
Approximate Algorithms for Credal Networks

with Binary Variables

Jaime Shinsuke Ide a,1, Fabio Gagliardi Cozman b,2

aDepartment of Radiology - University of Pennsylvania
3600 Market Street, Suite 370, Philadelphia, PA 19104-2644

jaime.ide@uphs.upenn.edu

bEscola Politécnica - Universidade de São Paulo
Av.Prof. Mello Moraes, 2231, São Paulo, SP - Brazil

fgcozman@usp.br

Abstract

This paper presents a family of algorithms for approximate inference in credal net-
works (that is, models based on directed acyclic graphs and set-valued probabilities)
that contain only binary variables. Such networks can represent incomplete or vague
beliefs, lack of data, and disagreements among experts; they can also encode models
based on belief functions and possibilistic measures. All algorithms for approximate
inference in this paper rely on exact inferences in credal networks based on poly-
trees with binary variables, as these inferences have polynomial complexity. We are
inspired by approximate algorithms for Bayesian networks; thus the Loopy 2U al-
gorithm resembles Loopy Belief Propagation, while the IPE and SV2U algorithms
are respectively based on Localized Partial Evaluation and variational techniques.

Key words: Credal networks, loopy belief propagation, variational methods, 2U
algorithm

1 Introduction

Consider a set of variables X = {X1, . . . , Xn}, associated with general prob-
abilistic assessments: for example, the probability of {X1 = 1} is larger than
1/2, while the expected value of X2 conditional on {X3 = 0} is smaller than

1 This work was conducted while the first author was with Escola Politécnica,
Universidade de São Paulo (Av. Prof. Mello Moraes, 2231, São Paulo, SP - Brazil).
2 Corresponding author.

Preprint submitted to Elsevier Science 9 August 2007

2. Such assessments may reflect incomplete or vague beliefs, or beliefs held by
a group of disagreeing experts. In these circumstances, assessments charac-
terize a set of probability distributions over X. Suppose also that conditional
independence relations over the variables are specified — we later discuss the
exact definition of conditional independence for sets of probabilities; for now
assume one has been given such relations. Assume these independence rela-
tions are specified by a directed acyclic graph where each node is a variable,
and such that a variable and its nondescendants are conditionally independent
given its parents. If one or more distributions can satisfy all assessments, then
we call the set of assessments and independence relations a credal network
[10,19,27]. Whenever a credal network represents a single distribution, we re-
fer to it simply as a Bayesian network [51]. In fact, credal networks can be
viewed as straightforward generalizations of the well-known Bayesian network
model. The basic theory of sets of distributions, credal and Bayesian networks
is reviewed in Section 2.

In this paper we produce algorithms for approximate inference; that is, algo-
rithms that approximate lower and upper conditional probabilities for a vari-
able given observations. Such algorithms are necessary in practice, as exact
inference in credal networks is a complex problem, typically of higher com-
plexity than exact inference in Bayesian networks [23]. The best existing ex-
act algorithms operate by converting inference into an optimization problem
[9,21,28]; currently they can produce inferences for medium-sized networks,
provided the network topology is not dense. Even if future developments lead
to extraordinary improvements in exact inference, it seems that approximate
inference are unavoidable in applications.

Here we ask, can credal networks benefit from approximation techniques that
have been very successful for Bayesian networks and that are based on poly-
trees? We answer this question positively. Most ideas in this paper can be
applied to networks containing non-binary variables; however, their effective-
ness depends on the existence of efficient algorithms for inference in auxiliary
polytree-like networks. We propose algorithms for approximate inference that
exploit the surprising properties of polytree-like credal networks with binary
variables; specifically, the fact that in this case inference is polynomial, as
shown by the 2U algorithm [27].

We present three algorithms: 3

(1) The Loopy 2U algorithm, presented in Section 3, extends the popular
Loopy Belief Propagation [46] algorithm to credal networks with binary
variables. Just as Loopy Belief Propagation modifies Pearl’s Belief Prop-
agation [51], Loopy 2U modifies the 2U algorithm, with excellent results

3 These algorithms have been introduced in [38], [39], and [40].

2

BP

LBP
LPE

Variational

�
�

��	

2U

L2U
IPE

SV2U

�
�

��	
?

A
A
A
A
A
AAU

-
-

-

Fig. 1. Relationships amongst algorithms. Upper half displays existing exact algo-
rithms (BP for Bayesian networks and 2U for credal networks with binary variables).
The lower left cell displays existing approximate techniques for Bayesian networks:
LBP, LPE, and variational methods. The lower right cell contains the contributions
of this paper: all of them use the 2U algorithm and each one of them is inspired by
an algorithm for Bayesian networks.

(fast response, outstanding accuracy).
(2) The Iterated Partial Evaluation algorithm, presented in Section 4, extends

the Localized Partial Evaluation [25] algorithm by iterating through many
instances of Localized Partial Evaluation (each instance corresponds to
a loop cutset, and is run by the 2U algorithm). The Iterated Partial
Evaluation algorithm produces lower and upper bounds on probabilities
that surely enclose the tighest possible bounds.

(3) The Structured Variational 2U, presented in Section 5, uses a variational
technique, often employed in large statistical models [56], to generate
an approximating polytree-like credal network. When all variables are
binary, this approximating credal network can be processed by the 2U
algorithm.

Schematically, these algorithms can be organized as in Figure 1, where we use
several abbreviations that are adopted throughout: L2U for Loopy 2U, LBP
for Loopy Belief Propagation, BP for Belief Propagation, IPE for Iterated
Partial Evaluation, LPE for Localized Partial Evaluation, SV2U for Structured
Variational 2U. Similarly to their counterparts for Bayesian networks, not
all algorithms guarantee convergence to proper bounds; we discuss this issue
and investigate the practical behavior of the algorithms through experiments
(Section 6). Overall, the Loopy 2U shows the best performance in terms of
accuracy and running time, while the IPE is the only one with guarantees
concerning accuracy, and the SV2U algorithm seems to be promising as a first
step towards future treatment of continuous variables.

2 Background

A Bayesian network uses a directed acyclic graph to compactly encode a
probability distribution [49,51]. The term “polytree” is often used to refer

3

to Bayesian networks whose underlying undirected graph is a tree, but in this
paper we refer to such networks as polytree-like networks (because we have
several types of networks, with differences that go beyond graph topology).
In this paper the nodes of every graph are random variables; given a graph,
the set of its nodes/variables is denoted by X. In this paper all variables are
categorical; in fact all variables are binary with values 0 and 1. If an edge
leaves node Xi and reaches node Xj, then Xi is a parent of Xj. The set of
parents of Xi is denoted by pa (Xi).

A Bayesian network is endowed with a Markov condition: each node is inde-
pendent of its nondescendants given its parents. Consequently, the distribution
p(X) factorizes as

∏n
i=1 p(Xi|pa (Xi)). Note that p(Xi|pa (Xi)) is the marginal

of Xi whenever pa (Xi) is empty. An inference in a Bayesian network is usually
taken as the calculation of the distribution for a variable XQ given a set E of
assignments for variables XE (this process is also referred to as belief updating
[24]). For example, if E = {X2 = 0, X5 = 1}, then XE = {X2, X5}. Thus an
inference is:

p(XQ|E) =
p(XQ,E)

p(E)
=

∑

X\{XQ∪XE} p(X)
∑

X\XE
p(X)

. (1)

In this expression, the summation is over the values of its subscripting vari-
ables, not over the variables themselves. Whenever a summation has subscript-
ing variables, it runs over the values of the variables.

Inference in Bayesian network is an PP-complete problem [54]; however, there
exist algorithms that work well in practical applications. Exact algorithms
have explored Expression (1) to order operations efficiently [24,45], sometimes
using auxiliary junction trees [15,42]. A few algorithms exploit conditioning
operations [51,57] that reduce inference to manipulation of polytrees. These
conditioning algorithms employ loop cutsets: a loop cutset is a set of edges
that, once removed, leaves the underlying undirected graph as a tree [51]. For
a network with n nodes and na arcs, we must remove na−n+1 edges so as to
obtain a loop cutset. There are also other inference algorithms that combine
auxiliary operations and conditioning, without necessarily resorting to loop
cutsets [20,52]. Finally, we note that Pearl’s belief propagation (BP) is a poly-
nomial algorithm for the special case of polytree-like Bayesian networks [51].

Given that large multi-connected networks pose serious difficulties for exact
inference, approximate algorithms have received steady attention. Approxi-
mations are often based on Monte Carlo schemes [30,32,36], on structural or
variational changes in networks [25,41,43], or in specialized techniques such as
Loopy Belief Propagation [48,64]. We briefly review variational techniques in
Section 5 as we use them in the SV2U algorithm.

4

Much as Bayesian networks offer an organized way to encode a single prob-
ability distribution, credal networks offer an organized way to encode a set
of probability distributions. There are many different formalisms that can be
expressed as or related to sets of probability distributions: belief functions and
possibility measures [61], ordinal ranks and several types of qualitative prob-
ability [13,22,53]. There are also situations where probabilistic assessments
are imprecise or vague, sometimes due to constraints in elicitation resources,
sometimes due to properties of the representation. For example, consider prob-
abilistic logics; that is, logics with probabilistic assessments over logical formu-
las [12,34,35,50]. In these logics it is almost impossible to guarantee that every
set of formulas attaches a single probability number to each event; usually all
that is guaranteed is that an event is associated with a probability interval.
Another source of imprecision in probability values is lack of consensus, when
several experts disagree on the probability of events or variables. As another
source of imprecision, one may wish to abstract away details of a probabilistic
model and let the modeling process stop at probability intervals [33].

