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Abstract This paper describes a logic-based formalism for qualitative spatial reasoning
with cast shadows (Perceptual Qualitative Relations on Shadows, or PQRS) and presents re-
sults of a mobile robot qualitative self-localisation experiment using this formalism. Shadow
detection was accomplished by mapping the images from the robot’s monocular colour
camera into a HSV colour space and then thresholding on V. We present results of self-
localisation using two methods for obtaining the threshold automatically: in one method the
images are segmented according to their grey-scale histograms, in the other, the threshold
is set according to a prediction about the robot’s location, based upon a qualitative spatial
reasoning theory about shadows. This theory-driven threshold search is the main contribu-
tion of the present research, and to the best of our knowledge this is the first work that
uses qualitative spatial representations both to perform egolocation and to calibrate a robot’s
interpretation of its perceptual input.

1 Introduction

Cast shadows as cues for depth perception have been used to enhance depictions of natu-
ral scenes since the Renaissance [11]. Recent research within psychology suggests that the
human perceptual system gives preferential treatment to information from shadows when
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inferring motion in depth and perceiving 3D scene layout. These studies suggest that infor-
mation coming from shadows can override such basic notions as conservation of object size
[22,7,24]. Casati [4] points out that cast shadows also contain information that is not used
during passive perception, for instance, information about the presence and location of the
light source and the caster; the intensity of the source; the caster’s shape; the screen texture;
and the distance between the caster and the screen.

Whilst psychologists have demonstrated the centrality of shadows to our own percep-
tion of depth, size and motion, much work in computer vision and robotics starts from the
premise that shadows are sources of noise rather than information. The present work falls
within the small but growing area of research which aims to treat shadows not as sources
of noise, but as sources of information. This requires not only a model of the kinds of in-
formation that shadows can purvey, but also a robust and accurate shadow detection system.
Researchers within both computer vision and robotics have been working in this area – many
engaged in shadow suppression in videos from fixed cameras, but some engaged in the more
challenging task of shadow identification, localisation and use [14].

The contribution of this paper is the investigation of a qualitative self-localisation method
using information from cast shadows. We discuss the experimental evaluation of this method
using two techniques for automatically obtaining the threshold to segment images from a
robot’s camera. In one method, the images are segmented according to their grey-scale his-
togram. In the second method the threshold is searched according to a prediction about the
robot’s location, given a shadow-based qualitative map.

This paper is organised as follows. Section 2 outlines related research from within both
computer vision and robotics. Section 3 describes the theory upon which this work is based:
Perceptual Qualitative Relations about Shadows (PQRS), which formalises the problem of
reasoning about shadows within a qualitative spatial reasoning context. The adaptive thresh-
olding methods considered in this work are presented in Section 4, and results are described
in Section 5. A discussion of open issues is presented in Section 6 and Section 7 concludes
this paper.

Throughout this paper, constants are written in upper-case letters and variables in lower
case, unless explicitly stated otherwise.

2 Related research

When considering the task of segmenting moving objects from a static background, shadows
are a frequent source of false positives [12,25] and therefore shadow suppression is a major
research area. In this context, shadow detection in computer vision almost always involves
some model of the colour of the screen (or, in computer vision terminology: background)
and detection is performed using a model of shadows characterising them as ‘roughly the
same colour as the background, but darker’. Perhaps the simplest shadow detection method
proposed is that of [37], in which a grey-scale image is thresholded and the darker pixels
are labelled shadow; however this approach fails on complex images and in situations where
lighting changes due to either environmental effects or egomotion. Prati in [28] provides an
overview and a taxonomy of early shadow-detection techniques, dividing them into model-
based and non-model-based; however, this categorisation does not apply well to more recent
works, many of which can be thought of as ensemble methods [25,27].

Cucchiara et al. in [12] take as their starting point detected moving objects (and a back-
ground model). The pixel values of moving objects are converted to the HSV (Hue, Satura-
tion and Value) colour space, and then these objects are investigated to determine whether



they are real moving objects or merely shadow pixels. This is accomplished by considering
observed and background values of all three HSV components, considering the difference
between foreground and background values for H and S, and the ratio of the two V values.
This captures the intuitive observations that shadows are about the same hue as the same
part of the scene unshadowed, slightly more saturated, and darker. A similar approach based
upon the observation of colour changes in cast shadows is presented in [32]. Stauder et al. in
[35] use assumptions about the background (it will dominate the scene), the nature of shad-
ows and luminance (shadows are darker and tend to have uniform shading) and the presence
of moving and static edges. Other methods for shadow filtering use a model of the shadow’s
caster, either assuming it is rectangular (like a car) as in [39], or upright (from a moving
person for instance) as in [18,31]. These assumptions improve filtering considerably, but
break down when shadows from arbitrary objects are considered.

There are a few systems within computer vision that use cast shadows as sources of
information rather than noise. The work reported in [3] uses known 3D locations and their
cast shadows to perform camera calibration and light location (using known casters and
screen to tell about the light source); Caspi and Werman in [5] use the moving shadows cast
by known vertical objects (e.g., flagpoles, or the side of buildings) to determine the 3D shape
of objects on the ground (using the shadow to tell about the shape of the screen). Balan et al.
[1] use shadows as a source of information for detailed human pose recognition: they show
that using a single shadow from a fixed light source can provide a similar disambiguation
effect as using additional cameras.

