
Anytime Anyspa
eProbabilisti
 Inferen
eFabio Tozeto RamosFabio Gagliardi CozmanEs
ola Polit�e
ni
a, Universidade de S~ao PauloAv. Prof. Mello Moraes 2231, Cidade Universit�aria05508-900,S~ao Paulo, SP - Brazilffabioram,fg
ozmang�usp.brABSTRACTThis paper investigates methods that balan
e time and spa
e
onstraints againstthe quality of Bayesian network inferen
es | we explore the three-dimensionalspe
trum of \time � spa
e � quality" trade-o�s. The main result of our in-vestigation is the adaptive
onditioning algorithm, an inferen
e algorithm thatworks by dividing a Bayesian network into sub-networks and pro
essing ea
h sub-network with a
ombination of exa
t and anytime strategies. The algorithm seeksa balan
ed synthesis of probabilisti
 te
hniques for bounded systems. Adaptive
onditioning
an produ
e inferen
es in situations that defy existing algorithms,and is parti
ularly suited as a
omponent of bounded agents and embedded de-vi
es.1. Introdu
tionOne of the
entral
hara
teristi
s of bounded systems is their
exibil-ity to
ope with simultaneous limitation in several resour
es [31, 60℄. Inthis paper we
on
entrate on probabilisti
 reasoning for bounded systems,exploring algorithms for Bayesian network inferen
e under time and spa
e
onstraints. We require that su
h algorithms produ
e a solution at anyInternational Journal of Approximate Reasoning 1994 11:1{158

 1994 Elsevier S
ien
e In
.655 Avenue of the Ameri
as, New York, NY 10010 0888-613X/94/$7.00 1

2given stopping time (they must be anytime) and that they make the bestpossible use of available memory (they must be anyspa
e). We thereforelook into a three-dimensional spe
trum of \time � spa
e � quality" trade-o�s. Existing methods, reviewed in Se
tion 4, usually fa
e either \time �spa
e" trade-o�s or \time � quality" trade-o�s, typi
ally �xing one of thedimensions as more important. This paper tries to build a more
ompletepi
ture of bounded probabilisti
 inferen
e | we want to en
ode a numberof trade-o�s in an organized set of rules.The main result of our investigation is the adaptive
onditioning algo-rithm, des
ribed in Se
tion 5. The algorithm de
omposes a Bayesian net-work into smaller networks and
ombines
onditioning,
lustering and any-time operations in the sub-networks. These strategies are used together toexplore, in an organized fashion, the vast spa
e of \time � spa
e � quality"trade-o�s. In doing so, adaptive
onditioning provides a useful panorami
view
overing many fa
ets of Bayesian network algorithms.Adaptive
onditioning is parti
ularly suited for bounded agents thatengage in time-sensitive negotiations, and to embedded devi
es found inrobots and smart applian
es. As every
omputing system has limitationsin memory and available time, our methods should be of use in
onne
tionto any \large" probabilisti
 model. In fa
t, we show later that adaptive
onditioning
an produ
e exa
t inferen
es for Bayesian networks that defyexisting algorithms.The paper is organized as follows. Se
tions 2, 3 and 4 review
on
epts,ideas and relevant literature; together these se
tions present the ba
k-ground against whi
h the adaptive
onditioning algorithm is developed.Se
tion 5 des
ribes the adaptive
onditioning algorithm itself. Se
tion 6
ontains several experiments with the algorithm, and Se
tion 7 presentsour
on
luding
omments.2. Probabilisti
 reasoning with Bayesian networksBayesian networks provide both a
ompa
t method to represent proba-bility distributions and a powerful tool for un
ertainty management. Ex-amples of Bayesian networks
an be found in expert systems for medi
alde
isions [1, 2℄, te
hni
al support troubleshooters [34℄, de
ision-theoreti
systems to interpret live telemetry [33℄, geneti
 resear
h [24℄, spee
h re
og-nition systems [67℄, data
ompression methods [17℄, and diagnosti
 systemsin industrial plants [53℄.A Bayesian network N
onsists of a dire
ted a
y
li
 graph, a set ofvariables and a set of
onditional probability distributions (a few graph-theoreti

on
epts are used in this paper: nodes, edges, dire
ted and undi-re
ted graphs, paths and
y
les, and polytrees). Given a dire
ted a
y
li

3
C D

E

F
G

A

B

Figure 1. A Bayesian network asso
iated with distributions Pr(A), Pr(B),Pr(CjA;B), Pr(DjC), Pr(EjD), Pr(F jD;G), and Pr(GjB).graph, the parents of node � (the nodes with dire
ted edges pointing to �)are indi
ated by pa(�).In a Bayesian network every node is asso
iated with a variable Xi. Inthis paper every variable is
ategori
al (has a �nite number of values), andwe use the terms \node" and \variable" inter
hangeably. Every variablein a Bayesian network is assumed to be independent of its nonparentsnondes
endants given its parents, implying the following joint probabilitydistribution [48℄: Pr(X1; : : : ; Xn) = nYi=1Pr(Xijpa(Xi)): (1)That is, a Bayesian network represents a unique joint distribution thatfa
torizes as Expression (1). Every variable is thus asso
iated with a sin-gle
onditional distribution Pr(Xijpa(Xi)). Figure 1 shows an examplenetwork and indi
ates the probability distributions.Given a Bayesian network, the
omputation of a posterior probabilitydistribution is usually
alled an inferen
e. That is, we sele
t a set of queryvariables XQ and a set of observed variables XE , and we must
omputePr(XQjXE) = PXi =2fXQ;XEgQi Pr(Xijpa(Xi))PXi =2fXEgQi Pr(Xijpa(Xi))/ XXi =2fXQ;XEgYi Pr(Xijpa(Xi)): (2)We assume thatXQ areXE are disjoint, and we note that in Expression (2)the values of variables inXE are observed and therefore �xed. For any giveninferen
e, it is possible to identify in polynomial time a set of variables thatdo not a�e
t Expression (2), using d-separation [27℄.The general problem of
omputing inferen
es (even approximate ones)in Bayesian networks is NP-hard [7, 12℄. Signi�
ant spe
ial
ases are infer-en
e in polytrees [48℄ and approximate inferen
e by sampling methods innetworks with non-zero probabilities [12℄.

4Inferen
e algorithms are reviewed in Se
tion 4. Several of these algo-rithms rely on jun
tion trees [36, 10℄. Take a dire
ted a
y
li
 graph G witha set of nodes V . A jun
tion tree of G is an undire
ted graph where nodesare subsets of V , su
h that every node � of G and the parents of � are
ontained in some node of the jun
tion tree, and su
h that the followingproperty holds: Given nodes
i and
j of the jun
tion tree, the interse
-tion
i \
j is
ontained in every node of the jun
tion tree in the uniquepath from
i to
j . Ea
h node of a jun
tion tree is
alled a
luster; if anedge dire
tly
onne
ts nodes
1 and
2 in a jun
tion tree, then
1 \
2 is aseparator. Figure 3 shows a number of jun
tion trees.3. Anytime anyspa
e behaviorBounded systems have been the obje
t of mu
h attention in the arti�
ialintelligen
e literature. A general observation is that bounded systems mustsettle for satis�
ing solutions [60℄. To obtain su
h satis�
ing solutions, onestrategy is to employ meta-reasoning [54℄, for example to sele
t reasoningalgorithms using de
ision theoreti
 prin
iples [31℄. Another strategy isto produ
e a list of algorithms that
an solve a problem (ea
h algorithmrepresenting di�erent trade-o�s between time, spa
e, and quality), and thento
hoose the algorithm that seems best suited for any set of
onstraints [26℄.Yet another strategy to
ope with boundedness is to design algorithmsthat
an adapt themselves to varying levels of
omputational resour
es |anytime algorithms follow this strategy [18℄:Definition 1. An algorithm is anytime if it
an produ
e a solution in agiven time T and the quality of solutions improve with time after T .An anytime algorithm may need some \bootstrapping" time T , but afterT , the more time, the better [18℄. Anytime algorithms seem parti
ularlywell suited for real-time systems and embedded devi
es, where soft andhard time
onstraints are routinely employed [26℄.In many situations, memory may be as s
ar
e as time, either be
ause wemust solve a large problem, or be
ause we
an only use small
omputingdevi
es (su
h as handhelds or industrial
ontrollers). We must therefore
onsider algorithms that use their available spa
e with
exibility (again weallow a \bootstrapping" quantity M):Definition 2. An algorithm is anyspa
e if it
an improve its performan
ewith in
reasing spa
e, assuming that the available memory is larger thansome minimal amount M .

