
International Journal of Approximate Reasoning 85 (2017) 178–195
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

The effect of combination functions on the complexity of 

relational Bayesian networks ✩

Denis Deratani Mauá a,∗, Fabio Gagliardi Cozman b

a Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil
b Escola Politécnica, Universidade de São Paulo, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 December 2016
Received in revised form 29 March 2017
Accepted 30 March 2017
Available online 4 April 2017

Keywords:
Relational Bayesian networks
Complexity theory
Probabilistic inference

We study the complexity of inference with Relational Bayesian Networks as parameterized 
by their probability formulas. We show that without combination functions, inference is
pp-complete, displaying the same complexity as standard Bayesian networks (this is so 
even when the domain is succinctly specified in binary notation). Using only maximization 
as combination function, we obtain inferential complexity that ranges from pp-complete to
pspace-complete to pexp-complete. And by combining mean and threshold combination 
functions, we obtain complexity classes in all levels of the counting hierarchy. We 
also investigate the use of arbitrary combination functions and obtain that inference is
exp-complete even under a seemingly strong restriction. Finally, we examine the query 
complexity of Relational Bayesian Networks (i.e., when the relational model is fixed), and 
we obtain that inference is complete for pp.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks provide an intuitive language for the probabilistic description of concrete domains [22]. Jaeger’s Re-
lational Bayesian Networks, here referred to as rbns, extend Bayesian networks to abstract domains, and allow for the 
description of relational, context-specific, deterministic and temporal knowledge [20,21]. There are many languages that 
also extend Bayesian networks into relational representations [11,12,16,23,24,30]; rbns offer a particularly general and solid 
formalism.

rbns constitute a specification language containing a small number of constructs: relations, probability formulas, com-
bination functions, and equality constraints. Combination functions are a particularly important modeling feature, as they 
provide a way of aggregating information from different elements of the domain.

It should not be surprising that the inferential complexity of Bayesian networks specified by rbns depends on the choice 
of constructs allowed. However, few results have been produced on the relation between the expressivity of such constructs 
and the complexity of inference.

In this paper, we examine the effect of combination functions on the complexity of inferences with (Bayesian networks 
specified by) rbns. We first argue that, without combination functions, rbns simply offer a language that is similar to 
plate models, a well-known formalism to describe models with simple repetitive structure [17,27]. We show that without 
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Table 1
Summary of complexity of inference parameterized by the combination functions allowed, how domain is specified, the maximum arity of relations, and 
the maximum nesting level of combination expressions.

Combination functions Domain spec. Bounded arity? Bounded nesting? Complexity of inference

none unary yes – pp-complete
none binary yes – pp-complete
max binary yes yes pexp-complete
max unary no yes pexp-complete
max unary yes no pspace-complete
max unary yes yes pp

�p

k -complete
threshold, mean unary yes yes ckp-harda

polynomial unary yes yes exp-complete

a Membership when threshold and mean are used depend on further constrains explained in Section 4.3.

combination functions inference is pp-complete, irrespective of the encoding of the domain; this matches the complexity of 
inference in standard (propositional) Bayesian networks. When we allow combination functions and the associated equality 
constraints into the language, matters complicate considerably. When either the domain is specified in binary or the arity of 
relations is unbounded, inference is pexp-complete even when the only combination function is maximization. If we place 
a bound on arity, and specify the domain in unary notation (or equivalent, as an explicit list of elements), and allow only 
maximization as combination function, then inference is pspace-complete. This is mostly generated by the ability to nest 
an unbounded number of maximization expressions. In fact, by further restricting the number of nesting of combination 
functions, we obtain the same power as a probabilistic Turing machine with access to an oracle in the polynomial hierarchy. 
We then look at a combination of mean and a threshold: the former allows probabilities to be defined as proportions; 
the latter allows the specification of piecewise functions. We argue that threshold and mean combined are as powerful 
as maximization, and thus all previous results hold. And by a suitable constraint on the use of threshold and mean, we 
show that we can obtain complexity in every class of the counting hierarchy. We also look at the complexity of inference 
when the combination function is given as part of the input. The challenge here is to constrain the language so as to obtain 
non-trivial complexity results. We show that requiring polynomial-time combination functions is too weak a condition in 
that it leads to exp-complete inference. On the other hand, requiring polynomially long probability formulas brings inference 
down to pp-completeness. These results are summarized in Table 1.

We also investigate the complexity of inference when the rbn is assumed fixed. This is equivalent to the idea of com-
piling a probabilistic model [6,9]. We show that complexity is either polynomial if probability formulas can be computed in 
polynomial time (which includes the case of no combination expressions) or pp-complete, when the combination functions 
can be computed in polynomial time (which includes the cases of maximization, threshold and mean).

The paper begins with a brief review of rbns (Section 2), and key concepts from complexity theory (Section 3). Our con-
tributions regarding inferential complexity appear in Section 4. The complexity of inference without combination functions 
appear in Section 4.1. Relational Bayesian networks allowing only combination by maximization are analyzed in Section 4.2, 
while networks allowing mean and threshold are analyzed in Section 4.3. General polynomial-time computable combination 
formulas are examined in Section 4.4. Query complexity is discussed in Section 5. We justify our use of decision problems 
(instead of functional problem) and discuss how our results can be adapted to provide completeness for classes in the 
functional counting hierarchy in Section 6. A summary of our contributions and open questions are presented in Section 7.

2. Relational Bayesian networks

2.1. Bayesian networks

A Bayesian network is a compact description of a probabilistic model over a propositional language [7,22]. It consists of 
two parts: an acyclic directed graph G = (V , A) over a finite set of random variables X1, . . . , Xn , and a set of conditional 
probability distributions, one for each variable and each configuration of its parents. The parents of a variable X in V
are denoted by pa(X). In this paper, we consider only 0/1-valued random variables, hence each conditional distribution 
P(X |pa(X)) can be represented as a table.

The semantics of a Bayesian network is obtained by the directed Markov property, which states that every variable 
is conditionally independent of its non-descendants given its parents. For categorical random variables, this assumption 
induces a single joint probability distribution by

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

P(Xi = xi|pa(Xi) = πi) ,

where πi is the vector of values for pa(Xi) induced by assignments {X1 = x1, . . . , Xn = xn}. Bayesian networks can represent 
complex propositional domains, but lack the ability to represent relational knowledge.
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2.2. Definition

rbns can specify Bayesian networks over repetitive scenarios where entities and their relationships are to be represented. 
To do so, rbns borrow several notions from function-free first-order logic with equality [14], as we now quickly review. 
Consider a fixed vocabulary consisting of disjoint sets of names of relations and logical variables (note that we do not allow 
functions nor constants). We denote logical variables by capital letters (e.g., X, Y , Z ), names of relations by lowercase Latin 
letters (e.g., r, s, t), and formulas by Greek letters (e.g., α, β). Each relation name r is associated with a nonnegative integer 
|r| describing its arity. An atom has the form r(X1, . . . , X|r|), where r is a relation name, and each Xi is a logical variable. 
An atomic equality is any expression X = Y , where X and Y are logical variables. An equality constraint is a Boolean formula 
containing only disjunctions, conjunctions and negations of atomic equalities. For example,(

(X = Y ) ∧ (X �= Z)
) ∨ (Y = Z) ,

where (X �= Y ) is a syntactic sugar for ¬(X = Y ) (we will adopt this notation throughout the text).
The local conditional probability models in an rbn are specified using probability formulas; each probability formula is 

one of the following:

(PF1) A rational number q ∈ [0, 1]; or
(PF2) An atom r(X1, . . . , X|r|); or
(PF3) A convex combination F1 · F2 + (1 − F1) · F3 where F1, F2, F3 are probability formulas; or
(PF4) A combination expression, that is, an expression of the form

comb{F1, . . . , Fk|Y1, . . . , Ym;α} ,

where comb is a word from a fixed vocabulary of names of combination functions (disjoint from the sets of relations 
symbols and logical variables), F1, . . . , Fk are probability formulas, Y1, . . . , Ym is a (possibly empty) list of logical 
variables, and α is an equality constraint containing only those logical variables and the logical variables appearing in 
the subformulas. We later define combination functions.

The logical variables Y1, . . . , Ym in a combination expression are said to be bound by that expression; there might be no 
logical variables bound by a particular combination expression, in which case we write comb{F1, . . . , Fk|∅; α}.

We define free logical variables in a probability formula F as follows. A rational number has no (free) logical variables. 
All logical variables in atom r(X1, . . . , X|r|) are free. A variable is free in F1 · F2 + (1 − F1) · F3 if it is free in one of F1, F2
and F3. Finally, a logical variable is free in comb{F1, . . . , Fk|Y1, . . . , Ym; α} if its is free in any of F1, . . . , Fk or α, and it is 
not bound by comb (i.e., it is not one of Y1, . . . , Ym).

An example of a probability formula is

mean{0.6 · r(X) + 0.7 · max{1 − s(X, Y )|X; X = X}|Y , Z; Y �= X ∧ Z �= X} .

