
Sequential Decision Making with Partially

Ordered Preferences ⋆

Daniel Kikuti, Fabio Gagliardi Cozman, Ricardo Shirota Filho

Escola Politécnica, Universidade de São Paulo

Av. Prof. Mello Moraes, 2231 - São Paulo, SP - Brazil

Abstract

This paper presents new insights and novel algorithms for strategy selection in se-
quential decision making with partially ordered preferences; that is, where some
strategies may be incomparable with respect to expected utility. We assume that
incomparability amongst strategies is caused by indeterminacy/imprecision in prob-
ability values. We investigate six criteria for consequentialist strategy selection:
Γ-Maximin, Γ-Maximax, Γ-Maximix, Interval Dominance, Maximality and
E-admissibility. We focus on the popular decision tree and influence diagram rep-
resentations. Algorithms resort to linear/multilinear programming; we describe im-
plementation and experiments.

Key words: Sequential decision making under uncertainty, Partially ordered
preferences, Sets of probability measures, Criteria of choice, Consequentialist and
resolute norms, Linear and multilinear programming.

1 Introduction

It is often possible, in a decision problem, to express preferences that are com-
pletely ordered; that is, for every two alternatives, the decision maker either
prefers one to the other, or is indifferent between them. In fact, expected utility
theory is based on the assumption that revealed preferences are completely
ordered. However, preferences are often partially ordered; examples can be

⋆ This work has been financially supported by FAPESP, grants 2003/11165-9,
2004/09568-0, 2005/58090-9, 2008/03995-5.

Email addresses: danielkikuti@yahoo.com.br (Daniel Kikuti),
fgcozman@usp.br (Fabio Gagliardi Cozman), ricardo.shirota@poli.usp.br
(Ricardo Shirota Filho).

Preprint submitted to Elsevier 11 August 2010

found in the theory of CP-nets and the theory of nondeterministic planning,
as briefly discussed in Section 2. When preferences are partially ordered, two
alternatives may be incomparable and incomparability may fail to be transi-
tive.

In this paper we focus on preferences that can be represented by a single utility
function and a set of probability measures. Whenever there are incomplete
or partial beliefs or disagreements amongst experts concerning chances, one
may fail to assign a precise probability value to every event, thus producing
a partial order with respect to expected utility (Berger, 1985; Levi, 1980;
Walley, 1991). This is the situation we wish to focus on. Section 2 contains
the necessary background on these topics.

The literature describes many criteria of choice when preferences are partially
ordered (Troffaes, 2007). These criteria are covered in Section 3 and can be
roughly divided into two groups: (1) criteria that enforce a complete ordering
amongst choices (Γ-Maximin, Γ-Maximax and Γ-Maximix); and (2) criteria
that select a set of incomparable actions (Interval Dominance,Maximality and
E-admissibility). Practical approaches to decision making with sets of proba-
bilities have been mainly limited to the first category; however, recent discus-
sions (Seidenfeld, 2004) have highlighted theoretical and behavioral problems
when using this group of criteria, and the second group of criteria has been
more advocated as a more adequate approach. Nevertheless, incomparability
comes at a cost, and very little has been observed in the literature in terms of
algorithmic progress, mainly due to computational complexity and inability
to deal with incomparable choices. Section 3 can be considered a first step in
the study of algorithms that handle incomparability.

There are also distinct behavioral norms when it comes to sequential decision
making with partially ordered preferences; that is, whenever a sequence of
decisions must be made. For instance, a decision maker may be resolute in that
she commits herself to a complete strategy once and for all, or consequentialist
in that she allows herself to change the current strategy in case another one
is appropriate in view of the future possible choices.

The interplay between criteria of choice, behavioral norms, and models such as
decision trees and influence diagrams has not been explored in the literature;
this paper aims at filling this gap to some extent. There are indeed insights
to be learned from an organized discussion of criteria of choice and behavioral
norms; for instance, we discuss in Section 5 the fact that the standard LIMID
model clashes with a consequentialist stance.

Another, more substantial, contribution of the paper is the development of
algorithms for consequentialist sequential decision making expressed through
decision trees (Raiffa, 1968) and influence diagrams (Howard and Matheson,

2

2005). Algorithms for decision making under Γ-Maximin and similar criteria
have appeared in many settings (Satia and Lave Jr., 1973; Trevizan et al.,
2007; White III and El-Deib, 1994), while algorithms for decision making un-
der Maximality and E-admissibility have been suggested by Kyburg Jr. and
Pittarelli (1996) and proposed more recently by Kikuti et al. (2005) and Utkin
and Augustin (2005). 1 Section 3 presents algorithms and computational anal-
ysis for several criteria of choice. The most valuable contribution of Section 3 is
the algorithm for E-admissibility. We also present a new algorithm for strategy
selection using linear programming in a family of decision trees where partial
preferences have considerable regularity.

Sections 4 and 5 respectively present algorithms for decision making in prob-
lems specified through decision trees and influence diagrams. We should note
the scarcity of previous literature on influence diagrams under partially or-
dered preferences, perhaps due to the fact that several criteria of choice re-
quire the manipulation of an exponential number of strategies. To reduce this
complexity, we examine “ordered” LIMIDs, and we analyze both their con-
ceptual foundation (in particular their clash with consequentialism) and their
computational properties.

In short, we present novel results and algorithms for sequential decision making
with decision trees and influence diagrams, plus new insights for single-stage
decision making under Interval Dominance and E-admissibility. The broader
goal of the paper is to combine both the philosophical underpinnings and the
computational properties of partially ordered preferences, a combination we
feel is missing in the current literature.

2 Partially ordered preferences, behavioral norms, and credal sets

Throughout, our decision makers must select one or more actions within a
finite set of possible alternatives A = {a1, . . . , am}. Performing action a yields
a reward a(ω) for each state of nature ω; the set of states of nature is assumed
to be a finite set Ω = {ω1, . . . , ωn}. We assume that a(ω) is a real number
expressed in utiles. Even though some theories of preference allow multiple
utilities to be defined for a single decision problem (Aumann, 1962), in this
paper we assume that utilities are precisely fixed in a given decision problem,
and consequently every action is identified with a single real-valued function
over the states of nature. Note that a utility function is a function that returns
a value in utiles for each possible outcome; so we are assuming that a single

1 Most results are based on material presented in (Kikuti et al., 2005) and (Kikuti
and Cozman, 2007). The third author participated in developing the column gener-
ation method, and the experiments, reported in Section 4.3.

3

utility function is fixed.

The connection between preference and expected utility, in decision making
under risk (Luce and Raiffa, 1957), is based on the axiomatization of pref-
erence relations. Denote the strict preference of ai over aj by ai ≻ aj , and
define indifference between two actions as ai ∼ aj ⇔ ¬(ai ≻ aj) ∧ ¬(aj ≻ ai).
Suppose ≻ satisfies (recall that actions are functions that can be multiplied
and added) (Fishburn, 1970):
Axiom 1 (completeness) The relation ≻ is complete and negatively tran-
sitive (recall that ≻ is negatively transitive if it satisfies for all ai, aj, ak:
(ai 6≻ aj) ∧ (aj 6≻ ak)⇒ (ai 6≻ ak)).
Axiom 2 (independence) For α ∈ (0, 1], ai ≻ aj ⇒ αai + (1 − α)ak ≻
αaj + (1 − α)ak (this axiom says that whenever ai ≻ aj , a compound action
made of ai and ak will be preferred to a compound action made of aj and ak,
where α denotes the ratio of mixture between the actions).
Axiom 3 (continuity) If ai ≻ aj ≻ ak, then there exists α, β ∈ (0, 1) such
that αai + (1− α)ak ≻ aj ≻ βai + (1− β)ak.
Then there must exist a single probability measure P and a related expected
utility representation for ≻; that is, the value of an action ai is given by
E[ai] =

∑n
j=1 P (ωj) ai(ωj), and action ai ≻ aj if and only if E[ai] > E[aj].

Several theories relax these axioms, attempting to accommodate various ob-
served decision making patterns (Allais and Hagen, 1979; Ellsberg, 1961; Kah-
neman and Tversky, 1979). For instance, lexicographic preferences violate Ax-
iom 3 and are encoded through expected utility vectors, ordered with respect
to a lexicographic hierarchy (Fishburn, 1970; Blume et al., 1991). Other theo-
ries violate Axiom 2 and lead to non-additive functionals that represent prefer-
ences (Machina, 1989, Sec. 2.3). Partially ordered preferences violate Axiom 1
by assuming that preferences are not completely ordered; this is exactly the
situation we examine in the present paper. If we assume a single utility func-
tion and do not require the preference relation ≻ to be complete, we have that
ai ≻ aj if and only if EP [ai] > EP [aj] for all P in a set of probability measures
(Giron and Rios, 1980; Seidenfeld et al., 1990, 1995). That is, the preference
relation ≻ can be completely represented by a set of probability measures K.
Incomparability between two actions ai and aj appears when one probability
measure P1 ∈ K produces EP1

[ai] > EP1
[aj] while another probability measure

P2 ∈ K fails to produce EP2
[ai] > EP2

[aj].

As alluded to in Section 1, several circumstances may preclude the assess-
ment of a complete preference ordering, from incomplete understanding of a
decision scenario, or perhaps a desire to abstract elements of a complex deci-
sion situation, to disagreements amongst experts involved in decision making.
Sometimes the very language in which preferences are expressed allows for
partial specification; this is particularly relevant in artificial intelligence appli-
cations. For instance, the semantics of “nondeterministic” actions in planning

4

(Bonet and Givan, 2005) is that these actions have effects whose probabilities
are unknown, and consequently it is not possible to completely order them
with respect to expected utility (Trevizan et al., 2007). Another suggestive
example is the theory of CP-nets (Boutilier et al., 2004), in which a graph-
theoretical language organizes preferences about features of outcomes rather
than outcomes themselves. A CP-net may generate a single preference order-
ing for outcomes, but in general it specifies a partial ordering. While a CP-net
deals with outcomes (and thus reflects incomplete specification of utilities),
a similar language for actions would be within the confines of the present
paper. Hopefully the present paper will help shorten the gap between the cur-
rent theories of nondeterministic planning and CP-nets, and the foundational
literature on partially ordered planning.

When preferences are partially ordered, there may be no single “best” action to
select. Before we examine criteria of choice in Section 3, we review behavioral
norms for sequential decision problems (Section 2.1) and some properties of
sets of probability measures (Section 2.2).

2.1 Sequential decision problems: strategies and behavior norms

In a sequential decision problem, a decision maker faces a sequence of deci-
sions, and each decision may impact future decisions. A convenient language
to introduce sequential decision problems is through decision trees (Raiffa,
1968). A decision tree T is a connected graph without cycles, where each
node belongs to one of three categories. A decision node D ∈ D, typically
drawn as a square, represents the place where the decision maker must choose
an action. A chance node C ∈ C, typically drawn as a circle, represents an
event out of control of the decision maker. A utility node U ∈ U is associated
with a real-valued utility. In decision trees, a leaf node is a utility node and
vice-versa. Edges out of a decision node represent the possible actions that
the decision maker can choose and edges out of a chance node represent the
possible outcomes of the event. A subtree of T is a tree T ′ whose nodes and
edges form subsets of T . We assume that any tree or subtree is rooted at a
decision node. A strategy is a complete set of actions specifying how the de-
cision maker should act when she is actually called to decide. A strategy for
a subtree is called a substrategy. We are interested in selecting strategies. The
next example clarifies this notion.

Example 1 The decision tree in Figure 1 is adapted from (Kahneman and
Tversky, 1979). 2 It has three strategies: s1 = (a1, a3), s2 = (a1, a4) and s3 =

2 Kahneman and Tversky (1979) observed that, through hypothetical choice be-
tween pairs of prospects offered to groups of university students and faculties, 80%
of them preferred a sure gain of 3000 Israeli pounds (a4) to a .80 chance of winning

5

X1

a2

a1

a3

a4

X2

B

$4000

$0

$3000

$0

$1000

A

.80

.20.25

.75

Fig. 1. A sequential decision problem represented through decision tree.