Denote by K(X) a set of distributions associated with variable X; such sets
are referred to as credal sets [44]. A conditional credal set, that is, a set of
conditional distributions, is denoted by K(X|A), where A is the conditioning
event. We denote by K(X|Y) the collection of credal sets indexed by the
values of variable Y (note that this is not the single set of functions p(X|Y)).
Given a credal set K(X), one can compute the lower probability P (A) =
minP∈K(X) P (A) of event A. In words: the lower probability of event A is the
tight lower bound for the probability of A. Similarly, the upper probability
is P (A) = maxP∈K(X) P (A). We assume that all credal sets are closed. To
simplify the presentation, we also assume that all credal sets are convex. If a
credal set is not convex, we can consider its convex hull for the purposes of
this paper, as any lower/upper probability is attained at a vertex of the credal
set [27].

Suppose a set of assessments, containing bounds on probability and possibly
bounds on expectations, is specified. Consider for example a binary variable
X and assessments P (X = 0) ≥ 1/2 and P (X = 1) ≥ 2/3. These assessments
are inconsistent as no probability distribution can satisfy them; they are said
to incur sure loss [60]. As another example, consider again binary X and
assessments P (X = 0) ≥ 1/2 and P (X = 1) ≤ 2/3. These assessments avoid
sure loss, as there is at least a probability distribution satisfying them [5].
However, the assessments are not as tight as possible, as P (X = 1) must be
smaller than 1/2. If all assessments are tight, the set of assessments is coherent.
For example, assessments P (X = 0) ≥ 1/2 and P (X = 1) ≥ 1/3 are coherent.

A set of assessments that avoids sure loss is usually satisfied by several sets
of probability distributions. Each one of these sets is an extension of the as-
sessments. We are always interested in the largest possible extension; for finite

5

domains, this largest extension is always well defined and called the natural
extension of the assessments [60].

Consider then a directed acyclic graph where each node is associated with a
variable Xi, and where the directed local Markov condition holds (that is, a
node Xi is independent of its nondescendants given its parents). There are
in fact several possible Markov conditions, as there are different concepts of
independence for sets of probability distributions in the literature [14,18]. In
this paper, “independence” of X and Y means that the vertices of K(X, Y)
factorize. That is, each distribution p(X, Y) that is a vertex of the set K(X, Y)
satisfies P (X, Y) = P (X)P (Y) for all values of X and Y (and likewise for
conditional independence).

Suppose that each node Xi and each configuration ρik of parents of Xi in a
credal network is associated with a conditional credal set K(Xi|pa (Xi) = ρik).
Suppose also that each set K(Xi|pa (Xi) = ρik) is specified separately from all
others; that is, there are no constraints among distributions in these sets. The
credal network is then said to be separately specified. The largest extension of
this credal network that complies with the Markov condition in the previous
paragraph is called the strong extension of the network [17]:

{

n
∏

i=1

p(Xi|pa (Xi)) : p(Xi|pa (Xi)) ∈ K(Xi|pa (Xi))

}

. (2)

An inference in a credal network is usually taken as the calculation of a lower
probability conditional on observations: it is necessary to minimize Expression
(1) subject to constraints in (2). A similar formulation can be used to compute
upper probabilities. The resulting optimization problems can be reduced to
multilinear programming [21], and they can be solved in exact or approximate
forms. Exact algorithms have either explored the exhaustive propagation of
vertices of relevant credal sets [10,16], a process with high computational de-
mands; or have explored more direct optimization methods [1,9,21,28]. Several
approximate algorithms employ techniques such as local or genetic search and
simulated annealing to produce bounds [6,7,16,65].

One of the first approximate algorithms for inference in credal networks is
Tessem’s propagation for polytree-like networks [59]. This algorithm mimics
Pearl’s BP, using only “local” operations (that is, summations and products in
a node). While each local optimization can be solved exactly, their combined
result produces approximate lower and upper probability bounds. Later, Zaf-
falon noticed that Pearl’s BP could be modified and applied to polytree-like
credal networks with binary variables so as to produce exact inference through
local operations. The resulting algorithm, called 2U, is the only polynomial
algorithm for inference in credal networks. As the 2U algorithm is the basis
for all algorithms in this paper, it is presented in Appendix A and is assumed

6

known in the remainder of the paper — it is important to note that we use
the notation in Appendix A without further explanation. In the 2U algorithm,
interval-valued messages are propagated among nodes of a polytree-like net-
work, much like Pearl’s BP.

3 The L2U algorithm: Loopy belief propagation in credal networks

As indicated before, the L2U algorithm is a “loopy” version of the 2U algo-
rithm, inspired by the Loopy Belief Propagation (LBP) algorithm that has
been so successful in Bayesian networks [46,48].

The idea is simple. Consider a multi-connected credal network; that is, a net-
work with cycles in the underlying graph. Take an ordering of the nodes,
and initialize messages as in the 2U algorithm: that is, a root node X gets
πX(x) = [P (X = x) , P (X = x)], a barren node X gets ΛX = [1, 1] and an
observed node X receives a dummy child X ′ that sends a message ΛX′,X = 0
if {X = 0} and ΛX′,X = ∞ if {X = 1} (Appendix A). All other messages
are initialized with the interval [1, 1]. (If we are only interested in a particular
variable XQ, then it is possible to discard barren nodes, and several others,
using d-separation [31]).

All nodes are then updated in the selected order. That is, messages are updated
by running the formulas of the 2U algorithm. And the propagation does not
stop after the nodes are exhausted; rather, a complete run over the network
is a single iteration of L2U. The algorithm then keeps sending interval-valued
messages. The process stops when messages converge or when a maximum
number of iterations is executed.

A description of the L2U algorithm is presented in Figure 2. Lines 01 to 03
initialize various components of the algorithm. Lines 04 to 10 run the main
loop, and line 11 produces the approximate bounds for P (XQ = xQ|E). As
in LBP, the nodes can be visited in any order; it has been empirically noted
that the ordering of the nodes affects convergence of LBP [64], and we leave
for future work an in-depth study of the relationship between orderings and
convergence in L2U. It should also be noted that the algorithm updates all
functions related to a node using the necessary messages from the previous
iteration. This is also not required; messages produced in iteration (t+1) may
use other messages produced in the same iteration. In fact, in our implemen-
tation we use the most recent messages in the computation as the algorithm
progresses, as we have concluded empirically that this strategy accelerates
convergence and does not seem to affect accuracy.

Expressions (A.1) and (A.2) demand considerable computational effort. For

7

L2U: Loopy 2U

Input: credal network with binary variables;
evidence E;
integer T (limit of iterations).

Output: approximate maximum/minimum values of P (XQ|E).
01. Initialize messages of root nodes, barren nodes, and observed nodes
as in the 2U algorithm (Appendix A); these messages are marked with a
superscript (0).
02. All messages not initialized in the previous step are initialized with the
interval [1, 1], and marked with a superscript (0).
03. Take t← 0.
04. Repeat until convergence of messages or until t > T :
05. For each node X, compute:
06. a) π

(t+1)
X (X) (Expressions (A.1) and A.2)) from π

(t)
Ui,X

(Ui);

07. b) Λ
(t+1)
X (Expressions (A.3) and (A.4)) from Λ

(t)
Yi,X

;

08. c) π
(t+1)
X,Yj

(X) (Expressions (A.7) and (A.8)) from π
(t)
X (X) and Λ

(t)
Yk,X ;

09. d) Λ
(t+1)
X,Ui

(Expressions (A.15) and (A.16)) from Λ
(t)
X and π

(t)
Uk ,X(Uk).

10. t← t + 1.
11. Return [P ∗(XQ = xQ|E), P

∗
(XQ = xQ|E)] (Expressions (A.5) and

(A.6)) using the messages in the last iteration.

Fig. 2. The L2U algorithm.

each expression, we have a search among 2#pa(Xi) numbers, where #pa (Xi)
indicates the number of parents of Xi; for each configuration, we must sum
across 2#pa(Xi) probability values. Therefore, if K is the largest number of par-
ents for a node, and the algorithm stops after t∗ iterations, the computational
effort is O(t∗4K).

The most difficult issue with L2U is convergence. When all probability values
are real-valued, L2U collapses to LBP; thus convergence of L2U includes the
already difficult (and largely open) issue of convergence of LBP [47,58,62].
In fact, the convergence of L2U may depend on the convergence of LBP, for
the following reason. As L2U iterates, it is possible that after some point the
same extreme points of probability intervals are always selected in the local
optimization problems (A.1), (A.2), (A.15) and (A.16). If that is the case, then
L2U operates as propagation on two distinct Bayesian networks in parallel. We
have observed this behavior in our tests: after some iterations L2U settles on
two Bayesian networks that are then processed in a loopy scheme. We in fact
conjecture that convergence of L2U will ultimately rely on the convergence
of LBP for all Bayesian networks that are encoded in a credal network; an
in-depth study of these matters is left for future work.

We now discuss the steps of the L2U algorithm through a simple example. Con-

8

��
��
A ��

��
B

��
��
C ��

��
D

? ?