5De�nitions 1 and 2
apture important di�eren
es in the
on
epts of any-time and anyspa
e behavior. An anytime algorithm must dynami
ally im-prove results as time be
omes available, while an anyspa
e algorithm isusually informed about memory availability in its starting phase, and doesnot have to handle memory
hanges during operation.The fo
us of this paper is a
ombination of the previous situations. Weassume that a bounded system must perform an inferen
e within a giventime T using memory M , with the understanding that more time maybe
ome available as the inferen
e is pro
essed. An approximation may begenerated at �rst, but the quality of the approximation should improvewith time. Time, spa
e, and quality should be properly balan
ed.4. Inferen
es in Bayesian networksThis se
tion presents a review of existing inferen
e algorithms from theperspe
tive of bounded systems, as we will later use ideas from most al-gorithms in our own methods (Se
tion 5). We start with a brief overviewof general exa
t and approximate algorithms; in Se
tions 4.4 and 4.5 wedis
uss a few algorithms that are
losely related to this work.4.1. Exa
t algorithmsExa
t algorithms
an be
lassi�ed in two groups: algorithms based on
onditioning, and algorithms based on
lustering | with a \third group"represented by Pearl's propagation algorithm for polytrees, the only poly-nomial exa
t inferen
e algorithm for Bayesian networks [48℄.The
utset
onditioning algorithm, also known as the loop
utset algo-rithm, exploits the fa
t that edges out of a node are \broken" if the node isobserved (Se
tion 5.2 formalizes su
h operations). The algorithm sele
ts aset of nodes (the loop
utset) that, on
e observed, \breaks" every
y
le ina graph. Every instantiation of the
utset is then
onsidered; for ea
h oneof them, Pearl's propagation algorithm is employed. The result is an algo-rithm that uses a relatively small amount of memory, but takes exponentialtime on the size of the loop
utset. A few algorithms address this exponen-tial growth by organizing loop
utsets in various forms [14, 22, 50, 58℄. Allof them essentially
ompute probability values of the form Pr(x;
), wherex is an instan
e of variables of interest and
 is an instan
e of the loop
utset; the probability Pr(x) is then
omputed throughX
 Pr(x;
): (3)

6In
lustering algorithms, variables are grouped in potentially large
lus-ters, a jun
tion tree is built, and a propagation s
heme on the jun
tiontree produ
es inferen
es. The Lauritzen-Spiegelhalter algorithm [43℄ andthe Shafer-Shenoy algorithm [59℄ are two di�erent ways to organize thispropagation. Many variants of
lustering methods have appeared sin
ethese two basi
 algorithms were derived (several variants are dis
ussed in[29℄); all of them use
onsiderable memory to
ut pro
essing time. A fewalgorithms also pro
eed by \grouping" variables but are not dire
tly re-lated to the Lauritzen-Spiegelhalter or the Shafer-Shenoy algorithms: thefamily of variable elimination algorithms (dis
ussed in Se
tion 4.4), Li andD'Ambrosio's SPI algorithm [44℄, Sha
hter's ar
-reversal/node-redu
tionalgorithm [57℄, and di�erential inferen
e algorithms [15℄ are examples.4.2. Approximate algorithmsApproximate algorithms for Bayesian network inferen
e
an be divided ina few groups. Most approximate algorithms have an \anytime"
hara
ter,as results
an be re�ned when additional time is available.� Sto
hasti
 approximations are widely used in large, dense networks.Methods are generally divided into forward sampling and MCMCmethods [6, 12, 23, 25, 28, 55℄. They
an o�er polynomial time ap-proximations when probability values are non-zero [12℄, but they dis-play poor performan
e when probability values are extreme.� Model simpli�
ations range from the removal of weak dependen
ies[40℄ to
ardinality redu
tion in probability distributions [62, 5℄. Sim-pli�
ations may also a�e
t se
ondary stru
tures su
h as jun
tion trees,as demonstrated by the the mini-bu
kets framework [20℄.� Partial instantiation algorithms approximate the summation in Ex-pression (2) using only a number of terms. Examples are bounded
onditioning [32℄, and term
omputation [13℄ (whi
h we use and dis-
uss in more detail later), Poole's
on
i
t-based [51℄ and Henrion'ssear
h-based methods [30℄.� Loopy propagation uses Pearl's propagation algorithm in networkswith
y
les, attempting to gradually improve the quality of inferen
es[47, 61, 64℄. Little is known about
onvergen
e of loopy propagation,and la
k of
onvergen
e has been observed in some situations [47, 61℄.4.3. Combinations of exa
t and approximate inferen
esThere has been some e�ort in
ombining exa
t and approximate algo-rithms; for example, the use of Gibbs sampling inside
lusters [41℄, the
ombination of
lustering and sto
hasti
 approximations in dynami
 mod-els [23℄, and some of the anytime algorithms dis
ussed later.

74.4. Variable elimination and adaptive variable eliminationGiven our later use of the variable elimination algorithm, we brie
ysket
h the algorithm and its asso
iated terminology. This algorithm hasappeared in arti�
ial intelligen
e in several forms [19, 66℄, and has roots inpedigree analysis in geneti
s [4℄.Variable elimination
omputes Expression (2) by inter
hanging summa-tions and produ
ts. First, sele
t an ordering for all variables that must besummed out in Expression (2). Eliminate one of these variables at a time;to eliminate the �rst variable, sele
t all those probability distributions that
ontain the �rst variable, multiply these fun
tions together and sum the�rst variable out. Repeat this pro
ess until all variables in the ordering havebeen eliminated. We
an imagine that every variable is asso
iated with abu
ket of fun
tions and the bu
kets are pro
essed sequentially [19℄. The
omplexity of these operations depends on the ordering of variables; �nd-ing the best ordering is NP-hard, so heuristi
 methods are used in pra
ti
e[37, 65℄. Variable elimination
an be generalized to in
orporate proper-ties of the Shafer-Shenoy algorithm [3℄ and of the Lauritzen-Spiegelhalteralgorithm [11℄.Variable elimination potentially
onsumes large amounts of memory. The�rst attempt to expli
itly trade time and spa
e in probabilisti
 inferen
ewas De
hter's
onditioning-plus-variable-elimination s
heme, whi
h we
alladaptive variable elimination [21℄. The idea of adaptive variable eliminationis simple: if the size of the fun
tions in a bu
ket be
omes too large, we must
ondition on some of the variables and handle smaller fun
tions [21℄.1 Inthe limit, the algorithm is redu
ed to brute for
e enumeration of instan
es.Adaptive variable elimination o�ers a \time � spa
e" trade-o�: For a givenspa
e, it takes a
ertain time; the more spa
e, the less time is needed.4.5. Conditioning with anytime and anyspa
e behaviorBounded
onditioning is inspired by the fa
t that Expression (3)
an beapproximated by an in
omplete summation [32℄; after
omputing a num-ber of instan
es, we
an bound Expression (3). This pro
edure is anytimeas terms
an always be
omputed and added to the summation if time isavailable. Term
omputation follows the same basi
 strategy, even though itdoes not dire
tly rely on
onditioning [13℄: term
omputation uses heuris-ti
 te
hniques to �nd the \best" instantiations to
ompute, as we do inSe
tion 5.6.The most radi
al use of
onditioning is represented by the re
ursive de-
omposition [46℄ and re
ursive
onditioning [16℄ algorithms. These algo-rithms split a network into sub-networks, using
onditioning to \break"1De
hter also proposes an interesting variant: we
an run a loop
utset algorithminside a bu
ket, to save as mu
h memory as possible for that bu
ket.

8edges (as in Se
tion 5.2). The sub-networks are re
ursively split, until net-works
ontaining a single variable are rea
hed. The algorithm organizesthe
ombination of
onditioned sub-networks using tree stru
tures
alleddtrees. Re
ursive de
omposition is parti
ularly relevant as it has beenextended to bounded re
ursive de
omposition, an anytime algorithm thatprodu
es probability bounds. The algorithm has an initialization phase,where intermediate results are produ
ed and stored in
a
hes; when an in-feren
e is requested, the algorithm uses some of the values in the
a
hes toprodu
e bounds. It would a
tually be possible to add anyspa
e behavior toanytime bounded
onditioning by a more intense use of
a
hes | in fa
t,the present paper
an be understood as taking this very route.Re
ursive
onditioning expands the basi
 ideas of re
ursive de
omposi-tion, with a fo
us on anyspa
e behavior. If a dtree is \balan
ed", re
ursive
onditioning use O(n) spa
e and O(n exp(w)) time (n is the number ofvariables and w
orresponds to the size of the largest separator in a
lus-tering algorithm). Note that this time
omplexity is smaller than the time
omplexity of brute for
e instantiation, so that the introdu
tion of bal-an
ed dtrees does present advantages. Se
ond, if spa
e beyond O(n) isavailable, re
ursive
onditioning uses
a
hes to store intermediate
ondi-tioning results, attaining
omplexity O(n exp(w)) when O(n exp(w)) spa
eis available | exa
tly the
omplexity of standard variable elimination. Thealgorithm o�ers a \time � spa
e" trade-o�: For a given time, it takes a
ertain spa
e; the more time, the less spa
e is needed. Re
ursive
ondition-ing is a truly
exible algorithm, possibly the most su

essful appli
ation of
onditioning in an exa
t algorithm.5. Adaptive
onditioningWe
annot arbitrarily
onstrain time and spa
e and then ask for exa
tanswers; to look into situations that simultaneously require anytime andanyspa
e behavior, we must be prepared to trade inferen
e quality for timeand spa
e.The algorithms reviewed in the previous se
tion suggest an endless num-ber of strategies to trade time, spa
e and quality. For example: we
oulduse adaptive variable elimination to save spa
e and, if we also had
on-straints in time, we
ould use sampling approximations in some bu
kets.Or we
ould start with re
ursive
onditioning and add anytime behaviorto it. Is there any way to organize this maze of options and produ
e a
ompa
t and
oherent framework?