In this formula X is free (even though X is bound by the combination expression headed by max), and Y and Z are bound. 
We often write F (X1, . . . , Xn) to indicate that X1, . . . , Xn are the free logical variables in F .

Similarly to Bayesian networks, an rbn consists of two parts: an acyclic directed graph where each node is a relation 
symbol, and a collection of probability formulas, one for each node. The probability formula Fr associated with node r
contains exactly |r| free logical variables and mentions only the relation symbols s ∈ pa(r).

2.3. Semantics

Roughly speaking, one can interpret an rbn with graph G = (V , A) as a rule that takes a set D of elements, called a 
domain, and produces an auxiliary Bayesian network, as follows. First, generate all groundings r(a) for a ∈ D|r| and r ∈ V . 
These groundings are the nodes of the Bayesian network. For each grounding r(a), consider the probability formula at a; 
that is, Fr(a). This formula depends on many groundings s(a, b) of parents of r; those are the parents of r(a) in the Bayesian 
network. And for each configuration π of these (grounded) parents, take P(r(a) = 1|pa(r(a)) = π) = Fr(a) where Fr(a) is 
evaluated at π . We formalize this procedure later, right after we present an example:

Example 1. Consider a simple model of student performance, inspired by the “University World” often employed in de-
scriptions of Probabilistic Relational Models [16,22]. Suppose a student is taking courses; for each pair student/course, we 
have approval or not. We have relations difficult and committed, respectively indicating whether a course is difficult and 
whether a student is committed, and relation approved, indicating whether a student gets an approval grade in a course. 
The probabilistic relationships between these relations are captured by the graph in Fig. 1, where we used two additional 
relations student and course to “type” elements of the domain. The idea is that these relations are fully specified by the 
evidence during inference (that is, every element is typed), so its associated probabilities are not important; we can take 
for example:

Fstudent(Y ) = 1/2 and Fcourse(X) = 1/2 .
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Fig. 1. Relational Bayesian network modeling student performance.

Fig. 2. Bayesian network obtained by grounding the rbn in Example 1 and removing nodes with evidence.

We need probability formulas for difficult and committed:

Fdifficult(X) = 0.3 · course(X) , Fcommitted(Y ) = 0.6 · student(Y ) .

Also, we have a probability formula for approved:

Fapproved(X, Y ) = 0.8 · [0.6 · (1 − difficult(X)) + 0.4 · committed(Y )] · course(X) · student(Y ) .

Now suppose we have domain D = {s1, s2, c2, c2}. Note that we have 32 groundings (four unary relations and one binary 
relation), so we obtain a Bayesian network with 32 nodes/random variables. In this network, we have

P(difficult(a) = 1|course(a) = s) =
{

0.0 if s = 0 (a is not a course),

0.3 otherwise;
and likewise for all other groundings of relations. Now suppose that the relation student is given; say we have s1 and s2 as 
students, and c1 and c2 as courses (hence not students). We denote this evidence E . Given E , we can focus on a smaller 
Bayesian network obtained by conditioning on this “typing” evidence; such a network is presented in Fig. 2. �

The probability formulas in the previous example did not use combination expressions. Combination expressions are 
slightly more difficult to interpret; their semantics are given by combination functions. A combination function is any func-
tion that maps a multiset of finitely many numbers in [0, 1] into a single rational number in [0, 1]. Some examples of 
combination functions are:

• Maximization: max{q1, . . . , qk} = qi , where i is the smallest integer such that qi ≥ q j for j = 1, . . . , k, and max{} = 0;
• Minimization: min{q1, . . . , qk} = 1 − max{1 − q1, . . . , 1 − qk};
• Arithmetic mean: mean{q1, . . . , qk} = ∑k

i=1 qi/k, and mean{} = 0;

• Noisy-or: noisy-or{q1, . . . , qk} = 1 − ∏k
i=1(1 − qi), and noisy-or{} = 0;

• Threshold: threshold{q1, . . . , qk} = 1 if max{q1, . . . , qk} ≥ 1/2 and threshold{q1, . . . , qk} = 0 otherwise.

The combination function threshold, which does not appear in previous rbns, is useful to encode case-based functions 
such as piecewise linear functions. It may seem that the comparison with a fixed value 1/2 is too restrictive; however, with a 
small effort we can compare any probability formula with any constant using this combination function. To see this, suppose 
we want to compare a probability formula F with a number γ ∈ [0, 1]; that is, we want to determine whether F ≥ γ . If 
γ > 1/2, then use threshold{(1/(2γ )) · F }. And if γ < 1/2, then use threshold{γ ′ F + (1 −γ ′)} where γ ′ = 1/(2(1 −γ )). Thus 
we can generate all sorts of piecewise and case-based functions with threshold. We exploit this versatility to encode decision 
problems related to counting in some of our proofs.

We can now explain the semantics of rbns, which is given by interpretations of a domain D. An interpretation is a 
function μ mapping each relation symbol r ∈ R into a relation rμ ⊆ D|r| , and each equality constraint α into its standard 
meaning αμ . An interpretation μ induces a mapping from a probability formula F with n free logical variables into a 
function F μ(a) from Dn to [0, 1] as follows. If F = q, then F μ is the constant function q. If F = r(X1, . . . , Xn), then F μ(a) = 1
if a ∈ rμ and F μ(a) = 0 otherwise. If F = F1 · F2 + (1 − F1) · F3 then F μ(a) = F μ

1 (a)F μ
2 (a) + (1 − F μ

1 (a))F μ
3 (a). Finally, 

if F = comb{F1, . . . , Fk|Y1, . . . , Ym; α}, then F μ(a) = comb(Q), where this latter comb is the corresponding combination 
function and Q is the multiset containing a number F μ

i (a, b) for every (a, b) ∈ αμ (even if Fi does not depend on every 
coordinate).

For example, consider a domain D = {a, b}. The probability formula F = max{0.1, 0.2, 0.3|Y ; Y = Y } is interpreted as 
max{0.1, 0.2, 0.3, 0.1, 0.2, 0.3}, and the probability formula F (X, Y ) = max{q1, q2|∅; X �= Y } is interpreted as F μ(a, a) =
F μ(b, b) = max{} = 0, and F μ(a, b) = F μ(b, a) = max{q1, q2}.
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Finally: Given a finite domain D, an rbn with graph G = (V , A) is associated with a probability distribution over inter-
pretations μ defined by

PD(μ) =
∏
r∈V

PD(rμ|{sμ : s ∈ pa(r)}) ,

where

PD(rμ|{sμ : s ∈ pa(r)}) =
∏

a∈rμ
F μ

r (a)
∏

a/∈rμ
(1 − F μ

r (a)) .

We can now rephrase, in precise terms, the more informal explanation given before Example 1. In essence, an rbn is a 
template model that for each domain D generates a Bayesian network where each node r is a multidimensional random 
variable taking values rμ in the set of 2N |r|

possible interpretations rμ , where N = |D|. Alternatively, we can associate with 
every relation symbol r ∈ R and tuple a ∈ D|r| a random variable r(a) that takes value 1 when a ∈ rμ and 0 when a /∈ rμ . 
An rbn and a domain D produce an auxiliary Bayesian network over these random variables, where the parents of a node 
r(a) are all nodes s(a, b) such that s is a parent of r in the rbn and (a, b) ∈D|s| , and the conditional distribution associated 
with r(a) is given by interpretations of the probability formula Fr at a. This Bayesian network induces a joint distribution

P
({r(a) = ρr(a)}

) =
∏
r∈V

∏
a∈D|r|

P
(
r(a) = ρr(a)|pa(r(a)) = π

) = PD(μ) ,

where a ∈ rμ if ρr(a) = 1 and a /∈ rμ if ρr(a) = 0, and π is a configuration consistent with those values. Following terminology 
from first-order logic, we often say that this Bayesian network is the “grounding” of the rbn on domain D. Often, it is 
possible to generate a smaller grounding, where the parents of r(a) are only those relevant to evaluate Fr(a) (which might 
not depend on all s(a, b), s ∈ pa(r), a, b ∈ D|s|). Given this equivalence between an rbn endowed with a domain and an 
auxiliary Bayesian network, we refer to probabilities such as P(r(a) = 1) to denote P(a ∈ rμ) = ∑

μ:a∈rμ PD(μ), and similarly 
for more complex events (note that the dependency of the distribution on the domain is left implicit in the first case).

The next example illustrates the modeling power of different combination functions.

Example 2. Consider again the university domain in Example 1, and suppose that in addition to students and courses we 
also have teachers in the domain. At the end of the academic year students vote for the best teacher of the year. An award is 
then given to the most voted teacher. We use a binary relation taught to indicate whether a course was taught by a teacher 
in that year. This relation will usually be given as evidence, so its probability is not important; for simplicity we specify

F taught(X, Z) = 1/2 .