@
@

@@R

�
�

��	

P (a) ∈ [0.4, 0.5] P (b) ∈ [0.6, 0.7]

P (c|a, b) ∈ [0.7, 0.9] P (d|a, b) ∈ [0.1, 0.2]

P (c|a,¬b) ∈ [0.6, 0.8] P (d|a,¬b) ∈ [0.3, 0.4]

P (c|¬a, b) ∈ [0.4, 0.6] P (d|¬a, b) ∈ [0.5, 0.6]

P (c|¬a,¬b) ∈ [0.2, 0.4] P (d|¬a,¬b) ∈ [0.7, 0.8]

Fig. 3. Example of separately specified credal network with binary variables.

sider the credal network in Figure 3. In this example we adopt the convention
that, for a variable X, the event {X = 0} is denoted by ¬x and the event
{X = 1} is denoted by x. Suppose then that E = {C = 0, D = 1} = {¬c, d},
and consider the calculation of [P (a|E), P (a|E)]. Thus there is a Λ-message
equal to 0 to node C, as {C = 0} ∈ E; and there is a Λ-message equal to
∞ to node D, as {D = 1} ∈ E. Suppose the nodes are visited in the se-
quence {B, D, A, C} in each iteration of L2U. The algorithm then computes
the following lower bounds (upper bounds have analogous expressions) as it
propagates messages.

As B is a root node, πB(b) is P (b). Also, ΛB = 1. The message sent to
node D has πB,D(b) = (1 − (1 − 1/πB(b))/ΛC,B)−1 (Equation (A.7)), where
ΛC,B = 1. Node D similarly processes messages; in particular, Expression
(A.15) produces:

ΛD,A = min
f(b)∈πB,D(b)

(
∑

B p(d|a, B)× f(B)
∑

B p(d|¬a, B)× f(B)

)

,

and this message is sent to node A. As A is a root node, π(a) = P (a). Node
A processes its messages, and sends messages to C and D, as πA,C(a) =
(1− (1− 1/πA(a))/ΛD,A)−1 and πA,D(a) = (1− (1− 1/πA(a))/ΛC,A)−1 (note
that ΛC,A = 1 in this last expression). Node C processes the incoming messages
and sends messages to A and B; in particular,

ΛC,B = min
f(a)∈πA,C (a)

(

1−
∑

A p(c|A, b)× f(A)

1−
∑

A p(c|A,¬b)× f(A)

)

.

All messages have been updated at this point; the first iteration has finished.
The second iteration goes through all these calculations again, and so forth. A
few messages are shown in Table 1. In this example messages reach convergence
in 17 iterations; the resulting approximate inference is [0.0318, 0.2764] (the
exact solution is [0.0362, 0.2577]).

If we stop iterations at t = 2, then P (a|E) = (1 − (1 − 1/πA(a))/(ΛC,A ×

9

Table 1
Interval-valued messages propagated by the L2U algorithm for the credal network
in Figure 3 (t = 0, 1, 2).

Interval-valued messages t = 0 t = 1 t = 2

πB,D(b) [1.0,1.0] [0.6000,0.7000] [0.4037,0.7138]

ΛD,A [1.0,1.0] [0.2424,0.4828] [0.2392,0.5156]

πA,C(a) [1.0,1.0] [0.1391,0.3256] [0.1375,0.3402]

ΛC,B [1.0,1.0] [0.4514,1.0693] [0.4488,1.0733]

πA,D(a) [1.0,1.0] [0.4000,0.5000] [0.1182,0.4163]

ΛD,B [1.0,1.0] [0.5000,0.8148] [0.5264,0.8468]

πB,C(b) [1.0,1.0] [0.4286,0.6553] [0.4412,0.6640]

ΛC,A [1.0,1.0] [0.2010,0.7132] [0.2002,0.7140]

ΛD,A))−1 = 0.0309, and P (a|E) = (1 − (1 − 1/πA(a))/(ΛC,A × ΛD,A))−1 =
0.2691. Note that convergence does not necessarily lead to more accurate
bounds.

4 The IPE algorithm: Localized partial evaluation in credal net-

works

The IPE algorithm exploits the technique of Localized Partial Evaluation
(LPE) developed by Draper and Hanks [25]. The idea here is to adapt LPE
to our purposes and to iterate it over, so as to produce increasingly accurate
bounds — thus the name Iterated Partial Evaluation. The most positive aspect
of IPE is that the resulting bounds are guaranteed to enclose the exact infer-
ence (Theorem 1); the disadvantage of the algorithm is that our experiments
indicate a loss of accuracy when compared to L2U and SV2U (Section 6).

The original LPE algorithm produces approximate inferences in Bayesian net-
works by “cutting” edges of the network and then sending vacuous messages
through these missing edges. The vacuous messages are actually probability
intervals, and the LPE algorithm then uses an approximate scheme to propa-
gate these probability intervals. In principle the LPE algorithm can be directly
applied to credal networks; just select the missing edges, introduce the interval-
valued vacuous messages, and propagate all probability intervals together. In
the case of binary networks this propagation can be efficient when the missing
edges form a loop cutset: we can then employ the 2U algorithm to efficiently
and exactly handle the vacuous messages. Figure 4 shows a multi-connected
network (left) and the same network with missing edges removed so as to ob-

10

��
��
H

��
��
L ��

��
D

��
��
F ��

��
B

?

@
@

@@R

A
A
A
A
A
A
AAU ?

�
�

��	

�
�

�
�

�
�

���

@
@

@@R ��
��
H

��
��
L ��

��
D

��
��
F ��

��
B

?

@
@

@@R

?

�
�

��	

AAU

ΛH,F

AAK

πF,H

���

πB,H

���
ΛH,B

@@R
πL,H

@@I
ΛH,L

Fig. 4. Missing arcs in the IPE algorithm. Left: original multi-connected network.
Right: polytree-like network with missing arcs and their respective vacuous mes-
sages, where πF,H , πL,H and πB,H are equal to [0, 1] and ΛH,F , ΛH,L and ΛH,B are
equal to [0,∞).

tain a polytree (right). We emphasize: only in networks with binary variables
we obtain an efficient and accurate method, due to the 2U algorithm.

Suppose then that missing edges do form a loop cutset, and that vacuous
messages are propagated using the 2U algorithm, thus generating an interval
I∗ for P (XQ = xQ|E). We now show that I∗ in fact provides outer bounds;
that is, P (XQ = xQ|E) ∈ I∗ for every distribution in the strong extension of
the credal network:

Theorem 1 The IPE algorithm returns an outer bound; that is, an interval
I∗ such that [P (XQ = xQ|E) , P (XQ = xQ|E)] ⊆ I∗.

Proof. 4 Only the extreme points of credal sets in the credal network must be
inspected to find the lower and upper probabilities of interest [27]. Thus we
have a finite number of Bayesian networks that must be inspected; take a loop
cutset and for each one of these networks, propagate probability intervals. In
our setting, simply run the 2U algorithm as we only have binary variables.
We obtain an interval for each Bayesian network; now we use a key result
by Draper, who proves that for a particular Bayesian network the produced
interval encloses the exact (real-valued) inference for that network [26]. If we
run the 2U algorithm directly on the credal network with vacuous messages,
the result will certainly include the approximate intervals for each one of the
Bayesian networks just mentioned, and by Draper’s result, the exact inference
for each Bayesian network — and thus the 2U algorithm will produce an
interval that encloses the exact probability interval of interest in the original

4 A reviewer suggested the following interesting proof: for each edge X → Y that
is cut, consider edges X → Y ′ and X ′ → Y with new variables X ′ and Y ′; a single
iteration of IPE then performs the “conservative inference” where X ′ and Y ′ are
missing not at random [3,66]. As each IPE iteration is correct, the intersection of
these results is correct.

11

P = 0

P = 1

P ∗

P∗
I∗

1
I∗

2
I∗

3
I∗

4

Fig. 5. Intersection of approximate intervals in IPE, to produce outer bounds P∗

and P ∗.

credal network. This is true for any loop cutset, so if we have a collection of loop
cutsets Ct, every interval I∗

t encloses the exact interval, and the intersection
∩tI

∗
t encloses the exact interval as well. QED

Hence it is natural to consider the following procedure. Select a loop cutset
C1 and produce an approximation I∗

1 as described; then select another loop
cutset C2 and produce an approximation I∗

2 ; repeat this for a sequence of loop
cutsets. Each loop cutset Ct leads to an interval I∗

t that contains the exact
probability interval of interest, thus we can always combine the sequence of
approximations by taking their intersection. Figure 5 illustrates this argument
(intervals are not related to Figure 4).

The basic computations in the IPE algorithm are depicted in Figure 6. Basi-
cally, lines 02 to 05 execute an adapted LPE algorithm, and line 07 returns
the intersection of approximate intervals. Lines 02 and 03 produce a polytree
by selecting a loop cutset. The 2U algorithm is run in line 05 using vacu-
ous messages. The original LPE algorithm uses intervals [0, 1] for all vacuous
messages; here we can use the same strategy for the π-messages but not for
the Λ-messages. The later messages represent ratios of probability values, so
a vacuous Λ-message is the open interval [0,∞). The messages flowing from
missing edges need not be updated during propagation.

The complexity of IPE algorithm is of same order of 2U algorithm. For T
iterations, the complexity is O(T4K) where K is the maximum number of
parents of a node. For every network there is clearly a limit on T , that is,
a maximum number of different loop cutsets that can be generated. Even
medium sized networks admit so many loop cutsets that in practice the cutsets
are not exhausted. A detailed analysis of the trade-off between the number of
visited cutsets and accuracy is left for future work.