(a2); where (a1, a3) means that the decision maker will choose action a1 at
A and a3 if she reaches the decision node B (if she does not reach B then
she receives $0). [One might instead consider all conceivable combinations of
decisions, as often done in game theory; in this case we would have strategies
such as (a2, a3) and (a2, a4). We do not follow this route.]

There are two widely debated behavioral norms for decision makers engaged
in sequential decision problems (Etchart, 2002). A resolute decision maker
commits herself to a complete strategy once and for all, comparing simulta-
neously all strategies rooted at the first decision node (McClennen, 1990). A
sophisticated or consequentialist decision maker selects strategies to follow out
of a decision node only looking at the subtree rooted at that decision node,
and may actually change the strategy previously selected (Hammond, 1976,
1988a). There are other possible norms that we do not investigate further;
for instance, a myopic decision maker constructs her strategy by selecting ac-
tions, at each decision node, independently of future choices (Strotz, 1956;
Hammond, 1976).

The following example illustrates the behavioral norms in the light of a non-
expected utility model of preference.

Example 2 Consider again Example 1. Suppose the decision maker has adopted
a rank-dependent utility model of preference (Kahneman and Tversky, 1979),
where strategies are ranked using a single utility/probability pair and the func-
tion

V (a) = a(ω1) +
n
∑

j=2

exp(−(− ln(xj))
0.5)[a(ωj)− a(ωj−1)],

where xj =
∑n

k=j P (ωk) and the inequalities a(ω1) ≤ . . . ≤ a(ωn) are assumed
to hold. At node A we have V (s1) = 1124, 86, V (s2) = 924, 23 and V (s3) =
1000, so at node A, s1 ≻ s3 ≻ s2. However at node B, action a4 is preferred to
a3 as V (a3) = 2494, 06 and V (a4) = 3000. If the decision maker is resolute,

4000 (a3); 65% preferred .20 chance of winning 4000 (s1) to a .25 chance of winning
3000 (s2) and; 78% preferred a .25 chance of a sure gain of 3000 (s′1) to a .25 chance
of winning a lottery with .80 of chance and 4000 of prize (s′2). In their theory s′1
and s′2 are different from s1 and s2 respectively.

6

she selects s1 and implements it; at B she must choose a3 even if a4 is locally
better. If the decision maker is consequentialist, she would anticipate that in
B she would prefer a4 to a3, so s1 is infeasible for her: comparing s2 and s3
at A, she must choose s3. If the decision maker is myopic, she would select
s1 at A, but when she reaches B she deviates from s1 by choosing a4 (the best
option locally), thus actually implementing s2.

In general, resolute behavior demands examination of all strategies at the be-
ginning. Even though the resolute norm has been forcefully defended when
moral aspects of commitments are taken into account (Bykvist, 2000; Mc-
Clennen, 1997), resolution faces several problems as to how preferences are to
be elicited and modeled. By renouncing consequentialism, the decision maker
does not have well defined local preferences that can be revealed from her
choices (Samuelson, 1948). 3 A consequentialist norm makes even more sense
if we consider a resource bounded decision maker who cannot possibly opti-
mize over the space of all strategies (Simon, 1955). For this reason, we adopt
the consequentialist norm throughout this paper.

If a decision maker eliminates an action at a non-root node, and this action
might be selected from the perspective of the root node, we have an episode
of incoherent choice. Another situation is that of inconsistent choice, where
the decision maker selects a strategy but subsequently deviates from it (Ham-
mond, 1976; Machina, 1989). Incoherent and inconsistent choices do not occur
when a decision maker ranks preferences through expected utility with a sin-
gle utility function and a single non-zero probability measure (in fact, resolute
and consequentialist norms are equivalent for such a decision maker). How-
ever, incoherence may befall the decision maker when preferences are partially
ordered:

Example 3 (Adapted from (Seidenfeld, 2004)) In the decision tree de-
picted in Figure 2, p ∈ [0.25, 0.75], q = 1/2 and ǫ > 0. There is a charge of 0.4
utiles to take action a1, a2a or a2b, and a charge of 0.35 utiles to take action
a3, thus EP [a1] = 0 and EP [a2a] = EP [a2b] = 0.1 for every possible P . There
are 9 additional strategies to consider, by combining actions out of D2 and D3.
Suppose we are interested in strategies with maximum minimum expected util-
ity (that is, we adopt the Γ-Maximin criterion to be detailed later). For small
ǫ, at D2 the Γ-Maximin action is a′1, and at D3 the Γ-Maximin action is a′′1;
however the strategy (a3, a

′
1, a

′′
1) is not Γ-Maximin at D1, as (a3, a

′
2a, a

′′
2b) is a

strategy with larger minimum expected utility. This is an episode of incoherent
choice, since we throw away the actions that would lead to better strategy at
the root node.

3 Jaffray (1999) combines consequentialist preferences and non-consequentialist be-
havior. Nielsen and Jaffray (2001) use the rank dependent utility model with pref-
erences function revealed by the anticipated utility theory of Quiggin (1982).

7

a’1

a’2b

a’2a

a’’1

a’’2a

a’’2b

D1

a1

a2b

a2a

a3

.4

C

q

1−q

D2 E

E

0

0

.4
p

1−p

p

1−p

D3 E

E
1

0

0

.4
p

1−p

p

1−p

1−ε

1−ε

−.4

−.4

−.4

−.35

1
q

C

E

E
1

0

0

1
p

1−p

p

1−p
1−q

C

E

E
0

1

1

0
p

1−p

p

1−p
1−q

q

Fig. 2. Decision tree for Example 3.

We will further discuss incoherent and inconsistent choices in Section 4.1, after
detailing some criteria of choice.

2.2 Partially ordered preferences through sets of probability measures

As noted previously, partially ordered preferences can often be represented by
sets of probability measures. We call a set of probability measures a credal
set (Levi, 1980), and denote by K(X) a credal set that contains distributions
for a random variable X . We assume throughout that credal sets are given by
a finite set of linear constraints, thus being closed convex with finitely many
vertices (Example 4 shows one such credal set).

Given a set of assessments containing constraints on probability values, any
credal set that satisfies the constraints is an extension of the assessments.
Given an event A, P (A) = minP∈K P (A) and P (A) = maxP∈K P (A) are re-
spectively the lower probability and the upper probability of A. Given a random
variable X , E[X] = minP∈K E[X] and E[X] = maxP∈K E[X] are respectively
the lower expectation and the upper expectation of X (we use expected value
and expectation as synonyms). A conditional credal set K(·|A) is obtained by
conditioning (Bayes’ rule) every measure in a credal set with respect to A
(likewise, K(·|Y) is produced by elementwise conditioning with respect to a
random variable Y). We assume that any conditioning event has lower prob-
ability strictly larger than zero (P (A) > 0). If the (joint) credal set K(X, Y)
is such that every one of its vertices satisfies stochastic independence of X
and Y (that is, all vertices factorize as P (X)P (Y)), then X and Y are said
to be strongly independent. There are several other concepts of independence
for credal sets in the literature (Couso et al., 2000; Cozman, 2000); strong
independence is perhaps the most popular, and we adopt it in this paper.
Conditional strong independence is defined in the obvious manner, by requir-
ing conditional stochastic independence for every vertex of the conditional

8

credal set of interest.

We shall, when we deal with influence diagrams, use elements of the theory
of credal networks. A credal network is a graph-theoretical representation for
a joint credal set K(X1, . . . , Xn) that mimics the structure of a Bayesian net-
work (Cozman, 2005). A credal network consists of a directed acyclic graph
such that each node is identified with a random variable Xi. The parents
of variable Xi in the graph are denoted by pa(Xi). Each variable is associ-
ated with a conditional credal set K(Xi|pa(Xi) = πk) for each value πk of
pa(Xi), and every variable is assumed strongly independent of its nondescen-
dants in the graph given its parents in the graph. Thus the largest extension
of all assessments in a credal network, called the strong extension, is a joint
credal set K(X1, . . . , Xn) given by the convex hull of the set of joint distribu-
tions: {

∏n
i=1 p(Xi|pa(Xi)) : p(Xi|pa(Xi) = πk) ∈ K(Xi|pa(Xi) = πk)} where

this expression refers to densities induced by the appropriate probability mea-
sures. An inference is then the computation of lower/upper probabilities for
the values of some variable. In general, inference with strong extensions is
NP PP -complete; with constraints on the induced width of credal networks,
the complexity of inferences is in NP (de Campos and Cozman, 2005). The
best available algorithms for inference with strong extensions optimize a mul-
tilinear polynomial

∏n
i=1 p(Xi|pa(Xi)) subject to assessments in the credal

network (de Campos and Cozman, 2004). Some variables may be discarded
when computing a particular inference, using the d-separation property that
strong extensions inherit from Bayesian networks (Cozman, 2000). 4

We will need to solve multilinear programs several times in this paper. The
most refined algorithm for solution of multilinear programming problems aris-
ing from judgements of independence seems to be the adaptation of Sherali
and Tuncbilek (1992)’s RL method by de Campos and Cozman (2005). We
have used the adapted RL method in our implementation (Section 5.2), and
we usually take the solution of a multilinear program to be a “unit” of com-
putation, even though such a solution may require substantial effort in itself.

3 Criteria of choice in single-stage decision making

In this section we study several criteria of choice for partially ordered pref-
erences; that is, criteria that select one or more actions from a given set of
actions. We present the basic computations that must be performed in a single-

4 Given three collections of variables X, Y and Z, suppose that along every path
between a variable in X and a variable in Y there is a variable W such that: either
W has two converging arrows and is not in Z and none of its descendants are in Z,
or W is in Z. Then X and Y are d-separated by Z (Pearl, 1988).

9

x1 x2 x3 E[ai] E[ai]

a1 9 7 1 3.3 5.6

a2 0 5 8 4.3 6.45

a3 5 5 5 5.0 5.0

a4 6 4 4 4.2 4.7

a5 2 6 5 4.2 5.1

��������
��������
��������
��������

��������
��������
��������
��������

1[x]

(x)1P

3[x](0,0,1)2[x](0,1,0)

(x)2P

(x)1P

(x)2P
(x)3P

(x)3P

(1,0,0)

Fig. 3. Left: Actions, utilities, and lower and upper expected utilities for Exam-
ple 4. Right: Credal set K(X) (hatched area) defined by probability intervals in
Example 4; axes denote probability of x1, x2 and x3.

stage decision making problem, and we present short code fragments that are
used later. While several of these algorithms have appeared in the literature
(Troffaes, 2004, 2007), the discussion contributes with new analyses both for
Interval Dominance and for E-admissibility (Kikuti et al., 2005). The com-
putational cost of the algorithms is presented as a function of the number
of auxiliary optimization programs that must be solved. The following ex-
ample clarifies the nature of these programs (the example deals with linear
constraints; later we face situations where auxiliary programs are multilinear).

Example 4 Consider a decision problem with three states, x1, x2 and x3 that
are values of a random variable X. Actions and utilities are given in Figure 3.
Suppose the credal set K(X) is specified through P (X = x1) ∈ [1/10; 7/20],
P (X = x2) ∈ [1/5; 2/5], and P (X = x3) ∈ [7/20; 13/20], as depicted in Fig-
ure 3. To obtain lower and upper expectations for actions ai (also in Figure 3),
we must solve linear programs of the form min /maxE[ai] =

∑

j pjai(xj) sub-
ject to

∑

j pj = 1 and P (X = xj) ≤ pj ≤ P (X = xj) for j = 1, 2, 3.

