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Abstract Due to the growing interest in social networks,
link prediction has received significant attention. Link pre-
diction is mostly based on graph-based features, with some
recent approaches focusing on domain semantics. We pro-
pose algorithms for link prediction that use a probabilis-
tic ontology to enhance the analysis of the domain and the
unavoidable uncertainty in the task (the ontology is specified
in the probabilistic description logic crALC). The scalabil-
ity of the approach is investigated, through a combination of
semantic assumptions and graph-based features. We evalu-
ate empirically our proposal, and compare it with standard
solutions in the literature.

Keywords Link prediction · Probabilistic logic ·
Description logics

1 Introduction

Many social, biological, and information systems can be
well described as networks, where nodes represent objects
(individuals), and links denote the relations or interactions
between nodes. Predicting a possible link in a network is an
interesting issue that has received significant attention. For
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instance, one may be interested in finding potential friend-
ships between two persons in a social network, or a potential
collaboration between two researchers. In short, link predic-
tion aims at predicting whether two nodes should be con-
nected, given previous information about their relationships
or interests.

Mohammad and Mohammed [18] survey representative
link prediction methods, classifying them into three groups.
In the first group, feature-based methods construct pairwise
features to use in classification. The majority of the features
are extracted from the graph topology by computing similar-
ity based on the neighborhood of the pair of nodes, or based
on ensembles of paths between the pair of nodes [15]. Seman-
tic information has also been used as features [26,32]. The
second group includes probabilistic approaches that model
the joint probability for entities in a network by Bayesian
graphical models [31]. The third group employs linear alge-
braic approaches that compute the similarity between nodes
in a network by rank-reduced similarity matrices [14].

We present an approach for link prediction that com-
bines Bayesian graphical models and semantic-based fea-
tures. Hence, our proposal belongs to the first two cate-
gories mentioned in the previous paragraph. To represent
semantic-based features, we employ a probabilistic descrip-
tion logic called Credal ALC (crALC) [5]. This probabilis-
tic description logic extends the popular logic ALC [27]
with probabilistic inclusions. These are sentences, such as
P(Professor|Researcher) = 0.4, specifying the probabil-
ity that an element of the domain is a Professor given that it is
a Researcher. Exact and approximate inference algorithms
for crALC have been proposed [5], using ideas inherited
from the theory of Relational Bayesian Networks [12]. We
benefit from such algorithms, and add some techniques to
make our approach scalable to real domains. We also present
experimental validation of our proposal.
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The paper is organized as follows. Section 2 reviews basic
concepts of probabilistic description logics and of link pre-
diction. Our proposals for a scalable semantic link prediction
approach appear in Sect. 3. Section 4 describes experiments,
and Sect. 5 concludes the paper and discusses some future
work.

2 Background

This section briefly review probabilistic description logics
and link prediction methods, with a focus on concepts and
techniques that are later used.

2.1 Probabilistic description logics and crALC

Description logics (DLs) form a family of representation lan-
guages that are typically decidable fragments of first-order
logic (FOL) [3]. Knowledge is expressed in terms of individ-
uals, concepts, and roles. The semantics of a description is
given by a domain D (a set) and an interpretation ·I (a func-
tor). Individuals represent objects through names from a set
NI = {a, b, . . .}. Each concept in the set NC = {C, D, . . .}
is interpreted as a subset of a domain D. Each role in the
set NR = {r, s, . . .} is interpreted as a binary relation on the
domain. An assertion states that an individual belongs to a
concept of that a pair of individuals satisfies a role. An ABox
is a set of assertions.

A popular description logic is ALC [27]; given its impor-
tance to our proposal, we briefly review it here. Constructors
in ALC are conjunction (C � D), disjunction (C � D), nega-
tion (¬C), existential restriction (∃r.C), and value restric-
tion (∀r.C). Concept inclusions and definitions are denoted
respectively by C � D and C ≡ D, where C and D are
concepts. Concept C � ¬C is denoted by �, and concept
C � ¬C is denoted by ⊥. The semantics of these constructs
is given by a domain D and an interpretation I as follows:
each individual a is mapped into an element aI ; each con-
cept C is mapped into a subset CI of the domain; each role
r is mapped into a binary relation rI in the domain; moreover,

– (C � D)I = CI ∩ DI ;
– (C � D)I = CI ∪ DI ;
– (¬C)I = D\CI ;
– (∃r.C)I = {x ∈ D|∃y : (x, y) ∈ rI ∧ y ∈ CI};
– (∀r.C)I = {x ∈ D|∀y : (x, y) ∈ rI → y ∈ CI}.