Consider again the credal network depicted in Figure 3, and the calculation
of P (a|E) where E = {¬c, d} (we again use x to denote the event {X =
1} and similarly for ¬x). Remove the edge from B to C and introduce the
corresponding vacuous messages: ΛC,B = [0,∞), πB,C(b) = [0, 1]. Node C
receives a Λ-message equal to zero, while node D receives a Λ-message equal
to infinity, due to the evidence E. We now run the 2U algorithm; again we
only report the lower bounds as upper bounds have similar expressions.

12

IPE: Iterated Partial Evaluation

Input: credal network with binary variables;
evidence E;
integer T (limit of iterations).

Output: approximate maximum/minimum values of P (XQ|E).
01. Take t← 0 and repeat while t ≤ T :
02. a) Select a cutset Ct.
03. b) Produce a network Bt by removing the edges in Ct.
04. c) Insert vacuous messages: for a missing edge from X to Y , send

πX,Y (x) = [0, 1] to Y , and
ΛY,X = [0,∞) to X.

05. d) Run the 2U algorithm in the network Bt, producing the interval
I∗
t = [P t(XQ = xQ|E), P t(XQ = xQ|E)].

06. e) t← t + 1.
07. Return I∗ = ∩tI

∗
t .

Fig. 6. The IPE algorithm.

First, node B sends a message to D, where πB,D = (1−(1−1/πB(b))/ΛC,B)−1 =
0 using the appropriate conventions. Then D sends a message to A; as ΛD > 1,
we have:

ΛD,A = min
f(b)∈πB,D(b)

(
∑

B p(d|a, B)× f(B)
∑

B p(d|¬a, B)× f(B)

)

= 0.1667.

Node C also sends a message to A; as ΛC < 1, we have:

ΛC,A = min
f(B)∈πB,C (b)

(

1−
∑

B p(c|a, B)× f(B)

1−
∑

B p(c|¬a, B)× f(B)

)

= 0.1667.

By similar computations we obtain ΛC,A = 0.5714 and ΛD,A = 0.75. Hence,
I∗
1 = [P 1(a|E), P 1(a|E)] = [0.0182, 0.2999]. The exact interval is [0.0362, 0.2577],

clearly contained in I∗
1 . This procedure can be repeated for each loop cutset;

in this network we only have four possible cutsets. The intersection of the four
resulting intervals is returned by the IPE algorithm.

5 The SV2U algorithm: Structured variational methods in credal

networks

There are several “variational” methods for approximate inference in Bayesian
networks, Markov random fields and similar models [41,55,56,63]. Typically, a
variational method selects a family of distributions with desirable properties,

13

and approximates a distribution P by some distribution Q in the family; one
seeks to minimize the distance between P and Q without actually performing
inferences with P .

In this section we explore the following idea. Given a credal network with bi-
nary variables, we search for the best polytree-like network with binary vari-
ables that approximates the original network. Then we process the approxi-
mating network with the 2U algorithm. The search for polytree-like approxi-
mations mimics the usual variational techniques, but we resort to additional
approximations to reduce computational complexity.

5.1 Structured variational methods

We start by briefly reviewing some basic concepts. Suppose we have a Bayesian
network B associated with a joint distribution P (X), where X represents the
set of variables in the network. Suppose variables XE are observed (that is, the
event E is observed), and define Y = X\XE. We assume that X and Y are
so ordered that: (i) variables in XE are the last elements of X; (ii) variables
in Y are in the same order as in X, so that Yi is the same variable as Xi. For
instance, if X = {X1, X2, X3} and XE = {X3}, then Y = {X1, X2}, so that
Y1 is exactly X1.

We now want to approximate P (Y|E) by a distribution Q(Y). We take the
Kullback-Leibler (KL) divergence as a “distance” between P (Y|E) and Q(Y);
that is, KL(Q(Y)||P (Y|E)) =

∑

Y Q(Y) lnQ(Y)/P (Y|E) (note that the
Kullback-Leibler divergence is not a true metric).

The goal is to find a good approximation Q(Y) to P (Y|E) by minimiz-
ing KL(Q||P). The approximate distribution Q(Y) should also be easier
to handle than P (Y|E); in a structured variational method, one assumes
that Q(Y) factorizes as

∏

i Qi, where each Qi denotes a function of a small
number of variables. We restrict attention to approximations that can be
represented by Bayesian networks; thus we assume that Q(Y) factorizes as
∏

Yi∈Y Qi(Yi|pa (Yi)
′). Note that pa (Yi)

′ refers to the parents of Yi in the ap-
proximating distribution, not the original distribution. To simplify the nota-
tion, we use Pi and Qi instead of the more complete forms P (Yi|pa (Yi)) and
Qi(Yi|pa (Yi)

′).

Consider then the iterative minimization of KL(Q(Y)||P (Y|E)) by minimiz-
ing one component Qi at a time. That is, we fix all components Qj for j 6= i and
modify Qi so as to minimize KL(Q(Y)||P (Y|E)) locally. We then cycle over
variables in Y, and keep repeating this procedure until the Kullback-Leibler
divergence reaches a stationary point.

14

Denote by Gi the set containing i and indexes of the children of Yi in the
original network B. Likewise, denote by Ci the set containing the indexes of
the children of Yi in the approximate network B′. It can be shown that once we
fix all components Qj for j 6= i, the Kullback-Leibler divergence is minimized
with respect to Qi by taking [63, page 104]:

Q∗
i (Yi|pa (Yi)

′) = λi exp





∑

Y\Yi



Q−i(Y)





∑

k′∈Gi

ln Pk′ −
∑

k′′∈Ci

ln Qk′′











 ,(3)

where Q−i(Y) =
∏

j 6=i Qj and λi is a constant such that
∑

Yi
Q∗

i (yi|pa (Yi)
′) =

1. Note that inner summations run over indexes of variables, not over values
of variables. We now observe that many variables are summed out for each
term in Expression (3), and consequently:

Q∗
i (Yi|pa (Yi)

′) = λi exp









∑

k′∈Gi

M ′
i,k′



−





∑

k′′∈Ci

M ′′
i,k′′







 , (4)

where

M ′
i,k′ =

∑

{Yk′ ,pa(Yk′)}\Yi









∏

Yl′∈{Yk′ ,pa(Yk′)}

Ql′



 ln Pk′



 ,

M ′′
i,k′′ =

∑

{Yk′′ ,pa(Yk′′)
′}\Yi









∏

Yl′′∈{Yk′′ ,pa(Yk′′)
′}

Ql′′



 ln Qk′′



 .

Note that summations in Expression (4) go over sets of indexes, while summa-
tions in the expressions of M ′

i,k′ and M ′′
i,k′′ go over values of variables; products

in the expressions of M ′
i,k′ and M ′′

i,k′′ go over the variables themselves.

We have reached an updating scheme that depends only on “local” features of
the original network (that is, on the variables in the Markov blanket of Yi). For
a network B, we can produce several structured variational approximations by
selecting different factorizations for Q(Y). A particularly popular factorization
is the complete one, in which Qi depends only on Yi; this is often called the
mean field approximation and is attractive for its simplicity, even as it is not
always very accurate [41,55]. Then Ci is empty, and

Q∗
i (Yi) = λi exp





∑

k∈Gi

∑

{Yk,pa(Yk)}\Yi

ln Pk

∏

Yl∈{Yk ,pa(Yk)}

Ql



 . (5)

15

5.2 Structured variational methods in credal networks

Suppose we have a credal network B and we must find approximate bounds for
P (XQ = xQ|E). We wish to construct a structured variational approximation;
to do so, we must select a factorization for Q(Y). To clarify the issues involved,
we start with the mean field approximation, where Q is represented by a
Bayesian network without edges. We have to go over the variables and, for
each one of them, update Qi according to Expression (5). The “exact” way to
apply Expression (5) would be to compute it for each possible vertex of the
local credal sets. But this would produce a list of distributions for Q∗

i , and
this list would have to be combined with the various lists of Q∗

j for j 6= i in
the next iteration of the method. That is: while in a Bayesian network the
variational techniques require only manipulation of local factors, in a credal
network we must keep track of which products of Q∗

i are possible from iteration
to iteration. The number of possible combinations becomes unmanageable as
iterations are executed.

We propose the following updating scheme. Instead of applying Expression
(5) to every possible combination of vertices of local credal sets, we simply
compute the upper and lower bounds for Q∗

i (Yi). For example, the lower bound
is

Q∗
i
(Yi) = min

Pk,Ql

λi exp





∑

k∈Gi

∑

{Yk ,pa(Yk)}\Yi

ln Pk

∏

Yl∈{Yk,pa(Yk)}

Ql



 ,

where the minimization is over the relevant local credal sets in the original
network (that is, Pk) and in the approximating network (that is, Ql). Note
that

∑

Yi
Qi(Yi) = 1, thus it is only necessary to compute upper and lower

bounds of Qi for one value of Yi. Such bounds can be computed using local
information only, as they depend on the bounds for local credal sets and other
Q∗

j . This interval-valued updating introduces approximations beyond those
induced by the particular structure of the Qi; in particular, we do not have
guarantees of convergence to a local minimum of the Kullback-Leibler diver-
gence (in standard variational methods it is usually the case that a global
minimum of the Kullback-Leibler is attained). However, note that in our set-
ting we cannot expect convergence to a single minimum, as we are dealing
with sets of distributions and this may introduce a partial order over approx-
imating distributions. Moreover, the validity of variational methods lies in
their practical success, not in the fact that they minimize a “distance” that
is not even symmetric; thus we have investigated the validity of these approx-
imations empirically (Section 6), particularly for structured approximations
using polytrees (as the naive mean field approximation turned out not to be
accurate in our preliminary experiments [38]).