We use an unary relation awarded to indicate whether someone is the recipient of the award. The probability that a teacher 
is awarded is linearly related to the proportion p of students that failed in at least one course he/she taught, with two 
regimes:

P(awarded(Z) = 1|p) =
{

0.425 − 0.4p, if p ≥ 0.7,

0.25 − 0.15p, if p < 0.7.

We encode this as,

Fawarded(Z) = T (Z) · [0.025 + 0.4 · (1 − F1(Z))] + (1 − T (Z)) · [0.1 + 0.15 · (1 − F1(Z))] ,
where T (Z) = threshold{5/7 · F1(Z)} denotes whether the proportion of failed students is above 0.7, F1(Z) =
mean{F2(Y , Z)|Y ; Y = Y } is the proportion of students that failed some course taught by Z , and F2(Y , Z) is a formula 
indicating whether Y failed a course taught by Z :

F2(Y , Z) = max{(1 − approved(X, Y )) · taught(X, Z)|X : X = X} .

Since there can be exactly one winner of the award, we introduce a relation singleWinner of arity zero (i.e., a proposition), 
and specify:

FsingleWinner = max{awarded(Z)|Z; Z = Z} · threshold{γ · mean{1 − awarded(Z)|Z; Z = Z}|∅} ,

where γ = (N − 1)/N) and N = |D| is the size of the domain (the number of courses, students and teachers). The graph of 
the corresponding rbn is shown in Fig. 3. �

This example uses the max combination function to encode an existential quantifier; we will later resort to this trick in 
our proofs.
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Fig. 3. Relational Bayesian network modeling the university domain in Example 2.

3. The complexity of counting

We assume familiarity with standard complexity classes such as p, np, pspace and exp, and with the concept of oracle 
Turing machines [1,29]. As usual, we denote the class of languages decided by a Turing machine in complexity class c with 
oracle in complexity class o as c

o . We also assume that problems are reasonably encoded using a binary alphabet (say, 
0 and 1). A decision problem consists in computing a 0/1-valued function on binary strings. We call an input of a decision 
problem a yes instance if its output is 1, otherwise we call a no instance.

The polynomial hierarchy is the collection of complexity classes �p

k , �p

k and 	p

k , for every nonnegative integer k. These 
decision problems are defined inductively by �p

0 = p, �p

k = np
�p

k−1 , �p

k = p
�p

k−1 , and 	p

k = co�p

k . The complexity class ph

contains all decision problems in the polynomial hierarchy: ph = ⋃
k �p

k (over all integers k). We thus have the following 
inclusion:

p ⊆ np

conp
⊆ p

np ⊆ �p

2
	p

2
⊆ · · · ⊆ �p

k
	p

k
⊆ �p

k ⊆ · · · ⊆ ph .

A well-known result by Meyer and Stockmeyer [28] states that if 	p

k = �p

k for some k then ph = �p

k . In particular, if p = np

then ph = p. This suggests that the levels �p

k of the hierarchy are distinct, and that using an oracle in a higher level brings 
in more computational power.

A probabilistic Turing machine is a standard non-deterministic Turing machine that accepts if at least half of the com-
putation paths accept, and rejects otherwise. The complexity class pp contains decision problems which are accepted by a 
probabilistic Turing machine in polynomial time. The class pp is known to be closed under complement and union [4]. The 
class pexp is defined analogously with polynomial-time replaced with exponential-time.

The counting hierarchy augments the polynomial hierarchy with oracle machines based on pp. It can be defined as the 
smallest collection of classes containing p and such that if c is in the collection then np

c , conp
c , and pp

c are also in the 
collection [34,36]. We define the class ch as the union over all nonnegative integers k of the classes ckp, where ckp = pp

ck−1

and c0p = �p

0 = p [36]. Toda’s celebrated result shows that any problem in ph can be solved in polynomial time by a 
deterministic Turing machine with an oracle pp [32]. Hence, the class ch contains the entire polynomial hierarchy. If fact, 
we have the following hierarchy:

ph ⊆ p
pp ⊆ np

pp

conp
pp

⊆ pp
pp ⊆ c2p ⊆ · · · ⊆ ch ⊆ pspace ⊆ exp ⊆ pexp .

A many-one reduction from a problem A to a problem B is a polynomial-time function f that maps inputs of A into 
inputs of B , and such that x is a yes instance of A if and only if f (x) is a yes instance of B . For any complexity class c in 
the counting hierarchy, we say that a problem A is c-hard if for any problem B in c there is a many-one reduction from A
to B . If A is also in c, then A is said to be c-complete.

4. Inferential complexity of relational Bayesian networks

Our goal in this paper is to examine the complexity of the decision variant of the following (single-query) inference 
problem:

Input: An rbn with graph (V , A), a domain D, a list of random variables r(a), r1(a1), . . . , r(an), and a rational γ ∈ [0, 1].
Decision: Is P(r(a) = 1|r1(a1) = 1 ∧ · · · ∧ rn(an) = 1) ≥ γ ?

The conditioning event r1(a1) = 1 ∧ · · · ∧ rn(an) = 1 is called evidence, and also denoted as {r1(a1) = 1, . . . , rn(an) = 1}
and {r1(a1) = 1}, . . . , {rn(an) = 1}. We have assumed implicitly in the formulation of the problem above that P(r1(a1) =
1, . . . , rn(an) = 1) > 0 (i.e., that evidence has positive probability). A different strategy would be to define instances where 
this condition is not observed as no instances (or as yes instances). In this case, to prove membership in some complexity 
class we would have to first show how to decide P(r1(a1) = 1, . . . , rn(an) = 1) > 0 in that class. For simplicity, we assume 
that this is always true; it is possible however to show that the complexity of inference is not changed by this simplifying 
assumption.
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If the domain is a singleton, then the rbn is actually a Bayesian network, since probability formulas can be efficiently 
converted into tables. Moreover, any Bayesian network can be polynomially encoded as a rbn with a singleton domain. 
Hence, inference in rbns is pp-hard, as this is the case for Bayesian networks [8, Theorems 11.3 and 11.5].

For domains with many elements, complexity might depend on how the domain D is encoded. One possibility is to 
assume that the domain is some set {1, 2, . . . , N} specified by the integer N (but note that there is no ordering on the 
elements implied). The integer N can be encoded in different ways. One is this:

Assumption 3. The domain is {1, 2, . . . , N}, where N is encoded in binary notation.

Under the previous assumption, the encoding of the domain contributes with O(log N) bits to the input size. Depending 
on the constructs allowed, this alternative can produce probabilities which require exponential effort to be written down, as 
they might need O(N) bits. To see this, consider an rbn with a proposition r such that Fr = noisy-or{1/2|X; X = X}. Then 
P(r = 0) = 1 − [1 − ∏N

i=1 1/2] = 2−N .
Another possibility is to still assume that the domain is {1, . . . , N}, but to encode N using unary notation. In this case, 

the encoding of the domain contributes with O(N) symbols to the input. Thus, this specification is equivalent (up to some 
constant factor) to encoding the domain by an explicit list with every element it contains. So we might adopt:

Assumption 4. The domain is specified as an explicit list of elements.

Another parameter that affects inferential complexity is the arity of relations. If we place no bound on the arity of 
relations, then an exponential effort might be required to write down probabilities. For example, consider an rbn with graph 
r s where r is a k-ary relation with probability formula Fr(X1, . . . , Xk) = 1/2, and s is proposition with probability 

formula Fs = noisy-or{r(X1, . . . , Xk)|X1, . . . , Xk; X1 = X1}; then inference P(s = 0) requires an exponential number of bits 
when 4. We will thus often adopt:

Assumption 5. The arity of relations is bounded.

Without further restrictions, the complexity of inference is dominated by the complexity of evaluating combination 
expressions. For instance, if the combination function in a combination expression is an arbitrary Turing machine (with no 
bounds on time and space) then inference is undecidable. Thus, we need to constrain the use of combination functions in 
probability formulas to make the study of inferential complexity more interesting.

4.1. rbns without combination functions

We start our analysis with the simplest case, where no combination function is available. That is, we adopt:

Assumption 6. Every probability formula is either a rational number, or an atom, or a convex combination of probability 
formulas.

Under the assumption above, every logical variable in a probability formula is free; also, in the acyclic directed graph of 
relations of an rbn no node can have an arity larger than any of its children.

If the domain is given as an explicit list of elements (or by an integer in unary notation), then we can “ground” an rbn

into an auxiliary Bayesian network, and run inference there (consider Example 1). This process generates a polynomially-
large Bayesian network if the relations have bounded arity (if necessary, we can insert auxiliary nodes so as to bound the 
number of parents of any given node). Because inference in Bayesian networks is pp-complete, we have that

Theorem 7. Inference is pp-complete when the domain is specified as a list, the relations have bounded arity and there is no combina-
tion function.