Existing criteria can be roughly divided into two groups. Indecision-resistant
criteria force a single ordering of choices, and thus select either a single action
or a set of equally ranked (with respect to choice) actions. Indecision-prone
criteria may return a set of actions that are deemed incomparable (with respect
to preference).

We start by briefly examining indecision-resistant criteria: Γ-Maximin, Γ-
Maximax, and Γ-Maximix. The Γ-Maximin criterion selects an action with
highest lower expectation, a “pessimistic” solution that focuses on worst case
scenarios (Berger, 1985; Gilboa and Schmeidler, 1989). Algorithm 1 is an easy
translation of the Γ-Maximin criterion. The Γ-Maximax criterion selects an

10

Algorithm 1: Criterion Γ-Maximin

Input: Set of actions A, and set of constraints K on probability values.
Output: A Γ-Maximin action.

a∗ ← a1, x← E[a1];1

foreach ai ∈ A\a1 do if E[ai] > x then {a∗ ← ai, x← E[ai]};2

return a∗;3

action with highest upper expectation, an “optimistic” solution that focuses
on best case scenarios (Satia and Lave Jr., 1973). The Γ-Maximix criterion
selects a∗ = argmaxai∈A(ηE[ai]+(1−η)E[ai]), where η ∈ [0, 1] reflects the de-
gree of ambiguity aversion (Utkin and Augustin, 2005), and is already sketched
by Hurwicz (1951). Algorithm 1 can be easily modified to deal with the Γ-
Maximax and Γ-Maximix criteria. For these three criteria, Algorithm 1 returns
the selected action by solving a number of optimization programs, each subject
to constraints in K. The number of optimization programs is clearly linear on
the number of actions. In Example 4, the Γ-Maximin criterion selects a3, while
the Γ-Maximax criterion selects a2 and the Γ-Maximix criteria also selects a2
for η = 0.5.

Consider indecision-prone criteria, starting with Maximality. An action ai
is maximal if there is no action aj such that, for each possible probability
measure P ∈ K, EP [aj] > EP [ai]. The maximality criterion is based on
pairwise comparisons amongst actions, as indicated by Algorithm 2 (in Al-
gorithm 2 we use the fact that EP [ai] > EP [aj] for all P is equivalent to
E[ai − aj] > 0 (Walley, 1991)). To handle n actions, the algorithm must
solve at most (n2 − n) optimization programs. In Example 4, to determine
whether a4 can be maximal in the presence of a3, we must solve the lin-
ear program max (6p1 + 4p2 + 4p3 − 5p1 − 5p2 − 5p3) subject to

∑3
i=1 pi = 1,

1/10 ≤ p1 ≤ 7/20, 1/5 ≤ p2 ≤ 2/5, and 7/20 ≤ p3 ≤ 13/20. We find that the
maximum is 3/10, hence a4 is not maximal when a3 is present.

We now examine Interval Dominance and E-admissibility in more detail.

3.1 Interval Dominance

Interval Dominance selects one or more I-admissible actions as follows (Trof-
faes, 2004). Action aj is I-inadmissible when ai is present if E[ai] > E[aj].
The I-admissible actions are the actions that are never I-inadmissible. Note
that Interval Dominance does not identify dominance in the sense that, given
two actions ai and aj , ai dominates aj if for all probability measures P ,
EP [ai] ≥ EP [aj]): in Figure 4, a2 has higher expectation than action a1 for
every probability value P (A) ∈ [0.3, 0.7], but Interval Dominance does not

11

Algorithm 2: Criterion Maximality

Input: Set of actions A containing #A actions (each action has attribute
“admissible”, initially set to true), and set of constraints K on
probability values.

Output: The set of maximal actions.

for i← 1 to (#A− 1) do1

for j ← i+ 1 to (#A) do2

if E[ai − aj] > 0 then aj .admissible← false;3

else if E[ai − aj] < 0 then ai.admissible← false;4

return All actions with attribute “admissible” set to true;5

6

-
P (A)

E[ai]

a1

a2 E[a1]

E[a1]

E[a2]

E[a2]
�
�
�
�
�
�

�
�
�
�
�
�

6

-
P (E)

E[ai]

a′2a

a′1
a′2b

1

0.4

0.25 0.75
�
�
�
�
�
�

�
�
�
�
��H

H
H
H
H
H

H
H
H
H
HH

Fig. 4. Left: Interval Dominance does not capture ”true dominance (slanted lines
denote the expectations of actions a1 and a2 as the probability of event A varies).
Right: Actions and their expected utilities in Example 5.

choose between these actions.

A naive method to generate I-admissible actions would compare every pair
of actions. Algorithm 3 avoids unnecessary computation of lower and up-
per expectations by using the Γ-Maximin solution a∗. Action a∗ is always
I-admissible: suppose otherwise that a∗ is I-inadmissible; then there is a′ with
higher lower expectation, contradicting the hypothesis. The comparison of all
actions with a∗ generates the I-admissible actions (an action a′ dominated by
another action a′′ is also dominated by action a∗ with the maximum lower
expectation, because E[a] ≥ E[a′′]). To find a∗ we must solve n optimiza-
tion programs; to determine the set of admissible actions we must solve n− 1
additional optimization programs. Consequently, Algorithm 3 returns the I-
admissible actions by solving a linear (on the number of actions) number of
optimization programs.

3.2 E-admissibility

The criterion of E-Admissibility, where E stands for “expectation” (Levi,
1974), focuses on actions that maximize expected utility. Given a set of actions
A and a credal set K, the action ai ∈ A is E-admissible when, for at least one

12

Algorithm 3: Criterion IntervalDominance

Input: Set of actions A (each action has attribute “admissible”, initially
set to true), and set of constraints K on probability values.

Output: The set of I-admissible actions.

a∗ ← Criterion Γ-Maximin(A, K); x← E[a∗];1

foreach ai ∈ A do if x > E[ai] then ai.admissible← false;2

return All actions with attribute “admissible” set to true;3

P ∈ K, ai maximizes expected utility (Schervish et al., 2003):

ai is E-admissible when ∃(P ∈ K) : ∀(aj ∈ A, j 6= i) : EP [ai − aj] ≥ 0. (1)

A variant of E-admissibility has been explored for Markov decision processes
with imprecise probabilities in (Itoh and Nakamura, 2007).

Example 5 Take a′1, a
′
2a and a′2b as in Example 3, and assume ǫ = 0. Ex-

pected utilities are shown in Figure 4 (right). Only actions a′2a and a′2b are E-
admissible: action a′2b maximizes expected utility for P (E) ∈ [0.25, 0.5], while
action a′2a maximizes expected utility for P (E) ∈ [0.5, 0.75]. Even though a′1
is the Γ-Maximin action, it never maximizes expected utility and is not E-
admissible.

E-admissibility is qualitatively different from the previous criteria in that it
does not depend on pairwise comparisons; rather, it is based on the existence
of specific probability measures in the underlying credal set. Thus one might
think that E-admissibility is more difficult to handle computationally than the
other criteria. This feeling transpires in the literature on decision making with
partially ordered preferences, as best expressed in Troffaes (2004)’s excellent
review. However, it is possible to reduce the search for E-admissible actions
to a linear sequence of optimization programs, using insights first derived
by Kyburg Jr. and Pittarelli (1996). The original discussion by Kyburg and
Pittarelli did not focus on computational cost, and it lay dormant until the
same techniques surfaced independently in work by Kikuti et al. (2005) and
Utkin and Augustin (2005), in response to Troffaes (2004)’s analysis.

The basic idea is that an action ai is E-admissible if there is P ∈ K such that
all constraints generated by Expression (1) are satisfied. If these constraints
cannot be satisfied, then ai is not E-admissible. Algorithm 4 generates exactly
these constraints: the linear expression EP [ai − aj] ≥ 0 in line 3, stored in
the set C, denotes a symbolic constraint on the free (not yet bound) values of
P . This way the algorithm avoids the need to represent credal sets explicitly
(that is, the need to enumerate vertices). As every action is verified only once:

Proposition 1 Algorithm 4 returns the E-admissible actions by solving a lin-
ear (in the number of actions) number of optimization programs.

13

Algorithm 4: Criterion E-admissibility

Input: Set of actions A containing #A actions (each action has attribute
“admissible”, initially set to true), and set of constraints K on
probability values.

Output: The set of E-admissible actions.

for i← 1 to (#A) do1

C ← K;2

for j ← 1 to (#A) do if i 6= j then C ← C ∪ {EP [ai − aj] ≥ 0};3

if C is not feasible then ai.admissible← false;4

return All actions with attribute “admissible” set to true;5

In Example 4, a1, a2 and a3 are E-admissible actions. To verify whether a1 is
E-admissible, we must verify whether the following linear constraints can be
satisfied together:

∑3
i=1 pi = 1 and

1/10 ≤ p1 ≤ 7/20, 1/5 ≤ p2 ≤ 2/5, 7/20 ≤ p3 ≤ 13/20,

9p1 + 7p2 + p3 − 0p1 − 5p2 − 8p3 ≥ 0, 9p1 + 7p2 + p3 − 5p1 − 5p2 − 5p3 ≥ 0,

9p1 + 7p2 + p3 − 6p1 − 4p2 − 4p3 ≥ 0, 9p1 + 7p2 + p3 − 2p1 − 6p2 − 5p3 ≥ 0.

4 Algorithms for sequential decision making: decision trees

In this section we derive algorithms for sequential decision making with deci-
sion trees that display indeterminacy/imprecision in probability values.

4.1 Preliminaries: the option for consequentialism

In a decision tree where chance nodes are associated with credal sets we may
face differences between resolute and consequentialist behaviors.

We start by noting that E-admissibility and Maximality never lead to inco-
herent choice as both resolute and consequentialist norms produce identical
sets of strategies (Seidenfeld, 2004; Huntley and Troffaes, 2008). 5 Thus with
E-admissibility and Maximality it is possible to run backward induction and
produce a sequence of substrategies that satisfy consequentialism and that
reach the strategies complying with the resolute norm. As a digression, note

5 Nevertheless, both E-admissibility and Maximality still may lead to inconsistent
choice, where the decision maker plans for an action but then executes a different
action.

14

2D

a’2

a’1

C

D1

a2

a1

E
1

0

q3

F
1

0

q1

1−q1

G
1

0

q2

1−q3

1−q2

p

1−p

0

Fig. 5. Decision tree for Example 6.

that such backward induction scheme is exactly given by Algorithm 5, detailed
later, when this algorithm is specialized to the E-admissibility and Maximality
criteria (Kikuti et al., 2005)); we also note that recent work by Huntley and
Troffaes (2008) yields simplifications to Algorithm 5 when applied to Maxi-
mality.

The remaining criteria in Section 3 may produce distinct consequentialist and
resolute behaviors. The Γ-Maximin criterion was considered in Example 3.
Clearly the same applies to the Γ-Maximix and Γ-Maximax criteria, since
they do not guarantee that a discarded substrategy is not part of an optimal
strategy. To illustrate this for Γ-Maximax criterion, consider again Example 3.
At D2, the Γ-Maximax action is a′2a, and at D3, the Γ-Maximax action is a′′2b.
However at D1 the Γ-Maximax strategy is either (a3, a

′
2a, a

′′
2a) or (a3, a

′
2b, a

′′
2b).

Incoherent choice can also happen with Interval Dominance, a fact that ap-
parently has not been indicated before:

Example 6 In the decision tree depicted at Figure 5, suppose p ∈ [1/10, 3/10],
q1 ∈ [1/5, 2/5], q2 ∈ [2/5, 3/5] and q3 ∈ [3/5, 4/5]. At D2, action a′1 dominates
action a′2, but the strategy (a1, a

′
2) is I-admissible at D1.

