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ozmang�usp.brABSTRACTThis paper investigates methods that balan
e time and spa
e 
onstraints againstthe quality of Bayesian network inferen
es | we explore the three-dimensionalspe
trum of \time � spa
e � quality" trade-o�s. The main result of our in-vestigation is the adaptive 
onditioning algorithm, an inferen
e algorithm thatworks by dividing a Bayesian network into sub-networks and pro
essing ea
h sub-network with a 
ombination of exa
t and anytime strategies. The algorithm seeksa balan
ed synthesis of probabilisti
 te
hniques for bounded systems. Adaptive
onditioning 
an produ
e inferen
es in situations that defy existing algorithms,and is parti
ularly suited as a 
omponent of bounded agents and embedded de-vi
es.1. Introdu
tionOne of the 
entral 
hara
teristi
s of bounded systems is their 
exibil-ity to 
ope with simultaneous limitation in several resour
es [31, 60℄. Inthis paper we 
on
entrate on probabilisti
 reasoning for bounded systems,exploring algorithms for Bayesian network inferen
e under time and spa
e
onstraints. We require that su
h algorithms produ
e a solution at anyInternational Journal of Approximate Reasoning 1994 11:1{158
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2given stopping time (they must be anytime) and that they make the bestpossible use of available memory (they must be anyspa
e). We thereforelook into a three-dimensional spe
trum of \time � spa
e � quality" trade-o�s. Existing methods, reviewed in Se
tion 4, usually fa
e either \time �spa
e" trade-o�s or \time � quality" trade-o�s, typi
ally �xing one of thedimensions as more important. This paper tries to build a more 
ompletepi
ture of bounded probabilisti
 inferen
e | we want to en
ode a numberof trade-o�s in an organized set of rules.The main result of our investigation is the adaptive 
onditioning algo-rithm, des
ribed in Se
tion 5. The algorithm de
omposes a Bayesian net-work into smaller networks and 
ombines 
onditioning, 
lustering and any-time operations in the sub-networks. These strategies are used together toexplore, in an organized fashion, the vast spa
e of \time � spa
e � quality"trade-o�s. In doing so, adaptive 
onditioning provides a useful panorami
view 
overing many fa
ets of Bayesian network algorithms.Adaptive 
onditioning is parti
ularly suited for bounded agents thatengage in time-sensitive negotiations, and to embedded devi
es found inrobots and smart applian
es. As every 
omputing system has limitationsin memory and available time, our methods should be of use in 
onne
tionto any \large" probabilisti
 model. In fa
t, we show later that adaptive
onditioning 
an produ
e exa
t inferen
es for Bayesian networks that defyexisting algorithms.The paper is organized as follows. Se
tions 2, 3 and 4 review 
on
epts,ideas and relevant literature; together these se
tions present the ba
k-ground against whi
h the adaptive 
onditioning algorithm is developed.Se
tion 5 des
ribes the adaptive 
onditioning algorithm itself. Se
tion 6
ontains several experiments with the algorithm, and Se
tion 7 presentsour 
on
luding 
omments.2. Probabilisti
 reasoning with Bayesian networksBayesian networks provide both a 
ompa
t method to represent proba-bility distributions and a powerful tool for un
ertainty management. Ex-amples of Bayesian networks 
an be found in expert systems for medi
alde
isions [1, 2℄, te
hni
al support troubleshooters [34℄, de
ision-theoreti
systems to interpret live telemetry [33℄, geneti
 resear
h [24℄, spee
h re
og-nition systems [67℄, data 
ompression methods [17℄, and diagnosti
 systemsin industrial plants [53℄.A Bayesian network N 
onsists of a dire
ted a
y
li
 graph, a set ofvariables and a set of 
onditional probability distributions (a few graph-theoreti
 