In robotics, the story is similar. Fitzpatrick and Torres-Jara in [15], inspired by work
suggesting that humans use the shadows of their own limbs when judging limb location [6],
track the position of a robotic arm and its shadow cast on a table to derive an estimate of
the time of contact between the arm and the table. Shadows are detected in this work using
a combination of two methods: in the first, a background model of the workspace is built
without the arm and then used to determine light changes when the arm is within the camera
view. The second method compares subsequent frames in order to detect moving regions
of light change. The authors motivate their work pointing out that depth from shadows and
stereopsis may work as complementary cues for robot perception, while the latter is limited
to surfaces rich in textures, the former works well for smooth (or even reflective) surfaces.
Cheah et al. [8] present a novel controller for a robot manipulator, providing a solution
to the problem of trajectory control in the presence of kinematic and dynamic uncertainty.
In order to evaluate their results, an industrial robot arm was controlled using the visual
observation of the trajectory of its own shadow. Lee et al. [20] use cast shadows inside pipes
to detect landmarks: by fitting bright lights to the front of their pipe inspection robot, they
can determine when a pipe bends by detecting cast shadows.

Information from shadows is also considered in unmanned autonomous planetary ex-
ploration. Tompkins et al. [36] describe an autonomous path planning system that takes into
account various conditions of the robot’s state, including particularities of the terrain and
lighting. In this context, the information about shadows cast by terrain irregularities allows
the rover to plan a trajectory that maximises the trade-off between the exposure of the so-
lar cells to sun light and the limited resources in planetary missions. Kunii and Gotoh [19]
propose a Shadow Range Finder system that uses the shadow cast by a robot arm on the sur-
face of a terrain in order to obtain depth information around target objects, thus providing
low-cost, energy-saving sensors for the analysis of the terrain surrounding rock samples of
interest.

More recently, we developed an initial representation of cast shadows in terms of a
spatial formalism based on occlusion relations (presented in [33]). This representation,



called Perceptual Qualitative relations about Shadows (PQRS), is used in a qualitative self-
localisation procedure for a mobile robot in an office-like environment. The present paper
builds upon this idea and, therefore, a more complete and accurate description of the PQRS
formalism is presented in the next section.

The idea of qualitative self-localisation first appeared in [21] whereby a tessellation of a
mobile robot’s environment is obtained from the set of lines connecting pairs of point-wise
landmarks. The space bounded by these lines define regions, which can then be treated as
vertices of a topological map. The spatial representation behind this idea was further de-
veloped in [38,34,16]. In particular, [16] considers extended convex (instead of point-wise)
objects as landmarks and the decomposition of space is based on the notions of occlusion
and visibility, which has much in common to the PQRS formalism investigated in this paper.
However, in contrast to [16], the present work shows empirical results from the application
of these ideas.

3 Perceptual qualitative relations about shadows (PQRS)

Perceptual Qualitative Relations about Shadows (PQRS) [33] is a theory inspired by the idea
that shadows provide the observer with the viewpoint of the light source, as shadows are pro-
jections of casters from the light source’s location. Equivalently, we can say that every point
in the shadow region is totally occluded by the caster from the viewpoint of the light source1.
This idea is developed by representing relations of occlusion and shadows within the scope
of the Qualitative Spatial Reasoning (QSR) field of research, which is part of the artificial in-
telligence sub-area known as Knowledge Representation and Reasoning [13]. if The goal of
QSR is to provide appropriate formalisms for representing and reasoning about spatial enti-
ties, such as part-whole relations, connectivity, orientation, line segments, size and distance,
and so on [9,10]. In practice, QSR formalisms are based on a number of constraints that re-
flect the structure of space, which are represented as a set of qualitative (i.e., non numerical)
relations. With these relations, QSR methods also facilitate the representation of high-level
domain knowledge, adding a more abstract (conceptual) level to the systems in which they
are applied, including robotics and vision systems. Therefore, research on qualitative spatial
reasoning for robotics does not preclude the use of more traditional quantitative methods,
but complements them.

The Perceptual Qualitative Relations about Shadows (PQRS) theory shares common
goals with other QSR theories, making explicit some of the information content in cast
shadows. PQRS assumes the existence of a major, static, light source denoted by L, situated
above the observer (in agreement with recent research on the psychophysics of perception
[23]). It is also assumed that the scenes are observed from a viewpoint v, and that shad-
ows are cast on a single screen Scr, assumed to be much larger than the shadow and not
necessarily planar.

The foundation of PQRS is the QSR theory named the Region Occlusion Calculus
(ROC) [30], which is itself built upon one of the best known QSR approaches: the Region
Connection Calculus (RCC) [29]. RCC is a first-order axiomatisation of spatial relations
based on a reflexive, symmetric and non-transitive dyadic primitive relation of connectivity
(C/2) between two regions. Informally, assuming two regions x and y, the relation C(x, y),

1 This holds if we assume a point light source; in the real world with shadows from larger sources, we can
make a distinction between the shadow body (or Umbra) which is totally occluded, and the Penumbra, which
is partially occluded by the caster from the viewpoint of the light source. For the current work, with robots,
small light sources, and noisy sensors, we can assume a point light source without losing generality.



read as “x is connected with y”, is true if and only if the closures of x and y have at least
one point in common.