In this paper we adopt the consequentialist position that the best substrategy
starting at a decision node can depend only on the subtree starting at that
node, motivated by the fact that the sensible alternative, resolute behavior, is
computationally unfeasible in general for bounded agents (in a sequential deci-
sion problem, the resolute behavior can be viewed as a “brute-force” method,
that demands the enumeration of all possible strategies).

4.2 Selecting strategies

Algorithm 5 presents a general framework for consequentialist sequential de-
cision making in the presence of indeterminacy/imprecision in probabilities
— that is, under partially ordered preferences. The algorithm can be special-
ized by replacing throughout criterion by the desired criterion of choice.

15

Algorithm 5: DecisionTree criterion

Input: A decision tree T as described in Section 4.1, with a set T .K of
constraints on probability values.

Output: A set of strategies selected by criterion.

m← Number of decision nodes;1

for i← m until 1 do2

S ← ∅;3

foreach D′ that is a child of Dm do4

if D′ ∈ D then5

foreach sj ∈ D′.substrategies do S ← S ∪ {D′, sj};6

else if D′ ∈ C then7

foreach sj ∈ Combination(D′) do S ← S ∪ {D′, sj};8

else S ← S ∪ {D′}9

K ← GenerateConstraints(S, Dm, T .K);10

D.substrategies← Criterion criterion(S, K);11

return Content of attribute substrategies for root decision node;12

The intuition behind the algorithm is that a strategy can be constructed by
visiting the nodes backwards, i.e. from last (leaf) to first (root), by selecting
the optimal choice as decision nodes are encountered. The optimal choice at
a decision node is then combined to the array of optimal choices selected at
previously visited nodes, until the root node is resolved. In order to accomplish
this, Algorithm 5 assumes that each decision node keeps a list of admissible
substrategies (according to criterion) rooted at that node; this list is kept
in the “substrategies” attribute. The remainder of this section is dedicated to
a detailed discussion of technical aspects of this algorithm. In addition, we
propose a simple transformation that allows the algorithm to be solved using
linear programming instead of the more computationally demanding multilin-
ear program. We also show that this linear program can benefit from the use of
the column generation technique in order to obtain solutions more efficiently.

We assume that the decision nodes in D are topologically sorted, that is, they
follow a linear (temporal) ordering of decisions such that if T contains a path
from decision node Dx to Dy, then Dx appears before the decision node Dy in
the ordering. We assume that D1 is the root of T and Dm is the last decision
node in such ordering.

As mentioned, the construction of strategies in our algorithm starts backwards
at a leaf of the tree, that is, at a utility node (line 9 of Algorithm 5). We visit
each decision node Dm (from last to first) and examine its children. If a child
D′ of D is a decision node, the substrategies rooted at D′ are combined with
the action that prescribes a move to D′ (this is indicated by storing D′ at
the beginning of the substrategies). If D′ is a chance node, there are two

16

cases to handle. If a chance node has no decision nodes as successors, the
only substrategy rooted at D is a substrategy that simply moves to D′. If a
chance node has decision nodes as successors, it is then necessary to combine
all substrategies that can branch out of D′. For instance, if there are three
decision nodes out of a chance node, and each one of these decision nodes
leads to two substrategies, then eight substrategies must be produced. We
assume that these substrategies are returned by the function Combination in
line 8 of Algorithm 5.

The substrategies S generated in the loop from line 4 to line 9 are fed to
the appropriate function Criterion criterion in line 11. This function treats
each substrategy as an action, and it must also receive the constraints and
parameters of optimization programs that are run so as to select substrategies
in Criterion criterion. These constraints are basically contained in the input
set T .K, and given in terms of local assignments.

Once the constraints are generated, they are processed by Criterion criterion

in a sequence of optimization programs. Fix a decision node D and strategy
s; the expectation of s is:

∑

x1,...,xN∈{0,1}

P (X1 = x1|an(X1)) . . . P (XN = xN |an(XN))U(s, x1, . . . , xN), (2)

where Xi denotes indicator functions for each one of the events in the subtree
rooted at D only with branches selected by s, an(Xi) is the set of nodes
in the path from D to Xi, and P (Xi = xi|an(Xi)) is a local assignment on
the probability that the event Xi obtains xi. This expression is clearly in
a multilinear form, and optimizing it subject to constraints on probability
values (the terms in the product) takes us to nonlinear programming, as has
been pointed out before (Danielson et al., 2003; Danielson and Ekenberg,
2007; Kikuti et al., 2005). Nonlinear programming is known to be a class of
very difficult problems to solve, and specific optimization methods have been
recently applied to the particular case of sequential decision making under the
Γ-Maximax criteria by de Campos and Ji (2008).

There are, however, interesting situations where all optimization programs in
Criterion criterion can be transformed into linear programs, as discussed
in the next section.

4.3 Selecting strategies with linear programming

A linear formulation is obtained for strategy selection when assessments are
linear constraints and are separately specified in the sense that probability con-
straints for the event at a particular chance node do not depend on probability

17

values for any other event. For instance, assessments are separately specified
if T .K contains only bounds on probabilities such as P (A|B) ∈ [α, β] where
A is an event at a chance node and B is a conjunction of events in the decision
tree from the root to that node (as illustrated by Example 6).

To obtain linear programs, we first note that Expression (2) can be written as

∑

x1,...,xN∈{0,1}

P (X1 = x1, . . . , XN = xN)U(s, x1, . . . , xN), (3)

where P (X1 = x1, . . . , XN = xN) are the probability values to optimize over.
For instance, consider again constraints such as P (A|B) ∈ [α, β], where A
and B are (conjunctions of) events in the decision tree. We can use Bayes’
rule of conditioning to transform these constraints into the form αP (B) ≤
P (A ∩B) ≤ βP (B) under the assumption that probabilities are strictly pos-
itive. In Example 6, we have the constraints:

1/10 ≤ P (C) ≤ 3/10, 3/5P (C) ≤ P (E ∩ C) ≤ 4/5P (C) ,

1/5P (C) ≤ P (F ∩ C) ≤ 2/5P (C) , 2/5P (Cc) ≤ P (G ∩ Cc) ≤ 3/5P (Cc) .

It is instructive to analyze the size of the linear programs that are generated
by this method. One extreme (favorable) situation is represented by a sym-
metric decision tree where each decision node in the same slice branches into
a constant number of chance nodes containing the same event. That is, the
first decision node branches into several nodes containing event A; then the
decision nodes out of these two chance nodes branch into several chance nodes
all labeled with event B, and so on, as depicted in Figure 6 (left) for the case
of branching factor equal to two. For a fixed strategy, we have a symmetric
binary tree, and if the problem deals with N events, this binary tree contains
2N −1 nodes. Each complete path from the root to a utility node corresponds
to a complete conjunction of events and complements of events, and the linear
program to be built has as many optimization variables as there are paths
in this symmetric binary tree. We reach the satisfying conclusion that, for
symmetric decision trees, the linear programs that must be solved within Al-
gorithm 5 are polynomial on the size of the decision tree (this is of course not
entirely comforting as the size of these decision trees is exponential on the
number of events). Figure 6 (right) shows running times for the computation
of lower expected value for a given strategy, as this is the basic operation for
all criteria of choice. Points in that graph have been produced by generating
symmetric decision trees with randomly generated utilities and lower/upper
probabilities for events. The implementation is coded in AMPL and uses the
CPLEX commercial package as linear programming solver; experiments were
run in a microcomputer with two dual-core processors and 4GBytes of mem-
ory. One sees that running times are quite small for N ≤ 10; it is hard to
imagine a symmetric decision tree with more than 10 chance nodes. Just to

18

D1

D2

D4

D3

D5

A

A

B

B

B

B

B

B

B

B

1 2 N

5 6 7 8 9 10 11 12 13 14 15
10

−2

10
−1

10
0

10
1

10
2

Number of events

R
un

ni
ng

 ti
m

e
[s

]

Fig. 6. Linear programming solution for exponentially large, separately specified
decision trees. Left: symmetric decision tree. Right: running times, in logarithmic
scale, for growing N (number of events).

compare, we have also solved the multilinear formulation (2) using the pro-
gramming package Multilin (de Campos and Cozman, 2005). The multilinear
programs took minutes even for N = 5 and often failed to converge (Multi-
lin produces successive approximations and typically reaches a vicinity of the
solution quickly, but then converges very slowly).

Now consider the other extreme situation, where for every fixed strategy we
have a symmetric binary tree such that each chance node contains a different
event. Here the linear program that computes the lower/upper expectation of
a strategy is exponentially larger than the decision tree: for a binary tree with
height H , there are N = 2H − 1 chance nodes and 2N = 2(2

H−1) optimization
variables. That is, we may have a relatively small decision tree that leads
to very large linear programs: for example, in a binary tree of height 5 (5
levels), there are N = 25 − 1 = 31 chance nodes and 2N = 231 optimization
variables. As indicated in Figure 6 (right), running times grow substantially
as N grows grows beyond 10. Here we face a situation that is similar to
probabilistic logic; that is, we have a relatively small set of constraints on N
events and we must handle 2N configurations of these events (Georgakopoulos
et al., 1988; Hailperin, 1965; Hansen and Jaumard, 1996). Such problems have
been tackled with column generation (Jaumard et al., 1991) and redundancy
detection (Hansen and Perron, 2008; Luo et al., 1996). We are interested in
minimizing/maximizing an objective function given by Expression 3. We can
write this expression as a product of vectors u·p, where u contains the values of
the utility nodes and p the probability values over the 2N possible configuration
of events. We also know from T .K the constraints p is subject to, that can
also be easily written in matrix form by Ap ≥ b.

It is clear that A has a very large number of columns (more precisely, 2N , one
for each possible configuration of events). Storing and manipulating such an
amount of columns is very inefficient and time consuming. However, by using

19

column generation, it is possible to solve this linear program by manipulating
only a smaller sub-matrix A′ of A with as many rows and columns as there are
rows in A. The challenge is that, to run the simplex method, at each iteration
we must select one of the previously discarded columns of A to replace an
existing column in A′. This is done by computing the reduced cost c − yA,
where y is the dual cost of the current solution (Bertsimas and Tsitsiklis,
1997). We can write every column of A as a vector of multilinear expressions
[A1B1−α1B1, . . . , AmBm−αBm]

T , where Ai is an event and Bi is a conjunction
of events, and αi is an assessment. Thus c− yA is a multilinear expression on
optimization variables that are either 0 or 1; there are standard techniques to
reduce such an optimization problem to integer programming (de Campos and
Cozman, 2007, Sec. 4.2). To summarize: we run the simplex method with A′,
and to decide which column of A to enter into A′, we run an auxiliary integer
program. We note that problems with hundreds of variables in probabilistic
logic have been solved using column generation with relative ease (Hansen and
Perron, 2008), so the exact solution of large decision tree can be obtained.
Note also that these techniques can be extended to chance nodes that are
associated with random variables with finitely many values. The added effort
is to binarize the random variables into sets of binary variables, and to add
Boolean constraints so that these binary variables only take on possible values.
The result is again a probabilistic logic problem that can be solved using linear
programming, possibly with column generation if N is large.

4.4 Consequentialist backward induction...?

One might argue that constraints K should be generated only once before any
other computation in Algorithm 5, as assessments T .K are available as in-
put. However such an approach may miss significant simplifications, because
there may be chance nodes that are discarded during execution of the algo-
rithm, given our consequentialist perspective. For instance, in Figure 5 the
event F can be discarded when one is at D1, because action a′2 and the subse-
quent nodes are not admissible for any criteria of choice previously discussed.
Thus it makes sense to generate constraints “inside” the loop (line 10) in Algo-
rithm 5. Nevertheless, in the worst case the function GenerateConstraints may
build, if implemented as described in the previous section, an exponentially
large optimization program at the root node. This is somewhat unsatisfying,
particularly when compared to backward induction in standard decision trees.