on
epts are used in this paper: nodes, edges, dire
ted and undi-re
ted graphs, paths and 
y
les, and polytrees). Given a dire
ted a
y
li
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Figure 1. A Bayesian network asso
iated with distributions Pr(A), Pr(B),Pr(CjA;B), Pr(DjC), Pr(EjD), Pr(F jD;G), and Pr(GjB).graph, the parents of node � (the nodes with dire
ted edges pointing to �)are indi
ated by pa(�).In a Bayesian network every node is asso
iated with a variable Xi. Inthis paper every variable is 
ategori
al (has a �nite number of values), andwe use the terms \node" and \variable" inter
hangeably. Every variablein a Bayesian network is assumed to be independent of its nonparentsnondes
endants given its parents, implying the following joint probabilitydistribution [48℄: Pr(X1; : : : ; Xn) = nYi=1Pr(Xijpa(Xi)): (1)That is, a Bayesian network represents a unique joint distribution thatfa
torizes as Expression (1). Every variable is thus asso
iated with a sin-gle 
onditional distribution Pr(Xijpa(Xi)). Figure 1 shows an examplenetwork and indi
ates the probability distributions.Given a Bayesian network, the 
omputation of a posterior probabilitydistribution is usually 
alled an inferen
e. That is, we sele
t a set of queryvariables XQ and a set of observed variables XE , and we must 
omputePr(XQjXE) = PXi =2fXQ;XEgQi Pr(Xijpa(Xi))PXi =2fXEgQi Pr(Xijpa(Xi))/ XXi =2fXQ;XEgYi Pr(Xijpa(Xi)): (2)We assume thatXQ areXE are disjoint, and we note that in Expression (2)the values of variables inXE are observed and therefore �xed. For any giveninferen
e, it is possible to identify in polynomial time a set of variables thatdo not a�e
t Expression (2), using d-separation [27℄.The general problem of 
omputing inferen
es (even approximate ones)in Bayesian networks is NP-hard [7, 12℄. Signi�
ant spe
ial 
ases are infer-en
e in polytrees [48℄ and approximate inferen
e by sampling methods innetworks with non-zero probabilities [12℄.



4Inferen
e algorithms are reviewed in Se
tion 4. Several of these algo-rithms rely on jun
tion trees [36, 10℄. Take a dire
ted a
y
li
 graph G witha set of nodes V . A jun
tion tree of G is an undire
ted graph where nodesare subsets of V , su
h that every node � of G and the parents of � are
ontained in some node of the jun
tion tree, and su
h that the followingproperty holds: Given nodes 
i and 
j of the jun
tion tree, the interse
-tion 
i \ 
j is 
ontained in every node of the jun
tion tree in the uniquepath from 
i to 
j . Ea
h node of a jun
tion tree is 
alled a 
luster; if anedge dire
tly 
onne
ts nodes 
1 and 
2 in a jun
tion tree, then 
1 \ 
2 is aseparator. Figure 3 shows a number of jun
tion trees.3. Anytime anyspa
e behaviorBounded systems have been the obje
t of mu
h attention in the arti�
ialintelligen
e literature. A general observation is that bounded systems mustsettle for satis�
ing solutions [60℄. To obtain su
h satis�
ing solutions, onestrategy is to employ meta-reasoning [54℄, for example to sele
t reasoningalgorithms using de
ision theoreti
 prin
iples [31℄. Another strategy isto produ
e a list of algorithms that 
an solve a problem (ea
h algorithmrepresenting di�erent trade-o�s between time, spa
e, and quality), and thento 
hoose the algorithm that seems best suited for any set of 
onstraints [26℄.Yet another strategy to 
ope with boundedness is to design algorithmsthat 
an adapt themselves to varying levels of 
omputational resour
es |anytime algorithms follow this strategy [18℄:Definition 1. An algorithm is anytime if it 
an produ
e a solution in agiven time T and the quality of solutions improve with time after T .An anytime algorithm may need some \bootstrapping" time T , but afterT , the more time, the better [18℄. Anytime algorithms seem parti
ularlywell suited for real-time systems and embedded devi
es, where soft andhard time 
onstraints are routinely employed [26℄.In many situations, memory may be as s
ar
e as time, either be
ause wemust solve a large problem, or be
ause we 
an only use small 
omputingdevi
es (su
h as handhelds or industrial 
ontrollers). We must therefore
onsider algorithms that use their available spa
e with 
exibility (again weallow a \bootstrapping" quantity M):Definition 2. An algorithm is anyspa
e if it 
an improve its performan
ewith in
reasing spa
e, assuming that the available memory is larger thansome minimal amount M .