Assuming the C/2 relation, and two spatial regions x and y, some mereotopological
relations between two spatial regions can be defined, such as:

– disconnected from (DC): DC(x, y) ≡ ¬C(x, y);
– part of (P ): P (x, y) ≡ ∀z(C(z, x)→ C(z, y)) ;
– equal to (EQ): EQ(x, y) ≡ P (x, y) ∧ P (y, x);
– overlaps (O): O(x, y) ≡ ∃z(P (z, x) ∧ P (z, y));
– partially overlaps (PO): PO(x, y) ≡ O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x);
– proper part of (PP ): PP (x, y) ≡ P (x, y) ∧ ¬P (y, x);
– externally connected (EC): EC(x, y) ≡ C(x, y) ∧ ¬O(x, y);
– tangential proper part (TPP ): TPP ≡ PP (x, y) ∧ ∃z(EC(z, x) ∧ EC(z, y));
– non-tangential proper part (NTPP ): NTPP ≡ PP (x, y)∧¬∃z(EC(z, x)∧EC(z, y)).

RCC also includes the inverse relations of P , PP , TPP and NTPP , which are repre-
sented by a capital ’I’ appended to the relative relation: PI, PPI, TPPI and NTPPI.

The set constituted by the relations DC, EQ, PO, EC, TPP , NTPP , TPPI, and
NTPPI is the jointly exhaustive and pairwise disjoint set usually referred to as RCC8,
these relations are depicted in Figure 1 [29].

The continuous transitions between the RCC8 relations are shown as a conceptual neigh-
bourhood diagram (CND) represented in Figure 1. Conceptual neighbourhood diagrams are
standard techniques in spatial reasoning [17]. Briefly, a CND is a graph representing in its
vertices relations on some specific objects, and in its edges, the continuous transitions be-
tween these relations. The concept of continuous transitions, in this context, means that in
between adjacent vertices of the graph (i.e. two edge-connected relations), there is no other
possible relation which these regions could assume.
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Fig. 1 The RCC8 relations and their conceptual neighbourhood diagram.

Using RCC8 relations, along with the primitive relation TotallyOccludes(x, y, v) (which
stands for “x totally occludes y with respect to the viewpoint v”), the Region Occlusion
Calculus (ROC) represents the various possibilities of interposition relations between two
arbitrarily-shaped objects. In particular, it is possible to define occlusion relations for non
occlusion (NonOccludes/3), partial occlusion (PartiallyOccludes/3) and mutual occlu-
sion (MutuallyOccludes/3). In fact, Randell et al. [30] define 20 such relations (shown in
Figure 2).
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Fig. 2 The 20 ROC relations.

Informally, in the ROC, occlusion relations represent the relative 3D position between
pairs of objects with respect to an observer, whereas the RCC represents the relative relations
between the 2D projections of these objects from an observer’s viewpoint. In order to make it
clearer, Figure 2 shows a graphical representation of the ROC relations between two objects:
a white box and a dashed box. For instance, the relation NonOccludesDC is represented
by the two boxes completely separated (i.e. non-occluding and disconnected); the relation
PartiallOccludesTPP is depicted with the small dashed box occluding the white box,
while the 2D projection of the dashed box is a tangential proper part of the 2D projection of
the white box.

More formally, the Region Occlusion Calculus makes a distinction between the occu-
pancy regions of bodies and their images (or projections) from the viewpoint of an observer.
This distinction is made by assuming two functions: the function region(x), which maps
a body x to its 3D occupancy region, and the function image(x, v) that maps a body x

(and the viewpoint v) to the body’s 2D projection, as seen from viewpoint v. It is worth
pointing out that the viewpoint in ROC is modelled as a pinhole camera whose parame-
ters, however, are not important for the qualitative theory. For instance, given two bodies
X and Y and a viewpoint V , the statement PartiallyOccludesTPP (X, Y, V ) is defined as
PartiallyOccludes(X, Y, V ) and TPP (image(X, V ), image(Y, V )).

It is worth pointing out also that the “I” in the relations TotallyOccludesTPPI(o, s, v)
and TotallyOccludesNTPPI(o, s, v) represents the inverse of TPP and PP , respectively;
so, for instance, TotallyOccludesTPPI(o, s, v), means that the caster o totally occludes its
shadow s, but image(s) is the tangential proper part of image(o) (i.e., TPPI(image(o, v),-
image(s, v)) ).

Using these definitions, ROC is constrained by a number of axioms, of which we only
cite two ((A1) and (A2)), since only these are relevant for proving the PQRS theorems
proposed below.



Formula (A1) is the ROC axiom that states that “if x totally occludes y from a viewpoint
v, x totally occludes any part of y”:

(A1) ∀x y z v [[TotallyOccludes(x, y, v) ∧ P (region(z), region(y))]→
TotallyOccludes(x, z, v)].

Formula (A2) below states that “if x totally occludes y from v, no part of y totally
occludes any part of x”:

(A2) ∀x y z v [TotallyOccludes(x, y, v)→
∀z u[[P (region(z), region(x)) ∧ P (region(u), region(y))]→
¬TotallyOccludes(u, z, v)]]

In order to simplify notation we use the following abbreviation [30]:

Occludes(x, y, v) ≡
∃z ∃u P (region(z), region(x))∧
P (region(u), region(y))∧
TotallyOccludes(z, u, v)

Considering the ROC relations between a caster o and its shadow s, from a viewpoint v

(and the fact that a shadow never occludes its caster, as proved in theorem (T1) below) only
the following ROC relations have models in PQRS:

– NonOccludesDC(o, s, v);
– NonOccludesEC(o, s, v);
– PartiallyOccludesPO(o, s, v);
– PartiallyOccludesTPP (o, s, v);
– PartiallyOccludesNTPP (o, s, v);
– TotallyOccludesTPPI(o, s, v);
– TotallyOccludesEQ(o, s, v), and
– TotallyOccludesNTPPI(o, s, v).