In a standard decision tree, an already processed decision node is completely
summarized by the unique expected value of the selected substrategy from
that node on. Instead in the function GenerateConstraints described in the
previous section, the programs built at decision nodes grow in size. The natural
question is: Can we have a function GenerateConstraints that summarizes the

20

2D

D1

3D

C

q

1

3

2

0

p
d

c
E

E

1−p

p

1−p

0
1−q

C
1−q

q

3

1

p

b

a
E

p
0

2
E

0

a’ 1−p

1−p

a’’

Fig. 7. Decision tree for Example 7.

already processed decision nodes through an interval of expected utility? For
instance, in Example 6 we would like the choice between a1 and a2 to be
resolved at D1 only by processing an expectation interval from D2. Alas, such
an interval-based backward induction fails in general:

Example 7 Consider the decision tree in Figure 7, adapted from (Hammond,
1988b). Here p ∈ [ǫ, 1−ǫ] and q = ǫ, for some small ǫ > 0. Actions a and b are
maximal and E-admissible at D2, and c and d are maximal and E-admissible
at D3, but strategy {a′, a} dominates {a′′, d}, and {a′′, c} dominates {a′, b}.
If D2 and D3 were to return the expectation intervals for their maximal/E-
admissible actions, it would not be possible to detect that some strategies are
dominated; in fact, all four strategies have overlapping expectation intervals.

Maximality and E-admissibility may fail in an interval-based backward induc-
tion because the necessary information about the constraints on probability
values may be lost. We now wish to show that an interval-based backward
induction can succeed for Γ-Maximin, Γ-Maximax, Γ-Maximix and Interval
Dominance. That is, for these criteria and under the assumption that con-
straints are separately specified, we can evaluate actions at a decision node
D as a one-step decision problem where each decision node reached from D
is replaced by a single expectation interval. We start by rehearsing, in the
next paragraph, an argument by Danielson and Ekenberg (2007), who derived
algorithms for computation of lower/upper expectations of a fixed strategy in
the presence of local bounds on probabilities and expectations.

The central idea by Danielson and Ekenberg (2007) is as follows. Fix a strategy
s; using Expression (2),

E[s] = min
P1,...,PN

∑

X1

· · ·
∑

XN

P1(X1|an(X1)) . . . PN(XN |an(XN))U(s,X1, . . . , XN),

where we have subscripted the probability distributions so as to emphasize the
scope of the minimization. We can move the summations to the right, elimi-
nating variables one by one from XN to X1, and we can place the minimization
over a probability distribution right before the probability distribution of in-
terest; this is only possible because all constraints are local and independently
specified for each path from root to the node of interest. Hence to compute

21

the lower expectation of s, we can run a backward induction scheme where
a reduced optimization program is built at each decision node D by encod-
ing constraints in the subtree rooted at D, with action selected by s, and
with branches cut at future decision nodes. These latter decision nodes are
replaced by their lower and upper expected utilities; and as D produces its
own lower and upper expected utilities, it passes only these values back to its
ancestors. Reduced programs are multilinear due to the presence of probabil-
ity constraints and expectation intervals; that is, in Expression (2) we have
both values of Pi and of U as free variables to optimize for. Danielson and
Ekenberg (2007) present techniques that simplify the solution of these local
multilinear programs.

Returning to our problem, consider the criterion of Interval Dominance. At
decision nodeD we can build a complete optimization program with all chance
nodes in the subtree rooted at D, except those nodes in subtrees eliminated
in previous stages of the backward induction method. Alternatively, we can
build a reduced optimization problem with the chance nodes between D and
the decision nodes that are direct descendants, with the proviso that these
descendants summarize the content of their subtrees by intervals of expected
utility. Recall that each decision node that is direct descendant ofD is attached
to a fixed set of substrategies, because our decision maker is consequentialist.
Thus the only question is whether the set of I-admissible actions at D is the
same regardless of whether we use the complete or the reduced program. Given
that all that matters for Interval Dominance are lower/upper expectations,
the argument in the previous paragraph leads to a positive answer: the two
programs produce identical results, as the complete program can be divided
into several smaller programs that are all encoded in the reduced program and
its expectation intervals.

Similar arguments work for Γ-Maximin, Γ-Maximax and Γ-Maximix. Each
descendant D′ of D is attached to a single selected substrategy s′ rooted at
D′. Every expected utility in the expectation interval for s′ can be attained by
selecting probability distributions in the subtree rooted at D′. Consequently,
at D we lose nothing by restricting attention to the expectation interval of s′,
and likewise for every descendant of D.

To finish this section, we compare several kinds of assessments and criteria of
choice in the context of Example 3:

Example 8 Consider Example 3, and suppose ǫ is small. Algorithm 5 starts
at D2, where three substrategies, corresponding to actions a′1, a

′
2a and a′2b, are

evaluated by the appropriate function Criterion criterion. The same hap-
pens at node D3. At node D1, the actions a1, a2a, a2b are evaluated, together
with all combinations of selected strategies from D2 and D3. We have the
implicit constraint that a single value p refers to several probability values

22

(P (E|C,D1), P (E|Cc, D2), etc); that is, constraints are not separately spec-
ified. Running the complete backward induction algorithm, we obtain the fol-
lowing selected strategies. The Γ-Maximin actions are a′1 and a′′1 at D2 and
D3, and the Γ-Maximin strategy is either (a2a) or (a2b) at D1. [Note that
action a′2a is inadmissible at D2, action a′′2b is likewise inadmissible at D3,
but their combination is identical to a2a, a Γ-Maximin action at D1!] The Γ-
Maximax criterion prescribes a′2a and a′′2b at D2 and D3, and then (a3, a

′
2a, a

′′
2b)

at D1. Interval Dominance selects all actions at nodes D2 and D3, so we have
twelve strategies to evaluate at D1, five of which are inadmissible ((a1), (a2a),
(a2b), (a3, a

′
1, a

′′
1) and (a3, a

′
2b, a

′′
2a)). E-admissibility discards only a′1 and a′′1

at D2 and D3, while Maximality does not discard any of them. At D1 Maxi-
mality discards the same strategies as Interval Dominance plus the strategies
(a3, a

′
1, a

′′
2a) and (a3, a

′
2a, a

′′
1). Finally, at D1 E-admissibility discards the same

strategies as Maximality plus the strategies (a3, a
′
1, a

′′
2b) and (a3, a

′
2a, a

′′
1). There

are three E-admissible strategies: (a3, a
′
2a, a

′′
2a), (a3, a

′
2a, a

′′
2b), and (a3, a

′
2b, a

′′
2b).

Suppose we change Example 3 so that the probability of E depends on the path
from root to the chance node labeled with E; that is, we have eight probability
values pi ∈ [0.25, 0.75] (constraints are separately specified). A linear program-
ming solution is now possible. However, if we wish we can deal with reduced
programs through multilinear programming. Note that we face a decrease in se-
lectivity by separating assessments: the only inadmissible strategy for Interval
Dominance, Maximality and E-admissibility is (a1).

To summarize the discussion on decision trees: the same strategies are selected
under resolute and consequentialist norms for Maximality and E-admissibility,
and there, a backward induction procedure is fully justified; for the remaining
criteria, a backward induction method is only justified by a consequentialist
position (as adopted in this paper). Another point is that the size of optimiza-
tion programs generated by Algorithm 5 may grow exponentially; however for
Γ-Maximin, Γ-Maximax, Γ-Maximix and Interval Dominance it is possible to
run reduced programs when constraints are separately specified. And finally, a
linear programming formulation is possible in some cases but multilinear pro-
gramming is required in general, and in particular when dealing with reduced
programs.

5 Influence diagrams with partially ordered preferences

Decision trees can hardly represent large, or even medium size, decision prob-
lems, as the number of nodes in a decision tree increases exponentially with
the number of chance and decision variables. A more compact way to represent
sequential decision problems is through influence diagrams. A seminal work
on influence diagrams with interval probabilities was presented by Breese and

23

Fertig (1990); Fertig and Breese (1993); no substantial advance seems to have
appeared in the literature after that work. We now expand that analysis by
considering several criteria of choice.

The section is organized as follows. In Section 5.1 we introduce influence di-
agrams with partially ordered preferences, we define a class of problems that
we are interested in, we present an algorithm to solve such class of problems
and provide an analysis of complexity for the algorithm. In Section 5.2 we
discuss several examples and experiments.

5.1 Preliminaries, strategy selection and algorithm

An influence diagram with imprecise probabilities is a directed acyclic graph
over a set of decision nodes D (square shaped), chance nodes C (circle shaped)
and utility nodes U (diamond shaped). Edges into a chance node indicate
stochastic dependence; edges into a decision node indicate the available infor-
mation at the time of the decision; edges into a utility node indicate functional
dependence. Each decision node is associated with a finite set of actions con-
ditional on its parents. Each chance node is associated with a random vari-
able C and with a set of credal sets: for each instantiation πi of the parents
of C (pa(C)), we have a credal set K(C|pa(C) = πk) specified as in credal
networks; 6 each utility node U is associated with a function u(pa(U)) that
depends only on the parents of U . If more than one utility node is specified,
then the total utility is the sum of all functions in utility nodes (Tatman and
Shachter, 1990). The standard definition of influence diagrams (Howard and
Matheson, 2005) requires a linear temporal order of all decisions (typically
represented by a directed path comprising all decision nodes) and the no for-
getting assumption, that is, at each decision node the decision maker knows all
her previous decisions and past observations. However, some past information
may be irrelevant and should not be considered for computational reasons
(Nielsen and Jensen, 1999; Shachter, 1999). In Limited Memory Influence Di-
agrams (LIMIDs) (Lauritzen and Nilsson, 2001), the no forgetting assumption
is relaxed, that is, the decision maker knows only the past decisions and ob-
servations that are explicitly linked to the decision nodes. This allows the
representation of a broad class of decision problems, including situations with
many decision makers.

A policy δD for decision node D is a mapping from the parents of D to the
possible actions in D. A strategy s is an ordered set of prescribed actions for
all decision nodes, where each action depends on the parents of the decision
node; that is, an ordered set of policies s = {δD1

, . . . , δDn
}. The expression of

6 In this paper all variables have finitely many values.

24

expected utility for a strategy s, for a fixed probability distribution P , is

∑

U∈U,X∈{C,D}

(

u(pa(U))
∏

X

P (X|pa(X))

)

, (4)

where we note that if X ∈ D, then its value is fixed by strategy s (the variable
is associated to zero/one probabilities given s). In standard influence diagrams
and standard LIMIDs, an optimal strategy is a strategy with maximum ex-
pected utility (such strategies are called global maximum strategies in LIMIDs
(Lauritzen and Nilsson, 2001)).

It is important to pause for a moment and consider the properties of LIMIDs.
First, any influence diagram is a LIMID where a decision node is informed
about all previous decisions. However, if a LIMID contains a small number
of arcs into decision nodes, the number of possible strategies is small when
compared to the number of strategies in an influence diagram with identical
graph. Hence the number of arcs into decision nodes is a critical parameter in a
LIMID. Another important property of LIMIDs is that decision nodes are not
necessarily ordered, so a decision maker contemplating a particular decision
node may have no clue as to which decisions are implemented already and
which decision are still to be reached.

