM, 1995, pp. 282–290.
[9] T. Lukasiewicz, Probabilistic logic programming, in: European Conference on Artificial Intelligence, 1998, pp. 388–392.

[10] R. Ng, V.S. Subrahmanian, Probabilistic logic programming, Inf. Comput. 101 (2) (1992) 150–201.
[11] D. Poole, Probabilistic Horn abduction and Bayesian networks, Artif. Intell. 64 (1) (1993) 81–129.
[12] T. Sato, A statistical learning method for logic programs with distribution semantics, in: International Conference on Logical Programming, 1995.
[13] L. De Raedt, P. Frasconi, K. Kersting, S.H. Muggleton, Probabilistic Inductive Logic Programming, Springer, 2008.
[14] F. Riguzzi, E. Bellodi, R. Zese, A history of probabilistic inductive logic programming, Front. Robot. AI 1 (2014) 6.
[15] T. Sato, Y. Kameya, Parameter learning of logic programs for symbolic-statistical modeling, J. Artif. Intell. Res. 15 (2001) 391–454.
[16] D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon, G. Janssens, L. De Raedt, Inference and learning in probabilistic logic

programs using weighted Boolean formulas, Theory Pract. Log. Program. 15 (3) (2015) 358–401.
[17] L. De Raedt, A. Dries, I. Thon, G. Van den Broeck, M. Verbeke, Inducing probabilistic relational rules from probabilistic examples, in: International Joint

Conference on Artificial Intelligence, 2015, pp. 1835–1842.
[18] F.H.O.V. de Faria, A.C. Gusmão, G. De Bona, D.D. Mauá, F.G. Cozman, Parameter learning in ProbLog with probabilistic rules, in: Symposium on Knowl-

edge Discovery, Mining and Learning, 2017, pp. 27–34.
[19] F.H.O.V. de Faria, F.G. Cozman, D.D. Mauá, Closed-form solutions in learning probabilistic logic programs by exact score maximization, in: S. Moral, O.

Pivert, D. Sánchez, N. Marín (Eds.), Conference on Scalable Uncertainty Management, 2017, pp. 119–133.
[20] F.H.O.V. de Faria, A.C. Gusmão, F.G. Cozman, D.D. Mauá, Speeding-up ProbLog’s parameter learning, in: International Workshop on Statistical Relational

AI, 2017.
[21] L. De Raedt, A. Kimmig, H. Toivonen, ProbLog: a probabilistic Prolog and its application in link discovery, in: International Joint Conference on Artificial

Intelligence, 2007, pp. 2468–2473.
[22] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic programming, ACM Comput. Surv. 33 (3) (2001) 374–425.
[23] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Elsevier, 1988.
[24] D. Poole, The independent choice logic and beyond, in: Probabilistic Inductive Logic Programming, Springer, 2008, pp. 222–243.
[25] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B (1977) 1–38.
[26] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.
[27] O. Pourret, P. Naim, B. Marcot, Bayesian Networks — A Practical Guide to Applications, Wiley, 2008.
[28] E. Bellodi, F. Riguzzi, Structure learning of probabilistic logic programs by searching the clause space, Theory Pract. Log. Program. 15 (2) (2015)

169–212.
[29] L. De Raedt, I. Thon, Probabilistic rule learning, in: International Conference on Inductive Logic Programming, Springer, 2010, pp. 47–58.
[30] F. Yang, Z. Yang, W.W. Cohen, Differentiable learning of logical rules for knowledge base reasoning, in: Advances in Neural Information Processing

Systems, 2017, pp. 2316–2325.
[31] F. Riguzzi, Learning logic programs with annotated disjunctions, in: Proceedings of the 13th International Conference on Inductive Logic Programming,

2004, pp. 270–287.
[32] S. Kok, P. Domingos, Learning the structure of Markov logic networks, in: Proceedings of the 22nd International Conference on Machine Learning, 2005,

pp. 441–448.
[33] H. Blockeel, W. Meert, Towards learning non-recursive LPADs by transforming them into Bayesian networks, in: Proceedings of the 15th International