Finally, C � D is interpreted as CI ⊆ DI and C ≡ D is
interpreted as CI = DI .

An example may be useful. Consider the following con-
cept definition:

Researcher ≡ Person � ∃hasPublication.BibItem,

(1)

specifying that researchers are individuals who are persons
and who have published a bibliographic item.

Several probabilistic description logics have appeared in
the literature [13,17]; here we just indicate a few represen-
tative proposals.

Heinsohn [11] and Sebastiani [28] consider probabilistic
inclusion axioms such as

PD(Professor) = α,

meaning that a randomly selected object is a Professor with
probability α. This characterizes a domain-based semantics:
probabilities are assigned to subsets of the domain D. Sebas-
tiani also allows inclusions such as P(Professor(John)) =
α, specifying probabilities over the interpretations them-
selves. For example, one interprets P(Professor(John)) =
0.001 as assigning 0.001 to be the probability of the set of
interpretations where John is a Professor. The latter seman-
tics characterizes an interpretation-based semantics.

The probabilistic description logic crALC is a probabilis-
tic extension of the description logic ALC that adopts an
interpretation-based semantics. It keeps all constructors of
ALC, but only allows concept names on the left hand side of
inclusions/definitions. Additionally, in crALC one can have
probabilistic inclusions such as P(C |D) = α or P(r) = β

for concepts C and D, and for role r (in this paper we only
consider equality in probabilistic inclusions/definitions). If
the interpretation of D is the whole domain, then we sim-
ply write P(C) = α. The semantics of these inclusions is
roughly (a formal definition can be found in Ref. [5]) given
by:

∀x ∈ D : P(C(x)|D(x)) = α,

∀x ∈ D, y ∈ D : P(r(x, y)) = β.

We assume that every terminology is acyclic: no concept uses
itself (where “use” is the transitive closure of “directly use”;
we say that C directly uses D if D appears in the right hand
side of an inclusion/definition, or in the conditioning side
of a probabilistic inclusion). This assumption allows one
to represent any terminology T through a directed acyclic
graph. Such a graph, denoted by G(T ), has each concept
name and role name as a node, and if a concept C directly
uses concept D, that is if C and D appear respectively in
the left and right hand sides of an inclusion/definition, then
D is a parent of C in G(T ). Each existential restriction
∃r.C and each value restriction ∀r.C is added to the graph
G(T ) as a node, with an edge from r and C to each restric-
tion directly using it. Each restriction node is a determin-
istic node in that its value is completely determined by its
parents.

Consider, as an example, a terminology TR contain-
ing the sentence in Expression (1), plus P(Person) =

123



J Braz Comput Soc

Fig. 1 Graph G(TR)

Fig. 2 Bayesian network over indicator functions of assertions,
produced by grounding the terminology TR

0.2, P(BibItem)=0.6, P(hasPublication) = 0.1; its graph
is depicted in Fig. 1.

The semantics of crALC is based on probability measures
over the space of interpretations, for a fixed domain. To make
sure a terminology specifies a single probability measure, a
number of additional assumptions are adopted: the domain is
assumed finite, fixed, and known; the unique-name assump-
tion and the rigidity assumption for individuals (as usual in
first-order probabilistic logic [6]) are assumed; a single con-
cept name appears in the left hand side of any inclusion or
definition and in the conditioned side of any probabilistic
inclusion; and finally a Markov condition imposes indepen-
dence of any grounding of concept/role conditional on the
groundings of its corresponding parents in the graph G(T )

[5]. Given these assumptions, a set of sentences T in crALC
defines a relational Bayesian network [12] whose underlying
graph is exactly G(T ).