The lack of ordering amongst decisions in LIMIDs brings about a point that
seems to have been missed in the literature. Namely, that LIMIDs are intrinsi-
cally inappropriate for consequentialist behavior. Clearly a decision maker can
enumerate all strategies in a LIMID and then select a strategy with maximum
expected utility, presumably to follow it all the way (in a resolute manner). A
consequentialist behavior is harder to describe in the context of a LIMID. Sup-
pose a decision maker seats at a decision node, considering only future moves
in an attempt to evaluate its current decision; that is, in a consequentialist
position. But how is this decision maker to know what are the “future” moves
in a LIMID? There may be decisions that are not ordered with respect to the
current decision, and the only way to examine the relative value of strategies
is to consider all possible orderings. This may only be possible by consider-
ing the set of strategies from the outset, as a resolute decision maker would
do. Indeed, the popular algorithm Single Policy Update (SPU) (Lauritzen and
Nilsson, 2001) finds non-optimal strategies in LIMIDs by updating policies in
some given order; the resulting strategies are not guaranteed to be optimal
and, more importantly, the whole reasoning behind SPU cannot be given a
consequentialist justification. For this reason, we do not attempt in this paper
to adapt SPU to LIMIDs with imprecise probabilities; quite the contrary, we
use a direct multilinear formulation of the strategy-selection problem. Note
that a version of SPU for indecision resistant criteria is not so difficult to con-
ceive (as every decision node must yield a single policy) but a version of SPU
for indecision resistant criteria seems not to be possible.

25

D1 D2

A

U

Fig. 8. A simple influence diagram with too many strategies.

For these reasons, in this paper we are interested only in those LIMIDs that
have a temporal order for decisions, so that we can always consider consequen-
tialist behavior. Such an assumption about LIMIDs clearly limits the scope of
models we can use, but it should be noted that the resulting class of LIMIDs is
substantially larger than the class of influence diagrams; even though there is
an ordering on decisions, the set of strategies that is allowed for a LIMID does
not necessarily require each decision node to be aware of all previous decisions
in the ordering. That is, the number of possible strategies in the LIMID may
be substantially smaller than the number of strategies in an influence diagram
of identical structure. In fact, the reason why we focus on “ordered” LIMIDs
is exactly so that we can limit the number of possible strategies as compared
to influence diagrams proper.

Example 9 Consider Figure 8. Suppose that A has four possible events and
D1 has four possible actions. A policy for D2 specifies one action for each
configuration of the parents. If D2 has two possible actions, then there are 216

policies. In general, if we have m configurations and n actions, we can generate
nm policies. This example shows that the number of policies grows quickly
(exponentially) when decision nodes depend on several parents. In this case
the search for optimal strategies may easily become intractable. For instance,
suppose we intend to apply the Maximality criterion, then we have a total of
nm2

optimization programs to evaluate.

As noted, our approach to strategy selection is to use a (consequentialist)
backward induction process, rather than to resort to a variant of SPU or any
other approximate scheme. The algorithm proceeds from the last decision node
up to the first, building the strategies during execution by selecting admissible
actions for each configuration of pa(D), and then combining only the selected
actions. The subtle point is that, for indecision-prone criteria, we may have
to consider more than one admissible policy for a decision node D as long as
the algorithm iterates. This approach can save computations in two ways: 1)
the computations are done locally (we do not need to consider all variables on
the graph, thus, the optimization programs are smaller) and, 2) if the number
of selected actions is smaller than n, then we reduce the number of possible
policies to be considered. The Algorithm 6 summarizes this idea. Once the fact
that we adopt a consequentialist position is understood, the algorithm can be
viewed as a mix of the algorithm for policy selection in standard influence

26

Algorithm 6: InfluenceDiagram criterion

Input: An influence diagram D as described in Section 5.1, with a set
D.K of constraints on probability values.

Output: A set of strategies selected by criterion.

m← Number of decision nodes;1

Sm+1 ← ∅;2

for Di ∈ D, i← m until 1 do3

Gi ← Required variables to evaluate actions in Di;4

Ai ← CombineActions(Di,Si+1);5

foreach configuration πk of pa(Di) do6

Ki ← GenerateConstraints(Di,Ai, πk,Gi,D.K);7

Admissible[πk]← Criterion criterion(Ai,Ki);8

Si ← CombineSubstrategies(Admissible,Si+1);9

return Criterion criterion(S1,K1);10

diagrams (where consequentialism is natural) and our previous algorithms for
decision trees.

In Algorithm 6, we keep track of a list Si associated to decision node Di.
The list Si is used to hold the set of (sub)strategies suggested by indecision
prone criteria. It contains all admissible substrategies, evaluated by crite-

rion, rooted at Di, Si = {δDi
, . . . , δDm

}. The initialization in line 2 indicates
that previous to the first iteration there is no substrategy. As we have pointed
out before, to evaluate an action in a given decision node, we do not need
to consider all variables in the graph. This is exactly what we do in line 4 of
Algorithm 6. First we note that a utility node U is relevant to a decision D
if there exists a directed path connecting D and U . Then we use a standard
d-separation algorithm (Shachter, 1998) to obtain the needed variables, that
is, the set of variables that are not d-separated from the set Ui of utility nodes
relevant to Di, given that the set {Di, pa(Di)} are “observed” (the decision
node is clamped to the selected action). 7 The function CombineActions takes
the list of substrategies Si+1 and attaches an action of Di to each s ∈ Si+1.
Suppose that in Example 9 there are two admissible policies in D2, then at
decision node D1 the function CombineActions returns to Ai eight possible
combinations. These combined actions will be evaluated by the criteria of
choice before building the policies for decision node Di. We rely on the crite-
ria for reducing the number of admissible policies. This is done in the inner
loop.

7 Due to their independence relations, influence diagrams and LIMIDs can be
viewed as extended Bayesian networks (Cooper, 1988; Shachter, 1998, 1999). Our
framework can be viewed as an extended credal network, so d-separation applies to
them.

27

The function GenerateConstraints is responsible for creating the constraints
on probabilities that are passed to the function Criterion criterion. This
function must encode the state space, as done for decision trees, and then
encode constraints on probability values based on the input constraints D.K.
Differently from decision trees, the constraints in Ki must take into account the
fact that lower/upper expectations are now: (1) restricted to variables in Gi;
and (2) conditional on a set of “observed” nodes {Di, pa(Di)}. Thus the new
element here is that we must minimize/maximize conditional expectations;
this is done by introducing an auxiliary variable z and a new constraint,

∑

Ui,Gi\Ei

P (Gi) u(Ui)− zP (Ei) = 0, (5)

where Ei denotes the set of nodes “observed” at Di. This constraint forces z
to be the desired conditional expectation. Hence the inner loop in Algorithm 6
builds the optimization programs as in decision trees, using Expression 5 in
symbolic form whenever necessary.

The function CombineSubstrategies is responsible for building Si. It receives
the set of admissible actions and the set of substrategies Si+1, builds the
possible policies for Di, and appends them to the substrategies in Si+1.

The complexity of the algorithm obviously depends on the criteria of choice.
For indecision resistant criteria, we always consider one optimal policy at
each decision node and, consequently, we have only one strategy (similar to
influence diagrams with precise probabilities). This is also the best case for
indecision prone criteria (when the criterion is very selective). The worst case
happens when the criterion does not discard any action. This implies that we
need to consider all possible combination of policies as long as we proceed in
a backward fashion, and at the first decision node we have the same amount
of strategies as if we were a resolute decision maker.

5.2 Examples and experiments

The algorithm presented in the previous section has been implemented and
run in several well-known examples. Most of the implementation was coded in
the Java language, with calls to optimization packages (the multilinear pro-
gramming package Multilin (de Campos and Cozman, 2005) and the CPLEX
and Minos commercial packages respectively for linear and nonlinear opti-
mization). Tests were run in a microcomputer with two dual-core processors
and 4GByte of memory. We report the character of selected strategies and the
computational effort spent to select these strategies.

We start with the classic oil wildcatter problem (Raiffa, 1968); this is a small

28

D

S O

U1 U2

T

Amount of oil (O)

Test (S) dry wet soaking

ns [0.60,0.65] [0.30,0.35] [0.10,0.10]

os [0.25,0.30] [0.40,0.40] [0.40,0.45]

cs [0.10,0.10] [0.25,0.30] [0.45,0.50]

Fig. 9. Influence diagram for the oil wildcatter problem and probability intervals
for seismic test given amount of oil.

influence diagram, so we can indicate the steps of the algorithm in some detail.

Example 10 The oil wildcatter problem is depicted in Figure 9. An oil wild-
catter must decide whether to drill or not to drill (decision D). The cost of
drilling is $70K. If the decision is to drill, the soil may be soaking, wet or
dry (with a return of $270K, $120K or $0 respectively). Suppose probabilities
for the amount of oil (O) are: P (O = soaking) ∈ [0.2, 0.2], P (O = wet) ∈
[0.3, 0.35], P (O = dry) ∈ [0.45, 0.5]. At the cost of $10K, the oil wildcatter
can take seismic soundings of the site. The result of this test (S) may be ns
(no oil), os (some oil), cs (abundance of oil), with interval probabilities in
Figure 9. If the test is not conducted, then P (S = s|O) = 1 if {S = nt} and
P (S|O) = 0 otherwise, where nt is a special value of S that indicates absence
of test.

To select strategies, we start with the decision D; node U2 is required and
all nodes but U1 are returned by GetdConnected. The expected utility of not
drilling is 0.00 regardless of S. The expected utility of drilling depends on S.
To compute the lower expected utility of drilling given that {S = ns}, we must
minimize auxiliary variable z subject to constraints on probabilities and to

∑

O

P (O)P (S = ns|O, T)u(D = yes, O)− zP (S = ns) = 0.

Running this and similar multilinear programs, we obtain:

S nt ns os cs

E[D = yes|S] 20.00 −32.76 32.86 82.61

E[D = yes|S] 26.00 −21.27 50.00 91.29

Using the Γ-Maximix criterion with η = 0.5 we find that the action not to drill
is not admissible, except when the seismic test indicates ns. Thus we have the
policy δ∗D(S) = ns if {S = no} and δ∗D(S) = yes otherwise. As the Γ-Maximix

29

criterion specifies only one policy in D, we have only two policies to analyze
at T (δT = yes and δT = no). The overall utility is given by the sum of U1

and U2; we then obtain E[T = yes] ∈ [−10K,−10K] + [31.75K, 37.23K] =
[21.75K, 27.23K] and E[T = no] ∈ [0, 0] + [20K, 26K] = [20K, 26K]. The se-
lected action at T is to take the seismic test (δ∗T = yes). The selected strategy is
s∗ = {δ∗T , δ

∗
D}. This strategy is also selected by the Γ-Maximin and Γ-Maximax

criteria. With E-admissibility, we obtain at D the same policy suggested by the
Γ-Maximix criterion. At node T , we have two E-admissible policies, δT = yes
and δT = no. The combination of optimal policies leads to two strategies with
expected utilities respectively in [21.75K, 27.23K] and [20.0K, 26.0K]. Interval
Dominance and Maximality select the same strategies as E-admissibility.

The next influence diagram we examine is the “Breeding Pigs” problem de-
scribed by Lauritzen and Nilsson (2001), and represented by the influence di-
agram in Figure 10. A pig breeder is growing pigs for a period of four months
and subsequently selling them. During this period the pig may or may not de-
velop a certain disease (hi represents the pig’s health, healthy or ill, in the ith
month). Once a month, a doctor makes a test for the presence of the disease
(ti represents the test’s results, disease free or otherwise), and the doctor may
or may not treat the pig for the disease by injecting a certain drug (decision
node di). The utility nodes u1, u2, u3 represent the cost of treating the pig, and
u4 represents the payoff for selling the pig. Additionally, we have: the price
of a pig with disease is 300DKK (Danish kroner) and of a disease-free pig is
1000DKK (utility node u4); the cost of an injection is 100DKK (utility nodes
u1, u2, u3); the test is correct when the pig is ill with probability 0.80, and
correct when the pig is healthy with with probability 0.90 (chance nodes ti);
a healthy pig develops the disease in the subsequent month with probability
0.20 without injection, whereas a healthy and treated pig develops the disease
with probability 0.10; an untreated pig that is unhealthy will remain so in
the subsequent month with probability 0.90, whereas the similar probability
is 0.5 for an unhealthy pig that is treated (chance nodes h2, h3, h4). The deci-
sion maker is uncertain about the pig’s health in the first month (h1). In our
experiments we assume two intervals for h1: the first one is a small interval
defined near the probability of the original problem (P (ill) = [0.1, 0.2]); the
second one is a large interval (P (ill) = [0.0, 0.5]).