16

SV2U: Structured Variational 2U

Input: credal network B with binary variables;
evidence E;
integer T (limit of iterations).

Output: approximate maximum/minimum values of P (XQ|E).
01. Select a loop cutset and generate a polytree from B.
02. Build the sets Gi and Ci for all variables Yi, where Y = X\XE.
03. For each Yi:
04. If an incoming edge to Yi has been removed by the cutset,
05. then mark Yi and take Qi as uniform for each combination

of pa (Yi)
′ (that is, take Qi(Yi|pa (Yi)

′) = [0.5, 0.5]);
06. otherwise, leave Yi unmarked and take Qi = Pi.
07. Repeat until convergence of distributions Qi (or until number of itera-
tions reaches T):
08. For every marked Yi, and for every configuration of pa (Yi)

′:
09. Update Qi using the probability interval (Expressions (6) and (7))

[Q∗(Yi|pa (Yi)
′), Q

∗
(Yi|pa (Yi)

′].
10. Run the 2U algorithm in the approximating network (a polytree-like
network with distributions Qi) using the 2U algorithm, thus producing ap-
proximate bounds on P (XQ = xQ|E).

Fig. 7. The SV2U algorithm.

The resulting algorithm is presented in Figure 7. Given a credal network B
with binary variables, the algorithm first constructs an approximating network
B′ that is based on a polytree (lines 01-09) and then runs the 2U algorithm on
B′. The approximating network B′ is built in several steps. First, a loop cutset
for B is selected and applied (line 01); then distributions Qi are initialized
(lines 02-06). The loop in lines 03-06 makes sure that a node Y that is not
affected by the cutset is also untouched by the variational approximation.
Lines 07-09 are responsible for the variational approximation, by iterating the
lower and upper bounds of Qi. That is, by iterating

Q∗
i
(Yi|pa (Yi)

′) = min λi exp









∑

k′∈Gi

M ′
i,k′



−





∑

k′′∈Ci

M ′′
i,k′′







 , (6)

Q
∗
i (Yi|pa (Yi)

′) = max λi exp









∑

k′∈Gi

M ′
i,k′



−





∑

k′′∈Ci

M ′′
i,k′′







 , (7)

where the minimization/maximization is over the values of distributions Pk

and Ql.

The computational effort demanded by the SV2U algorithm depends basically
on the size of the Markov blankets in a network. Expressions (6) and (7) require

17

the examination of 2#Gi configurations (where #Gi is the size of the Markov
blanket of Yi), and for each configuration a summation over 2#Gi is calculated.

An example may help clarify the details of the SV2U algorithm. Consider
the Pyramid network depicted in Figure 8 [48]. This network has 28 binary
variables. We associate each variable with a randomly generated credal set
(that is, with probability intervals). Suppose there is no evidence (E is empty).
A loop cutset is formed by the edges (1,6), (2,6), (2,8), (3,8), (3,10), (4,10)
and (4,12). In the resulting polytree-like network we only have to update
local credal sets for variables X6, X8, X10 and X12. Consider the updating
of variable X6: we have G6 = {6, 14, 15, 16} and C6 = {14, 15, 16}. Because
Qi(Xi|pa (Xi)) = P (Xi|pa (Xi)) for j = 1, 2, 14, 15, 16, Expression (4) yields
for X6:

Q∗
6(x6)= λ6 exp





∑

X1,X2

Q1(X1)Q2(X2) ln P (x6|X1, X2)





= λ6 exp





∑

X1,X2

P (X1) P (X2) ln P (x6|X1, X2)



 ,

and this expression must be minimized/maximized to produce Q
6

and Q6.
Analogously, minimum and maximum values of other approximated local
credal sets are derived from:

Q∗
8(x8) =λ8 exp





∑

X2,X3

P (X2)P (X3) lnP (x8|X2, X3)



 ,

Q∗
10(x10) =λ10 exp





∑

X3,X4

P (X3) P (X4) ln P (x10|X3, X4)



 ,

Q∗
12(x12) =λ12 exp





∑

X4

P (X4) lnP (x12|X4)



 .

One iteration already produces the variational approximations, with proba-
bility intervals [0.099, 0.346] for Q6(1), [0.203, 0.664] for Q8(1), [0.278, 0.753]
for Q10(1) and [0.532, 0.810] for Q12(1). The 2U algorithm can now be used to
produce approximate inferences.

6 Experiments

Empirical analysis is a necessary companion to the algorithms presented so far.
In fact, even their versions for Bayesian networks have relatively scant conver-

18

Fig. 8. The Pyramid network; dashed arcs belong to the selected loop cutset.

gence and accuracy guarantees; thus a complete understanding of their value
must include experiments with simulated and real networks. In this section we
report on experiments we have conducted with the L2U, IPE and SV2U algo-
rithms. We report on experiments with randomly generated networks (Section
6.1) and with well-known networks (Section 6.2). When designing these ex-
periments we had to take a few facts into account. First, the generation of
ground truth for experiments with credal networks is not a trivial matter.
Current exact algorithms can handle networks of up to forty nodes [9,21,28],
so we cannot have ground truth for large networks. Moreover, existing approx-
imate algorithms do not have clear guarantees on accuracy, and there are no
standard implementations available for them.

We first run tests with small and large artificial networks generated according
to several parameters; among those, the density of the connections in the
network was given attention — density is defined as the ratio between the
number of edges and the number of nodes [26]. Then we run experiments with
the well-known networks Pyramid and Alarm.

Experiments were conducted using implementations of 2U, L2U, IPE and
SV2U in the Java language (version 1.4), in a PC Intel Pentium 1.7GHz with
480MB RAM. All algorithms in this paper, plus the 2U algorithm, were im-
plemented by the first author in a freely available package called 2UBayes
(http://www.pmr.poli.usp.br/ltd/Software/2UBayes/2UBayes.html). User in-
terfaces and input/output facilities were adapted from the source code of the
JavaBayes system, a freely available package for inference with Bayesian net-
works (http://www.pmr.poli.usp.br/ltd/Software/JavaBayes). The graphical
user interface is presented in Figure 9. The code declares two real-valued quan-
tities to be equal if their difference is smaller than 10−12; this is used to check
convergence.

We compared approximations with exact inferences whenever we could gen-
erate the latter, using one of the best algorithms for exact inference in credal
networks (we used the LR-based algorithm by Campos and Cozman [21]). We
waited up to 30 minutes for an exact inference before declaring it to be un-
feasible. The quality of approximations (P ∗, P

∗
) was measured by the Mean

19

Square Error (MSE) between exact and approximate results [11,29]:

√

(1/2N)
∑

X

(

(P ∗(x|E)− P (x|E))2 + (P
∗
(x|E)− P (x|E))2

)

, (8)

where the summation runs over all configurations of unobserved variables (that
is, variables not in XE), and N is the number of such configurations. We
also present later the Maximum Absolute Error (MAE), defined as the largest
difference between an approximate inference p and the correct value p∗; that
is, max |p− p∗| (the maximization is over all inferences in a particular credal
network). The MAE is not as meaningful as the MSE, as it only displays the
absolutely worst result in a large sequence of approximations; however, it is
useful later to suggest the relative advantages of the L2U algorithm over the
IPE and SV2U algorithms. Clearly it would be desirable to investigate other
performance measures such as relative entropy between exact and approximate
credal sets, but this often leads to more complex calculations than the inference
itself.

6.1 Randomly generated credal networks

We started with tests in small networks, so that approximations could be
compared with exact inferences. We generated sets of ten networks with ten
nodes each, and varying densities. Here we report on results for networks with
densities 1.2 and 1.6; similar results were obtained for density 1.4. These net-
works were generated with a modified version of the BNGenerator package
(http://www.pmr.poli.usp.br/ltd/Software/BNGenerator) [37]; this modified
version produces random directed acyclic graphs according to various param-
eters, and then produces random probability intervals for the local credal sets.
In all tests (here and in the next section) the IPE algorithm was run with 100
randomly generated cutsets. For each one of these small networks, approxi-
mate intervals are computed for the marginal probability of each variable (no
evidence was used). The MSE and clock time for inferences are presented in
Tables 2 and 3; the results for networks with density 1.4 are omitted as they
are similar. Note in particular that one of the networks led to huge processing
effort with the SV2U algorithm, possibly as its specific structure led to many
combinations between local results.

As we have remarked, the MAE criterion is perhaps too pessimistic as it
only captures the worst performance of algorithms in large numbers of runs.
But even then, it is interesting to look at MAE values to note the impressive
performance of the L2U algorithm; Table 4 shows MAE values that correspond
to runs in Table 2. The total average is 0.034436 for L2U, 0.2343 for IPE, and
0.1610 for SV2U. Even more impressive is the fact that for networks with

20

Table 2
Results (MSE and time) with simulated credal networks: 10 binary variables and
12 edges (density 1.2). Time in seconds.

Credal L2U IPE SV2U

Network MSE Time MSE Time MSE Time

1 0.007131 0.172 0.08257 8.000 0.01951 0.125

2 0.000054 0.156 0.007918 7.875 0.02733 0.110

3 0.000406 0.156 0.01678 7.860 0.05405 0.141

4 0.001198 0.156 0.1021 7.828 0.017856 0.985

5 0.006121 0.203 0.1100 8.203 0.03783 0.766

6 0.02856 0.250 0.09553 8.156 0.05262 1.172

7 0.004878 0.078 0.02247 8.234 0.03250 1.843

8 0.01816 0.172 0.1031 8.172 0.04208 0.078

9 0.01117 0.093 0.07652 8.266 0.04141 0.625

10 0.01278 0.172 0.05820 8.235 0.1057 1.500

density 1.6 (that is, corresponding to Table 3), the average MAE for the L2U
algorithm remains essentially the same, while it grows significantly for the
other two algorithms: 0.03444 for L2U, 0.4436 for IPE, and 0.2595 for SV2U.