Apart from the ROC relations inherited by PQRS, this theory also assumes the primitive
Shadow(s, o, Scr, L) that represents that a shadow s is cast by a caster o, from the light
source L, on the screen Scr. The axiom constraining the Shadow/4 relation is represented
by Formula (A3) below.

(A3) Shadow(s, o, Scr, L)↔¬∃o�(o �= o
�)

∧Occludes(o�, o, L) ∧ PO(region(s), region(Scr))∧
TotallyOccludes(o, s, L).

Axiom(A3) states that the shadow of a caster o is the region in a screen Scr that is totally
occluded by o from the light source viewpoint L (if there is no other object o

� occluding o

from L).
With this formalism it is possible to prove a number of theorems about commonsense

facts. For instance, it follows directly from Axioms (A2) and (A3) that no shadow occludes
its own caster2, as denoted by Theorem (T1) below.

(T1) Shadow(s, o, Scr, L)→ ¬TotallyOccludes(s, o, L).

2 Note that we are only dealing with cast shadows, and not self-shadows.



It is also a consequence of Axiom (A3) and the ROC axioms that no shadow casts a
shadow itself (cf. Theorem (T2)):

(T2) Shadow(s, o, Scr, L)→ ¬Shadow(s�, s, Scr, L).

Proof: Let’s assume, reasoning by contraposition, that both (a) Shadow(s, o, Scr, L)
and (b) Shadow(s�, s, Scr, L) are true, for any object o and shadows s

� and s. From
(b) and axiom (A3) we have that TotallyOccludes(s, s�, L), similarly from (a) and
(A3), we have that TotallyOccludes(o, s, L). From the transitivity of TotallyOc-
cludes/3, we have: TotallyOccludes(o, s�, L). Therefore, from (A3) we conclude
that Shadow(s�, s, Scr, L) is false, since the condition

¬∃o�(o �= o
�) ∧Occludes(o�, o, L)

does not hold. Therefore, the initial hypothesis leads to a contradiction, thus its
negation holds, proving the thesis.

�

We can also prove that if two shadows of distinct objects partially overlap, then the
objects will be in a relation of occlusion with respect to the light source, as expressed in
Theorem (T3).

(T3) Shadow(s, o, Scr, L)∧Shadow(s�, o�, Scr, L)

∧O(region(s�), region(s))

→ Occludes(o, o�, L) ∨Occludes(o�, o, L).

Proof:
From Shadow(s, o, Scr, L) and axiom (A3) we have (a) TotallyOccludes(o, s, L),
and similarly from Shadow(s�, o�, Scr, L) we have (b) TotallyOccludes(o�, s�, L).
From O(region(s�), region(s)) and the definition of O/2 we have (c) ∃zP (z, s) ∧
P (z, s

�).
From (A1), (a) and (b) it is true that o totally occludes any part of s (and analo-
gously to o

� and s
�), thus from (c) it is true that:

∃zP (z, s) ∧ P (z, s
�) ∧ TotallyOccludes(o, z, L) ∧ TotallyOccludes(o�, z, L).

By construction, o and o
� are disconnected, therefore the previous formula implies

that either occludes(o, o�, L) or occludes(o�, o, L).
�

Theorem (T3) is an example of an inference that presupposes a relational theory, i.e., it
is a result that cannot be achieved with the traditional numerical methods used in robotics.

3.1 Relative location within PQRS

The formalism given above can be used to reason about shadows from arbitrary viewpoints:
by relating shadows to occlusion we can determine five distinct regions defined by lines
of sight between the light source, the caster and its shadow as represented in Figure 3. We
use these distinct regions for robot egolocation, requiring that we make two practical ad-
justments. Region2 and Region4 in Figure 3 are in fact boundaries separating Region1

and Region3, and between Region3 and Region5 respectively. Therefore, it is virtually
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Region1

Fig. 3 Distinct regions implied by the observation of a shadow and its caster, where O is the caster, S its
shadow, L is the light source, and the constants Region1, Region2, Region3, Region4 and Region5

represent the regions for the relative localisation wrt shadow and object. It is worth noting that, in this figure,
Region2 and Region4 have zero-width boundaries.

impossible for a robot to locate itself on them. In a real robot environment with noisy sen-
sors, Region2 and Region4 are extended, assuming an interval of uncertainty around these
boundaries. Also, in a mobile robot environment, where shadows are usually connected to
their casters, only the part of the shadow farthest from the caster (which we shall call top
for convenience) is considered when constructing the diagram. In order to formally state the
distinction between whole shadows and their top parts, we introduce a function top(s) that
maps a shadow (s) to its top half part (as represented in Figure 4). This is analogous to the
region and image functions used in ROC, as mentioned above:

top : Shadow → Shadow

In practice, however, obtaining the top part of the shadow is very hard (particularly
considering situations where the shadow can be occluded by its caster from a viewpoint).
In our implementation we solve this problem by analysing the ROC relations between the
top part of the object with respect to the object’s shadow, since the top of the shadow is
generated by the top part of its caster.

o

S}{top(S)

(a) (b)

Fig. 4 (a) diagram representing the top part of a shadow; (b) snapshot of the top part of a shadow, as seem
from the robot camera.