In this example the full previous treatment and test history are available when
decisions are made. At decision node d3, there are 5 conditioning nodes. A
policy at d3 specifies an action for 32 configurations (all five conditioning nodes
have just two possible values). An indecision-resistant criterion must run 64
inferences to find out the best policy, while an indecision-prone criterion may
have to keep track of many incomparable substrategies. It is indeed possible
that the large number of incomparable substrategies makes it impossible to
finish the algorithm, as we will see in a moment.

30

t 2 3tt 1

h1 h2 h3 h4
u4

d1 d2 d 3

2u u31u

t 2 3tt 1

h1 h2 h3 h4
u4

d1 d2 d 3

2u1u u3

Fig. 10. Left: Influence diagram (with complete history) for the Breeding Pigs prob-
lem. Right: LIMID version for the Breeding Pigs problem.

P (h1 = ill) Criteria

of ad-
missible
strategies
LIMIDs

Elapsed
Time
(secs.)
LIMIDs

of ad-
missible
strategies
IDs

Elapsed
Time
(secs.)
IDs

[0.1, 0.2]

Γ-Maximin 1 2.41 1 10.20

Γ-Maximax 1 2.63 1 11.45

Γ-Maximix 1 3.59 1 16.03

I. Dominance 2 5.35 16 89.95

Maximality 1 1.84 2 17.59

E-admissibility 1 2.39 2 23.58

[0.0, 0.5]

Γ-Maximin 1 3.74 1 16.48

Γ-Maximax 1 5.27 1 32.23

Γ-Maximix 1 7.57 1 43.39

I. Dominance 8 23.42 — —

Maximality 2 3.76 — —

E-admissibility 1 4.14 7 584.64

Table 1
Experiments with the Breeding Pigs problem.

Now, consider a LIMID for the Breeding Pigs problem, where the decision
maker does not remember past decisions and results of tests from previous
months (the decision maker remembers only the result of the test taken in the
current month). The resulting LIMID is also depicted in Figure 10.

Table 1 presents results for all criteria we have discussed. The column labeled
of admissible strategies reports the number of strategies selected by our
implementation, and the column labeled Elapsed time shows the average time
of execution over thirty runs for each criterion. An interesting fact is that the
smaller probability interval leads to smaller execution times: the sharper the

31

probabilities, the smaller the number of incomparable substrategies to process.
Another point to note is that Interval Dominance and Maximality could not be
run to termination for the larger probability interval, due to the huge number
of strategies that these criteria fail to discard during execution. A curious
fact is that E-admissibility does not crash the system, and indeed leads to
a relatively small number of selected strategies: even though E-admissibility
seems more complex computationally, the fact that it is more selective than
Interval Dominance and Maximality is quite valuable in practice.

Another curious fact in Table 1 is that, with the LIMID, Maximality and E-
admissibility seem to be faster than the indecision-resistant criteria. This result
can be traced to a few computational aspects that are not apparent from a
superficial analysis. As we can define the set of maximal/E-admissible actions
without computing exact probability values (just find a distribution satisfying
the constraints), we use a fast approximated solver in Minos to produce a
preliminary selection of actions. After this, we use the exact solver Multilin
to compute lower/upper expectations. The approximated solver quickly gets
close to the exact solution, so the overall computing time is greatly benefited.
It is also possible to explain the weak showing of Interval Dominance, as it
requires the use of the exact solver to compute lower and upper expectations
so as to compare actions. 8 It is noteworthy that Interval Dominance is a
simple criterion to apply in single stage decision problems while in sequential
decision problems it faces difficulties due to its low selectivity.

Our final example deals with a relatively large LIMID that has been proposed
by de Campos and Ji (2008) as a model for Effects-Based Operation planning
(EBO). The LIMID is shown in Figure 11; all variables are binary, and the de-
cision nodes have two possible actions (yes/no). The cost of actions, given by
{Ui}

11
i=1, is: if Di is yes, then cost is 50 for U3, 150 for U8, 80 for U10, 100 for U11

and 20 for the all others. The reward for achieving the main goal is 1000, while
not achieving it costs 500 (utility node UH). The chance nodes Ci represent
the rate of success with an interval probability P (Ci = 1|Di = yes) ∈ [0.9, 1.0].
The chance nodes Bj and Ak have probability 1 if all parents are positive,
probability 0.5 if only one parent is positive, and probability 0 otherwise. The
probability of chance node G is 1 given that its parents are positive, 0.6 if only
one parent is negative, 0.3 if two parents are negative, and 0 otherwise. Deci-
sion nodes have no parents (an extreme LIMID), hence an arbitrary ordering
of decision nodes is adopted when selecting strategies. Using the Γ-Maximin
criterion, the selected strategy is to take action yes in all decision nodes except
D5, D6, D7 and D8 (approximately 40 seconds were taken to select it). The

8 If we use the solver Minos to find I-admissible actions, Interval Dominance takes
2.68 and 56.70 seconds in the LIMID and influence diagram respectively, when
P (h1 = ill) ∈ [0.1, 0.2]; and it takes 9.45 seconds in the LIMID, and crashes with
the influence diagram, when P (h1 = ill) ∈ [0.0, 0.5].

32

D1

C 4 C 6 C 7 C 8 C 9 C11C 1 C 3

D3 D4 D7 D8 D9 D10 D11D2

U2 U4U3 U5 U6 U7 U8 U9 U10 U11U1

C 2 C 5 C10

D6D5

B 6B 5B 4B 3

A 3

B 1 B 2

A 1

G

A 2UH

Fig. 11. Influence diagram for the EBO problem.

lower expected utility of this strategy is −55.28; the elapsed time to select
it was approximately 40 seconds. The only E-admissible strategy is to take
action yes in all decision nodes except D8 (approximately 120 seconds were
taken to select it). The expected utility of this strategy belongs to [68.97, 330];
note that the consequentialist E-admissible strategy is always better than the
consequentialist Γ-Maximin strategy. 9

6 Conclusion

This paper has examined the selection of strategies in sequential decision mak-
ing when preferences are partially ordered. In particular, we have focused on
preference patterns that are encoded through a single utility and a set of prob-
ability measures. A partial order over strategies introduces subtle ingredients
into the decision problem, as we have several criteria of choice and behav-
ioral norms, episodes of incoherent/inconsistent choice, and varying degrees of
computational gain, depending on criteria and norms) in backward induction.
We have tried to shed some light into these matters from a consequential-
ist perspective, and to present algorithms that select strategies by solving
sequences of optimization programs. Most algorithms employ multilinear pro-
gramming, and some particular cases can be tackled by linear programming.
Clearly, algorithms based on multilinear programming can be adapted to han-
dle interval-valued utility, as we then have products between probabilities
and utilities that must be optimized over; we have refrained from discussing
interval-valued utility so as to limit the length of the paper.

9 By brute-force enumeration of strategies, we find that there is an E-admissible
strategy with lower expected utility 156.41 (and upper expected utility 480.00); the
consequentialist approach misses this possibility.

33

The current literature on sequential decision making with partially ordered
preferences can be roughly divided in two streams. The philosophical debate
tends to favour abstract comparisons amongst criteria and norms, with lit-
tle consideration of computational costs. On the other hand, if one looks at
techniques that do involve decision making with partially ordered preferences,
such as nondeterministic planning and CP nets, and even the theory of LIM-
IDs, one finds detailed study of computational costs but little attention to
criteria, norms, and consistency. We hope that this paper strikes some needed
balance between conceptual discussion and computational development, and
helps shorten some of the gaps between these viewpoints. In particular we
believe that the effect of the consequentialist perspective is currently not ap-
preciated in the artificial intelligence literature, exactly where this norm is
most adequate as one must deal with bounded agents.

We can summarize our contributions as follows. We have first derived new
algorithmic techniques for Interval Dominance and E-admissibility (using in-
sights by Kyburg Jr. and Pittarelli (1996), as done independently by Utkin
and Augustin (2005)). We also presented a brief analysis of incoherent choice
with Interval Dominance. More importantly, we have studied decision trees
with partially ordered preferences, by presenting a consequentialist backward
induction framework with multilinear and linear programming instantiations,
and by noting that different criteria do affect the computational properties
of backward induction. We have then applied these insights to influence dia-
grams, and actually to ordered LIMIDs, where the technology of credal net-
works (d-separation and multilinear programming) is used as much as possible.
We have also presented experiments with a complete implementation of the
algorithms for influence diagrams. Given the lack of literature on influence di-
agrams with indeterminacy and imprecision in probability values, our results
are a first step in understanding this powerful but intricate model. We have
noted already that recently Huntley and Troffaes (2008) and de Campos and
Ji (2008) have presented specialized algorithms respectively for Maximality
in decision trees and for Γ-Maximax in influence diagrams, that can be more
efficient than the algorithms discussed in this paper in particular problems.

An important subject this paper has not tackled is Markov Decision Processes
(MDPs). MDPs are probably the most prominent model for sequential deci-
sion making under uncertainty in use in artificial intelligence today, and could
likewise benefit from partial preference orderings. It should be noted that the
initial translation into the framework of MDPs is not difficult, in fact there
is a considerable amount of publications that deal with MDPs with sets of
probability (usually referred to as Markov Decision Processes with Imprecise
Probabilities) (Satia and Lave Jr., 1973; White III and El-Deib, 1994; Har-
manec, 2002). The topic deserves an investigation of its own; additionally,
there are many questions that must be answered before partial preferences
can be extensively used in MDPs, such as how to deal with act-state depen-

34

dence and how to choose between the set of incomparable choices suggested
by criteria such as Maximality and E-admissibility.

We certainly leave many avenues for future exploration. A necessary next step
is a detailed empirical characterization of computational effort in solving deci-
sion trees and influence diagrams, including a comparison between multilinear
and linear programming schemes whenever the latter are possible. It would
also be important to characterize the class of influence diagrams that can
be solved through reduced programs (that is, programs that deal with small
subsets of chance and decision nodes, passing back interval-valued expected
utility). There are also conceptual questions that deserve further scrutiny, as
there are other criteria of choice and behavioral norms besides the ones inves-
tigated in this paper. Even within the scope of criteria discussed in this paper,
there are questions to answer. For instance: we have produced algorithms that
compute all E-admissible strategies; perhaps in practice one should be content
with just one E-admissible strategy?

References

Allais, M., Hagen, O., 1979. Expected Utility Hypotheses and the Allais Para-
dox. D. Reidel Publishing Company, Dordrecht, Holland.

Aumann, R. J., July 1962. Utility theory without the completeness axiom.
Econometrica 30 (3), 445–461.

Berger, J. O., 1985. Statistical Decision Theory and Bayesian Analysis.
Springer, New York.

Bertsimas, D., Tsitsiklis, J. N., 1997. Introduction to Linear Optimization.
Athena Scientific, Belmont, Massachusetts.

Blume, L., Brandeburger, A., Dekel, E., January 1991. Lexicographic proba-
bilities and choice under uncertainty. Econometrica 59 (1), 61–79.

Bonet, B., Givan, R., 2005. 5th international planning competition: Non-
deterministic track, call for participation.

Boutilier, C., Brafman, R. I., Hoos, H. H., Poole, D., 2004. CP-nets: A tool
for representing and reasoning with conditional ceteris paribus preference
statements. Journal of Artificial Intelligence Research 21, 135–191.

Breese, J., Fertig, K., 1990. Decision making with interval influence diagrams.
In: Sixth Conference on Uncertainty in Artificial Intelligence. Elsevier Sci-
ence, New York, NY, pp. 122–129.