Consider the following example. Suppose we have termi-
nology TR and domain D = {bob, paper}, There are several
possible sets of assertions that are obtained by grounding. For
instance,

{Person(bob), Researcher(bob),

BibItem(paper), hasPublication(bob, paper)}.
The assumptions discussed in the previous paragraph induce
a single probability measure over the set of all assertions
(groundings), because they induce a Bayesian network over
indicator variables of assertions.

For example, for domain D = {bob, paper}, Fig. 2
depicts the Bayesian network over indicator variables of
assertions (for the sake of space, names are abbreviated; for

instance, hP denotes hasPublication; b denotes bob, and so
on). To simplify notation, the indicator function of assertion
C(a) is indicated simply by C(a), instead of the more usual
convention IC(a)=true.

Inferences, such as P(Ao(a0)|A) for an ABox A, can be
computed by grounding, thus generating a Bayesian network
where one “slice” is built for each individual. For instance,
in the Bayesian network depicted in Fig. 2 two slices, one for
individual bob and another for individual paper, are built.
For large domains, exact probabilistic inference is in gen-
eral quite hard. Variational algorithms that approximate such
probabilities are available in the literature [5].

2.2 Link prediction

The task we are interested in can be defined as follows [15].
One is given a network (a graph) G consisting of a set of
nodes V (represented by letters a, b, etc) and a set of edges
E , where an edge represents an interaction between nodes.
Interactions may be tagged with times, and the link prediction
problem may be one of predicting the existence of edges in
a time interval, given the edges observed in another time
interval. Here we are interested in a static problem where we
are given nodes and edges, except for the edge between two
nodes A and B, and we must then predict whether there is an
edge between A and B.

Many different tools are used for link prediction, some of
which, like matrix factorization, are related to the massive
size of datasets; other tools are directly related to the exis-
tence of links between nodes. One can use classifiers that,
based on network features and measures, classify each ten-
tative link as existing or not [18]; one may also resort to col-
lective classification over the whole set of possible links [7].
Several such techniques are based on computing measures
of proximity/similarity between nodes in a network [15,16].
One of them is the Katz measure [15], a weighted sum of the
number of paths in the graph between two given nodes, with
higher weights assigned to shorter paths:

Katzβ(A, B) =
∞∑

i=1

β i pi ,

where pi is the number of paths of length i connecting A and
B, while β ∈ (0, 1] weighs the paths—a small value of β

favors shorter paths. Another notable proximity measure is
the Adamic–Adar measure [1], given by:

Adamic−Adar(A, B) =
∑

C∈Γ (A)∩Γ (B)

1

log |Γ (C)| ,

where Γ (X) be the set of all neighbors of node X . The
intuition behind the Adamic–Adam measure is that, instead
of simply counting the number of neighbors shared by two
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nodes, we should emphasize common neighbors that have
less neighbors themselves.

Other approaches to link prediction consider semantic fea-
tures. The degree of semantic similarity among entities can
be useful to predict links that might be missed by simple topo-
logical or frequency-based features [31]. One way of captur-
ing semantic similarity is by considering documents related
to nodes in the network. A simple example of semantic simi-
larity is the keyword match count between two authors [10].
A more sophisticated method makes use of the well-known
techniques such as TFIDF feature vector representation and
the cosine measure to compute similarity [31]. The latter
measure, for documents d1 and d2, is obtained by creating
vector representations

−→
V (d1) and

−→
V (d2) that contain word

counts weighted by their TFIDF (Term Frequency − Inverse
Document Frequency) measures. The similarity measure is
then

cosine(d1, d2) =
−→
V (d1) · −→

V (d2)

|−→V (d1)||−→V (d2)|
,

where the dot product is used in the numerator and the Euclid-
ean distance is used in the denominator. To recall, the TFIDF
weighting scheme assigns to term t a weight in document d
given by TFIDFt,d = TFt,d × IDFt, where TFt,d is the term
frequency in d, and IDFt is the inverse document frequency
of t , given by IDFt = log N

DFt
, for N the total number of

documents and DFt the number of documents containing the
term.