5De�nitions 1 and 2 
apture important di�eren
es in the 
on
epts of any-time and anyspa
e behavior. An anytime algorithm must dynami
ally im-prove results as time be
omes available, while an anyspa
e algorithm isusually informed about memory availability in its starting phase, and doesnot have to handle memory 
hanges during operation.The fo
us of this paper is a 
ombination of the previous situations. Weassume that a bounded system must perform an inferen
e within a giventime T using memory M , with the understanding that more time maybe
ome available as the inferen
e is pro
essed. An approximation may begenerated at �rst, but the quality of the approximation should improvewith time. Time, spa
e, and quality should be properly balan
ed.4. Inferen
es in Bayesian networksThis se
tion presents a review of existing inferen
e algorithms from theperspe
tive of bounded systems, as we will later use ideas from most al-gorithms in our own methods (Se
tion 5). We start with a brief overviewof general exa
t and approximate algorithms; in Se
tions 4.4 and 4.5 wedis
uss a few algorithms that are 
losely related to this work.4.1. Exa
t algorithmsExa
t algorithms 
an be 
lassi�ed in two groups: algorithms based on
onditioning, and algorithms based on 
lustering | with a \third group"represented by Pearl's propagation algorithm for polytrees, the only poly-nomial exa
t inferen
e algorithm for Bayesian networks [48℄.The 
utset 
onditioning algorithm, also known as the loop 
utset algo-rithm, exploits the fa
t that edges out of a node are \broken" if the node isobserved (Se
tion 5.2 formalizes su
h operations). The algorithm sele
ts aset of nodes (the loop 
utset) that, on
e observed, \breaks" every 
y
le ina graph. Every instantiation of the 
utset is then 
onsidered; for ea
h oneof them, Pearl's propagation algorithm is employed. The result is an algo-rithm that uses a relatively small amount of memory, but takes exponentialtime on the size of the loop 
utset. A few algorithms address this exponen-tial growth by organizing loop 
utsets in various forms [14, 22, 50, 58℄. Allof them essentially 
ompute probability values of the form Pr(x; 
), wherex is an instan
e of variables of interest and 
 is an instan
e of the loop
utset; the probability Pr(x) is then 
omputed throughX
 Pr(x; 
): (3)



6In 
lustering algorithms, variables are grouped in potentially large 
lus-ters, a jun
tion tree is built, and a propagation s
heme on the jun
tiontree produ
es inferen
es. The Lauritzen-Spiegelhalter algorithm [43℄ andthe Shafer-Shenoy algorithm [59℄ are two di�erent ways to organize thispropagation. Many variants of 
lustering methods have appeared sin
ethese two basi
 algorithms were derived (several variants are dis
ussed in[29℄); all of them use 
onsiderable memory to 
ut pro
essing time. A fewalgorithms also pro
eed by \grouping" variables but are not dire
tly re-lated to the Lauritzen-Spiegelhalter or the Shafer-Shenoy algorithms: thefamily of variable elimination algorithms (dis
ussed in Se
tion 4.4), Li andD'Ambrosio's SPI algorithm [44℄, Sha
hter's ar
-reversal/node-redu
tionalgorithm [57℄, and di�erential inferen
e algorithms [15℄ are examples.4.2. Approximate algorithmsApproximate algorithms for Bayesian network inferen
e 
an be divided ina few groups. Most approximate algorithms have an \anytime" 
hara
ter,as results 
an be re�ned when additional time is available.� Sto
hasti
 approximations are widely used in large, dense networks.Methods are generally divided into forward sampling and MCMCmethods [6, 12, 23, 25, 28, 55℄. They 
an o�er polynomial time ap-proximations when probability values are non-zero [12℄, but they dis-play poor performan
e when probability values are extreme.� Model simpli�
ations range from the removal of weak dependen
ies[40℄ to 
ardinality redu
tion in probability distributions [62, 5℄. Sim-pli�
ations may also a�e
t se
ondary stru
tures su
h as jun
tion trees,as demonstrated by the the mini-bu
kets framework [20℄.� Partial instantiation algorithms approximate the summation in Ex-pression (2) using only a number of terms. Examples are bounded
onditioning [32℄, and term 
omputation [13℄ (whi
h we use and dis-
uss in more detail later), Poole's 
on
i
t-based [51℄ and Henrion'ssear
h-based methods [30℄.� Loopy propagation uses Pearl's propagation algorithm in networkswith 
y
les, attempting to gradually improve the quality of inferen
es[47, 61, 64℄. Little is known about 
onvergen
e of loopy propagation,and la
k of 
onvergen
e has been observed in some situations [47, 61℄.4.3. Combinations of exa
t and approximate inferen
esThere has been some e�ort in 
ombining exa
t and approximate algo-rithms; for example, the use of Gibbs sampling inside 
lusters [41℄, the
ombination of 
lustering and sto
hasti
 approximations in dynami
 mod-els [23℄, and some of the anytime algorithms dis
ussed later.