Interestingly, the complexity of inference remains the same even if the domain is specified by its size in binary notation 
(note that in this case the auxiliary Bayesian network has a size that is exponential in the input):

Theorem 8. Inference is pp-complete when the domain is specified by its size in binary, the relations have bounded arity and there is 
no combination function.

Proof. Hardness follows from the fact that an rbn can efficiently encode any propositional Bayesian network using only 
convex combinations of numbers and atoms (as in Example 1). To prove membership, consider the auxiliary Bayesian net-
work that is generated by “grounding” a given rbn. This network may be exponentially large on the input, when the domain 
is given in binary notation. We show that we only need to generate a polynomially-large fragment of the auxiliary Bayesian 
network to decide whether P(r(a) = 1|r1(a1) = 1 ∧ · · · ∧ rn(an) = 1) ≥ γ . Note that to compute that conditional probability, 
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all we need is the fragment of the Bayesian network that contains the ancestors of nodes r(a), r1(a1), . . . , rn(an) [15]. We 
argue that the number of ancestors of r(a) is polynomial in the input size; the same reasoning applies to r1(a), . . . , rn(an). 
If the probability formula Fr is either a number or an atom, then r(a) has no ancestors and we are done. Otherwise assume 
that Fr is a convex combination; then it may recursively refer to several atoms that are parents of r. These parents may 
in turn have several parents, and so on. Since there are not combination functions, we can always rename logical variables 
such the probability formulas of every ancestor of r contain only logical variables in the probability formula Fr . Thus, if r
has arity k, then there can be at most 2k ancestors of r(a), as this is the number of subsets of the logical variables in Fr . 
Since we assumed k is bounded by a constant, this number of ancestors is also bounded by a constant. Thus, we can build 
a Bayesian network consisting of these nodes and the edges between them, together with the associated probability values. 
Inference must then be run in this sub-network, and this can be done by a polynomial-time probabilistic Turing machine 
[8, Theorems 11.3 and 11.5]. �

According to Theorem 8, the complexity of inference in combination-function-free rbns matches the complexity of in-
ference in Bayesian networks (if relation arity is bounded). That is, even though an rbn may represent exponentially large 
Bayesian networks, only a polynomial number of nodes of this network is relevant for inference (and these nodes can be 
collected in polynomial time).

4.2. rbns with max combination functions

We now consider rbns where information is only aggregated by maximization. That is, we assume that

Assumption 9. The only combination function used is max.

As we have seen, without combination functions, inference in rbns has the same computational power as inference in 
Bayesian networks, even when the domain is given by an integer in binary notation. This is not the case when we allow 
combination functions, even one as simple as maximization:

Theorem 10. Inference is pexp-complete when the domain is specified by its size in binary, the relations have bounded arity and the 
only combination function is max.

Proof. Membership follows since an rbn satisfying the above assumptions can be “grounded” into an exponentially large 
Bayesian network. To see this, note that if we have a domain of size 2m , and a bound of arity k, then each relation produces 
at most (2m)k = 2km (grounded) random variables. Inference can be decided in that network using a probabilistic Turing 
machine with an exponential bound on time, using the same scheme normally employed to decide an inference for a 
Bayesian network [8].

To show hardness, we simulate an exponential-time probabilistic Turing machine using an rbn such that we can “count” 
the number of accepting paths by a single inference. We do so by resorting to a standard Turing machine encoding described 
by Grädel [18, Theorem 3.2.4]. There are other possible encodings we might use, but this one is quite compact and relatively 
easy to grasp.

So, take a Turing machine that can decide a pexp-complete language. That is, take a pexp-complete language L and a 
nondeterministic Turing machine such that 
 ∈ L if and only if the machine halts within time 2p with half or more of the 
computation paths accepting, where n is the length of 
 and p denotes a polynomial in n.1 Denote by σ a symbol in the 
alphabet of the machine (which includes blank and boundary symbols in addition to 0 and 1s), and by q a state. As usual, 
we describe a configuration of the machine by a string σ 1σ 2 · · ·σ i−1(qσ i)σ i+1 · · ·σ 2p

, where each σ j is a symbol in the 
tape, and (qσ i) indicates that the machine is at state q and its head is at cell i. The initial configuration is (q0σ

1
0 )σ 2

0 · · ·σ n
0

followed by 2p − n blanks, where q0 is the initial state. Let qa and qr be, respectively, states that indicate acceptance or 
rejection of the input string σ 1

0 · · ·σ n
0 . The transition function δ of the machine takes a pair (q, σ) consisting of a state 

and a symbol in the tape, and returns triples (q′, σ ′, m): the next state q′ , the symbol σ ′ to be written in the tape (we 
assume that a blank is never written by the machine), and an integer m in {−1, 0, 1}. Here −1 means that the head is to 
move left, 0 means that the head is to stay in the current cell, and 1 means that the head is to move right. We make the 
important assumption that, if qa or qr appear in some configuration, then the configuration is not modified anymore (the 
transition function goes from this configuration to itself from that point on). This is necessary to guarantee that the number 
of accepting computations is equal to the number of ways in which the machine can run from the input.

Grädel’s encoding uses quantified Boolean formulas to represent the Turing machine. As shown by Jaeger [20, 
Lemma 2.4], probability formulas can encode conjunction and negation, respectively, by multiplication and inversion (and 
then disjunction and implication are easily obtained). Logical equalities such as X = Y are obtained by the formula 

1 In the usual definition, a probabilistic Turing machine accepts when the majority of computation paths accept; however, given such a machine we can 
always build a machine that decides the same language, and such that the machine accepts if and only if at least half of the computation paths accept.
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F (X, Y ) = max{1|∅; X = Y }, and quantified formulas such as ∃Y ψ(X, Y ) are obtained as F (X) = max{Fψ(X, Y )|Y ; Y = Y }, 
where Fψ(X, Y ) encodes ψ(X, Y ). Thus we can easily reproduce Grädel’s logical encoding of the machine by writing logical 
formulas as probability formulas. For example, consider a relation less (meaning “less than”), used to order the elements of 
the domain, and consequently represent the ordering on the computation steps and on the positions of the tape. Since the 
elements of the domain are ordered, we can interpret them as integers. Define F less(X, Y ) = 1/2. We must impose on less
the axioms of linear orderings. To constrain less to be irreflexive, we introduce a proposition irref with probability formula

F irref = 1 − max{less(X, X)|X; X = X} .

We have that F μ
irref = 1 if and only if lessμ is irreflexive. Note that the above probability formula simply encodes the 

quantified Boolean formula ¬∀X less(X, X) in the language of rbns. Similarly, we enforce transitivity by a relation trans
with probability formula

F trans = 1 − max{less(X, Y ) · less(Y , Z) · (1 − less(X, Z))|X, Y , Z; X = X} .

To understand this expression, note that less(a, b) ∧ less(b, c) → less(a, c) holds if and only if 1 − [less(a, b) · less(b, c) ·
(1 − less(a, c))] = 1. Finally, we impose trichotomy (that is, if X �= Y then less(X, Y ) ∨ less(Y , X)) by a relation trich with 
probability formula

F trich = 1 − max{(1 − less(X, Y )) · (1 − less(Y , X))|X, Y ; X �= Y } .

Using the relation less we can encode a relation first indicating the smallest element of the domain:

Ffirst(X) = 1 − max{less(Y , X)|Y ; Y = Y } .

We can also encode the relation successor(X, Y ), which is true if and only if Y is the smallest element larger than X :

Fsuccessor(X, Y ) = less(X, Y ) · (1 − max{less(X, Z) · less(Z , Y )|Z; Z = Z}) .

While probability formulas can encode any quantified Boolean formula using only max as combination function, they are less 
readable than their logical counterparts. So for the rest of this proof, we will use logical expressions instead of probability 
formulas.

Introduce a unary relation stateq for each state q and define Fstateq (X) = 1/2. Atom stateq(X) denotes that the machine is 
in state q at computation step X . Also, introduce a binary relation symbolσ for each symbol σ in the alphabet, and specify 
Fsymbolσ (X, Y ) = 1/2. Atom symbolσ (X, Y ) denotes that σ is written in the Y th position of the tape in the Xth computation 
step. Finally, introduce a binary relation head with Fhead(X, Y ) = 1/2, meaning that the machine head is in the Y th position 
of the tape in the Xth computation step. We must guarantee that at any computation step the machine is in a single state, 
each tape position has a single symbol, and the head is at a single tape position. We do so by introducing a proposition r
and a probability formula Fr that encodes the logical expression:

∀X

[∨
q

(
stateq(X) ∧

∧
q′ �=q

¬stateq′(X)

)
∧

∨
σ

(
∀Y

[
symbolσ (X, Y ) ∧

∧
σ ′ �=σ

¬symbolσ ′(X, Y )

])

∧
(

∃Y

[
head(X, Y ) ∧ ∀Z

(
(Z �= Y ) → ¬head(X, Z)

)])]
,

We introduce a proposition start with a probability formula Fstart(X) imposing the initial configuration of the machine, and 
a proposition compute with a probability formula Fcompute encoding the transitions of the machine. The formula Fstart is 
simple: it fixes the first element using the construction ∀X[first(X) → stateq0(X) ∧head(X, X)]. The formula Fcompute is more 
elaborate; we only sketch the construction by Grädel. First, Fcompute encodes the conjunction of two logical formulas, one 
affecting the tape positions that do not change, and the other actually encoding the transitions. The first formula is

∀X, Y , Z , W

[∧
σ

(
symbolσ (X, Y ) ∧ (Z �= Y ) ∧ head(X, Z) ∧ successor(X, W ) → symbolσ (W , Y )

)
.