Approaches to link prediction can be understood not only
by considering the kinds of tools employed, but also by
examining the model that is used to represent the network
as a whole. Typically, one assumes some sort of probabilis-
tic mechanism that at least partially explains the existence of
edges, perhaps together with domain-specific knowledge (for
instance, domain theories about human relationships) [9,19].
Thus the simplest network model is the Erdös–Rènyi random
graph: each pair of nodes can be connected with identical
probability. More sophisticated models resort to hierarchical
specification of link probabilities, or to grouping of nodes
within blocks of varying probability.

One way to capture the probabilistic structure of a net-
work is through graph-based models such as Markov random
fields or Bayesian networks [23]. However, these languages
are well suited to express independence relations between a
fixed set of random variables; when nodes and links are to
be dealt within graphs, it is best to consider modeling lan-
guages that can specify Markov random fields and Bayesian
networks over relational structures. Indeed many proposals
for link prediction resort to such languages, from seminal
work by Getoor et al. [8] and Taskar et al. [29]. The pres-
ence of relational structure lets one to represent properties
of individuals nodes, of links, of communities; one can then

compute the probability of specific links, and estimate such
probabilities from data. In this paper, we follow this model-
ing strategy; the difference between our modeling language
and previous proposals is that we adopt a language based on
description logics, as already indicated in the previous sec-
tion. Our interest in models based on description logics is
justified given recent results on the importance of ontologies
in organizing information that can be used in link prediction
[2,4,30].

3 Link prediction with crALC

Given a network G where many links are observed, one is
interested in predicting whether a link between nodes a and b
exists (presumably the linkage between a and b has not been
observed). We address this problem by considering, in addi-
tion to topological information about the network, knowl-
edge about the domain concerning network entities. To do
so, domain knowledge is represented through a probabilis-
tic ontology using crALC. Among the concepts (NC ) and
roles (NR) in the ontology, there is a concept Ĉ that indicates
which elements of the domain are nodes in G, and a role
r̂ that indicates which pairs of elements are linked—hence
Ĉ and r̂ describe the network itself, while other concepts
and roles describe the remaining domain knowledge. In our
experience, it is important to explicitly indicate which ele-
ments of the domain are nodes, to make sure inference runs
only with the required elements (in effect this is providing a
type that separates network nodes from other elements of the
domain).

For example, in a coauthorship network, nodes repre-
sent researchers and relationships may be “has a publi-
cation with” or “is advised by”. An ontology for such
a domain, represented by crALC, is shown in Fig. 3.
The ontology describes publications, using concepts such
as Researcher and Publication, and using roles such as
hasPublication, hasSameInstitution, sharePublication.
Nodes in the network instantiate a concept (for instance
Researcher), while links in the network instantiate a role
(for instance sharePublication).

The semantic link prediction task proposed in this paper
can be described as: compute the probability of an asser-
tion concerning a particular role of interest, given an ABox
A of asserted concepts and roles involving nodes in the net-
work. Because domain knowledge is expressed with crALC,
questions about probability of assertions can be answered
by inference in crALC. For instance, the question “what is
the probability of Emily and Ann share a publication given
some information about the domain?” can be translated into
P(sharePublication(emily, ann)|A), where A represents
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Fig. 3 A probabilistic ontology for the co-authorship domain, and an ABox

Require: a network G, an ontology O, a role r̂ representing links in the network, a concept Ĉ specifying the nodes in the network and a
threshold γ .

Ensure: a set of predicted links L
1: initialize L = ∅;
2: initialize E = evidence (set of all assertions);
3: for all pair of instances (a, b) of nodes in G do
4: if there is no link between nodes a and b in G then
5: infer probability P(r(a, b)|E) using the relational Bayesian network created from the ontology O;
6: if P(r(a, b)|E) > γ then
7: add link between a and b to L .
8: end if
9: end if
10: end for

Algorithm 1: Algorithm for link prediction: evidence is the complete set of assertions

the information about the domain. If this probability is higher
than a suitable threshold, then a link is included.