74.4. Variable elimination and adaptive variable eliminationGiven our later use of the variable elimination algorithm, we brie
ysket
h the algorithm and its asso
iated terminology. This algorithm hasappeared in arti�
ial intelligen
e in several forms [19, 66℄, and has roots inpedigree analysis in geneti
s [4℄.Variable elimination 
omputes Expression (2) by inter
hanging summa-tions and produ
ts. First, sele
t an ordering for all variables that must besummed out in Expression (2). Eliminate one of these variables at a time;to eliminate the �rst variable, sele
t all those probability distributions that
ontain the �rst variable, multiply these fun
tions together and sum the�rst variable out. Repeat this pro
ess until all variables in the ordering havebeen eliminated. We 
an imagine that every variable is asso
iated with abu
ket of fun
tions and the bu
kets are pro
essed sequentially [19℄. The
omplexity of these operations depends on the ordering of variables; �nd-ing the best ordering is NP-hard, so heuristi
 methods are used in pra
ti
e[37, 65℄. Variable elimination 
an be generalized to in
orporate proper-ties of the Shafer-Shenoy algorithm [3℄ and of the Lauritzen-Spiegelhalteralgorithm [11℄.Variable elimination potentially 
onsumes large amounts of memory. The�rst attempt to expli
itly trade time and spa
e in probabilisti
 inferen
ewas De
hter's 
onditioning-plus-variable-elimination s
heme, whi
h we 
alladaptive variable elimination [21℄. The idea of adaptive variable eliminationis simple: if the size of the fun
tions in a bu
ket be
omes too large, we must
ondition on some of the variables and handle smaller fun
tions [21℄.1 Inthe limit, the algorithm is redu
ed to brute for
e enumeration of instan
es.Adaptive variable elimination o�ers a \time � spa
e" trade-o�: For a givenspa
e, it takes a 
ertain time; the more spa
e, the less time is needed.4.5. Conditioning with anytime and anyspa
e behaviorBounded 
onditioning is inspired by the fa
t that Expression (3) 
an beapproximated by an in
omplete summation [32℄; after 
omputing a num-ber of instan
es, we 
an bound Expression (3). This pro
edure is anytimeas terms 
an always be 
omputed and added to the summation if time isavailable. Term 
omputation follows the same basi
 strategy, even though itdoes not dire
tly rely on 
onditioning [13℄: term 
omputation uses heuris-ti
 te
hniques to �nd the \best" instantiations to 
ompute, as we do inSe
tion 5.6.The most radi
al use of 
onditioning is represented by the re
ursive de-
omposition [46℄ and re
ursive 
onditioning [16℄ algorithms. These algo-rithms split a network into sub-networks, using 
onditioning to \break"1De
hter also proposes an interesting variant: we 
an run a loop 
utset algorithminside a bu
ket, to save as mu
h memory as possible for that bu
ket.



