
Anytime AnyspaeProbabilisti InfereneFabio Tozeto RamosFabio Gagliardi CozmanEsola Polit�enia, Universidade de S~ao PauloAv. Prof. Mello Moraes 2231, Cidade Universit�aria05508-900,S~ao Paulo, SP - Brazilffabioram,fgozmang�usp.brABSTRACTThis paper investigates methods that balane time and spae onstraints againstthe quality of Bayesian network inferenes | we explore the three-dimensionalspetrum of \time � spae � quality" trade-o�s. The main result of our in-vestigation is the adaptive onditioning algorithm, an inferene algorithm thatworks by dividing a Bayesian network into sub-networks and proessing eah sub-network with a ombination of exat and anytime strategies. The algorithm seeksa balaned synthesis of probabilisti tehniques for bounded systems. Adaptiveonditioning an produe inferenes in situations that defy existing algorithms,and is partiularly suited as a omponent of bounded agents and embedded de-vies.1. IntrodutionOne of the entral harateristis of bounded systems is their exibil-ity to ope with simultaneous limitation in several resoures [31, 60℄. Inthis paper we onentrate on probabilisti reasoning for bounded systems,exploring algorithms for Bayesian network inferene under time and spaeonstraints. We require that suh algorithms produe a solution at anyInternational Journal of Approximate Reasoning 1994 11:1{158 1994 Elsevier Siene In.655 Avenue of the Amerias, New York, NY 10010 0888-613X/94/$7.00 1

2given stopping time (they must be anytime) and that they make the bestpossible use of available memory (they must be anyspae). We thereforelook into a three-dimensional spetrum of \time � spae � quality" trade-o�s. Existing methods, reviewed in Setion 4, usually fae either \time �spae" trade-o�s or \time � quality" trade-o�s, typially �xing one of thedimensions as more important. This paper tries to build a more ompletepiture of bounded probabilisti inferene | we want to enode a numberof trade-o�s in an organized set of rules.The main result of our investigation is the adaptive onditioning algo-rithm, desribed in Setion 5. The algorithm deomposes a Bayesian net-work into smaller networks and ombines onditioning, lustering and any-time operations in the sub-networks. These strategies are used together toexplore, in an organized fashion, the vast spae of \time � spae � quality"trade-o�s. In doing so, adaptive onditioning provides a useful panoramiview overing many faets of Bayesian network algorithms.Adaptive onditioning is partiularly suited for bounded agents thatengage in time-sensitive negotiations, and to embedded devies found inrobots and smart applianes. As every omputing system has limitationsin memory and available time, our methods should be of use in onnetionto any \large" probabilisti model. In fat, we show later that adaptiveonditioning an produe exat inferenes for Bayesian networks that defyexisting algorithms.The paper is organized as follows. Setions 2, 3 and 4 review onepts,ideas and relevant literature; together these setions present the bak-ground against whih the adaptive onditioning algorithm is developed.Setion 5 desribes the adaptive onditioning algorithm itself. Setion 6ontains several experiments with the algorithm, and Setion 7 presentsour onluding omments.2. Probabilisti reasoning with Bayesian networksBayesian networks provide both a ompat method to represent proba-bility distributions and a powerful tool for unertainty management. Ex-amples of Bayesian networks an be found in expert systems for medialdeisions [1, 2℄, tehnial support troubleshooters [34℄, deision-theoretisystems to interpret live telemetry [33℄, geneti researh [24℄, speeh reog-nition systems [67℄, data ompression methods [17℄, and diagnosti systemsin industrial plants [53℄.A Bayesian network N onsists of a direted ayli graph, a set ofvariables and a set of onditional probability distributions (a few graph-theoreti onepts are used in this paper: nodes, edges, direted and undi-reted graphs, paths and yles, and polytrees). Given a direted ayli

3
C D

E

F
G

A

B

Figure 1. A Bayesian network assoiated with distributions Pr(A), Pr(B),Pr(CjA;B), Pr(DjC), Pr(EjD), Pr(F jD;G), and Pr(GjB).graph, the parents of node � (the nodes with direted edges pointing to �)are indiated by pa(�).In a Bayesian network every node is assoiated with a variable Xi. Inthis paper every variable is ategorial (has a �nite number of values), andwe use the terms \node" and \variable" interhangeably. Every variablein a Bayesian network is assumed to be independent of its nonparentsnondesendants given its parents, implying the following joint probabilitydistribution [48℄: Pr(X1; : : : ; Xn) = nYi=1Pr(Xijpa(Xi)): (1)That is, a Bayesian network represents a unique joint distribution thatfatorizes as Expression (1). Every variable is thus assoiated with a sin-gle onditional distribution Pr(Xijpa(Xi)). Figure 1 shows an examplenetwork and indiates the probability distributions.Given a Bayesian network, the omputation of a posterior probabilitydistribution is usually alled an inferene. That is, we selet a set of queryvariables XQ and a set of observed variables XE , and we must omputePr(XQjXE) = PXi =2fXQ;XEgQi Pr(Xijpa(Xi))PXi =2fXEgQi Pr(Xijpa(Xi))/ XXi =2fXQ;XEgYi Pr(Xijpa(Xi)): (2)We assume thatXQ areXE are disjoint, and we note that in Expression (2)the values of variables inXE are observed and therefore �xed. For any giveninferene, it is possible to identify in polynomial time a set of variables thatdo not a�et Expression (2), using d-separation [27℄.The general problem of omputing inferenes (even approximate ones)in Bayesian networks is NP-hard [7, 12℄. Signi�ant speial ases are infer-ene in polytrees [48℄ and approximate inferene by sampling methods innetworks with non-zero probabilities [12℄.

4Inferene algorithms are reviewed in Setion 4. Several of these algo-rithms rely on juntion trees [36, 10℄. Take a direted ayli graph G witha set of nodes V . A juntion tree of G is an undireted graph where nodesare subsets of V , suh that every node � of G and the parents of � areontained in some node of the juntion tree, and suh that the followingproperty holds: Given nodes i and j of the juntion tree, the interse-tion i \ j is ontained in every node of the juntion tree in the uniquepath from i to j . Eah node of a juntion tree is alled a luster; if anedge diretly onnets nodes 1 and 2 in a juntion tree, then 1 \ 2 is aseparator. Figure 3 shows a number of juntion trees.3. Anytime anyspae behaviorBounded systems have been the objet of muh attention in the arti�ialintelligene literature. A general observation is that bounded systems mustsettle for satis�ing solutions [60℄. To obtain suh satis�ing solutions, onestrategy is to employ meta-reasoning [54℄, for example to selet reasoningalgorithms using deision theoreti priniples [31℄. Another strategy isto produe a list of algorithms that an solve a problem (eah algorithmrepresenting di�erent trade-o�s between time, spae, and quality), and thento hoose the algorithm that seems best suited for any set of onstraints [26℄.Yet another strategy to ope with boundedness is to design algorithmsthat an adapt themselves to varying levels of omputational resoures |anytime algorithms follow this strategy [18℄:Definition 1. An algorithm is anytime if it an produe a solution in agiven time T and the quality of solutions improve with time after T .An anytime algorithm may need some \bootstrapping" time T , but afterT , the more time, the better [18℄. Anytime algorithms seem partiularlywell suited for real-time systems and embedded devies, where soft andhard time onstraints are routinely employed [26℄.In many situations, memory may be as sare as time, either beause wemust solve a large problem, or beause we an only use small omputingdevies (suh as handhelds or industrial ontrollers). We must thereforeonsider algorithms that use their available spae with exibility (again weallow a \bootstrapping" quantity M):Definition 2. An algorithm is anyspae if it an improve its performanewith inreasing spae, assuming that the available memory is larger thansome minimal amount M .