Our first link prediction algorithm is described in
Algorithm 1.1

The algorithm starts by going through all pairs of instances
of the concept Ĉ (that is, all nodes). For each pair, it
checks whether a link between the corresponding nodes
exist in the network; if not, the probability of the link is
computed using the relational Bayesian network extracted
from the ontology O. If the probability is greater than a
threshold, then the corresponding link is added to the set
of suggested links. (Alternatively, when the threshold is not
given, a list of links, ranked by their probability, can be
produced.)

The evidence is the given set of assertions; the size of
this set has great impact in inference effort. When infer-
ences are computed, the ontology is turned into a relational
Bayesian network, whose grounding is a Bayesian network—
each assertion may generate a new slice of nodes in this
grounded Bayesian network. Approximate algorithms are
necessary for inference; in this work we employ the vari-
ational inference method described in Ref. [5]. While one
can suppose that more assertions lead to more accurate pre-

1 This algorithm was first discussed in Ref. [25], and later refined,
together with Algorithm 2, in Refs. [22] and [21]; the presentation is here
further refined. Some experiments and results reported here appeared
in those preliminary publications; in this paper we also describe novel
experiments with significantly larger datasets.

dictions, the computational effort involved in inference may
be so large as to generate bad approximations. Hence it is
important to filter out assertions and to focus on the most
relevant ones.

We are interested in predicting a relationship between two
specific nodes, a and b. Therefore, assertions directly related
to these two objects and to other objects strongly related to
them in the network are more relevant for link prediction
than assertions on other objects in the network. We can make
our link prediction algorithm scalable if we only consider
assertions about a, b and about the objects strongly related
to them in our inferences. To do so, we must specify the set
A(a, b) of elements of the domain that are deemed strongly
related to a and b.

Liben-Nowell and Kleinberg [15] compute similarities
between two nodes using ensembles of paths between the
two nodes (so as to decide whether to include a link between
the nodes). It seems reasonable to adopt the same strategy,
and define A(a, b) to contain nodes in paths between a and b
(although we could consider all possible paths between two
nodes, compute this could be expensive. Hence, we restrict
ourselves to a path size of five). Therefore, in Algorithm 1 the
evidence must be specialized for each pair of nodes; given a
and b, the set A(a, b) must be constructed and the relevant
assertions are then collected into E .

The resulting link prediction algorithm is described in
Algorithm 2. Experiments with this algorithm, using real
data, are reported in the next section.
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Require: a network G, an ontology O, a role r̂ representing links in the network, a concept Ĉ specifying the nodes in the network and a
threshold γ .

Ensure: a set of predicted links L
1: initialize L = ∅;
2: for all pair of instances (a, b) of nodes in G do
3: if there is no link between nodes a and b in G then
4: initialize E = evidence in A(a, b);
5: infer probability P(r(a, b)|E) using the relational Bayesian network created from the ontology O;
6: if P(r(a, b)|E) > γ then
7: add link between a and b to L .
8: end if
9: end if
10: end for

Algorithm 2: Algorithm for link prediction: evidence on nodes and strongly related elements of the domain

4 Experiments

Experiments have been conducted to evaluate our approach
to semantic link prediction. A real world data repository, the
Lattes curriculum platform, was used. Our algorithm was
combined with state-of-the-art classifiers for link prediction.
This section reports the steps involved in this process.

4.1 Scenario description

The Lattes platform is the public repository of Brazilian sci-
entific curricula that consists of approximately a million reg-
istered documents. Information is encoded in HTML format,
ranging from personal information such as name and pro-
fessional address to publication lists, administrative tasks,
research areas, research projects and advising/advisor infor-
mation. There is implicit relational information in these web
pages; for instance, collaboration networks are built by advis-
ing/adviser links, shared publications, and so on.

To perform experiments we have randomly selected eight
thousand researchers that are associated with eight research
areas. Table 1 depicts these research areas.

Assertions were extracted from the Lattes platform con-
cerning these researchers. For instance, if a parser finds that
a researcher John has four publications (p1, p2, p3, p4) and
a researcher Mary has two (p2, p5), where p2 was done in
collaboration with John, then assertions, as the following, are
extracted:

Researcher(john), Researcher(ann),
Publication(p1), Publication(p2), Publication(p3),
Publication(p4), Publication(p5)

sharePublication(john, ann).