95.1. Sket
h of adaptive
onditioningWe wish to produ
e an inferen
e algorithm that re
eives a Bayesian net-work, a
onstraint on spa
e and a
onstraint on time, and produ
es an in-feren
e. The algorithm must adapt its operations to the available amountof spa
e and promptly produ
e an answer (possibly of low quality) that
an be improved if more time is available. The adaptive
onditioning al-gorithm attempts to address these requirements in an organized fashion.In short, the idea is to divide a network using
onditioning (to guaranteethat memory
onstraints are met), and then to use
lustering algorithmsand anytime te
hniques to pro
ess sub-networks (to guarantee that time
onstraints are met). The following sket
h is a starting point:1. Use d-separation to dis
ard variables that
annot a�e
t the inferen
e,obtaining a network with requisite variables only [56℄.2. Based on spa
e
onstraints, use
onditioning to de
ompose the result-ing network into sub-networks. The de
omposition must guaranteethat
lustering algorithms
an be run in every sub-network withinavailable memory, but it need not de
ompose up to single nodes. Thede
omposition pro
ess is dis
ussed in Se
tion 5.3.3. If there is some memory left after the division of the network,
re-ate
a
hes to store intermediate results. The
a
hing pro
edure isdis
ussed in Se
tion 5.4.4. Now
onsider time
onstraints. If all sub-networks
an be exa
tly pro-
essed, for all instantiations of
onditioning variables, in the availabletime, pro
ess them with a
lustering algorithm. Otherwise, pro
esssome sub-networks and instantiations in an anytime s
heme for theavailable time (these
omments are dis
ussed in detail in Se
tions 5.5and 5.6).5. Combine instantiations, returning an exa
t or approximate answer.The algorithm basi
ally operates in two phases. The planning phase isresponsible for steps 1, 2 and 3 (Se
tions 5.3 and 5.4). The exe
ution phaseis responsible for steps 4 and 5 (Se
tions 5.5 and 5.6). Before we lookinto these matters, Se
tion 5.2 dis
usses some mathemati
al fa
ts about
onditioning.5.2. The mathemati
s of adaptive
onditioningIt is
onvenient to
onsider
onditioning as an abstra
t operation that
an \break" edges and \split" networks. When a node is observed, theedges o� of the node are said to be broken. If an edge starts at node X ,then the edge is broken by X . A Bayesian network N
an be split in two

10
A �!
B �!
C �!
Da a
0.4 0.6 b b
a 0.9 0.1a
 0.2 0.8

b 0.2 0.7b
 0.15 0.85 d d

 0.5 0.5

 0.4 0.6(a) Network before
onditioning.
A �!
B
C �!
Da a
0.4 0.6 b b
a 0.9 0.1a
 0.2 0.8

0.15 0.85 d d

 0.5 0.5

 0.4 0.6(b) Network split after
onditioning on B = b
.Figure 2. De
omposing a simple network by
onditioning.sub-networks N1 and N2 when we identify a set of nodes C su
h that everyedge between N1 and N2 is broken by C. The set C is
alled the
utset forN1 and N2, or simply the
utset, if no ambiguity
an o

ur. The
utsetC splits N into N1 and N2. For a sub-network Ni, obtained by splittinga network N with
utset C, the lo
al
utset Ci is the set of variables inC and in Ni. The symbol PrNi (�) denotes the probability Pr(�jCnCi) |that is, the probability in the sub-network Ni taken as a unit. Figure 2shows an example.The following theorem is a dire
t generalization of Expression (3).Theorem 1. Let C be a
utset that splits a Bayesian network N into sub-networks Ni, and Ci be the lo
al
utset for Ni. If Q and E are disjointand
ontain respe
tively the query variables and the observed variables,with Qi and Ei indi
ating the variables in Q and in E in Ni, thenPrN (QjE) = XCnQ\CYi PrNi(Qi [CijEi): (4)This theorem indi
ates pre
isely the operations that must be repeatedby adaptive
onditioning. The �rst step of adaptive
onditioning is to �nda
utset; then, for ea
h instantiation of the
utset, take ea
h sub-network,
ompute PrNi (Qi [CijEi), and multiply these probabilities; at the end,add all produ
ts.The theorem is
ompletely general in that query variables
an be dis-tributed among various sub-networks; the result
an be easily generalizedto handle observed variables in the various sub-networks (
ompare this

11dis
ussion to re
ursive de
omposition and re
ursive
onditioning, where aninferen
e is
entered in a single variable).5.3. Planning phase:
omputing a
utsetWe now look into the planning phase of adaptive
onditioning. Thisphase takes a Bayesian network and a memory
onstraint, and produ
esa
utset. We assume that our target is a
utset su
h that sub-networks
an be pro
essed by
lustering algorithms. The rationale is that
lusteringalgorithms are eÆ
ient in terms of running time; by guaranteeing that thesealgorithms
an be used in sub-networks, we make the best use of availablememory. We also avoid the trap of \saving too mu
h memory" (using lessthan the available memory while in
urring a large penalty in running time).Our strategy is to form
utsets from the separators of the jun
tion tree forthe whole network, as separators do have the property of splitting networks.This strategy e�e
tively
ontrols memory
onsumption, as the memory re-quired by
lustering algorithms
an be restri
ted to some
onstant amountplus the largest separator in the jun
tion tree.2 Suppose then that, whilebuilding the whole jun
tion tree, we �nd that a separator violates memory
onstraints. We then in
lude the separator in the
utset, and re
ursively an-alyze the resulting sub-networks. The
utset is produ
ed when this pro
essdoes not �nd any violating separator. The result is a set of sub-networkswith the property that every sub-network
an be pro
essed by a
lusteringalgorithm within the spa
e
onstraints. Even though �nding an optimal
utset and an optimal jun
tion tree are NP-hard problems [8, 38, 63℄, goodheuristi
s are available [37℄; we have found in our tests that �nding a good
utset takes about 0.5% of overall running time.Figure 3 shows a small jun
tion tree and the sub-networks obtained fromit, assuming a
onstraint on separators (maximum size of just 4
oatingpoint values) and supposing all variables are binary. The separator ADFviolates the
onstraint, so ADF are in
luded in the
utset. Two networksare generated by this
ut; one of them indu
es
lusters ABC and ACDF ,while the other
ontains the remainder of the original network. The de-
omposition pro
ess is then applied to these two sub-networks re
ursivelyuntil no separator has size larger than 4.5.4. Planning phase: handling
a
hesEven though the goal of the de
omposition pro
ess is to use as mu
hmemory as possible in the sub-networks (within memory
onstraints), it2It is possible to
ode the variable elimination algorithm so that memory
onsumptionis linearly related to the largest separator. The implementation of adaptive
onditioningdis
ussed in Se
tion 6 uses an implementation of variable elimination that satis�es thislinear relationship.

12
IJK

EHIJ

ADF

ACDF

ABC

AC

EHI

IJ

ADEFHIM

ADFEL

ADFE

AE

AE

EGH

EH
AC

ACDF

ABC

IJK

EHIJ

EGH

IJ EH

adefhiM

adfe

adfeL

ae

ae

1

2

3Figure 3. Jun
tion tree and resulting de
omposition.may happen that the sub-networks do not use exa
tly all available memory.For example, we may have a million
oating-point values at our disposaland a network where the largest separator requires ten million
oating-point values; we then
ondition on this separator and realize that the re-maining separators require at most �ve hundred thousand
oating-pointvalues | we now
an use the remaining �ve hundred thousand values aswe please. Following the basi
 anyspa
e te
hnique used in re
ursive
ondi-tioning [16℄, we
ould use available memory to
a
he and reuse inferen
es.Consider a simple example. Suppose that a network N is de
omposedinto N1, N2, and N3, su
h that N2 and N3 do not have
ommon variables.Suppose also that N1
ontains the query variable, and N2 and N3
ontainobserved variables. We
ould then
a
he inferen
es from N3 while we goover instantiations of N1 and perform inferen
es in N2.Ca
hes lead to a �ne
ontrol of memory use, but �nding a method for eÆ-
ient
a
he allo
ation is a very
hallenging problem in itself. We have testedseveral strategies for
a
he allo
ation and found that the following methodis quite satisfa
tory. We simply assign a
a
he unit to ea
h sub-network inde
reasing order of network size (number of variables), where a
a
he unit
ontains the amount of memory ne
essary to store PrNi(Qi [CijEi) (the