5De�nitions 1 and 2 apture important di�erenes in the onepts of any-time and anyspae behavior. An anytime algorithm must dynamially im-prove results as time beomes available, while an anyspae algorithm isusually informed about memory availability in its starting phase, and doesnot have to handle memory hanges during operation.The fous of this paper is a ombination of the previous situations. Weassume that a bounded system must perform an inferene within a giventime T using memory M , with the understanding that more time maybeome available as the inferene is proessed. An approximation may begenerated at �rst, but the quality of the approximation should improvewith time. Time, spae, and quality should be properly balaned.4. Inferenes in Bayesian networksThis setion presents a review of existing inferene algorithms from theperspetive of bounded systems, as we will later use ideas from most al-gorithms in our own methods (Setion 5). We start with a brief overviewof general exat and approximate algorithms; in Setions 4.4 and 4.5 wedisuss a few algorithms that are losely related to this work.4.1. Exat algorithmsExat algorithms an be lassi�ed in two groups: algorithms based ononditioning, and algorithms based on lustering | with a \third group"represented by Pearl's propagation algorithm for polytrees, the only poly-nomial exat inferene algorithm for Bayesian networks [48℄.The utset onditioning algorithm, also known as the loop utset algo-rithm, exploits the fat that edges out of a node are \broken" if the node isobserved (Setion 5.2 formalizes suh operations). The algorithm selets aset of nodes (the loop utset) that, one observed, \breaks" every yle ina graph. Every instantiation of the utset is then onsidered; for eah oneof them, Pearl's propagation algorithm is employed. The result is an algo-rithm that uses a relatively small amount of memory, but takes exponentialtime on the size of the loop utset. A few algorithms address this exponen-tial growth by organizing loop utsets in various forms [14, 22, 50, 58℄. Allof them essentially ompute probability values of the form Pr(x;), wherex is an instane of variables of interest and is an instane of the looputset; the probability Pr(x) is then omputed throughX Pr(x;): (3)

6In lustering algorithms, variables are grouped in potentially large lus-ters, a juntion tree is built, and a propagation sheme on the juntiontree produes inferenes. The Lauritzen-Spiegelhalter algorithm [43℄ andthe Shafer-Shenoy algorithm [59℄ are two di�erent ways to organize thispropagation. Many variants of lustering methods have appeared sinethese two basi algorithms were derived (several variants are disussed in[29℄); all of them use onsiderable memory to ut proessing time. A fewalgorithms also proeed by \grouping" variables but are not diretly re-lated to the Lauritzen-Spiegelhalter or the Shafer-Shenoy algorithms: thefamily of variable elimination algorithms (disussed in Setion 4.4), Li andD'Ambrosio's SPI algorithm [44℄, Shahter's ar-reversal/node-redutionalgorithm [57℄, and di�erential inferene algorithms [15℄ are examples.4.2. Approximate algorithmsApproximate algorithms for Bayesian network inferene an be divided ina few groups. Most approximate algorithms have an \anytime" harater,as results an be re�ned when additional time is available.� Stohasti approximations are widely used in large, dense networks.Methods are generally divided into forward sampling and MCMCmethods [6, 12, 23, 25, 28, 55℄. They an o�er polynomial time ap-proximations when probability values are non-zero [12℄, but they dis-play poor performane when probability values are extreme.� Model simpli�ations range from the removal of weak dependenies[40℄ to ardinality redution in probability distributions [62, 5℄. Sim-pli�ations may also a�et seondary strutures suh as juntion trees,as demonstrated by the the mini-bukets framework [20℄.� Partial instantiation algorithms approximate the summation in Ex-pression (2) using only a number of terms. Examples are boundedonditioning [32℄, and term omputation [13℄ (whih we use and dis-uss in more detail later), Poole's onit-based [51℄ and Henrion'ssearh-based methods [30℄.� Loopy propagation uses Pearl's propagation algorithm in networkswith yles, attempting to gradually improve the quality of inferenes[47, 61, 64℄. Little is known about onvergene of loopy propagation,and lak of onvergene has been observed in some situations [47, 61℄.4.3. Combinations of exat and approximate inferenesThere has been some e�ort in ombining exat and approximate algo-rithms; for example, the use of Gibbs sampling inside lusters [41℄, theombination of lustering and stohasti approximations in dynami mod-els [23℄, and some of the anytime algorithms disussed later.

74.4. Variable elimination and adaptive variable eliminationGiven our later use of the variable elimination algorithm, we brieysketh the algorithm and its assoiated terminology. This algorithm hasappeared in arti�ial intelligene in several forms [19, 66℄, and has roots inpedigree analysis in genetis [4℄.Variable elimination omputes Expression (2) by interhanging summa-tions and produts. First, selet an ordering for all variables that must besummed out in Expression (2). Eliminate one of these variables at a time;to eliminate the �rst variable, selet all those probability distributions thatontain the �rst variable, multiply these funtions together and sum the�rst variable out. Repeat this proess until all variables in the ordering havebeen eliminated. We an imagine that every variable is assoiated with abuket of funtions and the bukets are proessed sequentially [19℄. Theomplexity of these operations depends on the ordering of variables; �nd-ing the best ordering is NP-hard, so heuristi methods are used in pratie[37, 65℄. Variable elimination an be generalized to inorporate proper-ties of the Shafer-Shenoy algorithm [3℄ and of the Lauritzen-Spiegelhalteralgorithm [11℄.Variable elimination potentially onsumes large amounts of memory. The�rst attempt to expliitly trade time and spae in probabilisti inferenewas Dehter's onditioning-plus-variable-elimination sheme, whih we alladaptive variable elimination [21℄. The idea of adaptive variable eliminationis simple: if the size of the funtions in a buket beomes too large, we mustondition on some of the variables and handle smaller funtions [21℄.1 Inthe limit, the algorithm is redued to brute fore enumeration of instanes.Adaptive variable elimination o�ers a \time � spae" trade-o�: For a givenspae, it takes a ertain time; the more spae, the less time is needed.4.5. Conditioning with anytime and anyspae behaviorBounded onditioning is inspired by the fat that Expression (3) an beapproximated by an inomplete summation [32℄; after omputing a num-ber of instanes, we an bound Expression (3). This proedure is anytimeas terms an always be omputed and added to the summation if time isavailable. Term omputation follows the same basi strategy, even though itdoes not diretly rely on onditioning [13℄: term omputation uses heuris-ti tehniques to �nd the \best" instantiations to ompute, as we do inSetion 5.6.The most radial use of onditioning is represented by the reursive de-omposition [46℄ and reursive onditioning [16℄ algorithms. These algo-rithms split a network into sub-networks, using onditioning to \break"1Dehter also proposes an interesting variant: we an run a loop utset algorithminside a buket, to save as muh memory as possible for that buket.

8edges (as in Setion 5.2). The sub-networks are reursively split, until net-works ontaining a single variable are reahed. The algorithm organizesthe ombination of onditioned sub-networks using tree strutures alleddtrees. Reursive deomposition is partiularly relevant as it has beenextended to bounded reursive deomposition, an anytime algorithm thatprodues probability bounds. The algorithm has an initialization phase,where intermediate results are produed and stored in ahes; when an in-ferene is requested, the algorithm uses some of the values in the ahes toprodue bounds. It would atually be possible to add anyspae behavior toanytime bounded onditioning by a more intense use of ahes | in fat,the present paper an be understood as taking this very route.Reursive onditioning expands the basi ideas of reursive deomposi-tion, with a fous on anyspae behavior. If a dtree is \balaned", reursiveonditioning use O(n) spae and O(n exp(w)) time (n is the number ofvariables and w orresponds to the size of the largest separator in a lus-tering algorithm). Note that this time omplexity is smaller than the timeomplexity of brute fore instantiation, so that the introdution of bal-aned dtrees does present advantages. Seond, if spae beyond O(n) isavailable, reursive onditioning uses ahes to store intermediate ondi-tioning results, attaining omplexity O(n exp(w)) when O(n exp(w)) spaeis available | exatly the omplexity of standard variable elimination. Thealgorithm o�ers a \time � spae" trade-o�: For a given time, it takes aertain spae; the more time, the less spae is needed. Reursive ondition-ing is a truly exible algorithm, possibly the most suessful appliation ofonditioning in an exat algorithm.5. Adaptive onditioningWe annot arbitrarily onstrain time and spae and then ask for exatanswers; to look into situations that simultaneously require anytime andanyspae behavior, we must be prepared to trade inferene quality for timeand spae.The algorithms reviewed in the previous setion suggest an endless num-ber of strategies to trade time, spae and quality. For example: we oulduse adaptive variable elimination to save spae and, if we also had on-straints in time, we ould use sampling approximations in some bukets.Or we ould start with reursive onditioning and add anytime behaviorto it. Is there any way to organize this maze of options and produe aompat and oherent framework?