The second formula is

∀X, Y , W

[∧
q,σ

(
stateq(X) ∧ head(X, Y ) ∧ symbolσ (X, Y ) ∧ successor(X, W )

)

→
(∨

(q′,σ ′,m)∈δ(q,σ ) stateq′(W ) ∧ symbolσ ′(W , Y ) ∧ HEADMOVE
)]

,

where HEADMOVE is the formula ∃Z [(Z = Y + m) ∧ head(W , Z)], and Z = Y + m is syntactic sugar for a construction that 
can be accomplished with the successor relation.

We are still to impose that the constraints we included are in fact enforced by any interpretation. We do so by using 
evidence {irref = 1}, {trans = 1}, {trich = 1}. We also need to impose that the input is represented on the tape. So use 
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evidence {first(1) = 1}, and {successor(i − 1, i) = 1} for i = 2, . . . , n, to order n elements of the domain. And use evidence 
{symbolσ i

0
(1, i) = 1} for i = 1, . . . , n. We also need to guarantee that at the first computation step the tape contains only 

blanks after the input. So insert a proposition blanks with a probability formula Fblanks encoding the logical formula

∀X

[
first(X) → ∀Y , Z

[(
symbol (X, Y ) ∧ successor(Y , Z)

) → symbol (X, Z)
]]

,

and use evidence {symbol (1, n + 1) = 1} and {blanks = 1}. To conclude the simulation of the machine, we must be able 
to determine when the machine reaches the accepting state qa . To do so, introduce a proposition accept with probability 
formula

Faccept = max{stateqa (X)|X; X = X} .

If we now take a domain of size N = 2p (recall that N is written in binary), we have that an interpretation is consistent 
with the evidence and with {accept = 1} if and only if the corresponding computation of the machine accepts the input. 
Thus, the number of accepting paths is at least half of the total number of computation paths if and only if

P(accept = 1|E) ≥ 1/2 ,

where E is the evidence. �
If we replace the assumption of binary encoding of the domain with a unary encoding and remove the constraint on the 

arity of relations, we obtain the same complexity.

Theorem 11. Inference is pexp-complete when the domain is specified as a list and the only combination function is max (and there 
is no bound on the arity of relations).

Proof. Membership follows as we can build an exponentially-large auxiliary Bayesian network and run inference in it. To 
show hardness, observe that we can represent 2n elements using a binary domain (say, D = {0, 1}) and an n-ary relation 
(i.e., every a ∈Dn is understood as distinct element). Thus, the proof of Theorem 10 can be replicated by interpreting every 
logical variable as a vector of logical variables of length n, and using a domain with elements 0 and 1. �

If we then bound the arity of relations, we obtain:

Theorem 12. Inference is pspace-complete when the domain is specified as a list, the relations have bounded arity and the only 
combination function is max.

Proof. We show membership by devising a polynomial-space algorithm. Let k be a bound on the arity of the relations; 
then an interpretation μ assigns a relation consisting of at most |D|k values to each of the n = |V | relation symbols. This 
takes polynomial space. We show that probability formulas can be evaluated (for a fixed interpretation μ) in polynomial 
space by induction in the number of nested subformulas. If a formula has no combination function, then only constant 
space is required to evaluate it; otherwise, assume that every subformula takes polynomial space. Convex combinations of 
such subformulas again take only polynomial space. So consider a probability formula F = max{F1, . . . , Fk|Y1, . . . , Ym; α}, 
where each F μ

i is by assumption computed using polynomial space. Evaluating F μ takes at most O(m · k · |α| · f ) space 
(required to count the assignments of the logical variables and decide the maximum over F μ

1 , . . . , F μ
k for each assignment), 

where |α| is the size of the constraint α, and f is an upper bound on space required to compute a subformula F μ
i . Thus, 

evaluating any probability formula (for a fixed interpretation) takes polynomial space. The probability of an interpretation 
can be computed in polynomial space by a multiplication of all the terms involved – we only need an accumulator to store 
intermediate values of the multiplication and a counter over the relations r ∈ V and the tuples a ∈D|r| , all of which can be 
implemented in space O(|V | · |r| lg |D|), which is a polynomial in the input size. The desired probability can be computed 
in polynomial space by enumerating every possible interpretation and adding up the relevant parts (possibly followed by 
normalization), and dividing the probability of target and evidence by the probability of evidence (this takes polynomial 
space). Deciding whether this probability exceeds the given threshold takes polynomial space.

Hardness is shown by a many-one reduction from qbf, which is pspace-complete [29]:

Input: A quantified Boolean formula in the form

Q 1 X1 Q 2 X2 . . . Q n Xn [ψ1 ∧ · · · ∧ ψm] ,
where each Q i is either ∃ or ∀, and each ψi is a quantifier-free 3-clause over logical variables X1, . . . , Xn .
Decision: Is the formula satisfiable?
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Our strategy for the reduction is to encode the quantified Boolean formula by a sequence of “nested” max and min combi-
nations, each representing a quantified subformula of ϕ; a clause is encoded by an equality constraint. Recall that we can 
encode quantified Boolean formulas using the probability formula that only contain max as combination function, and that 
by combining a max and convex combination we obtain min.

Denote by Yi the logical variables appearing in ψi (there are at most 3 such variables). For each clause ψi , i = 1, . . . , m, 
introduce a relation clausei and specify Fclausei (Yi, Z) = max{1|∅; α}, where Z represents an assignment “true”, and α is 
an equality constraint that is satisfied if and only if ψi is satisfied by the corresponding assignment Yi . For example, 
if ψ1 is (¬X1 ∨ X2 ∨ X3) and ψ2 is (X1 ∨ ¬X4 ∨ X3) then relation clause1 is associated with the probability formula 
Fc1 (X1, X2, X3, Z) = max{1|∅; X1 �= Z ∨ X2 = Z ∨ X3 = Z}, and relation clause2 is associated with the probability formula 
Fc2 (X1, X4, X3, Z) = max{1|∅; X1 = Z ∨ X4 �= Z ∨ X3 = Z}. Now introduce a relation sat with parents {clausei : i = 1, . . . , m}, 
and probability formula

Fsat(Z) = opt1

{
· · ·optn

{
m∏

i=1

clausei(Yi, Z)

∣∣∣∣Xn

}
· · ·

∣∣∣∣X1

}
,

where opt j is max if Q j = ∃ and opt j is min if Q j = ∀. Specify the domain as D = { f , t}, representing false and true 
assignments, respectively. Then P(sat(t) = 1) ≥ 1/2 if and only if the qbf problem is a yes instance. �

The previous result suggests that nesting combination functions boost the computational power of inference in rbns. 
However, using an unbounded number of nestings does not seem necessary for modeling realistic domains. It is interesting 
then to look at the complexity of inference when only a bounded number of nestings is allowed. To this end, we define the 
nesting level of a probability formula:

Definition 13. A probability formula F = q or F = r(X1, . . . , Xn) has nesting level zero. A probability formula F =
F1 F2 + (1 − F2)F3 has nesting level equal to the highest nesting level of F1, F2, F3. Finally, a probability formula 
F = comb{F1, . . . , Fk|Y1, . . . , Ym; α} has nesting level equal to the highest nesting level over all probability formulas Fi
in it, plus one.

We consider:

Assumption 14. The nesting level of any probability formula is bounded by a constant k ≥ 0.

Limiting the nesting level brings inference down to the counting hierarchy:

Theorem 15. Inference is pp
�p

k -complete when the only combination function is max, the relations have bounded arity and probability 
formulas have nesting level at most k.