8edges (as in Se
tion 5.2). The sub-networks are re
ursively split, until net-works 
ontaining a single variable are rea
hed. The algorithm organizesthe 
ombination of 
onditioned sub-networks using tree stru
tures 
alleddtrees. Re
ursive de
omposition is parti
ularly relevant as it has beenextended to bounded re
ursive de
omposition, an anytime algorithm thatprodu
es probability bounds. The algorithm has an initialization phase,where intermediate results are produ
ed and stored in 
a
hes; when an in-feren
e is requested, the algorithm uses some of the values in the 
a
hes toprodu
e bounds. It would a
tually be possible to add anyspa
e behavior toanytime bounded 
onditioning by a more intense use of 
a
hes | in fa
t,the present paper 
an be understood as taking this very route.Re
ursive 
onditioning expands the basi
 ideas of re
ursive de
omposi-tion, with a fo
us on anyspa
e behavior. If a dtree is \balan
ed", re
ursive
onditioning use O(n) spa
e and O(n exp(w)) time (n is the number ofvariables and w 
orresponds to the size of the largest separator in a 
lus-tering algorithm). Note that this time 
omplexity is smaller than the time
omplexity of brute for
e instantiation, so that the introdu
tion of bal-an
ed dtrees does present advantages. Se
ond, if spa
e beyond O(n) isavailable, re
ursive 
onditioning uses 
a
hes to store intermediate 
ondi-tioning results, attaining 
omplexity O(n exp(w)) when O(n exp(w)) spa
eis available | exa
tly the 
omplexity of standard variable elimination. Thealgorithm o�ers a \time � spa
e" trade-o�: For a given time, it takes a
ertain spa
e; the more time, the less spa
e is needed. Re
ursive 
ondition-ing is a truly 
exible algorithm, possibly the most su

essful appli
ation of
onditioning in an exa
t algorithm.5. Adaptive 
onditioningWe 
annot arbitrarily 
onstrain time and spa
e and then ask for exa
tanswers; to look into situations that simultaneously require anytime andanyspa
e behavior, we must be prepared to trade inferen
e quality for timeand spa
e.The algorithms reviewed in the previous se
tion suggest an endless num-ber of strategies to trade time, spa
e and quality. For example: we 
oulduse adaptive variable elimination to save spa
e and, if we also had 
on-straints in time, we 
ould use sampling approximations in some bu
kets.Or we 
ould start with re
ursive 
onditioning and add anytime behaviorto it. Is there any way to organize this maze of options and produ
e a
ompa
t and 
oherent framework?



95.1. Sket
h of adaptive 
onditioningWe wish to produ
e an inferen
e algorithm that re
eives a Bayesian net-work, a 
onstraint on spa
e and a 
onstraint on time, and produ
es an in-feren
e. The algorithm must adapt its operations to the available amountof spa
e and promptly produ
e an answer (possibly of low quality) that
an be improved if more time is available. The adaptive 
onditioning al-gorithm attempts to address these requirements in an organized fashion.In short, the idea is to divide a network using 
onditioning (to guaranteethat memory 
onstraints are met), and then to use 
lustering algorithmsand anytime te
hniques to pro
ess sub-networks (to guarantee that time
onstraints are met). The following sket
h is a starting point:1. Use d-separation to dis
ard variables that 
annot a�e
t the inferen
e,obtaining a network with requisite variables only [56℄.2. Based on spa
e 
onstraints, use 
onditioning to de
ompose the result-ing network into sub-networks. The de
omposition must guaranteethat 
lustering algorithms 
an be run in every sub-network withinavailable memory, but it need not de
ompose up to single nodes. Thede
omposition pro
ess is dis
ussed in Se
tion 5.3.3. If there is some memory left after the division of the network, 
re-ate 
a
hes to store intermediate results. The 
a
hing pro
edure isdis
ussed in Se
tion 5.4.4. Now 
onsider time 
onstraints. If all sub-networks 
an be exa
tly pro-
essed, for all instantiations of 
onditioning variables, in the availabletime, pro
ess them with a 
lustering algorithm. Otherwise, pro
esssome sub-networks and instantiations in an anytime s
heme for theavailable time (these 
omments are dis
ussed in detail in Se
tions 5.5and 5.6).5. Combine instantiations, returning an exa
t or approximate answer.The algorithm basi
ally operates in two phases. The planning phase isresponsible for steps 1, 2 and 3 (Se
tions 5.3 and 5.4). The exe
ution phaseis responsible for steps 4 and 5 (Se
tions 5.5 and 5.6). Before we lookinto these matters, Se
tion 5.2 dis
usses some mathemati
al fa
ts about
onditioning.5.2. The mathemati
s of adaptive 
onditioningIt is 
onvenient to 
onsider 
onditioning as an abstra
t operation that
an \break" edges and \split" networks. When a node is observed, theedges o� of the node are said to be broken. If an edge starts at node X ,then the edge is broken by X . A Bayesian network N 
an be split in two
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 0.5 0.5