95.1. Sketh of adaptive onditioningWe wish to produe an inferene algorithm that reeives a Bayesian net-work, a onstraint on spae and a onstraint on time, and produes an in-ferene. The algorithm must adapt its operations to the available amountof spae and promptly produe an answer (possibly of low quality) thatan be improved if more time is available. The adaptive onditioning al-gorithm attempts to address these requirements in an organized fashion.In short, the idea is to divide a network using onditioning (to guaranteethat memory onstraints are met), and then to use lustering algorithmsand anytime tehniques to proess sub-networks (to guarantee that timeonstraints are met). The following sketh is a starting point:1. Use d-separation to disard variables that annot a�et the inferene,obtaining a network with requisite variables only [56℄.2. Based on spae onstraints, use onditioning to deompose the result-ing network into sub-networks. The deomposition must guaranteethat lustering algorithms an be run in every sub-network withinavailable memory, but it need not deompose up to single nodes. Thedeomposition proess is disussed in Setion 5.3.3. If there is some memory left after the division of the network, re-ate ahes to store intermediate results. The ahing proedure isdisussed in Setion 5.4.4. Now onsider time onstraints. If all sub-networks an be exatly pro-essed, for all instantiations of onditioning variables, in the availabletime, proess them with a lustering algorithm. Otherwise, proesssome sub-networks and instantiations in an anytime sheme for theavailable time (these omments are disussed in detail in Setions 5.5and 5.6).5. Combine instantiations, returning an exat or approximate answer.The algorithm basially operates in two phases. The planning phase isresponsible for steps 1, 2 and 3 (Setions 5.3 and 5.4). The exeution phaseis responsible for steps 4 and 5 (Setions 5.5 and 5.6). Before we lookinto these matters, Setion 5.2 disusses some mathematial fats aboutonditioning.5.2. The mathematis of adaptive onditioningIt is onvenient to onsider onditioning as an abstrat operation thatan \break" edges and \split" networks. When a node is observed, theedges o� of the node are said to be broken. If an edge starts at node X ,then the edge is broken by X . A Bayesian network N an be split in two

10A �! B �! C �! Da a0.4 0.6 b ba 0.9 0.1a 0.2 0.8 b 0.2 0.7b 0.15 0.85 d d 0.5 0.5 0.4 0.6(a) Network before onditioning.A �! B C �! Da a0.4 0.6 b ba 0.9 0.1a 0.2 0.8 0.15 0.85 d d 0.5 0.5 0.4 0.6(b) Network split after onditioning on B = b.Figure 2. Deomposing a simple network by onditioning.sub-networks N1 and N2 when we identify a set of nodes C suh that everyedge between N1 and N2 is broken by C. The set C is alled the utset forN1 and N2, or simply the utset, if no ambiguity an our. The utsetC splits N into N1 and N2. For a sub-network Ni, obtained by splittinga network N with utset C, the loal utset Ci is the set of variables inC and in Ni. The symbol PrNi (�) denotes the probability Pr(�jCnCi) |that is, the probability in the sub-network Ni taken as a unit. Figure 2shows an example.The following theorem is a diret generalization of Expression (3).Theorem 1. Let C be a utset that splits a Bayesian network N into sub-networks Ni, and Ci be the loal utset for Ni. If Q and E are disjointand ontain respetively the query variables and the observed variables,with Qi and Ei indiating the variables in Q and in E in Ni, thenPrN (QjE) = XCnQ\CYi PrNi(Qi [CijEi): (4)This theorem indiates preisely the operations that must be repeatedby adaptive onditioning. The �rst step of adaptive onditioning is to �nda utset; then, for eah instantiation of the utset, take eah sub-network,ompute PrNi (Qi [CijEi), and multiply these probabilities; at the end,add all produts.The theorem is ompletely general in that query variables an be dis-tributed among various sub-networks; the result an be easily generalizedto handle observed variables in the various sub-networks (ompare this

11disussion to reursive deomposition and reursive onditioning, where aninferene is entered in a single variable).5.3. Planning phase: omputing a utsetWe now look into the planning phase of adaptive onditioning. Thisphase takes a Bayesian network and a memory onstraint, and produesa utset. We assume that our target is a utset suh that sub-networksan be proessed by lustering algorithms. The rationale is that lusteringalgorithms are eÆient in terms of running time; by guaranteeing that thesealgorithms an be used in sub-networks, we make the best use of availablememory. We also avoid the trap of \saving too muh memory" (using lessthan the available memory while inurring a large penalty in running time).Our strategy is to form utsets from the separators of the juntion tree forthe whole network, as separators do have the property of splitting networks.This strategy e�etively ontrols memory onsumption, as the memory re-quired by lustering algorithms an be restrited to some onstant amountplus the largest separator in the juntion tree.2 Suppose then that, whilebuilding the whole juntion tree, we �nd that a separator violates memoryonstraints. We then inlude the separator in the utset, and reursively an-alyze the resulting sub-networks. The utset is produed when this proessdoes not �nd any violating separator. The result is a set of sub-networkswith the property that every sub-network an be proessed by a lusteringalgorithm within the spae onstraints. Even though �nding an optimalutset and an optimal juntion tree are NP-hard problems [8, 38, 63℄, goodheuristis are available [37℄; we have found in our tests that �nding a goodutset takes about 0.5% of overall running time.Figure 3 shows a small juntion tree and the sub-networks obtained fromit, assuming a onstraint on separators (maximum size of just 4 oatingpoint values) and supposing all variables are binary. The separator ADFviolates the onstraint, so ADF are inluded in the utset. Two networksare generated by this ut; one of them indues lusters ABC and ACDF ,while the other ontains the remainder of the original network. The de-omposition proess is then applied to these two sub-networks reursivelyuntil no separator has size larger than 4.5.4. Planning phase: handling ahesEven though the goal of the deomposition proess is to use as muhmemory as possible in the sub-networks (within memory onstraints), it2It is possible to ode the variable elimination algorithm so that memory onsumptionis linearly related to the largest separator. The implementation of adaptive onditioningdisussed in Setion 6 uses an implementation of variable elimination that satis�es thislinear relationship.

12
IJK

EHIJ

ADF

ACDF

ABC

AC

EHI

IJ

ADEFHIM

ADFEL

ADFE

AE

AE

EGH

EH
AC

ACDF

ABC

IJK

EHIJ

EGH

IJ EH

adefhiM

adfe

adfeL

ae

ae

1

2

3Figure 3. Juntion tree and resulting deomposition.may happen that the sub-networks do not use exatly all available memory.For example, we may have a million oating-point values at our disposaland a network where the largest separator requires ten million oating-point values; we then ondition on this separator and realize that the re-maining separators require at most �ve hundred thousand oating-pointvalues | we now an use the remaining �ve hundred thousand values aswe please. Following the basi anyspae tehnique used in reursive ondi-tioning [16℄, we ould use available memory to ahe and reuse inferenes.Consider a simple example. Suppose that a network N is deomposedinto N1, N2, and N3, suh that N2 and N3 do not have ommon variables.Suppose also that N1 ontains the query variable, and N2 and N3 ontainobserved variables. We ould then ahe inferenes from N3 while we goover instantiations of N1 and perform inferenes in N2.Cahes lead to a �ne ontrol of memory use, but �nding a method for eÆ-ient ahe alloation is a very hallenging problem in itself. We have testedseveral strategies for ahe alloation and found that the following methodis quite satisfatory. We simply assign a ahe unit to eah sub-network indereasing order of network size (number of variables), where a ahe unitontains the amount of memory neessary to store PrNi(Qi [CijEi) (the