13result of a parti
ular inferen
e in the sub-network Ni given a
on�gurationof C n Ci; remember that sub-networks may
ontain query variables inadaptive
onditioning). This pro
ess is repeated until we exhaust availablememory.3 If we �nd that every
utset instantiation
an be stored in mem-ory, we essentially obtain a
lustering method where the separators amongsub-networks are gradually
omputed and stored.As shown in Se
tion 6,
a
hing is an extremely e�e
tive strategy to re-�ne anyspa
e behavior. Adaptive
onditioning bene�ts greatly from the\smoothness" in memory
onsumption provided by
a
hes | however,adaptive
onditioning tries to minimize the importan
e of
a
hes by usingas mu
h memory as possible for separators of sub-networks, thus easingthe diÆ
ult problem of generating a
a
hing strategy.Another problem in handling
a
hes is how to update the informationstored when new results be
ome available. For instan
e, suppose a sub-network has a
a
he unit (storing the result of an inferen
e for a parti
ular
on�guration of the
utset), and an inferen
e (with a di�erent
on�gura-tion) is requested by the exe
ution phase. Should the
a
he unit store thenew result or keep the previous one? If the result is kept, when should itbe updated? This problem is also
omplex and is
losely related to how
utset instantiations are organized (dis
ussed in Se
tion 5.6). To ta
klethis problem, we use a simple heuristi
 that has proved to be eÆ
ient,parti
ularly when
ombined to the strategy we use to organize
utset in-stantiations. Basi
ally, we update the information of
a
he units as soonas new inferen
es be
ome available for the sub-network.To get a sense of the relevant
a
he � separator � time trade-o�s,
on-sider the following experiment with the Alarm network, shown in Figure4. Consider the variable BP and no eviden
e (this is the query that re-quires most
omputational e�ort without eviden
e), and suppose that avery small amount of memory is available | only 36
oating-point values.The time required for inferen
e is mu
h more sensitive to the amount ofmemory allo
ated to separators than to
a
hes | as the amount of mem-ory for separators in
reases, the time for inferen
e drops sharply; this isnot observed as the amount of memory for
a
hes in
reases. We leave forfuture work a pre
ise quanti�
ation of the
omplex trade-o�s involved instrategies for
a
hing probabilisti
 inferen
e.5.5. Exe
ution phase: anytime inferen
e in sub-networksAfter adaptive
onditioning de
omposes a network and assigns
a
hes tosub-networks, the algorithm must de
ide how to pro
ess ea
h sub-network.If there are no
onstraints on pro
essing time, the obvious
hoi
e is to run3In our implementation, the spa
e available for
a
hes is essentially the di�eren
ebetween the largest possible separator and the maximum separator a
tually obtainedthrough de
omposition.

14
051015202530

Cache Size

5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Separator Size

T
im

e
(s

)

Figure 4. A
a
he � separator � time trade-o� in the Alarm network, queryingvariable BP without eviden
e. The same �xed amount of memory is distributedbetween separators and
a
hes.a
lustering algorithm in ea
h sub-network. If instead there are limitationson pro
essing time, several possibilities
an be
on
eived.Consider the possibility that some sub-networks must be assigned exa
talgorithms, while other sub-networks must be assigned approximate algo-rithms. A simple anytime pro
edure is to assign
lustering algorithms toas many sub-networks as possible, and to leave approximate algorithms toother sub-networks. We have tested approximations based on sto
hasti
algorithms.We have found, after extensive tests, that Gibbs sampling algorithmstake longer to produ
e a reasonably a

urate inferen
e than variable elim-ination takes to produ
e an exa
t inferen
e, even in rather large networks[52℄.4 Clearly these statements should be taken in the proper
ontext. First,Gibbs sampling and other sto
hasti
 algorithms are parti
ularly valuablein the presen
e of
ontinuous variables; we stress that here we deal onlywith
ategori
al variables. Se
ond, there is a limit to the appli
ability ofvariable elimination; for very dense and large networks, one
annot hopeto use straight variable elimination | however we have observed that in4Su
h �ndings were
orroborated by empiri
al eviden
e mentioned by Bru
eD'Ambrosio at the Workshop on Real-time De
ision Support and Diagnosti
 Systems atAAAI2002. We feel that the average performan
e of other sto
hasti
 algorithms shouldbe
omparable to the performan
e of Gibbs sampling.

15those
ases the anytime
onditioning strategies anytime we dis
uss next
an yield a

urate approximations faster than sto
hasti
 algorithms do.The alternative we have pursued is to use a sear
h-based algorithm, su
has bounded
onditioning, in some sub-networks. Here we are left withseveral problems. Bounded
onditioning uses very little memory; we mayend up \saving too mu
h memory" in the pro
ess, leaving too many mem-ory for
omplex
a
hing de
isions. For example: If we
ombine bounded
onditioning and
a
hing, should the de
omposition step be revised on
ememory is available? Another question is, Whi
h sub-networks should runexa
t algorithms and whi
h should run bounded
onditioning? It seemsvery diÆ
ult to answer su
h questions in any sort of optimal manner.Instead of using exa
t and approximate algorithms in di�erent sub-networks, we have
on
luded that there exists a simpler yet more e�e
tivestrategy. Observe that adaptive
onditioning
an be dire
tly turned intoan anytime algorithm by running a subset of all possible instantiations,thus generating bounds for the
omplete summation in Expression (4) |the same idea used in bounded
onditioning and bounded re
ursive de
om-position. If we stop instantiating
utset variables, we obtain lower boundsfor probabilities, denoted by Pr(XQ;XE). To produ
e an upper bound,we use: Pr(XQ = xQ;XE) = 1� XXQ 6=xQ Pr(XQ;XE): (5)As an example, suppose that we wish to
ompute the marginal probabilityfor a ternary variable X , and we stop
omputation when Pr(X = x0) =0:12, Pr(X = x1) = 0:56, Pr(X = x2) = 0:17. Probability bounds are:Pr(X = x0) 2 [0:12; 0:27℄, Pr(X = x1) 2 [0:56; 0:71℄, Pr(X = x2) 2[0:17; 0:32℄.Bounds for
onditional probability
an be easily obtained [46℄:Pr(XQ = xQjXE) = Pr(XQ = xQ;XE)Pr(XQ = xQ;XE) +PXQ 6=xQ Pr(XQ;XE) ;(6)Pr(XQ = xQjXE) = Pr(XQ = xQ;XE)Pr(XQ = xQ;XE) +PXQ 6=xQ Pr(XQ;XE) :As an alternative approa
h, we have observed that a straightforward nor-malization of in
omplete results often provides an ex
elent approximationto the
omplete inferen
e. To illustrate this possibility, suppose again wehave Pr(X = x0) = 0:12, Pr(X = x1) = 0:56, Pr(X = x2) = 0:17. Anapproximate inferen
e
an be produ
ed by normalization: Pr(X = x0) �0:13, Pr(X = x1) � 0:62, Pr(X = x2) � 0:18.The main problem is how to organize
utset instantiations, so that most

16of the probability mass is qui
kly generated.5 The next se
tion des
ribesa method that is suited to adaptive
onditioning. Note that the order of
utset instantiations makes inferen
es in some sub-networks to be updatedmore often than in others | thus we obtain a method that automati
allydistributes the
omputational e�ort among sub-networks.5.6. Exe
ution phase: generating
utset instantiationsTo generate instantiations, we exploit the intuition that the \farther" asub-network is from the query variables, the smaller the e�e
t of the sub-network in the inferen
e of interest. If a sub-network Ni has little e�e
ton the inferen
e, relatively few instan
es of Ni should be visited whenprodu
ing probability bounds. Su
h an e�e
t is obtained by varying the
utset variables of Ni more slowly than the
utset variables for more
riti
alsub-networks. The following pro
edure emerges: (i) order the sub-networksfrom \
losest" to \farthest" from the query variables; (ii) order the
utsetvariables so that the variables for the \
losest" network vary more qui
kly;(iii) generate and pro
ess instan
es until time is exhausted.The
hallenge in this pro
edure is to formalize a \distan
e" betweensub-networks. Our solution is inspired by results on
onditional mutualinformation [40℄. Take a Bayesian network N over variables X. The
ondi-tional mutual information of variables X and Y in N , denoted by I(X ;Y),quanti�es un
ertainty redu
tion by random variables [9℄:I(X ;Y) =XX;Y Pr(X;Y) log Pr(X;Y)Pr(X) � Pr(Y) :The mutual information is symmetri
 and represents a measure of the de-penden
e between two random variables. A natural idea is to evaluatethe \distan
e" between a sub-network and query variables by
omputingthe mutual
onditional information between query variables and variablesin the sub-network
utsets (keeping all variables
onditional on observedvariables). However, mutual
onditional information is very expensive to
ompute (time spent is O(m exp(n)) for n variables, m of whi
h are queryvariables). We thus propose a heuristi
 method that relies on the monotoni
relationship between mutual
onditional information and shortest-path dis-tan
e: Kjaerul� has proved that mutual
onditional information betweenX and Y de
reases with in
reases in the shortest path (in N) between Xand Y [39℄. Suppose then that we want to measure the in
uen
e of X ina query variable Y . A qui
k metri
 is to take the shortest-path algorithm,and �nd the number of edges between X and Y . If instead we have a set5Bounded
onditioning has a built-in me
hanism to order instantiations [32℄, whilebounded re
ursive de
omposition resorts to Gibbs sampling to de
ide whi
h instantia-tions must be
omputed and whi
h must be retrieved from an initialization phase [46℄.