 0.4 0.6(b) Network split after 
onditioning on B = b
.Figure 2. De
omposing a simple network by 
onditioning.sub-networks N1 and N2 when we identify a set of nodes C su
h that everyedge between N1 and N2 is broken by C. The set C is 
alled the 
utset forN1 and N2, or simply the 
utset, if no ambiguity 
an o

ur. The 
utsetC splits N into N1 and N2. For a sub-network Ni, obtained by splittinga network N with 
utset C, the lo
al 
utset Ci is the set of variables inC and in Ni. The symbol PrNi (�) denotes the probability Pr(�jCnCi) |that is, the probability in the sub-network Ni taken as a unit. Figure 2shows an example.The following theorem is a dire
t generalization of Expression (3).Theorem 1. Let C be a 
utset that splits a Bayesian network N into sub-networks Ni, and Ci be the lo
al 
utset for Ni. If Q and E are disjointand 
ontain respe
tively the query variables and the observed variables,with Qi and Ei indi
ating the variables in Q and in E in Ni, thenPrN (QjE) = XCnQ\CYi PrNi(Qi [CijEi): (4)This theorem indi
ates pre
isely the operations that must be repeatedby adaptive 
onditioning. The �rst step of adaptive 
onditioning is to �nda 
utset; then, for ea
h instantiation of the 
utset, take ea
h sub-network,
ompute PrNi (Qi [ CijEi), and multiply these probabilities; at the end,add all produ
ts.The theorem is 
ompletely general in that query variables 
an be dis-tributed among various sub-networks; the result 
an be easily generalizedto handle observed variables in the various sub-networks (
ompare this