13result of a partiular inferene in the sub-network Ni given a on�gurationof C n Ci; remember that sub-networks may ontain query variables inadaptive onditioning). This proess is repeated until we exhaust availablememory.3 If we �nd that every utset instantiation an be stored in mem-ory, we essentially obtain a lustering method where the separators amongsub-networks are gradually omputed and stored.As shown in Setion 6, ahing is an extremely e�etive strategy to re-�ne anyspae behavior. Adaptive onditioning bene�ts greatly from the\smoothness" in memory onsumption provided by ahes | however,adaptive onditioning tries to minimize the importane of ahes by usingas muh memory as possible for separators of sub-networks, thus easingthe diÆult problem of generating a ahing strategy.Another problem in handling ahes is how to update the informationstored when new results beome available. For instane, suppose a sub-network has a ahe unit (storing the result of an inferene for a partiularon�guration of the utset), and an inferene (with a di�erent on�gura-tion) is requested by the exeution phase. Should the ahe unit store thenew result or keep the previous one? If the result is kept, when should itbe updated? This problem is also omplex and is losely related to howutset instantiations are organized (disussed in Setion 5.6). To taklethis problem, we use a simple heuristi that has proved to be eÆient,partiularly when ombined to the strategy we use to organize utset in-stantiations. Basially, we update the information of ahe units as soonas new inferenes beome available for the sub-network.To get a sense of the relevant ahe � separator � time trade-o�s, on-sider the following experiment with the Alarm network, shown in Figure4. Consider the variable BP and no evidene (this is the query that re-quires most omputational e�ort without evidene), and suppose that avery small amount of memory is available | only 36 oating-point values.The time required for inferene is muh more sensitive to the amount ofmemory alloated to separators than to ahes | as the amount of mem-ory for separators inreases, the time for inferene drops sharply; this isnot observed as the amount of memory for ahes inreases. We leave forfuture work a preise quanti�ation of the omplex trade-o�s involved instrategies for ahing probabilisti inferene.5.5. Exeution phase: anytime inferene in sub-networksAfter adaptive onditioning deomposes a network and assigns ahes tosub-networks, the algorithm must deide how to proess eah sub-network.If there are no onstraints on proessing time, the obvious hoie is to run3In our implementation, the spae available for ahes is essentially the di�erenebetween the largest possible separator and the maximum separator atually obtainedthrough deomposition.

14
051015202530

Cache Size

5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Separator Size

T
im

e
(s

)

Figure 4. A ahe � separator � time trade-o� in the Alarm network, queryingvariable BP without evidene. The same �xed amount of memory is distributedbetween separators and ahes.a lustering algorithm in eah sub-network. If instead there are limitationson proessing time, several possibilities an be oneived.Consider the possibility that some sub-networks must be assigned exatalgorithms, while other sub-networks must be assigned approximate algo-rithms. A simple anytime proedure is to assign lustering algorithms toas many sub-networks as possible, and to leave approximate algorithms toother sub-networks. We have tested approximations based on stohastialgorithms.We have found, after extensive tests, that Gibbs sampling algorithmstake longer to produe a reasonably aurate inferene than variable elim-ination takes to produe an exat inferene, even in rather large networks[52℄.4 Clearly these statements should be taken in the proper ontext. First,Gibbs sampling and other stohasti algorithms are partiularly valuablein the presene of ontinuous variables; we stress that here we deal onlywith ategorial variables. Seond, there is a limit to the appliability ofvariable elimination; for very dense and large networks, one annot hopeto use straight variable elimination | however we have observed that in4Suh �ndings were orroborated by empirial evidene mentioned by BrueD'Ambrosio at the Workshop on Real-time Deision Support and Diagnosti Systems atAAAI2002. We feel that the average performane of other stohasti algorithms shouldbe omparable to the performane of Gibbs sampling.

15those ases the anytime onditioning strategies anytime we disuss nextan yield aurate approximations faster than stohasti algorithms do.The alternative we have pursued is to use a searh-based algorithm, suhas bounded onditioning, in some sub-networks. Here we are left withseveral problems. Bounded onditioning uses very little memory; we mayend up \saving too muh memory" in the proess, leaving too many mem-ory for omplex ahing deisions. For example: If we ombine boundedonditioning and ahing, should the deomposition step be revised onememory is available? Another question is, Whih sub-networks should runexat algorithms and whih should run bounded onditioning? It seemsvery diÆult to answer suh questions in any sort of optimal manner.Instead of using exat and approximate algorithms in di�erent sub-networks, we have onluded that there exists a simpler yet more e�etivestrategy. Observe that adaptive onditioning an be diretly turned intoan anytime algorithm by running a subset of all possible instantiations,thus generating bounds for the omplete summation in Expression (4) |the same idea used in bounded onditioning and bounded reursive deom-position. If we stop instantiating utset variables, we obtain lower boundsfor probabilities, denoted by Pr(XQ;XE). To produe an upper bound,we use: Pr(XQ = xQ;XE) = 1� XXQ 6=xQ Pr(XQ;XE): (5)As an example, suppose that we wish to ompute the marginal probabilityfor a ternary variable X , and we stop omputation when Pr(X = x0) =0:12, Pr(X = x1) = 0:56, Pr(X = x2) = 0:17. Probability bounds are:Pr(X = x0) 2 [0:12; 0:27℄, Pr(X = x1) 2 [0:56; 0:71℄, Pr(X = x2) 2[0:17; 0:32℄.Bounds for onditional probability an be easily obtained [46℄:Pr(XQ = xQjXE) = Pr(XQ = xQ;XE)Pr(XQ = xQ;XE) +PXQ 6=xQ Pr(XQ;XE) ;(6)Pr(XQ = xQjXE) = Pr(XQ = xQ;XE)Pr(XQ = xQ;XE) +PXQ 6=xQ Pr(XQ;XE) :As an alternative approah, we have observed that a straightforward nor-malization of inomplete results often provides an exelent approximationto the omplete inferene. To illustrate this possibility, suppose again wehave Pr(X = x0) = 0:12, Pr(X = x1) = 0:56, Pr(X = x2) = 0:17. Anapproximate inferene an be produed by normalization: Pr(X = x0) �0:13, Pr(X = x1) � 0:62, Pr(X = x2) � 0:18.The main problem is how to organize utset instantiations, so that most

16of the probability mass is quikly generated.5 The next setion desribesa method that is suited to adaptive onditioning. Note that the order ofutset instantiations makes inferenes in some sub-networks to be updatedmore often than in others | thus we obtain a method that automatiallydistributes the omputational e�ort among sub-networks.5.6. Exeution phase: generating utset instantiationsTo generate instantiations, we exploit the intuition that the \farther" asub-network is from the query variables, the smaller the e�et of the sub-network in the inferene of interest. If a sub-network Ni has little e�eton the inferene, relatively few instanes of Ni should be visited whenproduing probability bounds. Suh an e�et is obtained by varying theutset variables of Ni more slowly than the utset variables for more ritialsub-networks. The following proedure emerges: (i) order the sub-networksfrom \losest" to \farthest" from the query variables; (ii) order the utsetvariables so that the variables for the \losest" network vary more quikly;(iii) generate and proess instanes until time is exhausted.The hallenge in this proedure is to formalize a \distane" betweensub-networks. Our solution is inspired by results on onditional mutualinformation [40℄. Take a Bayesian network N over variables X. The ondi-tional mutual information of variables X and Y in N , denoted by I(X ;Y),quanti�es unertainty redution by random variables [9℄:I(X ;Y) =XX;Y Pr(X;Y) log Pr(X;Y)Pr(X) � Pr(Y) :The mutual information is symmetri and represents a measure of the de-pendene between two random variables. A natural idea is to evaluatethe \distane" between a sub-network and query variables by omputingthe mutual onditional information between query variables and variablesin the sub-network utsets (keeping all variables onditional on observedvariables). However, mutual onditional information is very expensive toompute (time spent is O(m exp(n)) for n variables, m of whih are queryvariables). We thus propose a heuristi method that relies on the monotonirelationship between mutual onditional information and shortest-path dis-tane: Kjaerul� has proved that mutual onditional information betweenX and Y dereases with inreases in the shortest path (in N) between Xand Y [39℄. Suppose then that we want to measure the inuene of X ina query variable Y . A quik metri is to take the shortest-path algorithm,and �nd the number of edges between X and Y . If instead we have a set5Bounded onditioning has a built-in mehanism to order instantiations [32℄, whilebounded reursive deomposition resorts to Gibbs sampling to deide whih instantia-tions must be omputed and whih must be retrieved from an initialization phase [46℄.