17of variables X and a set of query variables Y, we take the average of allshortest-paths between variables inX and the setY|we
all the resultingquantity by Minimal Mean Distan
e (MMD):MMD(X;Y) = jXjXi d(Xi;Y)jXj ;where d(X;Y) is length of the shortest-path between X and Y .On
e we obtain the MMD of every
utset variable, we sort the variables sothat variables with larger MMD are modi�ed less often than variables withsmaller MMD. In addition to the sorting
utset variables, we
an improvethe speed of
onvergen
e of probability bounds by paying attention to theorder of instantiations for
ategories in ea
h
utset variable. For example,if a
utset
ontains binary variables X and Y , we may
hoose to visitx1 before x0, regardless of the order in whi
h we visit y0 and y1. Wemust �rst visit instantiations that potentially
ontain the most probabilitymass, looking for good instantiations (as in Henrion's sear
h method [30℄).To �nd an order for the values of a
utset variable X we
ompute theposterior probability of X with respe
t to the sub-network that
ontainsX ; we then visit �rst the values of X with highest posterior probability. Wehave observed that this te
hnique often in
reases dramati
ally the speed of
onvergen
e for probability bounds.At this point, the original network has been de
omposed,
a
hes havebeen allo
ated,
utset variables and their
ategories have been properlysorted. Should we now
onsider distributing
a
hes after sorting instan-tiations? One
ould argue that the
a
he allo
ation strategy should takeinto a

ount the order of
utset instantiations |
a
hes should be moreuseful for those variables that
hange less often. However we have foundempiri
ally that it is more important to allo
ate
a
hes based on the sizeof sub-networks than on
utset orderings. Again we fa
e a situation wheremany alternatives
ould be
on
eived, with no obvious \optimal" solutionfor the
a
hing strategy. We
onje
ture that the most eÆ
ient (in terms oftime) s
heme should dynami
ally modify
a
hes during inferen
e, assigningmemory to those large
utsets that
hange more often. In any event, wehave de
ided to follow the simple yet eÆ
ient
a
hing strategy des
ribedin Se
tion 5.4.5.7. The
omplete algorithmSe
tion 5.1 sket
hed the main steps of adaptive
onditioning, leaving un-de�ned several aspe
ts of the algorithm. In fa
t, it is pro�table to thinkof adaptive
onditioning as a generi
 strategy: divide a network to satisfyspa
e
onstraints, then pro
ess sub-networks as required to meet time
on-straints. However at this point we
an present a more detailed des
ription

181. Use d-separation to dis
ard variables that
annot a�e
t the inferen
e.2. Use
onditioning to re
ursively divide the resulting network into sub-networks, until every separator requires less spa
e than the availablememory (Se
tion 5.3). To do so, re
ursively produ
e jun
tion treesfor the various sub-networks and \break" them whenever separatorsbe
ome larger than a
ertain limit.3. If there is memory left after the division of the network, assign
a
hesto store intermediate results (Se
tion 5.4): Assign a
a
he unit toea
h sub-network in de
reasing order of network size, until availablememory is exahusted.4. If there are time
onstraints:(a) Order
utset variables using Mean Minimal Distan
e, and order
ategories of
utset variables by lo
al posterior probability.(b) Apply Expression (4), performing lo
al inferen
es for as mu
htime as possible. Before exe
uting ea
h inferen
e, verify whetherthis \sub-inferen
e" is in the
a
he; if yes, then reuse it; if no,then apply a
lustering method to obtain the ne
essary sub-inferen
e and update the
a
he with the new result.5. Obtain probability bounds (or return a single distribution when in-feren
e is a
tually
ompleted) using Expressions (5) and (6).Figure 5. Adaptive
onditioning.of several design de
isions that, by analysis and experimentation, we re-gard as most adequate for implementation. Figure 5
ontains a detaileddes
ription.The exe
ution phase is responsible for instantiating the
utset variablesin the prede�ned order, running
lustering algorithms in ea
h sub-network,
a
hing results whenever possible, and
omputing Expression (4). Whentime is exhausted, probability bounds are produ
ed. Note that the numberof inferen
es grows exponentially with the number of variables in
utsets;given a Bayesian network with n variables and
utsets of width w
 thatde
ompose the network into ws sub-networks, the number of inferen
esperformed by adaptive
onditioning is O (ws � exp(w
)).As an example,
onsider the network N in Figure 6,
ontaining onlybinary variables. The �gure shows a de
omposition of N into three sub-networks, by
onditioning on C and B. Dashed nodes represent \dummy"variables that are always observed and do not
hange the
omplexity ofinferen
es in the
orresponding sub-networks. We wish to
ompute thejoint probability of E and F . We have to
ompute the following probabil-

19
D

C

B

G

E F

A

N

N

N

B’

C’

B’

1

3

2

Figure 6. A de
omposition for the Bayesian network in Figure 1.ities: PrN1 (C j B0 = b0) (
omputed twi
e), PrN2 (E;F j C 0 =
0; B0 = b0)(
omputed four times), and PrN3 (B) (
omputed only on
e).As dis
ussed in Se
tion 5.5, we have dis
arded the possible strategyof distributing di�erent exa
t and approximate algorithms through sub-networks. We have found mixture-of-algorithms strategies to be less e�e
-tive, for anytime purposes, than just applying the same variable eliminationalgorithm a
ross sub-networks. However, we
onje
ture that su
h a strat-egy
ould be interesting in various situations, for example in parallelizedengines with di�erent pro
essing
hara
teristi
s.5.8. Comparison to anyspa
e algorithmsA
omparison between adaptive
onditioning and adaptive variable elim-ination or re
ursive
onditioning ne
essarily depend on how we are to intro-du
e anytime behavior into the latter two algorithms. These
omparisons
an illuminate several aspe
ts of adaptive
onditioning.The obvious way to obtain anytime behavior with adaptive variable elim-ination is to run approximate algorithms inside bu
kets | for example,to run Gibbs sampling (as in [41℄) or bounded
onditioning (similarly toDe
hter's loop
utset suggestion [21℄). However, we are left with a prob-lem: if intermediate results in one bu
ket are improved, how should the newresults be propagated to other bu
kets? The solution would be to applyanytime algorithms in su
h a way that di�erent portions of a network
ouldbe pro
essed independently | a solution that paves the way to adaptive
onditioning. It is a
tually easier to think of adaptive variable eliminationas a derivative of adaptive
onditioning, be
ause the �rst algorithm is aspe
ial
ase of the se
ond one (obtained when the
onditioning operationsare not \wide" enough to a
tually \
ut" the network into sub-networks).We have found that adaptive
onditioning is easier to understand and im-

20plement than other possible
ombinations of adaptive variable eliminationplus anytime algorithms.Re
ursive
onditioning is a
lever algorithm with many possible variants.It
ould be
ome an anytime algorithm by
omputing a limited number ofterms in Expression (2). However this partial
omputation s
heme is noteasy to implement in re
ursive
onditioning, as the power of the algorithm
omes just from the way the
omputation of many terms is \entangled"in a dtree. We are again led to the
on
lusion that we must \
ut" someportions of the network from others, so as to organize partial sums. Thatis, instead of splitting networks until single-node sub-networks, we muststop splitting earlier. In fa
t, adaptive
onditioning
an be understood asa
lose
ousin of re
ursive
onditioning in the following sense: the inferen
epro
ess in adaptive
onditioning
an be represented as a dtree where leavesare sub-networks (and sub-networks are pro
essed in an anytime fashion).Despite the similarity between adaptive and re
ursive
onditioning, thereare signi�
ant di�eren
es between them. The obvious, and possibly themost important di�eren
e is that adaptive
onditioning dire
tly allows any-time behavior, as dis
ussed in the previous paragraph. Note that there isa pri
e to pay for anytime behavior: while adaptive
onditioning degrades,in the limit of s
ar
e memory, to brute for
e instantiation of Expression(2), re
ursive
onditioning takes O(n exp(w logn)) time in the same
ir-
umstan
es. A se
ond notable di�eren
e between adaptive and re
ursive
onditioning is that the �rst algorithm
an handle arbitrary sets of queryvariables, while the se
ond one fo
uses on the
omputation of a singleprobability value for a single variable. A third di�eren
e is that adaptive
onditioning tries to use as mu
h memory as possible before it
onsidersthe use of
a
hes (networks are divided until memory
onstraints are sat-is�ed, but not more than that); re
ursive
onditioning instead moves thewhole inferen
e to a very thin stru
ture and then uses the available memoryfor
a
hing. Be
ause �nding a reasonable
a
hing strategy is a non-trivialproblem, it makes sense to redu
e its importan
e.5.9. Comparison to anytime algorithmsAdaptive
onditioning o�ers some signi�
ant advantages over existinganytime algorithms. The algorithm produ
es en
losing bounds as approx-imations, unlike sto
hasti
 approximations and loopy propagation algo-rithms. Experiments show that
onvergen
e of these bounds is very fast,even within relatively stringent memory
onstraints (Se
tion 6). We shouldadd that adaptive
onditioning is mu
h faster than standard sto
hasti
 ap-proximation algorithms, at least for the kinds of \large" networks that
anbe found in the literature; that is, in our tests we observed that ex
ellentbounds were obtained long before a similar approximation was produ
edby Gibbs sampling and similar s
hemes. Adaptive
onditioning also fares