Proof. Membership follows as we can solve inference by a non-deterministic Turing machine that “guesses” an interpreta-
tion and performs binary search to evaluate the interpretation of each formula with polynomially many calls to an oracle 
�p

k . To see this, fix an interpretation μ. Then the interpretation of a formula of nesting level 0 is an arithmetic expression, 
which can be compared against a given threshold in deterministic polynomial time. So consider the computation of F μ(a)

where F = comb{F1, . . . , F
|Y1, . . . , Ym; α} is a formula of nesting level j (hence F1, . . . , F
 have nesting level at most j −1). 
By induction hypothesis, assume that we can decide if Fi(a, b) ≥ γi with a �p

j−1 machine, for i = 1, . . . , 
. We can decide 
F μ(a) ≥ γ by “guessing” a configuration b of Y1, . . . , Ym , then in deterministic polynomial time verifying if Fi(a, b) ≥ γ
holds for some i = 1, . . . , 
. More generally, the interpretation of a formula F of nesting level j can be decided by a machine 
�p

j by first solving an arithmetic expression in deterministic polynomial time (to find a threshold for each subformula), and 
then deciding each combination expression of level j. Finally, the probability PD(μ) is computed in deterministic polyno-
mial time as the product of Fr(a) or 1 − Fr(a) (note that the number of tuples a ∈ rμ is polynomially bounded). To obtain 
the desired probability note that deciding P(r(a) = 1|E) ≥ γ is equivalent to deciding P({r(a) = 1} ∧ E) + γP(¬E) ≥ γ . The 
latter can be computed by accepting paths that are either consistent with {r(a) = 1} ∧ E with weight 1 or consistent with 
¬E with weight γ .

Let ∃≥q X1, . . . Xnϕ denote a (quantified) Boolean formula that is satisfied if and only if ϕ is satisfied by at least q
assignments to X1, . . . , Xn that satisfy ϕ . We obtain hardness by reduction from the following pp

�p

k -complete problem 
[36]2:

2 Wagner defined complete problems for this class as CNF formulas (with no bound on clause length) and with the starting quantifier fixed; we adopt 
this modified form (with the ending quantifier fixed to ∃) so that we can we use clauses of length at most 3; note that any formula in CNF can be converted 
into an equisatisfiable 3-CNF formula with the inclusion of new existentially quantified variables.
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Input: A formula in the form

∃≥qX0∃X1∀X2 · · · ∃Xk [ψ1 ∧ · · · ∧ ψm] ,
if k is odd, or in the form

∃≥qX0∀X1∃X2 · · · ∃Xk [ψ1 ∧ · · · ∧ ψm] ,
if k is even, where q is a rational given in binary notation, each Xi is a tuple of logical variables (not appearing in other 
tuples), and each ψi is a 3-clause over X0, . . . , Xk .
Decision: Is the formula satisfiable?

We will use a nesting of maxs and mins to encode the quantifiers over X1, . . . , Xk , and represent the variables in X0 as 
relations. Note that we can encode Boolean disjunctions such as X ∨¬Y ∨ Z using the probability formula max{x, 1 − y, z|∅; }, 
where x, y and z are propositions (i.e., 0-arity relations) representing the corresponding Boolean variables. For each X j in X0, 
introduce a proposition x j with no parents and with probability formula Fx j = 1/2. For each clause, i = 1, . . . , m, introduce 
relations ci(Y, Z), di(Y, Z) and ei(Y, Z), where Y are the variables in X1, . . . , Xk that appear in ψi (there are at most 3 such 
variables). The parents of ci are di and ei ; di has no parents; the parents of ei are the relations x j corresponding to counting 
variables in the ith clause. Each relation di encodes whether the assignment of Y satisfies the respective clause, while the 
relation ei encodes whether the clause is satisfied by some assignment of the counting variables (and setting the quantified 
variables so that their values do not affect satisfiability). Let n be the number of variables in X0, and define Fij = 1 − x j if 
X j appears negated in the ith clause, Fij = x j if X j appears nonnegated in the i the clause, Fij = 0 if X j does not appear in 
the ith clause, and Fij = 1 if X j appears both negated and nonnegated in the ith clause. Specify:

Fdi (Y, Z) = max{1|∅;α} ,

Fei (Y, Z) = max{Fi1, . . . , Fin|∅;¬α} ,

Fci (Y, Z) = max{di(Y, Z), ei(Y, Z)|∅; Z = Z} ,

where the constraint α is satisfied if and only if the respective assignment of Y satisfies the ith clause. For example, for 
the clause (¬X1 ∨ X2 ∨ X3), where X1 and X2 are in X0 and X3 is not, we introduce relations c(X3, Z), d(X3, Z), e(X3, Z), 
and specify Fd(X3, Z) = max{1|∅; X3 = Z}, Fe(X3, Z) = max{1 − x1, x2|∅; ¬(X3 = Z)}, Fc(X3, Z) = max{d(X3, Z), e(X3, Z)}. 
Finally, introduce a unary relation sat whose probability formula is

Fsat(Z) = opt1

{
· · ·optk

{
m∏

i=1

ci(Yi, Z)

∣∣∣∣Xk;τ
}

· · ·
∣∣∣∣X1;τ

}
,

where opt j is max if its corresponding quantifier is ∃ and opt j is min otherwise (so e.g. optk is always max), X j is the tuple 
of variables referred to by the jth quantifier in the input, and τ is some tautology. Finally, specify domain D = { f , t} and 
decide yes if and only if P(sat(t) = 1) ≥ q/2n . �

Note that for nesting level k = 0, the proof above reduces a #sat≥ problem (complete for pp [2]) and thus provides an 
alternative proof that inference is pp-complete in rbns without combination functions. For a nesting level k = 1, Theorem 15
shows that inference is pp

np-complete, which suggests that the use of combination functions, even as simple as max, adds 
computational power to inference, even when combination functions are not nested. The same problem suggests that 
nesting increases complexity, and should be used carefully by the model maker.

4.3. rbns with mean and threshold combination functions

As we have seen in the previous section, the max combination function adds a computational power similar to quantified 
Boolean formulas. As discussed in Section 2, a different flavor is added by the combination function mean: it allows defining 
probabilities as proportions. We now consider rbns whose probability formulas use mean and threshold; we leave the study 
of mean alone for the future.

By combining threshold and mean we can encode quantified Boolean formulas. To see this, consider a quantified formula 
ϕ = ∀Xψ and the corresponding probability formula F = threshold{0.5 · mean{G|X; X = X}|∅}, where (by inductive hypoth-
esis) G encodes ψ . Then F μ = 1 if and only if μ satisfies ϕ . Also, given a formula ϕ = ∃Xφ, we can build a probability 
formula F = 1 − threshold{0.5 · mean{1 − G|X; X = X}∅}, where G encodes φ, such that F μ = 1 if and only if μ satisfies ϕ . 
Hence, rbns with threshold and mean can decide qbf, which makes inference pspace-hard. This suggests that we need to 
place some constraint on how these functions are used, similar to what we have done with max. However, simply limiting 
the nesting level is not sufficient, as a formula that uses k nestings of threshold exhibits a different complexity than a for-
mula with k nestings of mean; and a formula that mixes both combination functions might have yet another complexity. To 
keep things simple, we adopt:
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Assumption 16. A probability formula is either a rational number, or an atom, or a convex combination, or a combination 
expression of the form threshold{F1 · mean{G1, . . . , Gk|Y1, . . . , Ym; α} + F2|∅}, where F1 and F2 are probability formulas not 
containing combination expressions, and G1, . . . , Gk are probability formulas.

It should be clear that the above assumption is equivalent to assuming that only mean and threshold are used, and that 
they interact in a very particular way.

We thus have:

Theorem 17. Inference is ckp-complete when the domain is specified as a list, the relations have bounded arity, Assumption 16 holds 
and the nesting level is at most 2k.

Proof. We show membership by constructing a probabilistic Turing machine that “guesses” an interpretation μ, and 
then performs binary search to evaluate the interpretation of each probability formula with polynomially many calls 
to an oracle ck−1p. We can show that the latter is true inductively on the nesting level of formulas. So fix an in-
terpretation μ. The interpretation of a formula of nesting level 0 is an arithmetic expression, and can thus be de-
cided if greater than a given threshold in deterministic polynomial time. So consider the computation of F μ(a) where 
F = threshold{F1 · mean{G1, . . . , G
|Y1, . . . , Ym; α} + F2|∅} is a formula of nesting level j (hence F1 and F2 have nesting 
level 0, and G1, . . . , G
 have nesting level at most j − 2). By induction hypothesis, assume that we can decide if Gi (a, b) ≥ γi

with a c j−2p machine, for i = 1, . . . , 
. Then we can decide F μ(a) ≥ γ by with a probabilistic Turing machine with oracle 
c j−1p. The probability PD(μ) is computed in deterministic polynomial time as the product of Fr(a) or 1 − Fr(a) (note that 
the number of tuples a ∈ rμ is polynomially bounded). The desired probability is obtained by counting paths that are either 
consistent with {r(a) = 1} ∧ E or consistent with ¬E (with weight γ ), in order to decide if P({r(a) = 1} ∧ E) + γP(¬E) ≥ γ .

We prove hardness by reduction from #ksat, which is ckp-complete [36]:

Input: A Boolean formula of the form

∃≥q1 X1 · · · ∃≥qk Xk [ψ1 ∧ · · · ∧ ψm] ,
where each Xi is a tuple of logical variables, and each ψi is a 3-clause.
Decision: Is the formula satisfiable?