Conference on Inductive Logic Programming, 2006, pp. 94–108.
[34] W. Meert, J. Struyf, H. Blockeel, Learning ground CP-logic theories by leveraging Bayesian network learning techniques, Fundam. Inform. (2008) 1–30.
[35] J. Cussens, Bayesian network learning with cutting planes, in: Conference on Uncertainty in Artificial Intelligence, AUAI Press, 2011, pp. 153–160.
[36] P. Van Beek, H.-F. Hoffmann, Machine learning of Bayesian networks using constraint programming, in: International Conference on Principles and

Practice of Constraint Programming, Springer, 2015, pp. 429–445.
[37] C.P. De Campos, Q. Ji, Efficient structure learning of Bayesian networks using constraints, J. Mach. Learn. Res. 12 (2011) 663–689.
[38] C. Yuan, B. Malone, Learning optimal Bayesian networks: a shortest path perspective 48 (2013) 23–65.
[39] D.J. Wales, J.P. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms, J.

Phys. Chem. A, Mol. Spectrosc. Kinet. Environ. Gen. Theory 101 (28) (1997) 5111–5116.
[40] D. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses, Cambridge University Press, 2003.
[41] K. Bache, M. Lichman, UCI Machine Learning Repository (2013).

http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4A61656765723937s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4765746F6F7232303037s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib52696368617264736F6E32303036s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4465526165647432303038426F6F6Bs1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib476F72646F6E32303134537572766579s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib68616C7065726E3930s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib6F676E6A616E6F76696332303030s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib667568723935s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib667568723935s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4C756B617369657769637A3938s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4E673932s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib506F6F6C653933s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib5361746F3935s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4465526165647432303038s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib526967757A7A6932303134s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib5361746F32303031s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib46696572656E7332303135s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib46696572656E7332303135s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4465526165647432303135s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4465526165647432303135s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib64654661726961323031376B646D696C65s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib64654661726961323031376B646D696C65s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib646546617269613230313773756Ds1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib646546617269613230313773756Ds1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib6465466172696132303137537461724149s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib6465466172696132303137537461724149s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4465526165647432303037s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4465526165647432303037s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib44616E7473696E32303031s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib506561726C3838426F6F6Bs1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib506F6F6C6532303038s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib44656D707374657231393737s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4B6F6C6C657232303039s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib506F757272657432303038s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib42656C6C6F646932303135s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib42656C6C6F646932303135s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4465526165647432303130s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib59616E6732303137s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib59616E6732303137s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib526967757A7A6932303034s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib526967757A7A6932303034s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4B6F6B32303035s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4B6F6B32303035s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib426C6F636B65656C32303036s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib426C6F636B65656C32303036s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib4D6565727432303038s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib43757373656E7332303131s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib56616E4265656B32303135s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib56616E4265656B32303135s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib43616D706F7332303131s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib5975616E32303133s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib57616C65733937s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib57616C65733937s1
http://refhub.elsevier.com/S0888-613X(18)30230-5/bib57616C657332303033s1

	Speeding up parameter and rule learning for acyclic probabilistic logic programs
	1 Introduction
	2 Background
	2.1 Syntax
	2.2 Semantics
	2.3 Probabilistic rules
	2.4 Bayesian networks and acyclic probabilistic logic programs

	3 Parameter learning in ProbLog
	4 Speeding-up parameter learning
	5 Learning the structure of probabilistic programs
	5.1 Score-based structure learning of Bayesian networks
	5.2 A score-based learning algorithm for acyclic propositional plps
	5.3 Computing the local score

	6 Experiments
	6.1 Learning parameters
	6.1.1 Complete data
	6.1.2 Incomplete data

	6.2 Learning structure

	7 Conclusions
	Acknowledgements
	Appendix A Closed-form estimation of a NoisyOr gate
	Appendix B Distinct rule sets with two parents
	References