11dis
ussion to re
ursive de
omposition and re
ursive 
onditioning, where aninferen
e is 
entered in a single variable).5.3. Planning phase: 
omputing a 
utsetWe now look into the planning phase of adaptive 
onditioning. Thisphase takes a Bayesian network and a memory 
onstraint, and produ
esa 
utset. We assume that our target is a 
utset su
h that sub-networks
an be pro
essed by 
lustering algorithms. The rationale is that 
lusteringalgorithms are eÆ
ient in terms of running time; by guaranteeing that thesealgorithms 
an be used in sub-networks, we make the best use of availablememory. We also avoid the trap of \saving too mu
h memory" (using lessthan the available memory while in
urring a large penalty in running time).Our strategy is to form 
utsets from the separators of the jun
tion tree forthe whole network, as separators do have the property of splitting networks.This strategy e�e
tively 
ontrols memory 
onsumption, as the memory re-quired by 
lustering algorithms 
an be restri
ted to some 
onstant amountplus the largest separator in the jun
tion tree.2 Suppose then that, whilebuilding the whole jun
tion tree, we �nd that a separator violates memory
onstraints. We then in
lude the separator in the 
utset, and re
ursively an-alyze the resulting sub-networks. The 
utset is produ
ed when this pro
essdoes not �nd any violating separator. The result is a set of sub-networkswith the property that every sub-network 
an be pro
essed by a 
lusteringalgorithm within the spa
e 
onstraints. Even though �nding an optimal
utset and an optimal jun
tion tree are NP-hard problems [8, 38, 63℄, goodheuristi
s are available [37℄; we have found in our tests that �nding a good
utset takes about 0.5% of overall running time.Figure 3 shows a small jun
tion tree and the sub-networks obtained fromit, assuming a 
onstraint on separators (maximum size of just 4 
oatingpoint values) and supposing all variables are binary. The separator ADFviolates the 
onstraint, so ADF are in
luded in the 
utset. Two networksare generated by this 
ut; one of them indu
es 
lusters ABC and ACDF ,while the other 
ontains the remainder of the original network. The de-
omposition pro
ess is then applied to these two sub-networks re
ursivelyuntil no separator has size larger than 4.5.4. Planning phase: handling 
a
hesEven though the goal of the de
omposition pro
ess is to use as mu
hmemory as possible in the sub-networks (within memory 
onstraints), it2It is possible to 
ode the variable elimination algorithm so that memory 
onsumptionis linearly related to the largest separator. The implementation of adaptive 
onditioningdis
ussed in Se
tion 6 uses an implementation of variable elimination that satis�es thislinear relationship.
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tion tree and resulting de
omposition.may happen that the sub-networks do not use exa
tly all available memory.For example, we may have a million 
oating-point values at our disposaland a network where the largest separator requires ten million 
oating-point values; we then 
ondition on this separator and realize that the re-maining separators require at most �ve hundred thousand 
oating-pointvalues | we now 
an use the remaining �ve hundred thousand values aswe please. Following the basi
 anyspa
e te
hnique used in re
ursive 
ondi-tioning [16℄, we 
ould use available memory to 
a
he and reuse inferen
es.Consider a simple example. Suppose that a network N is de
omposedinto N1, N2, and N3, su
h that N2 and N3 do not have 
ommon variables.Suppose also that N1 
ontains the query variable, and N2 and N3 
ontainobserved variables. We 
ould then 
a
he inferen
es from N3 while we goover instantiations of N1 and perform inferen
es in N2.Ca
hes lead to a �ne 
ontrol of memory use, but �nding a method for eÆ-
ient 
a
he allo
ation is a very 
hallenging problem in itself. We have testedseveral strategies for 
a
he allo
ation and found that the following methodis quite satisfa
tory. We simply assign a 
a
he unit to ea
h sub-network inde
reasing order of network size (number of variables), where a 
a
he unit
ontains the amount of memory ne
essary to store PrNi(Qi [CijEi) (the



13result of a parti
ular inferen
e in the sub-network Ni given a 
on�gurationof C n Ci; remember that sub-networks may 
ontain query variables inadaptive 
onditioning). This pro
ess is repeated until we exhaust availablememory.3 If we �nd that every 
utset instantiation 
an be stored in mem-ory, we essentially obtain a 
lustering method where the separators amongsub-networks are gradually 
omputed and stored.As shown in Se
tion 6, 
a
hing is an extremely e�e
tive strategy to re-�ne anyspa
e behavior. Adaptive 
onditioning bene�ts greatly from the\smoothness" in memory 
onsumption provided by 
a
hes | however,adaptive 
onditioning tries to minimize the importan
e of 
a
hes by usingas mu
h memory as possible for separators of sub-networks, thus easingthe diÆ
ult problem of generating a 
a
hing strategy.Another problem in handling 
a
hes is how to update the informationstored when new results be
ome available. For instan
e, suppose a sub-network has a 
a
he unit (storing the result of an inferen
e for a parti
ular
on�guration of the 
utset), and an inferen
e (with a di�erent 
on�gura-tion) is requested by the exe
ution phase. Should the 
a
he unit store thenew result or keep the previous one? If the result is kept, when should itbe updated? This problem is also 
omplex and is 
losely related to how
utset instantiations are organized (dis
ussed in Se
tion 5.6). To ta
klethis problem, we use a simple heuristi
 that has proved to be eÆ
ient,parti
ularly when 
ombined to the strategy we use to organize 
utset in-stantiations. Basi
ally, we update the information of 
a
he units as soonas new inferen
es be
ome available for the sub-network.To get a sense of the relevant 
a
he � separator � time trade-o�s, 
on-sider the following experiment with the Alarm network, shown in Figure4. Consider the variable BP and no eviden
e (this is the query that re-quires most 
omputational e�ort without eviden
e), and suppose that avery small amount of memory is available | only 36 
oating-point values.The time required for inferen
e is mu
h more sensitive to the amount ofmemory allo
ated to separators than to 
a
hes | as the amount of mem-ory for separators in
reases, the time for inferen
e drops sharply; this isnot observed as the amount of memory for 
a
hes in
reases. We leave forfuture work a pre
ise quanti�
ation of the 
omplex trade-o�s involved instrategies for 
a
hing probabilisti
 inferen
e.5.5. Exe
ution phase: anytime inferen
e in sub-networksAfter adaptive 
onditioning de
omposes a network and assigns 
a
hes tosub-networks, the algorithm must de
ide how to pro
ess ea
h sub-network.If there are no 
onstraints on pro
essing time, the obvious 
hoi
e is to run3In our implementation, the spa
e available for 
a
hes is essentially the di�eren
ebetween the largest possible separator and the maximum separator a
tually obtainedthrough de
omposition.
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Figure 4. A 
a
he � separator � time trade-o� in the Alarm network, queryingvariable BP without eviden
e. The same �xed amount of memory is distributedbetween separators and 
a
hes.a 
lustering algorithm in ea
h sub-network. If instead there are limitationson pro
essing time, several possibilities 
an be 
on
eived.Consider the possibility that some sub-networks must be assigned exa
talgorithms, while other sub-networks must be assigned approximate algo-rithms. A simple anytime pro
edure is to assign 
lustering algorithms toas many sub-networks as possible, and to leave approximate algorithms toother sub-networks. We have tested approximations based on sto
hasti
algorithms.We have found, after extensive tests, that Gibbs sampling algorithmstake longer to produ
e a reasonably a