Denote by n the number of variables in X1. For each variable X j in X1, introduce a zero-arity relation x j with Fx j = 1/2. 
For each 3-clause ψi introduce relation a ci(Y, Z), where Y are the variables not in X1 that appear in the ith clause, and Z
defined a “true” assignment. Define Fij = 0 if X j is in X1 or if X j does not appear in the ith clause, Fij = 1 − x j if X j is in 
X1 and appears negated in the ith clause, Fij = x j if X j is X1 and appears nonnegated in the i the clause, and Fij = 1 if X j

is in X1 and appears both negated and nonnegated in the ith clause. Specify:

Fci (Y, Z) = 1 − th{0.5 · mean{1 − Fi1, . . . ,1 − Fin|∅;¬α}|∅; Z = Z} ,

where α is an equality constraint over Y and Z that is satisfied if and only if ψi is satisfied by some variable in X2, . . . , Xk , 
and th is short for threshold. A moment’s reflection should convince the reader that F μ

ci
(a) = 1 if and only if the correspond-

ing assignment to variables in Y satisfy α (hence ψi ), or if the interpretation μ assigns values to x j which satisfy ψi . To 
encode the quantified formula and the conjunction of clauses, introduce w(Z) and specify

F w(Z) = threshold
{

mean
{

F2(X2, Z)|X2; Z = Z
}|∅; Z = Z

}
,

where for i = 2, . . . , k we define

Fi(X2, . . . ,Xi−1, Z) = threshold
{
γ1,i · mean

{
Fi+1(X2, . . . ,Xi, Z)|Xi; Z = Z

} + γ2,i|∅; Z = Z
}
,

γ1,i = 1/(2qi) and γ2,i = 0 if qi ≥ 1/2, γ1,i = 1/(2(1 − qi)) and γ2,i = 1 − 1/(2(1 − qi)) if qi < 1/2, and

Fk+1(X2, . . . ,Xk, Z) =
m∏

i=1

ci(Yi, Z) .

Finally, return yes if P(w(t) = 1) ≥ q1/2n and return no otherwise. �
The proof above proves pp-completeness for formulas with nesting level 0, and thus also contains Theorem 7 as a special 

case.
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4.4. rbn with polynomial-time combinations functions

We now consider rbns with arbitrary combination functions given as part of the input. First, note that one might take 
an arbitrarily complex combination function to begin with, and then the complexity of inference would be entirely washed 
over by the complexity of evaluating combination functions (as already noted in Section 4). To prevent such situations, we 
might adopt:

Assumption 18. Any combination function comb{q1, . . . , qk} is polynomial-time computable in the size of a reasonable en-
coding of its arguments q1, . . . , qk .

The max, mean and threshold combination functions all satisfy this assumption. Thus, given the previous results, inference 
with polynomial-time combination functions can still produce problems with complexity ranging from pp to pexp, passing 
through every class in ch and pspace, depending on the maximum nesting level allowed and on whether the arity of 
relations is bounded. Allowing arbitrary polynomial-time combination functions, however, allows for exponential behavior 
even when the relations have bounded arity and probability formulas have nesting level at most k, due to idiosyncrasies of 
combination functions. To see this, consider the probability formula

F (X1, . . . , Xn, Z) = comb{G(X1, Z) + 2−1G(X2, Z) + · · · + 2−nG(Xn, Z)|X1, . . . , Xn; Z = Z} , (1)

where G(X, Z) = max{1|∅; X = Z}. To evaluate such a function, one may face an exponentially large multiset {q1, . . . , q2n }; 
if it is indeed necessary to go through all these elements, then the overall effort is exponential even if the function itself is 
polynomial on the size of the multiset. We have that:

Theorem 19. Inference is exp-complete when the relations have bounded arity and the combination functions are polynomial-time 
computable.

Proof. To prove membership, first note that there are polynomially many groundings for all relations in the rbn (since 
relations have bounded arity). Thus there are exponentially many truth assignments for these groundings; go over each one 
of them, computing (and adding) the probabilities produced by evaluating polynomially many combination functions (each 
evaluation with effort at most exponential). A conditional probability can be compared against a threshold by encoding it 
as a linear combination on the probability of query and evidence as in the proof of Theorem 15.

To show hardness we only need to consider an combination function that encode an arbitrary decision problem that 
is complete for exp. So introduce a relation w whose probability formula F w is F (X1, . . . , Xn, Z) as in Expression (1). 
Select some exp-complete problem, and assume that comb encodes this problem (that is, it gets a string x1x2· · ·xn as input, 
and runs an unavoidably exponentially long computation to decide if that string is in the language). Note that such a 
combination function is allowed, because comb can select any of the 2n replicas in its multiset, each encoding a binary 
number with n bits, and spend exponential time O (2poly(n)), which is polynomial in the encoding of the multiset (that takes 
O (2n ·n) bits). Now specify the domain as D = {0, 1}, and consider the free variables X1, . . . , Xn of this formula as specifying 
the input to the exp-complete problem encoded by comb; the variable Z specifies a bit set. Verifying if P(w(x1, . . . , xn, 1)

= 1) ≥ 1/2 then solves the exp-complete problem, and requires only polynomial-sized input and output. �
An alternative to assuming that the combination functions are polynomial-time computable is to adopt:

Assumption 20. Any probability formula comb{F1, . . . , Fk|Y1, . . . , Ym; α} is polynomial-time computable in the size of a 
reasonable encoding of its description.

One way to satisfy this assumption is to assume that 5 and that the number of logical variables bound in any probability 
formula is bounded by a constant; the latter is essentially the same as assuming a bound on the quantifier depth as defined 
by Jaeger [21]. Indeed, if the bound on the number of bound logical variables is say M , then there are at most |D|M tuples 
to test with the equality constraint; for each one of them, recursively obtain the values to be used in the combination 
function, and then compute the latter with polynomial effort.

In any case, inference in rbns where the probability formulas are polynomial-time computable exhibit a computational 
power equivalent to that of a Bayesian network:

Theorem 21. Inference is pp-complete when the relations have bounded arity and the probability formulas are polynomial-time 
computable.

Proof. An rbn without combination functions and a domain with a single element suffice to specify any Bayesian network, 
hence pp-hardness obtains. To show membership, note that there is a polynomial number of groundings, as relations have 
bounded arity; once a truth assignment is guessed nondeterministically for all these groundings, the computation of their 
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joint probability can be done in polynomial time (by assumption). Hence by adding up the result of all these truth assign-
ments (in fact, a suitably scaled result), we obtain the desired inference. Again, conditional probabilities can be compared 
against a threshold by comparing a linear inequality on the probabilities of query and evidence. �

These results can be interpreted as follows. If we want to use arbitrary combination functions, and we only accept 
polynomial-time functions, then the problem becomes exponentially hard in the worst-case and fails to reveal many in-
teresting cases. If on the other hand we take arbitrary functions but assume their interpretations to be polynomial-time 
computable, then rbns are essentially a syntactic sugar for representing large Bayesian networks, with no additional com-
putational power. It remains an open question to constrain rbns so that arbitrary combination functions can be used, while 
still leading to interesting complexity results.

5. Query complexity

The results proved so far required rbns whose size (in any reasonable encoding) could grow arbitrarily large. In many 
applications, however, the relational description of the model is rather succinct; or the model is constantly used with 
different domains and evidence scenarios. Thus, there is interest in studying the complexity of inference under the following 
assumption:

Assumption 22. The size of the rbn is bounded by a constant.

An equivalent assumption (as far as complexity is concerned) is to consider that the rbn is fixed; thus the complexity 
is analyzed in terms of domain size and evidence. For example, we might have a fixed model of interaction in a social 
network, and we might want to examine complexity of inference as a function of the number of individuals (given in unary 
or binary) and some information about certain individuals (given as evidence). This scenario was called query complexity in 
[8, Chapter 6.9] and later formalized in [7]. This is also related to the concept of compilation of an rbn [6,9].

Fixing the rbn, we have:

Theorem 23. Inference is in p when the size of the rbn is bounded by a constant, the domain is specified as a list and the probability 
formulas are polynomial-time computable.

Proof. As the relations have bounded arity and the number of relations is fixed, we can enumerate the interpretations in 
polynomial time. For each interpretation, we enumerate the random variables r(a), for r ∈ V and a ∈ D|r| and compute its 
probability formula Fr(a). As by assumption the latter takes polynomial time, the probability of the interpretation (obtained 
by the product of Fr(a) and 1 − Fr(a)) takes polynomial time. We can add up all probabilities consistent with query and 
evidence, and compare the sum against a threshold in polynomial time. �

And we have:

Theorem 24. Inference is pp-complete when the size of the rbn is bounded by a constant, the domain is specified as a list and the 
combination functions are polynomial-time computable.

Proof. Membership follows as we can “guess” an interpretation and then go through every relation r in the network, and 
every grounding r(a); for each grounding we evaluate the probability formula Fr(a) by enumerating every multiset in a 
combination expression; since the rbn is fixed this multiset contains at most a polynomial number in the size of the 
domain (where the degree of the polynomial can be as high as the number of variables in a combination expression, but 
this is considered fixed). Computing the combination function is then polynomial in its input.