Using the top part of a cast shadow and the extended version of Region2 and Region4,
the diagram depicted in Figure 3 becomes that represented in Figure 5. As it is more suitable
to robot self-localisation, only the latter will be used throughout this paper.

Considering the diagram in Figure 5, any viewpoint v located on Region1 will observe
the (top of) shadow s and the object o as NonOccludesDC(o, top(s), v); similarly, if v ob-
serves o and top(s) from Region3 it should see that PartiallyOccludesPO(o, top(s), v)
and from Region5 that TotallyOccludesNTPPI(o, top(s), v). In Region4 v would ob-
serve TotallyOccludesTPPI(o, top(s), v). In Region2, v perceives object and shadow as
NonOccludesEC(o, top(s), v). These facts are included in PQRS by the axioms (A4) to
(A8) below, where the predicate located(r, v, o, s) represents that an observer v is located at
a region r according to the viewpoint v and shadow s, given a screen Scr and a light source
L.

(A4) located(Region1, v, o, s)←Shadow(s, o, Scr, L)∧
NonOccludesDC(o, top(s), v) ∧ v �= o;

(A5) located(Region2, v, o, s)←Shadow(s, o, Scr, L)∧
NonOccludesEC(o, top(s), v) ∧ v �= o;

(A6) located(Region3, v, o, s)←Shadow(s, o, Scr, L)∧
PartiallyOccludesPO(o, top(s), v) ∧ v �= o;

(A7) located(Region4, v, o, s)←Shadow(s, o, Scr, L)∧
TotallyOccludesTPPI(o, top(s), v) ∧ v �= o;

(A8) located(Region5, v, o, s)←Shadow(s, o, Scr, L)∧
TotallyOccludesNTPPI(o, top(s), v) ∧ v �= o.

*
L

o

SRegion1
Region1

Region2

Region3

Region
4

Region
4

Region5

Region3

Region2

Fig. 5 Regions implied by the observation of a shadow and its caster (represented by the constants Region1,
Region2, Region3, Region4 and Region5), where L is the light source, O is the object (caster), S is its
shadow. Only the top part of the shadow is used in the definition of the regions in this diagram.



In the algorithms for qualitative self-localisation presented in Section 4.1 below, it is
convenient to introduce the relation neighbour(x, y); neighbour/2 represents the neigh-
bouring regions with respect to the robot’s location, as represented in the formula (A9)
below, for an object o, a viewpoint v and a shadow s.

(A9) neighbour(x, y)↔ (located(x, v, o, s) ∧ EC(x, y))

In the formula (A10) we define a predicate predict future loc(y, v, o, s) that represents
a prediction for the robot’s future location y, to a neighbouring region of the robot’s current
location x, if a moving action occurs. The moving action move/1 is assumed as primitive
in the formalism above. In practice, it is directly related to the robot’s actuators.

(A10) located(x, v, o, s) ∧move(v) ∧ neighbour(x, y)→
predict future loc(x, v, o, s)∨
predict future loc(y, v, o, s)

Using ROC it is also possible to relate shadows with the relative distance of objects from
a viewpoint. The region occlusion calculus relates occlusion with relative distance using the
relation nearness (N(x, y, z)), read as “x is nearer to y than x is to z”, that was first defined
in [2]. Nearness is incorporated into ROC by the following axiom [30]:

(A11) ∀x y v [PartiallyOccludes(x, y, v)→ N(v, x, y)]

representing that “if a body x partially occludes a body y with respect to some viewpoint v

then x is nearer to v than y is to v”.
Within PQRS this implies the commonsense fact that N(L, o, s) (for a light source L, an

object o and its shadow s) and consequently that N(L, o, Scr): “the light source is nearer the
caster than it is to its shadow”. This fact, allied with the qualitative egolocation (according
to Figure 5), facilitates inferences about relative depth from monocular views in some cases.

It is worth pointing out that Axiom (A11) does not hold in cases of mutual occlusion
(such as those presented in Figure 2), but only under partial occlusion. In fact, if mutual
occlusion occurs, the premise of Axiom (A11) is false, since the set of ROC relations is
joint exhaustive and pairwise disjoint.

4 Robot environment, self location and adaptive thresholding methods

The idea for qualitative robot self-localisation using cast shadows, presented in the previ-
ous section, was implemented on our Pioneer PeopleBot mobile robot using its monocular
colour camera to obtain snapshots of objects and their shadows in an office-like environ-
ment, containing a major (but not necessarily single) light source, as shown in Figure 6(a).
Shadow detection was accomplished by first mapping the images captured by the camera
into a HSV colour space. These images were then segmented by thresholding on V, whereby
high values (light objects) were filtered out and low values (dark objects) are casters. Shad-
ows were located within a value range in between light and dark objects. Morphological
operators and the saturation value were used to filter noise (such as reflections of the light
source on the object or background shadows). The robot was set to navigate through the



(a) robot environment (b) Two shadows (c) Example segmented image

Fig. 6 Images depicting environment, sample input (with ambiguous shadow-base relations) and segmented
object/shadow.

room and to analyse its position with respect to object-shadow locations according to the di-
agram shown in Figure 5. An example of the snapshots used in this work is shown in Figure
6(c). Shadow correspondence, which is the problem of matching each shadow to its caster
[22,24], is solved in this work by assuming a simple heuristic: the shadow that is connected
to an object’s base is the shadow of this object. When there are various shadows connected
to the object’s base, the caster is associated with the shadow that is further away from the
light source (Fig. 6(b) shows an example of such situation).