A probabilistic ontology was then learned using algo-
rithms in the literature [20,24]. This ontology is comprised
by 24 probabilistic inclusions and 17 concept definitions.
Because learning is mainly concerned with deterministic and
probabilistic inclusions, the learned ontology was enlarged

Table 1 Research areas and number of co-authored collaboration

Research area Code Number

Agricultural Sciences A1 17,157

Biological Sciences A2 23,222

Exact and Earth Sciences A3 18,440

Human Sciences A4 2,281

Social Sciences A5 4,462

Health Sciences A6 17,255

Engineering A7 10,879

Languages and Arts A8 1,315

with 4 relevant roles. Parts of the final ontology can be seen
in Figs. 3 and 4.

In this probabilistic ontology, concepts and probabilis-
tic inclusions typically denote mutual research interests.
In short, in this ontology a ResearcherLattes is a per-
son that has publications, advises other people and par-
ticipates on examination boards. On the other hand, a
SupervisionCollaborator is a probabilistic inclusion which
denotes a kind of researcher that was advised for another
researcher. The SameInstitution concept denotes
researchers that work at the same institution. Seemingly, the
SameBoard concept denotes researchers that have partici-
pated on same examination boards. The NearCollaborator
is a probabilistic inclusion that denotes researchers work-
ing at the same institution that have shared publications. The
FacultyNearCollaborator is a near collaborator that also
participates of same examination boards. The NullMobility
Researcher concept denotes researchers which have low
mobility, i.e., they remain at the same institution where
they were advised. The StrongRelatedResearcher denotes
strong relationship between two researchers (advisor and
advisee) which also share publications.

The concept Researcher indicates whether an element
of the domain is a node in the network (hence Researcher
is Ĉ) and the role sharePublication indicates whether a pair
of elements of the domain is linked in the network (hence
sharePublication is r̂ ).
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Fig. 4 A probabilistic ontology crALC for the Lattes domain

Topological graph information was computed using
the assertions for Researcher and sharePublication.
Figures 5, 6 and 7 depict collaboration networks within
research areas in our dataset.

Using this data, link probabilities were computed through
inference in the crALC ontology. To illustrate inference,
consider Fig. 8 which depicts a subset of collaborations
among researchers. If we inspect this collaboration graph we
could be interested, for instance, in checking links among
researchers from different groups. Since filling forms in the
Lattes platform is prone to errors, there is uncertainty regard-
ing real collaborations. Thus, in Fig. 8 one could further
investigate whether a link between researcher R (rectan-
gle node) and the researcher B (triangle node) is suitable.
The probability of a possible link between R and B was
computed, P(sharePublication(R, B)|E), where E con-
tains evidence about researchers such as publications, insti-
tution, examination board participations and so on. Using
evidence

Researcher(R) � ∃hasSameInstitution.Researcher(B),

one obtains

P(sharePublication(R, B)|Researcher(R)

�∃hasSameInstitution.Researcher(B)) = 0.57.

One could obtain more evidence, such as information
about nodes that indirectly connect these two groups (Fig. 8),
denoted by I1, I2. Consider:

P(sharePublication(R, B)|Researcher(R)

�∃sharePublication(I1).∃sharePublication(B)

�∃sharePublication(I2).∃sharePublication(B))

= 0.65.

In order to compare our approach with existing algorithms,
topological and semantic features have also been defined, as
discussed in the following sections.

4.2 Methodology

In this section, we describe our main design choices to run
experiments.

Given the 8,000 selected researchers, there exist
31,996,000 possible link relationships. To perform link pre-
diction we have considered collaborations based on coauthor-
ship on publications (there are 2,837,206 publications). After
analysing these publications we identified 95,100 true posi-
tive links among researchers based on co-authorship. Table 1
details true coauthorship collaborations for every research
area.