We also performed experiments with the L2U algorithm in large and very dense
credal networks. Unfortunately in this case we cannot compare approximations
with exact inferences, thus these experiments are meant to verify convergence
and time spent in calculations. Results were rather promising. For example,
in credal networks with 50 binary variables and 150 edges (thus, with density
3), we obtained convergence in about a dozen iterations, taking a few minutes
of computer time.

6.2 Networks in the literature

Experiments were also run using the structure of the Pyramid and Alarm
networks, mimicking the tests of LBP by Murphy et al. [48]. The Pyramid
network, depicted in Figure 8, has binary variables and a regular structure
that often appears in image processing. The Alarm network is a classic tool
for medical diagnosis. As some of the variables in the original Alarm net-
work are not binary, we modified those nodes so that every variable is binary.
We generated probability intervals for several realizations of these networks,
running inference (using the L2U, IPE and SV2U algorithms) for all nodes
and computing the MSE for each one of them. Again, we run tests without

21

Table 3
Results (MSE and time) with simulated credal networks: 10 binary variables and
16 edges (density 1.6). Time in seconds.

Credal L2U IPE SV2U

Network MSE Time MSE Time MSE Time

1 0.01785 0.094 0.2237 8.297 0.04440 0.172

2 0.006300 0.094 0.2087 8.375 0.2203 17.359

3 0.004125 0.157 0.1092 8.219 0.06616 0.828

4 0.02343 0.203 0.1491 8.203 0.05151 2.953

5 0.01650 0.109 0.1620 8.360 0.1027 812.360

6 0.005526 0.188 0.1509 8.406 0.1371 1.281

7 0.002232 0.188 0.2252 8.468 0.02425 0.219

8 0.01416 0.172 0.1123 8.437 0.1211 1.812

9 0.003502 0.172 0.1465 8.328 0.05479 1.281

10 0.01141 0.172 0.1238 8.406 0.04220 0.250

Table 4
Results (MAE) with simulated credal networks: 10 binary variables and 12 edges
(density 1.2).

Network L2U IPE SV2U

1 0.02818 0.3362 0.05579

2 0.0002394 0.03056 0.08760

3 0.001424 0.05780 0.2360

4 0.004276 0.4304 0.2369

5 0.02158 0.3110 0.1331

6 0.1271 0.3219 0.2033

7 0.02084 0.06030 0.08795

8 0.05503 0.4096 0.1169

9 0.03932 0.1729 0.1140

10 0.04637 0.2122 0.3382

evidence.

On average, the L2U algorithm converges in just 4 iterations for the Pyramid
network, and in 9 iterations for the “binarized” Alarm network; approximate
inference takes a few milliseconds, and the MSE is about 0.013 for both net-

22

Fig. 9. The “binarized” Alarm network (density 1.24) in the JavaBayes user inter-
face.

works. Results for the L2U algorithm are presented in Figure 10 (the figure
summarizes all inferences in a single instantiation of the networks). Similar
results are presented in Figure 11 for the IPE algorithm; approximations are
clearly less accurate (again, all inferences in a single instantiation of the net-
works). In fact, the MSE is 0.05 for the Pyramid network and 0.072 for the
“binarized” Alarm network, using 100 iterations (both networks are always
processed in less than 10 seconds). We could improve accuracy by increasing
the number of iterations; we have empirically noted that 100 iterations is a
good trade-off between accuracy and computational effort. Figure 12 shows
results for the SV2U algorithm (again for a single instantiation of the net-
works) — MSE is 0.02 for the Pyramid network (in 0.078 seconds) and 0.029
for the “binarized” Alarm network (in 0.422 seconds).

6.3 Summary

The experiments discussed so far are summarized in Table 5. The L2U al-
gorithm definitively produces the best results (smallest MSE and processing
times; the algorithm always converged in all our tests). Note also that L2U’s
performance seems not to be much affected by the density of the network. The
drawback of L2U is the lack of theoretical guarantees concerning convergence

23

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pyramid network

exact results (o: lower x: upper)

L2
U

re
su

lts

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Alarm network

exact results (o: lower x: upper)

L2
U

re
su

lts

Fig. 10. Correlation between exact and approximate interval extreme values pro-
duced by the L2U algorithm for the Pyramid network (left) and the “binarized”
Alarm network (right).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pyramid network

exact results (o: lower x: upper)

IP
E

re
su

lts

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Alarm network

exact results (o: lower x: upper)

IP
E

re
su

lts

Fig. 11. Correlation between exact and approximate interval extreme values pro-
duced by the IPE algorithm for the Pyramid network (left) and the “binarized”
Alarm network (right).

and accuracy. Overall, the algorithm follows the pattern of the LBP algorithm
in the literature: excellent empirical results despite few guarantees.

The IPE algorithm offers a different combination: it produces outer bounds,
but its accuracy is not spectacular, and processing time is relatively high. The
SV2U algorithm offers intermediate accuracy, but large processing times. The
reason for this is the following. Both L2U and IPE depend polynomially on
the size of the network, and exponentially on the number of parents; however
L2U is faster because it requires less iterations. It is always possible that in a
particular run the IPE algorithm will hit the best cutsets right on; however in
our tests we have seen that many random cutsets have to be generated before
we have reasonable accuracy. The SV2U algorithm instead depends exponen-

24

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pyramid network

exact results (o: lower x: upper)

SV
2U

 re
su

lts

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Alarm network

exact results (o: lower x: upper)

SV
2U

 re
su

lts

Fig. 12. Correlation between exact and approximate interval extreme values pro-
duced by the SV2U algorithm for the Pyramid network (left) and the “binarized”
Alarm network (right).

Table 5
Average MSE and processing time (in seconds) for experiments.

Algorithm L2U IPE SV2U

Artificial networks 0.009 0.068 0.048

(density 1.2) 0.2 sec. 8.0 sec. 0.7 sec.

Artificial networks 0.012 0.189 0.077

(density 1.4) 0.2 sec. 8.3 sec. 25 sec.

Artificial networks 0.011 0.161 0.086

(density 1.6) 0.2 sec. 8.3 sec. 83 sec.

Pyramid network 0.013 0.05 0.02

0.13 sec. 5.6 sec. 0.08 sec.

“Binarized” Alarm network 0.013 0.072 0.029

0.16 sec. 7.2 sec. 0.42 sec.

tially on the number of variables in the Markov blanket, and this quantity
grows quite fast as density increases. We clearly observe this phenomenon in
Table 5. An intriguing aside is that, contrary to L2U, both IPE and SV2U
display high variability in performance as density increases.

25

7 Conclusion

In this work we have produced new algorithms for approximate inference in
credal networks, by taking advantage of the 2U algorithm. We have inves-
tigated analogues of algorithms that are successful in dealing with Bayesian
networks; thus the L2U algorithm mimics LBP, the IPE algorithm extends
LPE, and the SV2U algorithm adapts insights from standard structured vari-
ational methods. These algorithms can in principle be applied to credal net-
works with general categorical variables. However, approximations will then
require considerable computational effort, because inference in polytree-like
credal networks is NP-hard in general [23]. One solution is to “binarize” a
network before applying the algorithms; that is, to transform each non-binary
variable into a set of binary variables [2].

Each algorithm has strengths and weaknesses. The L2U algorithm is the clear
winner for credal networks with binary variables regarding both accuracy and
processing time; in fact, this algorithm is possibly the most important con-
tribution of this paper. The IPE algorithm is relatively slow and not very
accurate, but it has theoretical guarantees that may make it useful as a com-
ponent of branch-and-bound algorithms [9,28]; it is thus to be added to a few
existing algorithms that produce guaranteed bounds with varying degrees of
effort [8,21,59]. The SV2U algorithm offers intermediate accuracy and faces
difficulties handling dense networks. Perhaps the most valuable aspect of the
SV2U algorithm is that it suggests how variational techniques can be applied
to credal networks. Such techniques may be the only effective way to deal with
continuous variables in credal networks, a topic that has received scant, if any,
attention.

In fact, there are several loosely connected “variational techniques” in the lit-
erature, and a natural sequel to the present work would be to explore these
techniques. One might seek a better way to minimize the “interval-valued”
Kullback-Leibler divergence. Or one might propose a more appropriate dis-
tance for interval-probability, for example inspired by Bethe and Kikuchi dis-
tances [64]. In fact, we note that Loopy Belief Propagation can be viewed as
the iterative minimization of the Bethe energy function, and consequently the
L2U algorithm can be framed as an interval-valued version of this variational
technique. Apart from such extensions, the most pressing body of work that
we leave for the future is the study of convergence in the L2U and the SV2U
algorithms.

26

��
��
X

��
��
U1

��
��
Y1

��
��
Um

��
��
YM

������*

HHHHHHj

HHHHHHY

�������

��*

HHj

HHY

���

HHY

���

��*

HHj

πU1,X πUm,X

ΛY1,X ΛYM ,X

ΛX,U1

πX,Y1

ΛX,Um

πX,YM

•••

•••

Fig. A.1. Messages propagated in the 2U algorithm [27]. Every node X in a network
receives messages πUi,X from its parents and messages ΛYj ,X from its children.
Messages are used to update πX and ΛX . Then node X sends messages πX,Ui

to its
parents and ΛX,Yj

to its children.