Given a threshold th, a Scene and a viewpoint v, Algorithm 1 summarises the basic
method for self-localisation described and built upon in this section.

Algorithm 1 PERCEPTION ACTION(th, Scene, v)
1: segment Scene using the threshold th to obtain a caster O and the top of its shadow top(S)
2: if NonOccludesDC(O, top(S), v) then
3: robot is on Region1

4: else if NonOccludesEC(O, top(S), v) then
5: robot is on Region2

6: else if PartiallyOccludesPO(O, top(S), v) then
7: robot is on Region3

8: else if TotallyOccludesTPPI(O, top(S), v) then
9: robot is on Region4

10: else if TotallyOccludesNTPPI(O, top(S), v) then
11: robot is on Region5

12: else
13: FAIL

14: end if

In Algorithm 1 the ROC relations between a caster O and its shadow S are evaluated
according to a threshold on the distance between the (top part of) the shadow’s bounding
box when Non Occlusion holds. If the shadow is in some degree occluded by its caster,
from the observer’s viewpoint, the ROC relation is evaluated according to a percentage of
the shadow’s bounding box that can be observed from behind the caster: PartiallyOcclud-
esPO(O, top(S), v) is interpreted when more than (or equal to) 10% of the bounding box
is observed, but not all of it; TotallyOccludesTPPI(O, top(S), v) is assumed when less
than 10% is still observed; and, when no part of the shadow is seen from behind the caster,
TotallyOccludesNTPPI(O, top(S), v) is concluded.



4.1 Adaptive thresholds for foreground/background segmentation

In this work we compare the use of three distinct methods for thresholding images to find
shadows. The first method (forming the baseline) is a fixed threshold across all images,
selected by hand. The second is Otsu’s method [26], and the third is a threshold search
related to the robot’s predicted location according to PQRS (which we call the knowledge-
based threshold).

Otsu’s method [26] is an adaptive thresholding method, often used in computer vision,
that finds the threshold (th) which maximises the inter-class variance σ between two groups
of pixels. Formula 1 expresses σ in terms of the threshold-dependent class probabilities
(ω1(th) and ω2(th)) and class means (µ1(th) and µ2(th)) of groups 1 and 2.

σ
2(th) = ω1(th)ω2(th)[µ1(th)− µ2(th)]2 (1)

The second method for finding the best threshold uses belief about the robot’s previous
location and information about the robot’s motion in order to make a prediction about its
current location. This procedure is represented in Algorithm 2 (threshold−and−position)
and it works as follows. The robot starts in any of the object-shadow regions, as depicted in
Figure 5. From this position the robot executes a motion. Given the speed and direction of
this motion, the robot makes a prediction about where it is going to be with respect to the
map in Figure 5. This prediction is given by odometry and is represented by Axiom (A10)
in the formalism above. We summarise the knowledge-based threshold search as follows:

– The robot starts in a known position, and performs a moving action. This puts it in a
new position, which we can estimate (but not know precisely, due to actuator noise and
odometry drift).

– In its new position, the robot captures a snapshot of the target object and uses it to
decide on its location. This is accomplished by calling the function perception−action,
Algorithm 1).

– If the location interpreted from the image matches that predicted, then the robot moves
on.

– If not, the function vary − threshold (Algorithm 3) is called to vary the threshold until
a match is found between its predicted and interpreted positions.

– If there is no such match, vary − threshold is called twice again to verify whether
there is a threshold that allows the robot to match its position with respect to one of the
neighbouring regions of the predicted location.

– The algorithm terminates with failure if it does not find a suitable threshold that would
place it on the predicted region or one region either side of the prediction. Through this
consideration of neighbouring regions, we can better handle errors introduced by noisy
odometry.

The pseudocode threshold− and− position (Algorithm 2) has as input the prediction
of the robot’s position si after its motion, a threshold th and a scene snapshot observed
from the viewpoint v. This algorithm uses the variables th0, thmin, thmax and thaux for
thresholds, where th0 is a starting threshold, and thmin and thmax are the minimum and
maximum thresholds, respectively. The variables s0, si, sj represent the robot’s position,
and the variables si−1, si+1 represent regions that are neighbours of si. These regions are
possible outcomes of a single (non-deterministic) motion whose goal was si. As well as
these symbols, the pseudocode vary − threshold (Algorithm 3) uses the constant step that



represents the step of threshold variation. This work assumes the following values: step =
1, thmin = th0 − 5 and thmax = th0 + 5.

Algorithm 2 THRESHOLD AND POSITION(si, th0, scene, v)
1: thmin = th0 − 5, thmax = th0 + 5
2: sj = PERCEPTION ACTION(th0, Scene, v)
3: if (si == sj) then
4: return (th0, sj )
5: else
6: (thaux, sj ) = VARY THR(si, th0, thmin, thmax, scene)
7: if (thaux < thmax) then
8: return (thaux, sj )
9: else

10: (thaux, sj ) = VARY THR(si+1, th0, thmin, thmax, scene)
11: if (thaux < thmax) then
12: return (thaux, sj )
13: else
14: (thaux, sj ) = VARY THR(si−1, th0, thmin, thmax, scene)
15: if (thaux < thmax) then
16: return (thaux, sj )
17: else
18: return FAIL

19: end if
20: end if
21: end if
22: end if

Algorithm 3 VARY-THRESHOLD(s, th0, thmin, thmax, scene)
1: thaux = thmin − step

2: step = 1;
3: while ((s �= sj) and (thaux < thmax)) do
4: thaux = thaux + step

5: sj =PERCEPTION ACTION(thaux, scene, v)
6: end while
7: return (thaux, sj )

The main function in the set of algorithms presented here is Algorithm 2, threshold −
and− position. This calls Algorithm 1 perception− action and 3 vary − threshold, out-
putting the robot’s location (sj) and the current threshold. Thus the termination, complexity
and correctness of Algorithm 2 depends on these attributes with respect to the latter two
functions.