Given these true relationships, we have defined three
datasets. The first one, Lattes I, where true links for all eight
research areas were considered, provides some general analy-
sis. In the second and third datasets, Lattes II and Lattes III,
only true links for one of the eight researcher areas were con-
sidered, allowing some specific analysis. Biological Sciences
and Exact and Earth Sciences research areas were chosen,
since they are the ones with more collaborations. According
to cross validation principles, every dataset must be divided
in training and validation sets. To avoid skewness (due to
unbalanced classes), all dataset were balanced,2 thus they
have the same quantity of positive and negative examples.
The positive examples were randomly chosen from the true
links and the same number of negative examples were ran-
domly collected, where negative examples means that there

2 The problem of class skewness, imbalance in the class distribution,
give rise to poor performance of a supervised learning algorithm [18].
To cope with this issue, existing research suggests several different
approaches, such as altering the training sample by up-sampling or
down-sampling, i.e., balancing.

123



J Braz Comput Soc

Fig. 5 Collaborations patterns in research areas (1,000 researchers): Social Sciences

is not a link between the nodes. Table 2 details the three
datasets.

Although we can use probabilistic inference to decide
whether there is a link between two nodes, to perform com-
parisons with previous approaches we resort to a classifica-
tion algorithm approach. This paradigm allow us to combine
several metrics (topological, semantic and probabilistic) as
features of a classification algorithm. In this sense, we can
compare which feature is more relevant by adding, delet-
ing and combining features and observing the classification
results.

To perform classification we resort to the Logistic regres-
sion algorithm. Which outputs values between 0 and 1 (due
the logistic function) and prevent us from doing feature
normalization. A threshold of 0.5 was used to decide a
classification.

The features used in the classification for link prediction
(defined in Sect. 2.2) are commonly extracted from topo-
logical graph properties such as neighborhood and paths
between nodes. In addition, numerical features are also
computed from joint probability distributions and seman-
tics.

123



J Braz Comput Soc

Fig. 6 Collaborations patterns in research areas (1,000 researchers): Human Sciences

The two baseline graph-based numerical feature, Katz
and Adamic-Adar measures, have been used in our exper-
iments. For the first one, since computing all paths (∞) is
expensive we only consider paths of length at most four
(i ≤ 4).

We have also considered semantic features. In this work,
for each researcher a document with the words appearing in
the title of his publications (removing stop words) is con-
sidered. Thus, a researcher is represented as a set of words,
which allow us to compute two features based on semantic
similarity:

(i) The keyword match count between two researchers [10].
(ii) The cosine between the TFIDF features vectors of two

researchers [31].

Finally, the probability P(r(x, y)|E), given by our prob-
abilistic description logic model, is also used as a numerical
feature in the classification model, in order to investigate
whether it can improve the classification approach for link
prediction.

4.3 Results

In order to evaluate suitability of our approach in predicting
coauthorships in the Lattes dataset, several experiments were
run. The experiments were performed in three stages, consid-
ering incrementally, topological, semantic and probabilistic-
logic scores.

In the first stage we evaluate topological scores. Two base-
line scores, Katz and Adamic-Adar, have been used as fea-
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Fig. 7 Collaborations patterns in research areas (1,000 researchers): Languages and Arts

tures in the logistic regression algorithm. After a ten-fold
cross validation process, the classification algorithm yielded
results on accuracy which are depicted in Table 3 (stage 1).

For all three Lattes dataset, the Katz feature yields the best
accuracy when the two topological features are used in iso-
lation. Katz has been shown to be among the most effective
topological measures for the link prediction task [15]. Fur-
thermore, when we combine the two features, we improve
all three accuracy.

In the second stage, we evaluate two features based on
semantic similarity and their combination with topological

features. Results on accuracy for these semantic features are
depicted in Table 3 (stage 2). The cosine similarity feature
performs better than matching keyword feature and outper-
forms the two former topological features. When we combine
all four features together, there is an improvement in accuracy
considering datasets Lattes I and Lattes II. Dataset Lattes III
was indifferent to the combination of all four features.

Finally, in the third stage, a probabilistic feature based on
crALC was introduced into the model. Results on accuracy
for this feature are depicted in Table 3 (stage 3), showing
it performs better than all other features. Moreover, there
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Fig. 8 Lattes collaboration
network: subset of
collaborations among
researchers
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Table 2 Lattes datasets: number of positive (+) and negative (−) exam-
ples

Name # Examples
(+/−)

Lattes I (General) 90,000

Lattes II (Biological Sciences) 20,000

Lattes III (Exact and Earth Sciences) 18,000

is significant improvement in accuracy considering datasets
Lattes 1 and Lattes 2, when all five features are combined.