17of variables X and a set of query variables Y, we take the average of allshortest-paths between variables inX and the setY|we all the resultingquantity by Minimal Mean Distane (MMD):MMD(X;Y) = jXjXi d(Xi;Y)jXj ;where d(X;Y) is length of the shortest-path between X and Y .One we obtain the MMD of every utset variable, we sort the variables sothat variables with larger MMD are modi�ed less often than variables withsmaller MMD. In addition to the sorting utset variables, we an improvethe speed of onvergene of probability bounds by paying attention to theorder of instantiations for ategories in eah utset variable. For example,if a utset ontains binary variables X and Y , we may hoose to visitx1 before x0, regardless of the order in whih we visit y0 and y1. Wemust �rst visit instantiations that potentially ontain the most probabilitymass, looking for good instantiations (as in Henrion's searh method [30℄).To �nd an order for the values of a utset variable X we ompute theposterior probability of X with respet to the sub-network that ontainsX ; we then visit �rst the values of X with highest posterior probability. Wehave observed that this tehnique often inreases dramatially the speed ofonvergene for probability bounds.At this point, the original network has been deomposed, ahes havebeen alloated, utset variables and their ategories have been properlysorted. Should we now onsider distributing ahes after sorting instan-tiations? One ould argue that the ahe alloation strategy should takeinto aount the order of utset instantiations | ahes should be moreuseful for those variables that hange less often. However we have foundempirially that it is more important to alloate ahes based on the sizeof sub-networks than on utset orderings. Again we fae a situation wheremany alternatives ould be oneived, with no obvious \optimal" solutionfor the ahing strategy. We onjeture that the most eÆient (in terms oftime) sheme should dynamially modify ahes during inferene, assigningmemory to those large utsets that hange more often. In any event, wehave deided to follow the simple yet eÆient ahing strategy desribedin Setion 5.4.5.7. The omplete algorithmSetion 5.1 skethed the main steps of adaptive onditioning, leaving un-de�ned several aspets of the algorithm. In fat, it is pro�table to thinkof adaptive onditioning as a generi strategy: divide a network to satisfyspae onstraints, then proess sub-networks as required to meet time on-straints. However at this point we an present a more detailed desription

181. Use d-separation to disard variables that annot a�et the inferene.2. Use onditioning to reursively divide the resulting network into sub-networks, until every separator requires less spae than the availablememory (Setion 5.3). To do so, reursively produe juntion treesfor the various sub-networks and \break" them whenever separatorsbeome larger than a ertain limit.3. If there is memory left after the division of the network, assign ahesto store intermediate results (Setion 5.4): Assign a ahe unit toeah sub-network in dereasing order of network size, until availablememory is exahusted.4. If there are time onstraints:(a) Order utset variables using Mean Minimal Distane, and orderategories of utset variables by loal posterior probability.(b) Apply Expression (4), performing loal inferenes for as muhtime as possible. Before exeuting eah inferene, verify whetherthis \sub-inferene" is in the ahe; if yes, then reuse it; if no,then apply a lustering method to obtain the neessary sub-inferene and update the ahe with the new result.5. Obtain probability bounds (or return a single distribution when in-ferene is atually ompleted) using Expressions (5) and (6).Figure 5. Adaptive onditioning.of several design deisions that, by analysis and experimentation, we re-gard as most adequate for implementation. Figure 5 ontains a detaileddesription.The exeution phase is responsible for instantiating the utset variablesin the prede�ned order, running lustering algorithms in eah sub-network,ahing results whenever possible, and omputing Expression (4). Whentime is exhausted, probability bounds are produed. Note that the numberof inferenes grows exponentially with the number of variables in utsets;given a Bayesian network with n variables and utsets of width w thatdeompose the network into ws sub-networks, the number of inferenesperformed by adaptive onditioning is O (ws � exp(w)).As an example, onsider the network N in Figure 6, ontaining onlybinary variables. The �gure shows a deomposition of N into three sub-networks, by onditioning on C and B. Dashed nodes represent \dummy"variables that are always observed and do not hange the omplexity ofinferenes in the orresponding sub-networks. We wish to ompute thejoint probability of E and F . We have to ompute the following probabil-

19
D

C

B

G

E F

A

N

N

N

B’

C’

B’

1

3

2

Figure 6. A deomposition for the Bayesian network in Figure 1.ities: PrN1 (C j B0 = b0) (omputed twie), PrN2 (E;F j C 0 = 0; B0 = b0)(omputed four times), and PrN3 (B) (omputed only one).As disussed in Setion 5.5, we have disarded the possible strategyof distributing di�erent exat and approximate algorithms through sub-networks. We have found mixture-of-algorithms strategies to be less e�e-tive, for anytime purposes, than just applying the same variable eliminationalgorithm aross sub-networks. However, we onjeture that suh a strat-egy ould be interesting in various situations, for example in parallelizedengines with di�erent proessing harateristis.5.8. Comparison to anyspae algorithmsA omparison between adaptive onditioning and adaptive variable elim-ination or reursive onditioning neessarily depend on how we are to intro-due anytime behavior into the latter two algorithms. These omparisonsan illuminate several aspets of adaptive onditioning.The obvious way to obtain anytime behavior with adaptive variable elim-ination is to run approximate algorithms inside bukets | for example,to run Gibbs sampling (as in [41℄) or bounded onditioning (similarly toDehter's loop utset suggestion [21℄). However, we are left with a prob-lem: if intermediate results in one buket are improved, how should the newresults be propagated to other bukets? The solution would be to applyanytime algorithms in suh a way that di�erent portions of a network ouldbe proessed independently | a solution that paves the way to adaptiveonditioning. It is atually easier to think of adaptive variable eliminationas a derivative of adaptive onditioning, beause the �rst algorithm is aspeial ase of the seond one (obtained when the onditioning operationsare not \wide" enough to atually \ut" the network into sub-networks).We have found that adaptive onditioning is easier to understand and im-

20plement than other possible ombinations of adaptive variable eliminationplus anytime algorithms.Reursive onditioning is a lever algorithm with many possible variants.It ould beome an anytime algorithm by omputing a limited number ofterms in Expression (2). However this partial omputation sheme is noteasy to implement in reursive onditioning, as the power of the algorithmomes just from the way the omputation of many terms is \entangled"in a dtree. We are again led to the onlusion that we must \ut" someportions of the network from others, so as to organize partial sums. Thatis, instead of splitting networks until single-node sub-networks, we muststop splitting earlier. In fat, adaptive onditioning an be understood asa lose ousin of reursive onditioning in the following sense: the infereneproess in adaptive onditioning an be represented as a dtree where leavesare sub-networks (and sub-networks are proessed in an anytime fashion).Despite the similarity between adaptive and reursive onditioning, thereare signi�ant di�erenes between them. The obvious, and possibly themost important di�erene is that adaptive onditioning diretly allows any-time behavior, as disussed in the previous paragraph. Note that there isa prie to pay for anytime behavior: while adaptive onditioning degrades,in the limit of sare memory, to brute fore instantiation of Expression(2), reursive onditioning takes O(n exp(w logn)) time in the same ir-umstanes. A seond notable di�erene between adaptive and reursiveonditioning is that the �rst algorithm an handle arbitrary sets of queryvariables, while the seond one fouses on the omputation of a singleprobability value for a single variable. A third di�erene is that adaptiveonditioning tries to use as muh memory as possible before it onsidersthe use of ahes (networks are divided until memory onstraints are sat-is�ed, but not more than that); reursive onditioning instead moves thewhole inferene to a very thin struture and then uses the available memoryfor ahing. Beause �nding a reasonable ahing strategy is a non-trivialproblem, it makes sense to redue its importane.5.9. Comparison to anytime algorithmsAdaptive onditioning o�ers some signi�ant advantages over existinganytime algorithms. The algorithm produes enlosing bounds as approx-imations, unlike stohasti approximations and loopy propagation algo-rithms. Experiments show that onvergene of these bounds is very fast,even within relatively stringent memory onstraints (Setion 6). We shouldadd that adaptive onditioning is muh faster than standard stohasti ap-proximation algorithms, at least for the kinds of \large" networks that anbe found in the literature; that is, in our tests we observed that exellentbounds were obtained long before a similar approximation was produedby Gibbs sampling and similar shemes. Adaptive onditioning also fares