A The 2U algorithm

The 2U algorithm modifies Pearl’s belief propagation (BP) in such a way that
inferences are exact for polytree-like credal networks with binary variables
[27]. As all variables are binary, the (convex hull of) a conditional credal
set K(X|U = u) is completely specified by a coherent probability interval
[P (x|U = u) , P (x|U = u)] (for x equal to 0 or to 1).

Messages propagated in the 2U algorithm are depicted in Figure A.1 for a
generic node X with parents U = {U1, . . . , Um} and children Y = {Y1, . . . , YM}.
Every message is interval-valued. A π-message is an interval-valued function
of the variable in its first subscript (for example, both πY and πY,X are func-
tions of Y). Thus for each message, say πY,X , we have the tight lower bound
πY,X(x) and the tight upper bound πY,X(x). A Λ-message is a single interval,
also completely characterized by a tight lower and a tight upper bound.

When a node X receives all messages πUi,X and ΛYi,X , the node updates its
“internal” functions πX and ΛX as follows:

πX(x) = min





∑

U

p(x|U)
m
∏

i=1

fi(Ui) : fi(ui) ∈ πUi,X(ui),
∑

Ui

fi(ui)=1



, (A.1)

πX(x) = max





∑

U

p(x|U)
m
∏

i=1

fi(Ui) : fi(ui) ∈ πUi,X(ui),
∑

Ui

fi(ui)=1



,(A.2)

ΛX =
M
∏

j=1

ΛYj ,X , (A.3)

27

ΛX =
M
∏

j=1

ΛYj ,X , (A.4)

where Expressions (A.1) and (A.2) require optimization across messages πUi,X ,
and fi refers to auxiliary real-valued functions. Solutions to these optimization
problems are always found at the extremes of πUi,X [27]; consequently solutions
can be found by visiting the 2m possible configurations of U .

It can be shown that all π-messages encode bounds on the probability of X
given all evidence in polytrees “above” node X. Likewise, Λ-messages encode
bounds on the ratio between the probability of evidence “below” X given
{X = 1} over the probability of the same evidence given {X = 0}. Once πX

and ΛX are computed, we obtain:

P (X = x|E)= (1− (1− 1/πX(x)) /ΛX)−1 , (A.5)

P (X = x|E)=
(

1− (1− 1/πX(x)) /ΛX

)−1
. (A.6)

Node X can also send messages to its children:

πX,Yj
(x)=



1− (1− 1/πX(x)) /





∏

k 6=j

ΛYk,X









−1

, (A.7)

πX,Yj
(x)=



1− (1− 1/πX(x)) /





∏

k 6=j

ΛYk,X









−1

. (A.8)

Messages from X to its parents use several auxiliary functions. The message
to parent Ui uses auxiliary functions g

i
, gi, g′

i, g′′
i , hi, hi, These auxiliary

functions are of the form ki(γ, F), where γ is a real number and F is a set of
functions. During the computation of the message to Ui the set of functions
is {fj(Uj)}j=1,...,m;j 6=i; that is, there is a function for every parent of X except
Ui. Each function fj(Uj) is completely specified by two real numbers as every
variable is binary; it will be clear later that each function fj must satisfy
∑

Uj
fj(uj) = 1, and consequently each function fj is in fact defined by a

single number. To simplify the notation, we denote these sets of functions by
{fj}j 6=i, to emphasize the fact that function fi is absent. We also simplify the
notation by not indexing explicitly the auxiliary functions by X.

We have:

g
i
(Λ, {fj}j 6=i)=











g′
i(Λ, {fj}j 6=i) if Λ ≤ 1,

g′′
i (Λ, {fj}j 6=i) if Λ > 1,

, (A.9)

28

gi(Λ, {fj}j 6=i)=











g′′
i (Λ, {fj}j 6=i) if Λ ≤ 1,

g′
i(Λ, {fj}j 6=i) if Λ > 1,

, (A.10)

where

g′
i(Λ, {fj}j 6=i)=

(Λ− 1)hi(1, {fj}j 6=i) + 1

(Λ− 1)hi(0, {fj}j 6=i) + 1
, (A.11)

g′′
i (Λ, {fj}j 6=i)=

(Λ− 1)hi(1, {fj}j 6=i) + 1

(Λ− 1)hi(0, {fj}j 6=i) + 1
, (A.12)

and finally

hi(ui, {fj}j 6=i) =
∑

{U1,...,Um}\Ui

p(X = 1|U\Ui, Ui = ui)
∏

k 6=i

fk(Uk), (A.13)

hi(ui, {fj}j 6=i) =
∑

{U1,...,Um}\Ui

p(X = 1|U\Ui, Ui = ui)
∏

k 6=i

fk(Uk). (A.14)

With these definitions in place, node X can produce messages to its parents
by local optimization:

ΛX,Ui
=min g

i
(Λ, {fj}j 6=i) (A.15)

subject to Λ ∈ {ΛX , ΛX},

fj(Uj) ∈ πUj ,X(Uj),
∑

Uj

fj(Uj) = 1,

ΛX,Ui
=min gi(Λ, {fj}j 6=i) (A.16)

subject to Λ ∈ {ΛX , ΛX},

fj(Uj) ∈ πUj ,X(Uj),
∑

Uj

fj(Uj) = 1.

Solution of these optimization problems are always found at the extremes of
the constraints [27]; consequently solutions can be found by visiting the 2m

extreme points.

The algorithm propagates messages as in Pearl’s BP. A root node X is ini-
tialized with πX(x) = [P (X = x) , P (X = x)]; a barren node X is initialized
with ΛX = [1, 1]. Finally, a node X that is observed (belongs to XE) is pro-
cessed as follows. A dummy node X ′ is created and X ′ sends to X a message
ΛX′,X that is equal to 0 if {X = 0} ∈ E and is equal to ∞ if {X = 1} ∈ E.
For this to be consistent, it is necessary to propagate messages with value ∞;
in some cases it is also necessary to handle messages that apparently require
division by zero. As discussed by Fagiuoli and Zaffalon, the algorithm handles
all cases correctly provided that: (i) whenever 1/∞ is met, it is replaced by

29

0; (ii) whenever 1/0 is met, it is replaced by ∞; (iii) whenever Λ is ∞ in
Expression (A.9), g

i
(∞, {fj}j 6=i) = hi(1, {fj}j 6=i)/hi(0, {fj}j 6=i); (iv) whenever

Λ is ∞ in Expression (A.10), gi(∞, {fj}j 6=i) = hi(1, {fj}j 6=i)/hi(0, {fj}j 6=i).

Acknowledgments

The first author was supported by FAPESP (grant 02/0898-2). The second
author was partially supported by CNPq (grant 3000183/98-4). The work
received substantial support from FAPESP (grant 04/09568-0) and from HP
Brazil R&D.

We thank Cassio Polpo de Campos for substantial help in producing exact
inferences for our experiments, and the reviewers for valuable suggestions.

References

[1] K. A. Andersen and J. N. Hooker. Bayesian logic. Decision Support Systems,
11:191–210, 1994.

[2] A. Antonucci, M. Zaffalon, J. Ide, and F. G. Cozman. Binarization algorithms
for approximate updating in credal nets. In Third European Starting AI
Researcher Symposium (STAIRS’06), pages 120–131. IOS Press, 2006.

[3] A. Antonucci, M. Zaffalon. Equivalence between Bayesian and credal nets on
an updating problem. In J. Lawry, E. Miranda, A. Bugarin, S. Li, M. A. Gil, P.
Grzegorzewski, O. Hryniewicz, editors, Soft Methods for Integrated Uncertainty
Modelling, pages 223-230. Springer, 2006.

[4] I. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM
monitoring system: A case study with two probabilistic inference techniques
for belief networks. Second European Conference on Artificial Intelligence in
Medicine, pages 247–256, 1989.

[5] V. Biazzo and A. Gilio. A generalization of the fundamental theorem of de
Finetti for imprecise conditional probability assessments. International Journal
of Approximate Reasoning, 24(2-3):251–272, 2000.

[6] A. Cano, J. E. Cano, and S. Moral. Convex sets of probabilities propagation
by simulated annealing. In G. Goos, J. Hartmanis, and J. van Leeuwen,
editors, International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems, pages 4–8, Paris, France, July
1994.

30

[7] A. Cano and S. Moral. A genetic algorithm to approximate convex sets
of probabilities. International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, 2:859–864, 1996.

[8] A. Cano and S. Moral. Using probability trees to compute marginals with
imprecise probabilities. International Journal of Approximate Reasoning, 29:1–
46, 2002.

[9] A. Cano, M. Gómez, and S. Moral. Application of a hill-climbing algorithm to
exact and approximate inference in credal networks. In Fourth International
Symposium on Imprecise Probabilities and their Applications, pages 88–97,
2005.

[10] J. Cano, M. Delgado, and S. Moral. An axiomatic framework for propagating
uncertainty in directed acyclic networks. International Journal of Approximate
Reasoning, 8:253–280, 1993.

[11] J. Cheng and M. Druzdzel. Computational investigation of low-discrepancy
sequences in simulation algorithms for Bayesian networks. In C. Boutilier and
M. Goldszmidt, editors, Conference on Uncertainty in Artificial Intelligence,
pages 72–81, San Francisco, California, 2000. Morgan Kaufmann Publishers.