Algorithm 1 is a branching if-then-else statement representing the various shadow-object
regions with respect to the diagram in Figure 5, given a snapshot of the world. The algorithm
outputs a default value (fail) when no region can be assigned. Thus, it always terminates and
runs in constant time. This algorithm is correct, since given an appropriate threshold th,
it will output the correct location of the robot within the five qualitatively distinct regions
shown in Figure 5. Algorithm 3 always terminates, since it only applies a linear search (with
fixed step) on a finite set of thresholds. In this work the set of thresholds is the interval of
natural numbers between thmin and thmax and it is traversed with step 1. Thus, the maxi-
mum time complexity of Algorithm 3 is O(n), where n is the size of the set |thmin, thmax|.



Algorithm 3 returns fail if Algorithm 1 fails (i.e. in the cases when the target object is not
present in the scene, or a threshold cannot be found to segment a shadow from its caster).

Given the correcteness of Algorithms 1 and 3, the correctness of Algorithm 2 is obtained
by considering two cases: when the robot is located in the region it predicts and the case
when the robot’s prediction is wrong. Assuming perfect sensors this proof is straightforward
since, in the absence of sensor noise, if the robot is in its predicted position, the algorithm
will find an appropriate threshold. This is accomplished by calling Algorithm 3 (line 6 of
Algorithm 2) that searches for all thresholds available with a small step with respect to
threshold variation. On the other hand, if the robot’s prediction is wrong, the robot will
either be in one of the neighbouring regions to the predicted region, i.e. either in si+1 or
si−1 (as a result of its non-deterministic actuators), or it will be lost. The algorithm covers
these cases, since it makes two further calls to Algorithm 3 (lines 10 and 14 of Algorithm
2). In the presence of sensor noise, however, the algorithm may encounter random errors, so
its correctness can only be verified experimentally, as presented in the next section.

The running time complexity of Algorithm 2 is directly proportional to the complexity of
Algorithm 3. Therefore, its running time is O(n), where n is the size of the set of thresholds
|thmin, thmax|.

To the best of our knowledge this is the first work where a low-level visual parameter
such as a segmentation threshold has been obtained as a result of the robot’s prediction of
its location according to a qualitative theory. In this way, we use the PQRS theory not only
for robot self-localisation based upon shadow perception, but also for the refinement of the
shadow perception itself. The next section presents an empirical evaluation of this technique.

5 Experiments

This section describes the results of the experiments on robot localisation with respect to
the map in Figure 5. In these experiments, the robot collected 587 snapshots around the
target object, which provides the frame of reference (e.g. the black bucket in Figure 6(c)).
The target was not always within view of the camera, which represents the main source of
noise in the experiments, amounting to 20% of the entire dataset. Therefore, in the best case
scenario, i.e. in the unlikely case that the algorithm never fails in its estimation of robot
location, we could not exceed 80% correctness. We allowed up to three objects within the
robot’s field of view. As the robot camera provides a narrow field of view and we have
a single dominant light source, localisation estimates with respect to each object do not
contradict one another.

As we are interested in qualitative localisation, during the experiments, the position
of the object, the light source, the sizes of the objects and shadows and the sizes of the
qualitative regions induced by shadow and objects (according to Figure 5) were unknown.
However, the velocity and direction of the robot’s motion were given by the robot’s moving
action.

In this section we present results for the following experiments:

– a baseline experiment that uses fixed thresholds for image analysis;
– experiments of robot self-localisation using Otsu’s method for adaptive thresholding;
– experiments using the knowledge-based threshold method.

The results of the baseline experiment are represented in the third column of Table 1,
showing a global performance of 38% on localising the robot in every region. In this exper-
iment, the threshold was set manually during a calibation phase with the robot in Region3.



A high accuracy was obtained in this region (around 60% with respect to Region3). Within
other regions the results were lower than 50%. The poor performance outside of Region3 is
because the foreground/background segmentation is not optimal for images obtained under
other light conditions (i.e., the threshold selected is sensitive to the relative position con-
figurations between robot, caster and light produced by the agent’s motion). Calibrating the
fixed threshold with the robot on other regions has a similar effect.

Table 1 Percentage of correct answers from using fixed thresholds, Otsu’s method and the knowledge-based
adaptive thresholding, where “# images” is the number of snapshots taken at each region.

Region # images fixed threshold(%) Otsu (%) knowledge based (%)
Region1 225 28 21 66
Region2 171 26 4 34
Region3 138 64 21 80
Region4 36 47 25 44
Region5 17 47 76 59
Global 587 38 18 58

The obvious approach for improving the poor results obtained by fixed-thresholding
is to move to a dynamic method and adjust the thresholds for each snapshot taken. The
technique we have used to perform this adjustment is the Otsu method [26] (cf. Section 4.1).
This should be able to automatically find the threshold for segmenting objects of interest
(i.e. casters and their shadows) from background. The results obtained are represented on
the fourth column of Table 1.