21well against bounded
onditioning and sear
h-based anytime te
hniques,be
ause adaptive
onditioning essentially
ontains su
h methods and addsvarious improvements. Instead of raw bounded
onditioning, adaptive
on-ditioning tries to use all the available memory; instead of sear
hing forprobability terms in the whole network, adaptive
onditioning tries to dis-tribute the sear
h on sub-networks in an organized fashion.Adaptive
onditioning
an be easily employed if a purely anytime infer-en
e algorithm is required (that is, if there are no memory
onstraints, justtime
onstraints). The planning phase now has to sele
t a
utset so as toobtain the fastest
onvergen
e of bounds. Our strategy in su
h situations isto simply divide a network in its largest separator (more re�ned strategies
an be devised in future work). We note an important property of su
h ex-pli
it de
omposition: as we obtain truly independent sub-networks, we
aneasily apply di�erent levels of
omputational e�ort to distin
t portions of anetwork. It would be diÆ
ult to do so using any straightforward anytimevariant of adaptive variable elimination.6. Tests and resultsWe have implemented adaptive
onditioning as des
ribed in Se
tion 5.7,using the standard variable elimination algorithm to pro
ess sub-networks.We have tested real and simulated networks with a variety of spa
e andtime
onstraints.6 We illustrate our results with inferen
es in real networks.For ea
h network, we produ
e inferen
es for the variables whose set of d-
onne
ted variables are the largest | that is, we sele
t the hardest querieswithout observations. The in
lusion of observations does not
hange theproperties of the algorithm but would introdu
e several
omplexities intothe testing pro
edure (whi
h variables to observe, whi
h values to set asobserved), so we de
ided not to take observations into a

ount.6.1. The Alarm networkConsider �rst the Alarm network [2℄, with memory
onstraints on sepa-rators. We limited separators to
ontain from 3 to 24
oating point values(note the very stringent
onstraints). We also imposed time
onstraintsfrom 1 to 3 se
onds (time
onstraints are imposed on overall running time,6We run tests in a Pentium 4 1.7Ghz with 1GByte of memory running Linux2.4.7-10; the algorithm was
oded in the Java language and tested with the JVM1.3.1 01 from Sun Mi
rosystems. Libraries for the variable elimination algorithmare based on the inferen
e engine for the JavaBayes system, freely available athttp://www.
s.
mu.edu/~javabayes.

22

Figure 7. Interval width for inferen
es with the Alarm network (query variableis BP).just as it would be the
ase in a real-time system). For the Alarm net-work we run tests with almost every possible memory
on�guration, asthis network is relatively small and serves well as a ben
hmark. In theAlarm network, exa
t inferen
e for BP requires a separator of size 25 |that is, memory beyond this quantity is useless. However we observed thatex
elent answers
an be obtained if size larger than 13 is allowed.Figure 7 is a graph of \quality � spa
e � time" for the marginal prob-ability of variable BP. \Quality" is represented by the interval betweenlower and upper probability bounds for one of the
ategories of BP. Notethe dramati
 in
reases in quality (de
reases in interval length) for somesmall di�eren
es in memory | a little more memory sometimes leads togreat improvements in the de
omposition pro
ess.We would like to stress that a graph su
h as the one in Figure 7
an hardlybe built with existing te
hniques, and the great appeal of adaptive
ondi-tioning is exa
tly the possibility of balan
ing time and spa
e
onstraintssimultaneously while
ontrolling quality.Figure 8 shows a di�erent \quality � spa
e � time" graph; here we plotthe Kullba
k-Leibler divergen
e or relative entropyD(Pr k P̂ r) between theprobability of the exa
t inferen
e Pr(Xq) and the approximation based onnormalizing an in
omplete inferen
e P̂ r(Xq):D(Pr k P̂ r) =XXq Pr(Xq) log Pr(Xq)P̂ r(Xq)

23

Figure 8. Relative Entropy for the Alarm network (query variable is BP).In the
ase of the Alarm network, Xq = BP . Note the quality of inferen
esfor relatively s
ar
e memory and time resour
es. Again we see that qualityvaries somewhat dis
ontinuously.6.2. The Link networkConsider now the Link network [35℄, a large network with 724 nodes (al-most all of them binary), representing linkage between two genes. Figure 9shows interval length for query variable DO 56 d p. This variable is appro-priate be
ause inferen
es with it require a very large number of requisitevariables. Figure 10 shows the error in approximating by normalization ofin
omplete results, again for variable DO 56 d p.Our tests were run with memory
onstraints that should be
lose tostripped-down embedded systems. We varied separator size from only 65
oating point values to 129
oating point values. We note the enormousmemory savings that
an be obtained with adaptive
onditioning: we
anobtain almost exa
t answers within 3 se
onds with a maximum separatorof just 80
oating point values.In Figures 9 and 10 we observe regions where errors in
rease dramati
ally.They indi
ate operation points that should be avoided in real appli
ationswith stripped down bounded agents and embedded systems. We
an alsoobserve the e�e
t of
a
hes in the inferen
e pro
ess. In Figure 7 for exam-ple, for separator sizes bigger than 12 we see a smooth region where theperforman
e in
reases with time and memory. As the de
omposition of the

24

Figure 9. Bound width for Link inferen
es.

Figure 10. Relative Entropy for Link inferen
es.

25network remains almost the same for separator sizes wider than 12, theperforman
e in
reases with memory is due to
a
he allo
ation.6.3. The Diabetes networkThe experiments just reported used very stringent spa
e
onstraints; it
ould be argued that typi
al probabilisti
 inferen
e employs larger mem-ory resour
es. In this se
tion we move to networks with huge memoryrequirements for inferen
e.We have
ondu
t tests with models that follow the usual pattern of dy-nami
 Bayesian network; that is, networks with a regular stru
ture
on-taining repeating blo
ks. Our results are illustrated using the Diabetesnetwork.7 The stru
ture we used was an expansion of Diabetes into 24sli
es, ea
h
ontaining 17 variables. The model is parti
ularly interestingbe
ause Diabetes
ontains some \linking" variables that are
onne
ted toall sli
es, and is therefore harder to handle than purely repeating dynami
Bayesian networks. The goal was to produ
e inferen
es for the variablebg 24 (at the \bottom" of the 24th sli
e). The largest separator for thisnetwork (using a maximum weight heuristi
)
ontains 64 variables. Asvariables have six
ategories on average, we would need an astronomi
allylarge amount of memory to
ondu
t exa
t inferen
e with standard variableelimination. Adaptive
onditioning instead fa
es no diÆ
ulties, and
anprodu
e the exa
t answer in less than 3 se
onds, using a separator size of1500
oating point values. We ran tests in Diabetes using separator sizesof 1300 to 4000 and time
onstraints from 1000 ms to 5000 ms. As we seein Figure 11 and in Figure 12,
hanges in separator sizes from 1500 to 4000did not a�e
t the quality signi�
antly. However, for separator sizes lessthan 1500, the network de
ompositons
hanged and the quality degraded
onsiderably.We
lose by noting that the experiments reported here are not the onlyones we have
ondu
ted, and were not sele
ted as su

essful
ases | rather,similar behavior was met in a large variety of tests.7. Con
lusionThis paper presents a dis
ussion of algorithms that simultaneously dis-play anytime and anyspa
e
hara
teristi
s in Bayesian network inferen
e.We have attempted to provide a relatively broad des
ription of the manyfa
tors involved in su
h inferen
es, while keeping the exposition as simple7Diabetes is available for download on Bayesian Network Repository:http://www.
s.huji.a
.il/labs/
ompbio/Repository/networks.html.

26

Figure 11. Bound width for Diabetes inferen
es.

Figure 12. Relative Entropy for Diabetes inferen
es.