It is worth noting that the probabilistic logic feature used
in isolation outperforms all other features and allows us to
improve the classification model for link prediction on accu-
racy. It could be argued that such performance stems from
evidence used on probabilistic inferences, but a similar analy-
sis could be done for topological and semantic features. They
use information that is missing on a probabilistic description
logic setting. In conclusion, despite the fact that all features
have different approaches, experimental results showed that
they can be successfully used together.

Nothing prevents us from defining ad-hoc probabilistic
networks to estimate link probabilities. However, by doing

Table 3 Classification results for datasets Lattes I, Lattes II and Lattes III on accuracy (%) for baseline features: Adamic-Adar (Adamic), Katz,
Word matching (Match), Cosine, CrALC and a combination of them

Stage Feature Lattes I (acc.) Lattes II (acc.) Lattes III (acc.)

l Adamic 83.34 ± 1.87 82.5 ± 1.35 81.23 ± 1.46

Katz 85.4 ± 1.07 87.7 ± 0.91 84.43 ± 0.84

Adamic + Katz 85.9 ± 1.12 87.75 ± 1.03 85.44 ± 0.78

2 Match 75.42 ± 1.66 73.42 ± 2.66 72.8 ± 0.47

Cosine 89.35 ± 1.28 90.4 ± 1.37 86.7 ± 0.85

Adamic + Katz + Match + Cosine 91.63 ± 1.23 90.69 ± 1.23 86.3 ± 0.12

3 Cralc 93.3 ± 0.79 94.2 ± 1.48 89.72 ± 1.67

Adamic + Katz + Match + Cosine + Cralc 93.89 ± 0.83 94.46 ± 0.83 90.2 ± 0.72

Bold values indicate the best result in the corresponding stage
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Table 4 Average runtime for inference in crALC considering the num-
ber of nodes in the network

# Nodes Runtime (ms)

10,000 168

100,000 175

10,000,000 185

so we are expected to define a large propositionalized net-
work (a relational Bayesian network) [25] or estimate local
probabilistic networks [31]. These approaches do not scale
well, since computing probabilistic inference for large net-
works is expensive.

To overcome these performance and scalability issues, we
resort to lifted inference in crALC which is based on varia-
tional methods—tuned by evidence defined according to the
nodes’s neighborhood. Thus, for a 10,000 possible nodes, if
evidence is given for 5 nodes (this is the neighborhood for
a given link candidate), then there are only 6 slices which
have messages interchanged. To instantiate the overall net-
work, we use local evidence to perform inference for every
link candidate, i.e., neighborhood evidence is instantiated
accordingly.

In our experiments, the average runtime for inference in
crALC (10,000 nodes network) was 168 ms. Table 4 depicts
some runtime results for larger networks, which demon-
strates the scalability of our approach. A direct grounding
of the ontology into a propositional Bayesian network would
generate an unmanageably large model.

5 Conclusion

In this paper, we have introduced a link prediction method
that combines graph-based and ontological information
through the use of a probabilistic description logic. Given
a collaborative network, we encode interests and graph fea-
tures through a crALC probabilistic ontology. To predict
links, we resort to probabilistic inference—thus we combine
and extend previous work on relational probabilistic mod-
els of link prediction, and on ontology-based link prediction.
To make the proposal scalable we propose a novel strategy
for approximating link probabilities: for each pair of nodes,
we focus only on evidence collected along paths between
them. Our proposal was evaluated on an academic domain,
where links among researchers were predicted. Moreover,
the approach was successfully compared with graph-based
and semantic-based features.

Compared to previous work, our approach employs a rich
ontology (as opposed to simple is-a terminologies) that can
encode substantial information about the domain. Hierar-

chical structure can be encoded together with knowledge
about specific nodes in a network—we plan to explore
richer ontologies in the future. Moreover, our proposal
attains better scalability than previous proposals that have
tried to explore probabilistic relational models for similar
purposes.
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