To show hardness, consider the #sat≥ problem:

Input: A Boolean formula ∃≥q X1, . . . , Xn [ψ1 ∧ · · · ∧ ψm], where each ψi is a 3-clause and q is an integer.
Decision: Is the formula satisfiable?

This problem is pp-complete [36]. Introduce binary relations pos and neg indicating whether variable Y occurs in clause X , 
respectively, nonnegated or negated. Specify Fpos(X, Y ) = Fneg(X, Y ) = 1/2. Introduce also unary relations true and false
indicating whether a variable is assigned the value “true” or “false”, respectively. Specify F true(X) = 1/2 and F false(X) =
1 − true(X). To encode the clauses, introduce a unary relation clause with probability formula

Fclause(X) = max{pos(X, Y ) · true(Y ),neg(X, Y ) · false(Y )|Y ; Y = Y } .

Intuitively, clause(X) is true if and only if there is a variable Y that either occurs in clause ψX nonnegated and Y is assigned 
value “true”, or Y occurs in ψX negated and Y is assigned “false”. Introduce a unary relation isClause, representing whether 
X is a clause, and specify F isClause(X) = 1/2. Finally, introduce proposition sat with Fsat = min{clause(X) · isClause(X)|X;
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X = X}. Let the domain D be {1, . . . , N}, where N = max{n, m}. For i = 1, . . . , m and j = 1, . . . , n, include evidence 
{pos(i, j) = 1} and if literal X j occurs in ψi , and {pos(i, j) = 0} otherwise; include {neg(i, j) = 1} if ¬X j occurs in ψi

and {neg(i, j) = 0} otherwise; and include evidence {isClause(i) = 1} and for j > n (if any) {isClause( j) = 0}. Let E be this 
evidence. Then P(sat = 1|E) ≥ q/22n if and only if the corresponding Boolean formula is satisfiable. �

Note that the previous result shows that query complexity is pp-complete when we allow only max, mean or threshold, 
or any combination of these. Moreover, bounding the nesting level does not seem to have any effect on complexity.

6. On the functional complexity of inference

Strictly speaking, the inference problem is a functional problem, where one is interested in computing the value of a 
probability, and not on deciding whether this value exceeds a given threshold. This has led many researchers to study the 
complexity of the functional version of inference problem, usually within the framework of #p-completeness theory.

The complexity class #p contains the integer-valued functions computed by a counting Turing machine in polynomial 
time; a counting Turing machine is a non-deterministic Turing machine that prints in binary notation, on a separate tape, the 
number of accepting computations induced by the input [35]. The canonical problem for #p is model counting: given a CNF 
formula, count the number of satisfying assignments. Roth [31] showed that model counting can be reduced to inference in 
Bayesian networks, and hence the latter is #p-hard. The inference problem however is not in #p, since the latter is defined 
as integer-valued problems and the former produces rational values. In fact, Roth notes that “strictly speaking the problem 
of computing the degree of belief is not in #p, but easily seem equivalent to a problem in this class”; but he did not go 
as far as to define equivalence. Valiant himself used the class #p to study the complexity of the problem of computing the 
probability that a path between two given nodes will exist in a random graph. To cope with the non-integer character of this 
problem, he investigated instead a different problem that asked to compute the number of graphs produced by realizations 
of the random graph that connected the two nodes. The two problems are related by a normalization constant (the total 
number of graphs). An inference problem with no evidence can be seen from the same perspective, and investigated as a 
weighted counting problem with integer weights. This is somewhat the approach followed by Kwisthout [25], who defined 
a function as in #p modulo normalization if it can be written as f (x)/(k!)poly(|x|) , where f is a function in #p, k is some 
constant, and poly(|x|) denotes a polynomial in the size of the input.

The case of computing conditional probabilities is even more problematic. One could argue that inference with evidence 
should be cast as the division of two integer-valued functions (one computing the numerator, and the other computing), 
thus moving away from issues with rational values. However, it is believed that the class #p is not closed under division. 
One could then envisage developing a theory of counting with rationals; such a theory, if developed, would require an 
extensive work of finding complete problems, building hierarchies, and so on.

An alternative is to define a notion of equivalence so that we can use the #p-completeness theory to investigate the com-
plexity of rational-valued functions. This is for instance the approach followed by Grove et al. [19], who coined the concept 
of #p-easy functions: A function is #p-easy if it is computed by a function in #p followed by polynomial post-processing. 
And they defined a function as #p-complete if it is #p-easy and can compute any #p-easy function with a 1-Turing reduc-
tion (i.e. a Turing reduction with a single call to the oracle). Toda and Watanabe [33] showed that a every function that can 
be computed by counting Turing machine with a oracle ph can be reduced via 1-Turing reduction to a function computed 
by a counting Turing machine with an oracle #p. Thus, Grove et al.’s approach cannot differentiate between the cases in 
Theorems 7 and 15. This same issue appears in the work of de Campos et al. [10]. They defined functions that are equivalent 
to #p-complete functions as functions that can be computed by a 1-Turing machine with a single call to an oracle #p.

A more stringent approach was adopted by Bulatov et al. [5] to study the complexity of counting solutions to weighted 
constraint satisfaction problems. In lieu of Turing reductions, they used weighted reductions: a Karp reduction that preserves 
the number of accepting paths followed by a polynomial-time scaling of the solution (so that rationals can be brought up 
to bear on integer values). While this guarantees the distinction of classes that uses oracles in the polynomial hierarchy, it 
requires redefining other concepts, such as the classes in the counting hierarchy. It is worth noting however, that pp and #p

offer the same power when used as oracles to a polynomial (non)deterministic machine [3].
In this paper, we avoided the difficulties introduced by rational-valued functions and investigated the complexity of the 

decision variant of the inference problem (with evidence). We feel that the decision variant captures the main ingredients 
of the computational power of inferences with relational Bayesian networks, without requiring extra definitions and argu-
mentation (as the functional version). Many of the results we show here could be equally proved for the functional version, 
as long as we defined an appropriate notion of equivalence (say, using weighted reductions). For example, Theorems 7, 8, 
10, 11 could all be restated in terms of its functional variant, and their proofs would be nearly identical. Also, the class 
of functions computed by probabilistic Turing machines with polynomial space is also fpspace (the class of functions com-
puted by polynomial-space deterministic Turing machines) [26]; hence, Theorem 12 could also be restated in its functional 
version. Theorem 15 could also be “translated” to the function version, with some care. This is because the canonical com-
plete problem for #p

�
p
k uses either formulas in CNF or in DNF, depending on the parity of k [13]. So different proofs would 

have to be given to each case. Regarding Theorem 17, we are not aware of complete problems for the functional equivalent 
of ckp. Functional versions of Theorems 19, 21, 23 and 24 could also be proved with little effort.
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7. Conclusion

We have examined the complexity of inference in relational Bayesian networks. We argued that a great deal of com-
plexity is added by the combination functions alone, which led us to analyze the complexity in terms of the type of 
combination functions allowed. We first considered networks with no combination function, and showed that (from a com-
plexity viewpoint) they are essentially as powerful as Bayesian networks. We then analyzed the complexity when we only 
allow maximization as combination function. In this case, complexity results were much more interesting, covering classes 
defined by probabilistic Turing machines with oracles in the polynomial hierarchy, pspace and even pexp. The distinction of 
complexity classes was produced by limiting the arity of relations, the encoding of the domain and the number of nestings 
of combination functions. We then discussed the complexity of mean and threshold as combination functions: the former 
specified probabilities in terms of proportions; the latter allows for piecewise functions. We argued that by combining these 
functions we obtain at least the same computation power as maximization, so the previous results apply here as well. And 
we showed that with a suitable constraint on the use of both functions, we obtain complexity in all levels of the counting 
hierarchy. At last, we investigated the use of arbitrary combination functions. We showed that enforcing polynomial combi-
nation functions can still lead to exponential inference problems. On the other hand, constraining probability formulas to be 
polynomial in their encoding brings inference to the same complexity as Bayesian networks, and simplifies the discussion. 
We left as future work the development of criteria that allow arbitrary combination functions and yet enables interesting 
complexity results. We also left open the complexity when only mean is allowed.

We then considered complexity when the relational model is fixed. This can be either because the relational model 
is concise enough so that its size can be considered constant, or because we are interested in analyzing the amortized 
complexity of many inferences with the same relational Bayesian network. We show that when the model is fixed and 
probability formulas are polynomial (e.g., there are no combination functions), inference is polynomial. And when the model 
is fixed and combination functions are polynomial (e.g., maximization, threshold and mean), then inference is pp-complete.

An interesting direction for the future is to investigate the complexity with respect to graphical features of the model. 
For instance, inference in bounded-treewidth Bayesian networks is polynomial [22]. Our results suggest that even when the 
grounding of the relational network produces a polynomial-sized graph, inference can still remain intractable.
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