27and dida
ti
 as possible. Our goal was to
onstru
t algorithms that
an add
exibility to probabilisti
 reasoning, without expli
itly getting into issuesof meta-reasoning.The main
ontribution of this work is the adaptive
onditioning algo-rithm. We
ertainly make no
laims that adaptive
onditioning is theonly way to attain anytime anyspa
e behavior in Bayesian network infer-en
e. Given the large number of fa
tors involved in su
h inferen
es, it islikely that no optimal algorithm exists, whatever is meant by optimal; weshould instead fo
us on algorithms that exer
ise a balan
ed
ombination oftrade-o�s. We suggest that the adaptive
onditioning algorithm provides asensible balan
e between the ne
essary
ompromises in anytime anyspa
eprobabilisti
 reasoning; we have tried several other
ombinations of te
h-niques, only to �nd that they have marginal gain, if any, while enormously
ompli
ating matters. In this
ontext, we feel that adaptive
onditioningis an algorithm with
lear strenghts, as it:1. allows simultaneous spa
e and time
onstraints, and in
orporateste
hniques that allow �ne usage of available memory and time.2. smoothly
ombines the most e�e
tive known te
hniques for inferen
e(
lustering and
onditioning).3. is relatively easy to motivate and to understand; it is not too diÆ
ultto implement and does not rely on wildly diverse theoreti
al fa
ts; it
an be taught and appre
iated with mild e�ort.4.
an easily explore three-dimensional trade-o�s involving \quality �spa
e � time"; we are not aware of previous work that has fa
ed thesetrade-o�s expli
itly.5. is ready for parallel implementation (several te
hniques for networkde
omposition in parallel systems are rather
lose to adaptive
on-ditioning [42, 49, 45℄), and
an be dire
tly used in \hybrid" imple-mentations that
ombine exa
t and approximate algorithms in sub-networks.The algorithm should be a parti
ularly valuable tool for probabilisti
 rea-soning in embedded systems (for example in robots with limited resour
es)and in multi-agent
ommunities (for example in sensor networks).A notable
hara
teristi
 of adaptive
onditioning is that it
an handlenetworks large enough to overwhelm existing exa
t algorithms. In fa
t,many of our tests with large networks
annot be reprodu
ed with existing
lustering algorithms. Only anyspa
e algorithms su
h as re
ursive
ondi-tioning
an o�er exa
t solutions to the larger networks, but su
h algorithmsdo not have the anytime dimension that adaptive
onditioning o�ers as well.

28Overall, we see that the lands
ape of trade-o�s between quality, timeand spa
e is rather dis
ontinuous: in some
ases, relatively small
hangesin memory
an lead to large di�eren
es in running time. Su
h a behaviorsuggests that a meta-reasoner
ould be quite e�e
tive in analyzing interme-diate steps of the
omputation and determining that more memory or timewould be highly pro�table and worth paying for. Su
h a meta-reasonerwould be an interesting pie
e of work.Adaptive
onditioning
an
ertainly be improved in many ways. Thereare several possible de
omposition and
a
hing strategies, (parti
ularly dy-nami

a
hing strategies), and several methods to order variables and in-stantiations, that
ould improve the performan
e of the algorithm. Wehave not
aptured and tested the whole spe
trum of alternatives in thispaper, and we leave many open avenues for future resear
h.A
knowledgementsThis work has re
eived generous support from HP Labs; we thank Mar-sha Duro from HP Labs for establishing this support and Edson Nery fromHP Brazil for managing it. The work has also been partially supported byCNPq and FAPESP. We thank two reviewers who gave important sugges-tions, and the editor, who oversaw this long pro
ess with great patien
e |parti
ularly when waiting for us to produ
e the �nal version.Referen
es1. S. Andreassen, Roman Hovorka, J. Benn, K. G. Olesen, and E. R. Car-son. A model-based approa
h to insulin adjustment. In M. Stefanelli,A. Hasman, M. Fies
hi, and J. Talmon, editors, Pro
eedings of the ThirdConferen
e on Arti�
ial Intelligen
e in Medi
ine, pages 239{248. Springer-Verlag, 1991.2. I. Beinli
h, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. TheALARM monitoring system: A
ase study with two probabilisti
 inferen
ete
hniques for belief networks. Se
ond European Conferen
e on Arti�
ialIntelligen
e in Medi
ine, pages 247{256, 1989.3. M. Bloemeke and M. Valtorta. A hybrid algorithm to
ompute marginaland joint beliefs in Bayesian networks and its
omplexity. In G. F. Cooperand S. Moral, editors, Pro
eedings of the Fourteenth Conferen
e on Un
er-tainty in Arti�
ial Intelligen
e, pages 16{23, 1998.

294. C. Cannings, E. A. Thompson, and M. H. Skolni
k. Probability fun
tionsin
omplex pedigrees. Advan
es in Applied Probability, 10:26{61, 1978.5. A. Cano and S. Moral. Using probability trees to
ompute marginals withimpre
ise probabilities. International Journal of Approximate Reasoning,29:1{46, 2002.6. J. Cheng and M. J. Druzdzel. AIS-BN: An adaptive importan
e samplingalgorithm for evidential reasoning in large Bayesian networks. Journal ofArti�
ial Intelligen
e Resear
h, 13:155{188, 2000.7. G. F. Cooper. The
omputa
ional
omplexity of probabilisti
 inferen
eusing Bayesian belief networks. Arti�
ial Intelligen
e, 42:393{405, 1990.8. G. F. Cooper. Bayesian belief-network inferen
e using re
ursive de
om-position. Te
hni
al Report KSL-90-05, Knowledge Systems Laboratory,Stanford, CA 94305, 1990.9. T. M. Cover and J. A. Thomas. Elements of Information Theory. JohnWiley & Sons, In
, New York, 1991.10. R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Prob-abilisti
 Networks and Expert Systems. Springer-Verlag, New York, 1999.11. F. G. Cozman. Generalizing variable elimination in Bayesian networks.In Workshop on Probabilisti
 Reasoning in Arti�
ial Intelligen
e, pages27{32, S~ao Paulo, Brazil, 2000. Te
 Art.12. P. Dagum and M. Luby. Approximating probabilisti
 inferen
e in Bayesianbelief networks is NP-hard. Arti�
ial Intelligen
e, 60:141{153, 1993.13. B. D'Ambrosio. In
remental probabilisti
 inferen
e. In Pro
eedings of theNinth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e, pages 301{308,Washington, DC, 1993.14. A. Darvi
he. Conditioning methods for exa
t and approximate inferen
e in
ausal networks. In Pro
eedings of the Eleventh Conferen
e on Un
ertaintyin Arti�
ial Intelligen
e, pages 99{107, San Fran
is
o, California, 1995.Morgan Kaufmann.15. A. Darwi
he. Any-spa
e probabilisti
 inferen
e. In Pro
eedings of theSixteenth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e, pages 133{142, San Fran
is
o, California, 2000. Morgan Kaufmann.16. A. Darwi
he. Re
ursive
onditioning. Arti�
ial Intelligen
e, 126(1-2):5{41,February 2001.17. S. Davies. Fast Fa
tored Density Estimation and Compression withBayesian Networks. PhD thesis, S
hool of Computer S
ien
e, CarnegieMellon University, May 2002.

3018. T. L. Dean and M. Boddy. An analysis of time-depedent planning. In Pro-
eedings of Seventh National Conferen
e on Arti�
ial Intelligen
e, pages49{54, Menlo Park, California, 1988. AAAI Press/The MIT Press.19. R. De
hter. Bu
ket elimination: A unifying framework for probabilisti
 in-feren
e. In Pro
eedings of the Twelfth Conferen
e on Un
ertainty in Arti-�
ial Intelligen
e, pages 211{219, San Fran
is
o, California, 1996. MorganKaufmann.20. R. De
hter. Mini-bu
kets: A general s
heme for generating approximationsin automated reasoning in probabilisti
 inferen
e. In Pro
eedings of theFifteenth International Joint Conferen
e on Arti�
ial Intelligen
e, pages1297{1302, Nagoya, Japan, 1997.21. R. De
hter. Topologi
al parameters for time-spa
e tradeo�. In Pro
eedingsof the Twelfth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e, pages220{227, San Fran
is
o, California, 1996. Morgan Kaufmann.22. F. J. D��ez. Lo
al
onditioning in Bayesian networks. Arti�
ial Intelligen
e,87:1{20, 1996.23. A. Dou
et, N. de Freitas, K. Murphy, and S. Russell. Rao-Bla
kwellisedparti
le �ltering for dynami
 Bayesian networks. In Pro
eedings of theSixteenth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e, pages 176{183, 2000.24. S. Dwarkadas, A. S
ha�er, R. W. Cottingham, A. L. Cox, P. Keleher,and W. Zwaenepoel. Parallelization of general linkage analysis problems.Human Heredity, 44:127{141, 1994.25. G. S. Fishman. Monte Carlo:
on
epts, algorithms, and appli
ations.Springer-Verlag, 1995.26. A. J. Garvey and V. Lesser. Design-to-time real-time s
heduling. IEEETransa
tions on Systems, Man and Cyberneti
s, 23(6):1491{1502, Novem-ber/De
ember 1993.27. D. Geiger, T. Verma, and J. Pearl. Identifying independen
e in Bayesiannetworks. Networks, 20:507{534, 1990.28. W. R. Gilks, S. Ri
hardson, and D. J. Spiegelhalter. Markov Chain MonteCarlo in Pra
ti
e. Chapman and Hall, London, England, 1996.29. H. Guo and W. Hsu. A survey of algorithms for real-time Bayesian net-work inferen
e. In AAAI/KDD/UAI-2002 Joint Workshop on Real-TimeDe
ision Support and Diagnosis Systems, pages 1{12, 2002.30. M. Henrion. Sear
h-based methods to bound diagnosti
 probabilities invery large belief nets. In Pro
eedings of the Seventh Conferen
e on Un
er-tainty in Arti�
ial Intelligen
e, pages 142{150. Morgan Kaufmann, 1991.