21well against bounded onditioning and searh-based anytime tehniques,beause adaptive onditioning essentially ontains suh methods and addsvarious improvements. Instead of raw bounded onditioning, adaptive on-ditioning tries to use all the available memory; instead of searhing forprobability terms in the whole network, adaptive onditioning tries to dis-tribute the searh on sub-networks in an organized fashion.Adaptive onditioning an be easily employed if a purely anytime infer-ene algorithm is required (that is, if there are no memory onstraints, justtime onstraints). The planning phase now has to selet a utset so as toobtain the fastest onvergene of bounds. Our strategy in suh situations isto simply divide a network in its largest separator (more re�ned strategiesan be devised in future work). We note an important property of suh ex-pliit deomposition: as we obtain truly independent sub-networks, we aneasily apply di�erent levels of omputational e�ort to distint portions of anetwork. It would be diÆult to do so using any straightforward anytimevariant of adaptive variable elimination.6. Tests and resultsWe have implemented adaptive onditioning as desribed in Setion 5.7,using the standard variable elimination algorithm to proess sub-networks.We have tested real and simulated networks with a variety of spae andtime onstraints.6 We illustrate our results with inferenes in real networks.For eah network, we produe inferenes for the variables whose set of d-onneted variables are the largest | that is, we selet the hardest querieswithout observations. The inlusion of observations does not hange theproperties of the algorithm but would introdue several omplexities intothe testing proedure (whih variables to observe, whih values to set asobserved), so we deided not to take observations into aount.6.1. The Alarm networkConsider �rst the Alarm network [2℄, with memory onstraints on sepa-rators. We limited separators to ontain from 3 to 24 oating point values(note the very stringent onstraints). We also imposed time onstraintsfrom 1 to 3 seonds (time onstraints are imposed on overall running time,6We run tests in a Pentium 4 1.7Ghz with 1GByte of memory running Linux2.4.7-10; the algorithm was oded in the Java language and tested with the JVM1.3.1 01 from Sun Mirosystems. Libraries for the variable elimination algorithmare based on the inferene engine for the JavaBayes system, freely available athttp://www.s.mu.edu/~javabayes.

22

Figure 7. Interval width for inferenes with the Alarm network (query variableis BP).just as it would be the ase in a real-time system). For the Alarm net-work we run tests with almost every possible memory on�guration, asthis network is relatively small and serves well as a benhmark. In theAlarm network, exat inferene for BP requires a separator of size 25 |that is, memory beyond this quantity is useless. However we observed thatexelent answers an be obtained if size larger than 13 is allowed.Figure 7 is a graph of \quality � spae � time" for the marginal prob-ability of variable BP. \Quality" is represented by the interval betweenlower and upper probability bounds for one of the ategories of BP. Notethe dramati inreases in quality (dereases in interval length) for somesmall di�erenes in memory | a little more memory sometimes leads togreat improvements in the deomposition proess.We would like to stress that a graph suh as the one in Figure 7 an hardlybe built with existing tehniques, and the great appeal of adaptive ondi-tioning is exatly the possibility of balaning time and spae onstraintssimultaneously while ontrolling quality.Figure 8 shows a di�erent \quality � spae � time" graph; here we plotthe Kullbak-Leibler divergene or relative entropyD(Pr k P̂ r) between theprobability of the exat inferene Pr(Xq) and the approximation based onnormalizing an inomplete inferene P̂ r(Xq):D(Pr k P̂ r) =XXq Pr(Xq) log Pr(Xq)P̂ r(Xq)

23

Figure 8. Relative Entropy for the Alarm network (query variable is BP).In the ase of the Alarm network, Xq = BP . Note the quality of inferenesfor relatively sare memory and time resoures. Again we see that qualityvaries somewhat disontinuously.6.2. The Link networkConsider now the Link network [35℄, a large network with 724 nodes (al-most all of them binary), representing linkage between two genes. Figure 9shows interval length for query variable DO 56 d p. This variable is appro-priate beause inferenes with it require a very large number of requisitevariables. Figure 10 shows the error in approximating by normalization ofinomplete results, again for variable DO 56 d p.Our tests were run with memory onstraints that should be lose tostripped-down embedded systems. We varied separator size from only 65oating point values to 129 oating point values. We note the enormousmemory savings that an be obtained with adaptive onditioning: we anobtain almost exat answers within 3 seonds with a maximum separatorof just 80 oating point values.In Figures 9 and 10 we observe regions where errors inrease dramatially.They indiate operation points that should be avoided in real appliationswith stripped down bounded agents and embedded systems. We an alsoobserve the e�et of ahes in the inferene proess. In Figure 7 for exam-ple, for separator sizes bigger than 12 we see a smooth region where theperformane inreases with time and memory. As the deomposition of the

24

Figure 9. Bound width for Link inferenes.

Figure 10. Relative Entropy for Link inferenes.

25network remains almost the same for separator sizes wider than 12, theperformane inreases with memory is due to ahe alloation.6.3. The Diabetes networkThe experiments just reported used very stringent spae onstraints; itould be argued that typial probabilisti inferene employs larger mem-ory resoures. In this setion we move to networks with huge memoryrequirements for inferene.We have ondut tests with models that follow the usual pattern of dy-nami Bayesian network; that is, networks with a regular struture on-taining repeating bloks. Our results are illustrated using the Diabetesnetwork.7 The struture we used was an expansion of Diabetes into 24slies, eah ontaining 17 variables. The model is partiularly interestingbeause Diabetes ontains some \linking" variables that are onneted toall slies, and is therefore harder to handle than purely repeating dynamiBayesian networks. The goal was to produe inferenes for the variablebg 24 (at the \bottom" of the 24th slie). The largest separator for thisnetwork (using a maximum weight heuristi) ontains 64 variables. Asvariables have six ategories on average, we would need an astronomiallylarge amount of memory to ondut exat inferene with standard variableelimination. Adaptive onditioning instead faes no diÆulties, and anprodue the exat answer in less than 3 seonds, using a separator size of1500 oating point values. We ran tests in Diabetes using separator sizesof 1300 to 4000 and time onstraints from 1000 ms to 5000 ms. As we seein Figure 11 and in Figure 12, hanges in separator sizes from 1500 to 4000did not a�et the quality signi�antly. However, for separator sizes lessthan 1500, the network deompositons hanged and the quality degradedonsiderably.We lose by noting that the experiments reported here are not the onlyones we have onduted, and were not seleted as suessful ases | rather,similar behavior was met in a large variety of tests.7. ConlusionThis paper presents a disussion of algorithms that simultaneously dis-play anytime and anyspae harateristis in Bayesian network inferene.We have attempted to provide a relatively broad desription of the manyfators involved in suh inferenes, while keeping the exposition as simple7Diabetes is available for download on Bayesian Network Repository:http://www.s.huji.a.il/labs/ompbio/Repository/networks.html.

26

Figure 11. Bound width for Diabetes inferenes.

Figure 12. Relative Entropy for Diabetes inferenes.