Bykvist, K., 2000. Time-partial morality and dynamic choice. In: Rabinowicz,
W. (Ed.), Value and Choice – Some Common Themes in Decision Theory
and Moral Philosophy. Lund Philosophy Reports, pp. 53–64.

Cooper, G. F., 1988. A method for using belief networks as influence dia-
grams. In: Proceedings of the 4th Conference on Uncertainty in Artificial
Intelligence. Minneapolis, pp. 55–63.

35

Couso, I., Moral, S., Walley, P., 2000. A survey of concepts of independence
for imprecise probabilities. Risk, Decision and Policy 5 (2), 165–181.

Cozman, F. G., July 2000. Separation properties of sets of probabilities. In:
Boutilier, C., Goldszmidt, M. (Eds.), 16th Conference on Uncertainty in
Artificial Intelligence. Morgan Kaufmann, San Francisco, pp. 107–115.

Cozman, F. G., June 2005. Graphical models for imprecise probabilities. In-
ternational Journal of Approximate Reasoning 39 (2-3), 167–184.

Danielson, M., Ekenberg, L., September 2007. Computing upper and lower
bounds in interval decision trees. European Journal of Operational Research
181 (2), 808–816.

Danielson, M., Ekenberg, L., Johansson, J., Larsson, A., July 2003. The De-
cideIT decision tool. In: Bernard, J.-M., Seidenfeld, T., Zaffalon, M. (Eds.),
Proceedings of the 3rd International Symposium on Imprecise Probabili-
ties and Their Applications. Carleton Scientific, Lugano, Switzerland, pp.
204–217.

de Campos, C. P., Cozman, F. G., August 2004. Inference in credal networks
using multilinear programming. In: Proceedings of 2nd European Starting
AI Researcher Symposium. IOS Press, Valencia, Spain, pp. 50–61.

de Campos, C. P., Cozman, F. G., July-August 2005. The inferential complex-
ity of Bayesian and credal networks. In: Proceedings of the 9th International
Joint Conference on Artificial Intelligence. Edinburgh, Scotland, UK, pp.
1313–1318.

de Campos, C. P., Cozman, F. G., 2007. Inference in credal networks through
integer programming. In: International Symposium on Imprecise Probabil-
ity: Theories and Applications. Prague, pp. 145–154.

de Campos, C. P., Ji, Q., July 2008. Strategy selection in influence diagrams
using imprecise probabilities. In: Proceedings of the 24th Conference on
Uncertainty in Artificial Intelligence. Helsinki, Finland, pp. 121–128.

Ellsberg, D., 1961. Risk, ambiguity, and the Savage axioms. The Quarterly
Journal of Economics 75 (4), 643–669.

Etchart, N., February 2002. Adequate moods for Non-EU decision making in
a sequential framework. Theory and Decision 52, 1–28.

Fertig, K., Breese, J., 1993. Probability intervals over influence diagrams. IEEE
Transactions on Pattern Analysis and Machine Intelligence 15 (3), 280–286.

Fishburn, P. C., 1970. Utility Theory for Decision Making. Kriefer Publishing
Company, New York.

Georgakopoulos, G., Kavvadias, D., Papadimitriou, C. H., March 1988. Prob-
abilistic satisfiability. Journal of Complexity 4 (1), 1–11.

Gilboa, I., Schmeidler, D., 1989. Maxmin expected utility with non-unique
prior. Journal of Mathematical Economics 18 (2), 141–153.

Giron, F. J., Rios, S., 1980. Quasi-Bayesian Behaviour: a More Realistic Ap-
proach to Decision Making? University Press, Valencia.

Hailperin, T., 1965. Best possible inequalities for the probability of a logical
function of events. American Mathematical Monthly 72, 343–359.

Hammond, P. J., 1976. Changing tastes and coherent dynamic choice. The

36

Review of Economic Studies 43 (1), 159–173.
Hammond, P. J., 1988a. Consequentialism and the independence axiom. In:
Munier, B. R. (Ed.), Risk, Decision and Rationality (Proceedings of the 3rd
International Conference on the Foundations and Applications of Utility,
Risk and Decision Theories). Dordrecht, Holland, pp. 503–516.

Hammond, P. J., 1988b. Orderly decision theory: a comment on Professor
Seidenfeld. Economics and Philosophy 4, 272–297.

Hansen, P., Jaumard, B., 1996. Probabilistic satisfiability. Tech. Rep. G-96-31,
Les Cahiers du GERAD, École Polytechique de Montréal.

Hansen, P., Perron, S., 2008. Merging the local and global approaches to proba-
bilistic satisfiability. International Journal of Approximate Reasoning 47 (2),
125–140.

Harmanec, D., June 2002. Generalizing Markov decision processes to imprecise
probabilities. Journal of Statistical Planning and Inference 105 (1), 199–213.

Howard, R. A., Matheson, J. E., 2005. Influence diagrams. Decision Analysis
2 (3), 127–143.

Huntley, N., Troffaes, M., 2008. An efficient normal form solution to decision
trees with lower previsions. In: International Workshop on Soft Methods in
Probability and Statistics. pp. 419–426.

Hurwicz, L., 1951. A class of criteria for decision-making under ignorance,
Cowles Comission Paper 356.

Itoh, H., Nakamura, K., 2007. Partially observable Markov decision processes
with imprecise parameters. Artificial Intelligence 171 (8–9), 453–490.

Jaffray, J.-Y., June 1999. Rational decision making with imprecise probabili-
ties. In: Cooman, G. D., Cozman, F. G., Moral, S., Walley, P. (Eds.), Pro-
ceedings of 1st International Symposium on Imprecise Probabilities and
Their Applications. Ghent, Belgium, pp. 183–188.

Jaumard, B., Hansen, P., de Aragão, M. P., 1991. Column generation methods
for probabilistic logic. ORSA Journal on Computing 3 (2), 135–148.

Kahneman, D., Tversky, A., 1979. Prospect theory: An analysis of decisions
under risk. Econometrica 47, 262–291.

Kikuti, D., Cozman, F. G., 2007. Influence diagrams with partially ordered
preferences. In: 3rd Multidisciplinary Workshop on Advances in Preference
Handling.

Kikuti, D., Cozman, F. G., de Campos, C. P., July 2005. Partially ordered pref-
erences in decision trees: Computing strategies with imprecision in probabil-
ities. In: Workshop on Advances in Preference Handling. Edinburgh, United
Kingdom, pp. 118–123.

Kyburg Jr., H. E., Pittarelli, M., 1996. Set-based Bayesianism. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part A 26 (3), 324–339.

Lauritzen, S. L., Nilsson, D., 2001. Representing and solving decision problems
with limited information. Management Science 47 (9), 1235–1251.

Levi, I., 1974. On indeterminate probabilities. The Journal of Philosophy 71,
391–418.

Levi, I., 1980. The Enterprise of Knowledge. The MIT Press, Massachusetts.

37

Luce, R. D., Raiffa, H., 1957. Games and Decisions. Wiley, New York.
Luo, C., Yu, C., Lobo, J., Wang, G., Pham, T., 1996. Computation of best
bounds of probabilities from uncertain data. Computational Intelligence
12 (4), 541–566.

Machina, M. J., December 1989. Dynamic consistency and non-expected util-
ity models of choice under uncertainty. Journal of Economic Literature
27 (4), 1622–1688.

McClennen, E. F., 1990. Rationality and Dynamic Choice: Foundational Ex-
plorations. Cambridge University Press, Cambridge.

McClennen, E. F., 1997. Pragmatic rationality and rules. Philosophy and Pub-
lic Affairs 26 (3), 210–258.

Nielsen, T. D., Jaffray, J.-Y., 2001. An operational approach to rational deci-
sion making based on rank dependent utility, unpublished manuscript avail-
able on http://www.cs.aau.dk/ tdn/papers/nielsen-jaffray-01.pdf.

Nielsen, T. D., Jensen, F. V., July 1999. Welldefined decision scenarios. In:
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intel-
ligence. Morgan Kaufmann, Stockholm, Sweden, pp. 502–511.

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, Los Altos, CA.

Quiggin, J. C., December 1982. A theory of anticipated utility. Journal of
Economic Behavior & Organization 3 (4), 323–343.

Raiffa, H., 1968. Decision Analysis: Introductory Lectures on Choices Under
Uncertainty. Addison-Wesley, Massachusetts.

Samuelson, P. A., 1948. Consumption theory in terms of revealed preference.
Econometrica 15, 243–253.

Satia, J. K., Lave Jr., R. E., May-June 1973. Markovian decision processes
with uncertain transition probabilities. Operations Research 21 (3), 728–
740.

Schervish, M. J., Seidenfeld, T., Kadane, J. B., Levi, I., July 2003. Extensions
of expected utility theory and some limitations of pairwise comparisons. In:
Proceedings of the 3rd International Symposium on Imprecise Probabilities
and Their Applications. Lugano, Switzerland, pp. 496–510.

Seidenfeld, T., May 2004. A contrast between two decision rules for use with
(convex) sets of probabilities: Γ-Maximin versus E-Admissibility. Synthese
140 (1-2), 69–88.

Seidenfeld, T., Schervish, M. J., Kadane, J. B., 1990. Decisions without order-
ing. In: Sieg, W. (Ed.), Acting and Reflecting. Kluwer Academic Publishers,
Dordrecht, pp. 143–170.

Seidenfeld, T., Schervish, M. J., Kadane, J. B., December 1995. A representa-
tion of partially ordered preferences. Annals of Statistics 23 (6), 2168–2217.

Shachter, R., 1998. Bayes-Ball: the rational pastime (for determining irrele-
vance and requisite information in belief networks and influence diagrams).
In: Proceedings of the 14th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-98). Morgan Kaufmann, San Francisco, CA, pp. 480–487.

Shachter, R., 1999. Efficient value of information computation. In: Proceed-

38

ings of the 15th Annual Conference on Uncertainty in Artificial Intelligence
(UAI-99). Morgan Kaufmann, San Francisco, CA, pp. 594–601.

Sherali, H. D., Tuncbilek, C. H., March 1992. A global optimization algorithm
for polynomial programming problems using a reformulation-linearization
technique. Journal of Global Optimization 2 (1), 101–112.

Simon, H. A., 1955. A behavioral model of rational choice. The Quarterly
Journal of Economics 69 (1), 99–118.

Strotz, R., 1956. Myopia and inconsistency in dynamic utility maximization.
The Review of Economic Studies 23 (3), 165–180.

Tatman, J. A., Shachter, R. D., 1990. Dynamic programming and influence
diagrams. IEEE Transactions on Systems, Man and Cybernetics 20 (2),
365–379.

Trevizan, F. W., Cozman, F. G., de Barros, L. N., 2007. Planning under risk
and Knightian uncertainty. In: International Joint Conference on Artificial
Intelligence. pp. 2023–2028.

Troffaes, M. C. M., December 2004. Decision making with imprecise probabili-
ties: A short review. In: Cozman, F. (Ed.), Society for Imprecise Probability
Theory and Applications Newsletter. Manno, Switzerland, pp. 4–7.

Troffaes, M. C. M., 2007. Decision making under uncertainty using imprecise
probabilities. International Journal of Approximate Reasoning 45 (1), 17–
29.

Utkin, L. V., Augustin, T., July 2005. Powerful algorithms for decision mak-
ing under partial prior information and general ambiguity attitudes. In:
Proceedings of 4th International Symposium on Imprecise Probabilities and
Their Applications. Pittsburgh, Pennsylvania, pp. 349–358.

Walley, P., 1991. Statistical Reasoning with Imprecise Probabilities. Chapman
and Hall, Londom.

White III, C. C., El-Deib, H. K., July-August 1994. Markov decision processes
with imprecise transition probabilities. Operations Research 42 (4), 739–
749.

39