3131. E. Horvitz. Prin
iples and appli
ations of
ontinual
omputation. Arti�
ialIntelligen
e, 126:159{196, 2001.32. E. Horvitz, H. J. Suermondt, and G. F. Cooper. Bounded
onditioning:Flexible inferen
e for de
isions under s
ar
e resour
es. In Pro
eedings of theFifth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e, pages 182{193.Morgan Kaufmann, 1989.33. E. Horvitz and M. Barry. Display of information for time-
riti
al de
i-sion making. In Pro
eedings of the Eleventh Conferen
e on Un
ertaintyin Arti�
ial Intelligen
e, pages 286{305, Montreal, Canada, 1995. MorganKaufmann.34. E. Horvitz, J. Breese, D. He
kerman, D. Hovel, and K. Rommelse. TheLumiere proje
t: Bayesian user modeling for inferring the goals and needsof software users. In Pro
eedings of the Fourteenth Conferen
e on Un
er-tainty in Arti�
ial Intelligen
e, pages 256{265. Morgan Kaufmann: SanFran
is
o, 1998.35. C. S. Jensen and A. Kong. Blo
king Gibbs sampling for linkage analysis inlarge pedigrees with many loops. Resear
h Report R-96-2048, Departmentof Computer S
ien
e, Aalborg University, Denmark, Fredrik Bajers Vej 7,DK-9220 Aalborg �, 1996.36. F. V. Jensen. An Introdu
tion to Bayesian Networks. Springer Verlag,New York, 1996.37. U. Kjaerul�. Triangulation of graphs | algorithms giving small totalstate spa
e. Te
hni
al Report R-90-09, Department of Mathemati
s andComputer S
ien
e, Aalborg University, Denmark, Mar
h 1990.38. U. Kjaerul�. Optimal de
omposition of probabilisti
 networks by simulatedannealing. Statisti
s and Computing, (2):7{17, 1992.39. U. Kjaerul�. Approximation of Bayesian networks through edge removals.Te
hni
al report, Department of Mathemati
s and Computer S
ien
e, Aal-borg University, 1993.40. U. Kjaerul�. Redu
tion of
omputational
omplexity in Bayesian networksthrough removal of weak dependen
ies. Te
hni
al Report R94-2009, Aal-borg University, February 1994.41. U. Kjaerul�. Combining exa
t inferen
e and Gibbs sampling in jun
tiontrees. In Pro
eedings of the Eleventh Conferen
e on Un
ertainty in Arti�-
ial Intelligen
e, San Fran
is
o, California, 1995. Morgan Kaufmann.42. A. V. Kozlov and J. P. Singh. Parallel implementations of probabilisti
inferen
e. Computer, 29(12):33{40, De
ember 1996.43. S. L. Lauritzen and D. J. Spiegehalter. Lo
al
omputations with prob-abilities on graphi
al stru
tures and their appli
ation to expert systems.Journal of Royal Statisti
s So
iety, Series B, 50(2):157{224, 1988.

3244. Z. Li and B. D'Ambrosio. EÆ
ient inferen
e in Bayes networks as a
om-binatorial optimization problem. International Journal of ApproximateReasoning, 11, 1994.45. A. L. Madsen and F. V. Jensen. Parallelization of inferen
e in Bayesiannetworks. Te
hni
al Report DK-9220, Department of Computer S
ien
e,Aalborg University, Denmark, 1999.46. S. Monti and G.F. Cooper. Bounded re
ursive de
omposition: a sear
h-based method for belief network inferen
e under limited resour
es. Inter-national Journal of Approximate Reasoning, 15(1):49{75, 1996.47. K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation forapproximate inferen
e: An empiri
al study. In Pro
eedings of the FifteenthConferen
e on Un
ertainty in Arti�
ial Intelligen
e, pages 467{475, 1999.48. J. Pearl. Probabilisti
 Reasoning in Intelligent Systems: Networks of Plau-sible Inferen
e. Morgan Kaufmann, San Mateo, California, 1988.49. D. M. Penno
k. Logarithmi
 time parallel Bayesian inferen
e. In Pro
eed-ings of the Fourteenth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e,pages 431{438. Morgan Kaufmann, 1998.50. M. A. Peot and R. D. Sha
hter. Fusion and propagation with multipleobservations in belief networks. Arti�
ial Intelligen
e, 48(3):299{318, 1991.51. D. Poole. Probabilisti

on
i
ts in a sear
h algorithm for estimating poste-rior probabilities in Bayesian networks. Arti�
ial Intelligen
e, 88:69{100,1996.52. F. T. Ramos, F. G. Cozman, and J. S. Ide. Embedded Bayesian networks:Anytime anyspa
e inferen
e. In AAAI/KDD/UAI-2002 Joint Workshopon Real-Time De
ision Support and Diagnosis Systems, pages 13{19, 2002.53. F. T. Ramos, F. Mikami, and F. G. Cozman. Implementa�
~ao de re-des Bayesianas em sistemas embar
ados. In Pro
eedings of the IB-ERAMIA/SBIA 2000 Workshops (Workshop on Probabilisti
 Reasoningin Arti�
ial Intelligen
e), pages 65{69. Editora Te
 Art, 2000 (in Por-tuguese).54. S. Russell and E. Wefald. Prin
iples of metareasoning. Arti�
ial Intelli-gen
e, 49:361{395, 1991.55. A. Salmer�on, A. Cano, and S. Moral. Importan
e sampling in Bayesiannetworks using probability trees. Computational Statisti
s and Data Anal-ysis, 34:387{413, 2000.56. R. Sha
hter. Bayes-ball: The rational pastime (for determining irrelevan
eand requisite information in belief networks and in
uen
e diagrams). InG. F. Cooper and S. Moral, editors, In Pro
eedings of the Fourteenth Con-feren
e in Un
ertainty in Arti�
ial Intelligen
e, pages 480{487, San Fran-
is
o, 1998. Morgan Kaufmann.

3357. R. D. Sha
hter. Evaluating in
uen
e diagrams. Operations Resear
h,34(6):873{882, 1986.58. R. D. Sha
hter, S. K. Andersen, and P. Szolovits. Global
onditioning forprobabilisti
 inferen
e in belief networks. In Pro
eedings of the Tenth Con-feren
e on Un
ertainty in Arti�
ial Intelligen
e, pages 514{522, Seattle,WA, 1994. Morgan Kaufmann.59. G. Shafer and P. P. Shenoy. Probability propagation. Annals of Mathe-mati
s and Arti�
ial Intelligen
e, 2:327{352, 1990.60. H. A. Simon. Models of Bounded Rationality 2. MIT Press, CambridgeMA, 1982.61. Y. Weiss andW. T. Freeman. Corre
tness of belief propagation in Gaussiangraphi
al models of arbitrary topology. Te
hni
al Report CSD-99-1046, CSDepartment, UC Berkeley, 1999.62. M. P. Wellman and C. L. Liu. State-spa
e abstration for anytime evalua-tion of probabilisti
 networks. In Pro
eedings of the Tenth Conferen
e onUn
ertainty in Arti�
ial Intelligen
e, pages 567{574, 1994.63. W. X. Wen. Optimal de
omposition of belief networks. In Pro
eedings ofthe Sixth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e, pages 245{256. Morgan Kaufmann, 1990.64. J. S. Yedidia, W. T. Freeman, and Y. Weiss. Bethe free energies, Kiku
hiapproximations, and belief propagation algorithms. Te
hni
al Report TR2001-16, 2001.65. N. L. Zhang and D. Poole. Exploiting
ausal independen
e in Bayesiannetwork inferen
e. Journal of Arti�
ial Intelligen
e Resear
h, pages 301{328, 1996.66. N. L. Zhang and D. Poole. A simple approa
h to Bayesian network
om-putations. In Pro
eedings of the 10th Canadian Conferen
e on Arti�
ialIntelligen
e, pages 16{22, Ban�, Alberta, Canada, May 1994.67. G. Zweig and S. J. Russell. Spee
h re
ognition with dynami
 Bayesiannetworks. In AAAI/IAAI, pages 173{180, 1998.