27and didati as possible. Our goal was to onstrut algorithms that an addexibility to probabilisti reasoning, without expliitly getting into issuesof meta-reasoning.The main ontribution of this work is the adaptive onditioning algo-rithm. We ertainly make no laims that adaptive onditioning is theonly way to attain anytime anyspae behavior in Bayesian network infer-ene. Given the large number of fators involved in suh inferenes, it islikely that no optimal algorithm exists, whatever is meant by optimal; weshould instead fous on algorithms that exerise a balaned ombination oftrade-o�s. We suggest that the adaptive onditioning algorithm provides asensible balane between the neessary ompromises in anytime anyspaeprobabilisti reasoning; we have tried several other ombinations of teh-niques, only to �nd that they have marginal gain, if any, while enormouslyompliating matters. In this ontext, we feel that adaptive onditioningis an algorithm with lear strenghts, as it:1. allows simultaneous spae and time onstraints, and inorporatestehniques that allow �ne usage of available memory and time.2. smoothly ombines the most e�etive known tehniques for inferene(lustering and onditioning).3. is relatively easy to motivate and to understand; it is not too diÆultto implement and does not rely on wildly diverse theoretial fats; itan be taught and appreiated with mild e�ort.4. an easily explore three-dimensional trade-o�s involving \quality �spae � time"; we are not aware of previous work that has faed thesetrade-o�s expliitly.5. is ready for parallel implementation (several tehniques for networkdeomposition in parallel systems are rather lose to adaptive on-ditioning [42, 49, 45℄), and an be diretly used in \hybrid" imple-mentations that ombine exat and approximate algorithms in sub-networks.The algorithm should be a partiularly valuable tool for probabilisti rea-soning in embedded systems (for example in robots with limited resoures)and in multi-agent ommunities (for example in sensor networks).A notable harateristi of adaptive onditioning is that it an handlenetworks large enough to overwhelm existing exat algorithms. In fat,many of our tests with large networks annot be reprodued with existinglustering algorithms. Only anyspae algorithms suh as reursive ondi-tioning an o�er exat solutions to the larger networks, but suh algorithmsdo not have the anytime dimension that adaptive onditioning o�ers as well.

28Overall, we see that the landsape of trade-o�s between quality, timeand spae is rather disontinuous: in some ases, relatively small hangesin memory an lead to large di�erenes in running time. Suh a behaviorsuggests that a meta-reasoner ould be quite e�etive in analyzing interme-diate steps of the omputation and determining that more memory or timewould be highly pro�table and worth paying for. Suh a meta-reasonerwould be an interesting piee of work.Adaptive onditioning an ertainly be improved in many ways. Thereare several possible deomposition and ahing strategies, (partiularly dy-nami ahing strategies), and several methods to order variables and in-stantiations, that ould improve the performane of the algorithm. Wehave not aptured and tested the whole spetrum of alternatives in thispaper, and we leave many open avenues for future researh.AknowledgementsThis work has reeived generous support from HP Labs; we thank Mar-sha Duro from HP Labs for establishing this support and Edson Nery fromHP Brazil for managing it. The work has also been partially supported byCNPq and FAPESP. We thank two reviewers who gave important sugges-tions, and the editor, who oversaw this long proess with great patiene |partiularly when waiting for us to produe the �nal version.Referenes1. S. Andreassen, Roman Hovorka, J. Benn, K. G. Olesen, and E. R. Car-son. A model-based approah to insulin adjustment. In M. Stefanelli,A. Hasman, M. Fieshi, and J. Talmon, editors, Proeedings of the ThirdConferene on Arti�ial Intelligene in Mediine, pages 239{248. Springer-Verlag, 1991.2. I. Beinlih, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. TheALARM monitoring system: A ase study with two probabilisti inferenetehniques for belief networks. Seond European Conferene on Arti�ialIntelligene in Mediine, pages 247{256, 1989.3. M. Bloemeke and M. Valtorta. A hybrid algorithm to ompute marginaland joint beliefs in Bayesian networks and its omplexity. In G. F. Cooperand S. Moral, editors, Proeedings of the Fourteenth Conferene on Uner-tainty in Arti�ial Intelligene, pages 16{23, 1998.

294. C. Cannings, E. A. Thompson, and M. H. Skolnik. Probability funtionsin omplex pedigrees. Advanes in Applied Probability, 10:26{61, 1978.5. A. Cano and S. Moral. Using probability trees to ompute marginals withimpreise probabilities. International Journal of Approximate Reasoning,29:1{46, 2002.6. J. Cheng and M. J. Druzdzel. AIS-BN: An adaptive importane samplingalgorithm for evidential reasoning in large Bayesian networks. Journal ofArti�ial Intelligene Researh, 13:155{188, 2000.7. G. F. Cooper. The omputaional omplexity of probabilisti infereneusing Bayesian belief networks. Arti�ial Intelligene, 42:393{405, 1990.8. G. F. Cooper. Bayesian belief-network inferene using reursive deom-position. Tehnial Report KSL-90-05, Knowledge Systems Laboratory,Stanford, CA 94305, 1990.9. T. M. Cover and J. A. Thomas. Elements of Information Theory. JohnWiley & Sons, In, New York, 1991.10. R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Prob-abilisti Networks and Expert Systems. Springer-Verlag, New York, 1999.11. F. G. Cozman. Generalizing variable elimination in Bayesian networks.In Workshop on Probabilisti Reasoning in Arti�ial Intelligene, pages27{32, S~ao Paulo, Brazil, 2000. Te Art.12. P. Dagum and M. Luby. Approximating probabilisti inferene in Bayesianbelief networks is NP-hard. Arti�ial Intelligene, 60:141{153, 1993.13. B. D'Ambrosio. Inremental probabilisti inferene. In Proeedings of theNinth Conferene on Unertainty in Arti�ial Intelligene, pages 301{308,Washington, DC, 1993.14. A. Darvihe. Conditioning methods for exat and approximate inferene inausal networks. In Proeedings of the Eleventh Conferene on Unertaintyin Arti�ial Intelligene, pages 99{107, San Franiso, California, 1995.Morgan Kaufmann.15. A. Darwihe. Any-spae probabilisti inferene. In Proeedings of theSixteenth Conferene on Unertainty in Arti�ial Intelligene, pages 133{142, San Franiso, California, 2000. Morgan Kaufmann.16. A. Darwihe. Reursive onditioning. Arti�ial Intelligene, 126(1-2):5{41,February 2001.17. S. Davies. Fast Fatored Density Estimation and Compression withBayesian Networks. PhD thesis, Shool of Computer Siene, CarnegieMellon University, May 2002.

3018. T. L. Dean and M. Boddy. An analysis of time-depedent planning. In Pro-eedings of Seventh National Conferene on Arti�ial Intelligene, pages49{54, Menlo Park, California, 1988. AAAI Press/The MIT Press.19. R. Dehter. Buket elimination: A unifying framework for probabilisti in-ferene. In Proeedings of the Twelfth Conferene on Unertainty in Arti-�ial Intelligene, pages 211{219, San Franiso, California, 1996. MorganKaufmann.20. R. Dehter. Mini-bukets: A general sheme for generating approximationsin automated reasoning in probabilisti inferene. In Proeedings of theFifteenth International Joint Conferene on Arti�ial Intelligene, pages1297{1302, Nagoya, Japan, 1997.21. R. Dehter. Topologial parameters for time-spae tradeo�. In Proeedingsof the Twelfth Conferene on Unertainty in Arti�ial Intelligene, pages220{227, San Franiso, California, 1996. Morgan Kaufmann.22. F. J. D��ez. Loal onditioning in Bayesian networks. Arti�ial Intelligene,87:1{20, 1996.23. A. Douet, N. de Freitas, K. Murphy, and S. Russell. Rao-Blakwellisedpartile �ltering for dynami Bayesian networks. In Proeedings of theSixteenth Conferene on Unertainty in Arti�ial Intelligene, pages 176{183, 2000.24. S. Dwarkadas, A. Sha�er, R. W. Cottingham, A. L. Cox, P. Keleher,and W. Zwaenepoel. Parallelization of general linkage analysis problems.Human Heredity, 44:127{141, 1994.25. G. S. Fishman. Monte Carlo: onepts, algorithms, and appliations.Springer-Verlag, 1995.26. A. J. Garvey and V. Lesser. Design-to-time real-time sheduling. IEEETransations on Systems, Man and Cybernetis, 23(6):1491{1502, Novem-ber/Deember 1993.27. D. Geiger, T. Verma, and J. Pearl. Identifying independene in Bayesiannetworks. Networks, 20:507{534, 1990.28. W. R. Gilks, S. Rihardson, and D. J. Spiegelhalter. Markov Chain MonteCarlo in Pratie. Chapman and Hall, London, England, 1996.29. H. Guo and W. Hsu. A survey of algorithms for real-time Bayesian net-work inferene. In AAAI/KDD/UAI-2002 Joint Workshop on Real-TimeDeision Support and Diagnosis Systems, pages 1{12, 2002.30. M. Henrion. Searh-based methods to bound diagnosti probabilities invery large belief nets. In Proeedings of the Seventh Conferene on Uner-tainty in Arti�ial Intelligene, pages 142{150. Morgan Kaufmann, 1991.