The results obtained with a variable threshold method (Otsu’s method), surprisingly,
were much worse than those obtained with a fixed threshold. For global localisation, the
method answered correctly on 18% of the total 587 snapshots. The best performance of
Otsu’s method was obtained on region 5 (76%). However, due to the small size of this region
with respect to the others, only 17 snapshots where obtained from it. Thus, this result cannot
be generalised. The localisation accuracy on the other regions using Otsu’s method was
below 50%. Investigation of the pixel value distributions indicated that the problem is that
these distributions are not in general bi-modal, which increases the difficulty of searching
for an appropriate threshold from the image histogram.

In our third set of results, the robot was set to vary the threshold until the interpretation of
the target object and its shadow matches a robot’s prediction of its location (using Algorithm
2, as explained in Section 4.1). The results obtained are represented in the fifth column of
Table 1 (“knowledge based”), which shows that the system achieved an accuracy of around
58% overall. Thus the incorporation of top-down knowledge about shadow appearance, and
reasoning based upon past location and agent motion can greatly assist in the refinement
of a simple shadow-detection algorithm, outperforming a traditional algorithm for adaptive
thresholding.

6 Discussion and open issues

In this work we investigated robot self-localisation using qualitatively distinct regions de-
fined from a visual observation of cast shadows. These regions were defined on a formal
framework within a qualitative spatial reasoning standpoint, which provides a principled
approach to reasoning about space.



Central to the problem of qualitative self-localisation using shadows is the segmentation
of casters and shadows from the background, which was accomplished here by thresholding
on value (V) on the HSV colour space. In the present paper we proposed a new strategy for
calibrating this threshold, where the prediction about the robot’s location is used to search
for a match between the interpreted position (as given from visual observation) and its pre-
dicted location. In order to evaluate this method, we have presented three sets of experiments
in which different ways of defining the threshold were tried. In the first set of experiments
a hand-coded fixed threshold was used, in the second set of experiments we used Otsu’s
method [26] in order to find the threshold values from the image histogram. The third set of
experiments presents the results of applying our proposed method for matching the predic-
tion with the observation.

The intuition behind the experiments with fixed thresholds was to provide a lower-bound
for the evaluation of our idea, since (as we hypothesised) nothing could perform worse than
a hand-coded threshold. Experiments with Otsu’s method were then to set the standard, as
this is a frequently used method for adaptive thresholding. However, it turned out that Otsu’s
performance was in fact worse than using the fixed threshold. This is due to the fact that the
first set of experiments used the best threshold that could be found, after a number of trials
where the value was changed by hand. Otsu’s method, however, had to deal with arbitrary
images, where it had to maximise a value that is dependent on an a priori hypothesis of bi-
modal pixel distribution. This was not the case in some of the snapshots taken by the robot: a
great number of them suffered from the effect of reflections of the light source on the caster.
Moreover, from some angles, there was a negative gradient of luminosity just behind the
object.

The method for calibrating the threshold using the prediction about the robot’s location
performed better than the other two, obtaining an accuracy of around 58% with respect
to our dataset containing 587 snapshots of the robot’s environment. Considering that the
dataset used was composed of 20% of images where self-localisation was impossible (since
the target object was not present in these data points), our algorithm had a performance of
around 70% over the images where self-localisation was possible. In the remaining 30% of
cases, the errors were due to the proximity of the robot to the borderlines separating the
regions and due to wrong predictions caused by errors in the robot actuators. In the cases
of borderline proximity, the threshold variation was affecting the observed regions between
object and shadow. Therefore, no appropriate threshold was found that matches the predicted
region (or one of its neighbours). We are currently working on more robust shadow detection
algorithms that should improve on this results. In most of the cases where wrong predictions
occurred due to actuator noise, however, the algorithm was capable of providing correct
answers when the thresholds were searched on the adjacent regions.

The framework presented in this paper has not been tested in a dynamic environment. In
such cases, multiple shadows from moving objects may cause a very negative effect on self-
localisation methods as presented in this paper. We believe that this issue could be solved
by extending the ideas presented in this work by not only allowing the system to predict the
motion of the robot, but also the actions of other agents in the robot environment. Therefore,
the algorithm would be able to single out the target object that it is using to locate itself.
This is a matter for future research.

Another open issue of this work is the qualitative localisation in situations where shad-
ows from multiple objects can generate (potentially inconsistent) hypotheses. We are cur-
rently investigating ways of doing this by incorporating the ideas proposed in [16] into our
framework.



Although this work explores a qualitative theory about space, the choice of qualitative
methods does not preclude the use of quantitative or statistical methods. Rather, we believe
that qualitative methods in robotics should complement more traditional numerical algo-
rithms, providing an additional processing level in situations where it is possible to extract
and model qualitative information.

7 Conclusion

This paper has demonstrated how the incorporation of qualitative spatial representation and
a priori knowledge about shadow regions can be combined to enhance a simple shadow-
detection algorithm based upon thresholding. Future work will consider the incorporation of
more sophisticated shadow detection algorithms and the extension of the current snapshot-
based system to one which incorporates continuous video from a dynamic environment.

We have raised a number of questions in this work, and we consider these questions in
themselves to be a useful contribution. For example, how can shadows improve object lo-
calisation when contrasted with object-based methods? Under what conditions can shadows
be effectively exploited? How can we combine predictive shadow-based localisation with
predictive localisation based upon object’s pose? These are all questions which we hope to
consider in more depth in future work.
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