[12] G. Coletti and R. Scozzafava. Probabilistic Logic in a Coherent Setting. Trends
in logic, 15. Kluwer, Dordrecht, 2002.

[13] G. Coletti. Coherent numerical and ordinal probabilistic assessments. IEEE
Transactions on Systems, Man and Cybernetics, 24(12):1747–1753, 1994.

[14] I. Couso, S. Moral, and P. Walley. A survey of concepts of independence for
imprecise probabilities. Risk, Decision and Policy, 5:165–181, 2000.

[15] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic
Networks and Expert Systems. Springer-Verlag, New York, 1999.

[16] F. G. Cozman. Credal networks. Artificial Intelligence, 120:199–233, 2000.

[17] F. G. Cozman. Separation properties of sets of probabilities. In C. Boutilier and
M. Goldszmidt, editors, Conference on Uncertainty in Artificial Intelligence,
pages 107–115, San Francisco, July 2000. Morgan Kaufmann.

[18] F. G. Cozman. Constructing sets of probability measures through Kuznetsov’s
independence condition. In International Symposium on Imprecise Probabilities
and Their Applications, pages 104–111, Ithaca, New York, 2001.

[19] F. G. Cozman. Graphical models for imprecise probabilities. International
Journal of Approximate Reasoning, 39(2-3):167–184, 2005.

[20] A. Darwiche. Recursive conditioning. Artificial Intelligence, 125(1-2):5–41,
2001.

[21] C. P. de Campos and F. G. Cozman. Inference in credal networks using
multilinear programming. In E. Onaindia and S. Staab, editors, Second
Starting AI Researchers’ Symposium (STAIRS), pages 50–61, Amsterdam, The
Netherlands, 2004. IOS Press.

31

[22] C. P. de Campos and F. G. Cozman. Belief updating and learning in semi-
qualitative probabilistic networks. In F. Bacchus and T. Jaakkola, editors,
Conference on Uncertainty in Artificial Intelligence (UAI), pages 153–160,
Edinburgh, Scotland, 2005.

[23] C. P. de Campos and F. G. Cozman. The inferential complexity of Bayesian
and credal networks. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 1313–1318, Edinburgh, United Kingdom, 2005.

[24] R. Dechter. Bucket elimination: A unifying framework for probabilistic
inference. In E. Horvitz and F. Jensen, editors, Conference on Uncertainty in
Artificial Intelligence, pages 211–219, San Francisco, California, 1996. Morgan
Kaufmann.

[25] D. L. Draper and S. Hanks. Localized partial evaluation of belief networks.
Conference on Uncertainty in Artificial Intelligence, pages 170–177, 1994.

[26] D. L. Draper. Localized Partial Evaluation of Belief Networks. PhD thesis,
Dept. of Computer Science, University of Washington, Washington,WA, 1995.

[27] E. Fagiuoli and M. Zaffalon. 2U: An exact interval propagation algorithm for
polytrees with binary variables. Artificial Intelligence, 106(1):77–107, 1998.

[28] J. C. Ferreira da Rocha and F. G. Cozman. Inference in credal networks:
branch-and-bound methods and the A/R+ algorithm. International Journal of
Approximate Reasoning, 39(2-3):279–296, 2005.

[29] J. C. Ferreira da Rocha, F. G. Cozman, and C. P. de Campos. Inference in
polytrees with sets of probabilities. In Conference on Uncertainty in Artificial
Intelligence, pages 217–224, San Francisco, California, United States, 2003.
Morgan Kaufmann.

[30] R. Fung and K. Chag. Weighting and integrating evidence for stochastic
simulation in Bayesian networks. In Uncertainty in Artificial Intelligence 5,
pages 209–219. Morgan Kaufmann, 1990.

[31] D. Geiger, T. Verma, and J. Pearl. Identifying independence in Bayesian
networks. Networks, 20:507–534, 1990.

[32] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo
in Practice. Chapman and Hall, London, England, 1996.

[33] V. Ha and P. Haddawy. Theoretical foundations for abstraction-based
probabilistic planning. In E. Horvitz and F. Jensen, editors, Conference on
Uncertainty in Artificial Intelligence, pages 291–298, San Francisco, California,
United States, 1996. Morgan Kaufmann.

[34] T. Hailperin. Sentential Probability Logic. Lehigh University Press, Bethlehem,
United States, 1996.

[35] J. Y. Halpern. Reasoning about Uncertainty. MIT Press, Cambridge,
Massachusetts, 2003.

32

[36] M. Henrion. Propagation of uncertainty in Bayesian networks by probabilistic
logic sampling. In J. F. Lemmer and L. N. Kanal, editors, Uncertainty in
Artificial Intelligence 2, pages 149–163. Elsevier/North-Holland, Amsterdam,
London, New York, 1988.

[37] J. S. Ide and F. G. Cozman. Generating random Bayesian networks with
constraints on induced width. In European Conference on Artificial Intelligence,
pages 323–327, Amsterdam - The Netherlands, 2004. IOS Press.

[38] J. S. Ide and F. G. Cozman. Approximate inference in credal networks by
variational mean field methods. In International Symposium on Imprecise
Probabilities and Their Applications, pages 203–212, Pittsburgh, Pennsylvania,
2005. Brightdoc.

[39] J. S. Ide and F. G. Cozman. Set-based variational methods in credal networks:
the SV2U algorithm. In A. C. Garcia and F. Osório, editors, XXV Congresso
da Sociedade Brasileira de Computação, volume V Encontro Nacional de
Inteligência Artificial, pages 872–881, São Leopoldo, Rio Grande do Sul, Brazil,
2005.

[40] J. S. Ide and F. G. Cozman. IPE and L2U: Approximate algorithms for credal
networks. In Second Starting AI Researcher Symposium (STAIRS), pages 118–
127. IOS Press, 2004.

[41] T. S. Jaakkola. Tutorial on variational approximation methods. Advanced Mean
Field Methods: Theory and Practice, pages 129–160, 2001.

[42] F. V. Jensen. An Introduction to Bayesian Networks. Springer Verlag, New
York, 1996.

[43] M. I. Jordan, Z. Ghahramani, and T. S. Jaakkola. An introduction to variational
methods for graphical models. Machine Learning, 37:183–233, 1999.

[44] I. Levi. The Enterprise of Knowledge. MIT Press, Cambridge, Massachusetts,
1980.

[45] Z. Li and B. D’Ambrosio. Efficient inference in Bayes networks as a
combinatorial optimization problem. International Journal of Approximate
Reasoning, 11:55–81, 1994.

[46] R. J. McEliece, D. J. C. MacKay, and J. F. Cheng. Turbo decoding as an
instance of Pearl’s ’belief propagation’ algorithm. IEEE Journal on Selected
Areas in Communication, 16(2)(CSD-99-1046):140–152, 1998.

[47] J. M. Mooij and H.J. Kappen. Sufficient conditions for convergence of loopy
belief propagation. In Conference on Uncertainty in Artificial Intelligence, 2005.

[48] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for
approximate inference: An empirical study. In Conference on Uncertainty in
Artificial Intelligence, pages 467–475, 1999.

[49] R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

33

[50] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.

[51] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, California, 1988.

[52] F. T. Ramos and F. G. Cozman. Anytime anyspace probabilistic inference.
International Journal of Approximate Reasoning, 38:53–80, 2005.

[53] S. Renooij, S. Parsons, and P. Pardieck. Using kappas as indicators of strength
in qualitative probabilistic networks. In T.D. Nielsen and N.L. Zhang, editors,
Seventh European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, pages 87–99. Springer Verlag, 2003.

[54] D. Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82(1-2):273–302, 1996.

[55] L. K. Saul, T. S. Jaakkola, and M. I. Jordan. Mean field theory for sigmoid
belief networks. Journal of Artificial Intelligence Research, 4:61–76, 1996.

[56] L. K. Saul and M. I. Jordan. Exploiting tractable substructures in intractable
networks. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors,
Advances in Neural Information Processing Systems, volume 8, pages 486–492.
MIT Press, Cambridge, MA, 1996.

[57] H. J. Suermondt and G. F. Cooper. Initialization for the method of conditioning
in Bayesian belief networks. Artificial Intelligence, 50(1):83–94, 1991.

[58] S. C. Tatikonda and M. I. Jordan. Loopy belief propagation and Gibbs
measures. In A. Darwiche and N. Friedman, editors, Conference on Uncertainty
in Artificial Intelligence, pages 493–500, San Francisco, California, 2002.
Morgan Kaufmann.

[59] B. Tessem. Interval probability propagation. International Journal of
Approximate Reasoning, 7:95–120, 1992.

[60] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and
Hall, London, 1991.

[61] P. Walley. Measures of uncertainty in expert systems. Artificial Intelligence,
83:1–58, 1996.

[62] Y. Weiss and W. T. Freeman. Correctness of belief propagation in Gaussian
graphical models of arbitrary topology. Technical Report CSD-99-1046, CS
Department, UC Berkeley, 1999.

[63] J. Winn. Variational Message Passing and its Applications. PhD thesis,
Department of Physics, University of Cambridge, Cambridge, UK, 2003.

[64] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation.
In Neural Information Processing Systems, pages 689–695, 2000.

[65] M. Zaffalon. Inferenze e Decisioni in Condizioni di Incertezza con Modelli
Grafici Orientati (in Italian). PhD thesis, Università di Milano, February 1997.

34

[66] M. Zaffalon. Conservative rules for predictive inference with incomplete
data. In Fourth International Symposium on Imprecise Probabilities and their
Applications, pages 406–415, 2005.

35