3131. E. Horvitz. Priniples and appliations of ontinual omputation. Arti�ialIntelligene, 126:159{196, 2001.32. E. Horvitz, H. J. Suermondt, and G. F. Cooper. Bounded onditioning:Flexible inferene for deisions under sare resoures. In Proeedings of theFifth Conferene on Unertainty in Arti�ial Intelligene, pages 182{193.Morgan Kaufmann, 1989.33. E. Horvitz and M. Barry. Display of information for time-ritial dei-sion making. In Proeedings of the Eleventh Conferene on Unertaintyin Arti�ial Intelligene, pages 286{305, Montreal, Canada, 1995. MorganKaufmann.34. E. Horvitz, J. Breese, D. Hekerman, D. Hovel, and K. Rommelse. TheLumiere projet: Bayesian user modeling for inferring the goals and needsof software users. In Proeedings of the Fourteenth Conferene on Uner-tainty in Arti�ial Intelligene, pages 256{265. Morgan Kaufmann: SanFraniso, 1998.35. C. S. Jensen and A. Kong. Bloking Gibbs sampling for linkage analysis inlarge pedigrees with many loops. Researh Report R-96-2048, Departmentof Computer Siene, Aalborg University, Denmark, Fredrik Bajers Vej 7,DK-9220 Aalborg �, 1996.36. F. V. Jensen. An Introdution to Bayesian Networks. Springer Verlag,New York, 1996.37. U. Kjaerul�. Triangulation of graphs | algorithms giving small totalstate spae. Tehnial Report R-90-09, Department of Mathematis andComputer Siene, Aalborg University, Denmark, Marh 1990.38. U. Kjaerul�. Optimal deomposition of probabilisti networks by simulatedannealing. Statistis and Computing, (2):7{17, 1992.39. U. Kjaerul�. Approximation of Bayesian networks through edge removals.Tehnial report, Department of Mathematis and Computer Siene, Aal-borg University, 1993.40. U. Kjaerul�. Redution of omputational omplexity in Bayesian networksthrough removal of weak dependenies. Tehnial Report R94-2009, Aal-borg University, February 1994.41. U. Kjaerul�. Combining exat inferene and Gibbs sampling in juntiontrees. In Proeedings of the Eleventh Conferene on Unertainty in Arti�-ial Intelligene, San Franiso, California, 1995. Morgan Kaufmann.42. A. V. Kozlov and J. P. Singh. Parallel implementations of probabilistiinferene. Computer, 29(12):33{40, Deember 1996.43. S. L. Lauritzen and D. J. Spiegehalter. Loal omputations with prob-abilities on graphial strutures and their appliation to expert systems.Journal of Royal Statistis Soiety, Series B, 50(2):157{224, 1988.

3244. Z. Li and B. D'Ambrosio. EÆient inferene in Bayes networks as a om-binatorial optimization problem. International Journal of ApproximateReasoning, 11, 1994.45. A. L. Madsen and F. V. Jensen. Parallelization of inferene in Bayesiannetworks. Tehnial Report DK-9220, Department of Computer Siene,Aalborg University, Denmark, 1999.46. S. Monti and G.F. Cooper. Bounded reursive deomposition: a searh-based method for belief network inferene under limited resoures. Inter-national Journal of Approximate Reasoning, 15(1):49{75, 1996.47. K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation forapproximate inferene: An empirial study. In Proeedings of the FifteenthConferene on Unertainty in Arti�ial Intelligene, pages 467{475, 1999.48. J. Pearl. Probabilisti Reasoning in Intelligent Systems: Networks of Plau-sible Inferene. Morgan Kaufmann, San Mateo, California, 1988.49. D. M. Pennok. Logarithmi time parallel Bayesian inferene. In Proeed-ings of the Fourteenth Conferene on Unertainty in Arti�ial Intelligene,pages 431{438. Morgan Kaufmann, 1998.50. M. A. Peot and R. D. Shahter. Fusion and propagation with multipleobservations in belief networks. Arti�ial Intelligene, 48(3):299{318, 1991.51. D. Poole. Probabilisti onits in a searh algorithm for estimating poste-rior probabilities in Bayesian networks. Arti�ial Intelligene, 88:69{100,1996.52. F. T. Ramos, F. G. Cozman, and J. S. Ide. Embedded Bayesian networks:Anytime anyspae inferene. In AAAI/KDD/UAI-2002 Joint Workshopon Real-Time Deision Support and Diagnosis Systems, pages 13{19, 2002.53. F. T. Ramos, F. Mikami, and F. G. Cozman. Implementa�~ao de re-des Bayesianas em sistemas embarados. In Proeedings of the IB-ERAMIA/SBIA 2000 Workshops (Workshop on Probabilisti Reasoningin Arti�ial Intelligene), pages 65{69. Editora Te Art, 2000 (in Por-tuguese).54. S. Russell and E. Wefald. Priniples of metareasoning. Arti�ial Intelli-gene, 49:361{395, 1991.55. A. Salmer�on, A. Cano, and S. Moral. Importane sampling in Bayesiannetworks using probability trees. Computational Statistis and Data Anal-ysis, 34:387{413, 2000.56. R. Shahter. Bayes-ball: The rational pastime (for determining irrelevaneand requisite information in belief networks and inuene diagrams). InG. F. Cooper and S. Moral, editors, In Proeedings of the Fourteenth Con-ferene in Unertainty in Arti�ial Intelligene, pages 480{487, San Fran-iso, 1998. Morgan Kaufmann.

3357. R. D. Shahter. Evaluating inuene diagrams. Operations Researh,34(6):873{882, 1986.58. R. D. Shahter, S. K. Andersen, and P. Szolovits. Global onditioning forprobabilisti inferene in belief networks. In Proeedings of the Tenth Con-ferene on Unertainty in Arti�ial Intelligene, pages 514{522, Seattle,WA, 1994. Morgan Kaufmann.59. G. Shafer and P. P. Shenoy. Probability propagation. Annals of Mathe-matis and Arti�ial Intelligene, 2:327{352, 1990.60. H. A. Simon. Models of Bounded Rationality 2. MIT Press, CambridgeMA, 1982.61. Y. Weiss andW. T. Freeman. Corretness of belief propagation in Gaussiangraphial models of arbitrary topology. Tehnial Report CSD-99-1046, CSDepartment, UC Berkeley, 1999.62. M. P. Wellman and C. L. Liu. State-spae abstration for anytime evalua-tion of probabilisti networks. In Proeedings of the Tenth Conferene onUnertainty in Arti�ial Intelligene, pages 567{574, 1994.63. W. X. Wen. Optimal deomposition of belief networks. In Proeedings ofthe Sixth Conferene on Unertainty in Arti�ial Intelligene, pages 245{256. Morgan Kaufmann, 1990.64. J. S. Yedidia, W. T. Freeman, and Y. Weiss. Bethe free energies, Kikuhiapproximations, and belief propagation algorithms. Tehnial Report TR2001-16, 2001.65. N. L. Zhang and D. Poole. Exploiting ausal independene in Bayesiannetwork inferene. Journal of Arti�ial Intelligene Researh, pages 301{328, 1996.66. N. L. Zhang and D. Poole. A simple approah to Bayesian network om-putations. In Proeedings of the 10th Canadian Conferene on Arti�ialIntelligene, pages 16{22, Ban�, Alberta, Canada, May 1994.67. G. Zweig and S. J. Russell. Speeh reognition with dynami Bayesiannetworks. In AAAI/IAAI, pages 173{180, 1998.