urate inferen
e than variable elim-ination takes to produ
e an exa
t inferen
e, even in rather large networks[52℄.4 Clearly these statements should be taken in the proper 
ontext. First,Gibbs sampling and other sto
hasti
 algorithms are parti
ularly valuablein the presen
e of 
ontinuous variables; we stress that here we deal onlywith 
ategori
al variables. Se
ond, there is a limit to the appli
ability ofvariable elimination; for very dense and large networks, one 
annot hopeto use straight variable elimination | however we have observed that in4Su
h �ndings were 
orroborated by empiri
al eviden
e mentioned by Bru
eD'Ambrosio at the Workshop on Real-time De
ision Support and Diagnosti
 Systems atAAAI2002. We feel that the average performan
e of other sto
hasti
 algorithms shouldbe 
omparable to the performan
e of Gibbs sampling.



15those 
ases the anytime 
onditioning strategies anytime we dis
uss next
an yield a

urate approximations faster than sto
hasti
 algorithms do.The alternative we have pursued is to use a sear
h-based algorithm, su
has bounded 
onditioning, in some sub-networks. Here we are left withseveral problems. Bounded 
onditioning uses very little memory; we mayend up \saving too mu
h memory" in the pro
ess, leaving too many mem-ory for 
omplex 
a
hing de
isions. For example: If we 
ombine bounded
onditioning and 
a
hing, should the de
omposition step be revised on
ememory is available? Another question is, Whi
h sub-networks should runexa
t algorithms and whi
h should run bounded 
onditioning? It seemsvery diÆ
ult to answer su
h questions in any sort of optimal manner.Instead of using exa
t and approximate algorithms in di�erent sub-networks, we have 
on
luded that there exists a simpler yet more e�e
tivestrategy. Observe that adaptive 
onditioning 
an be dire
tly turned intoan anytime algorithm by running a subset of all possible instantiations,thus generating bounds for the 
omplete summation in Expression (4) |the same idea used in bounded 
onditioning and bounded re
ursive de
om-position. If we stop instantiating 
utset variables, we obtain lower boundsfor probabilities, denoted by Pr(XQ;XE). To produ
e an upper bound,we use: Pr(XQ = xQ;XE) = 1� XXQ 6=xQ Pr(XQ;XE): (5)As an example, suppose that we wish to 
ompute the marginal probabilityfor a ternary variable X , and we stop 
omputation when Pr(X = x0) =0:12, Pr(X = x1) = 0:56, Pr(X = x2) = 0:17. Probability bounds are:Pr(X = x0) 2 [0:12; 0:27℄, Pr(X = x1) 2 [0:56; 0:71℄, Pr(X = x2) 2[0:17; 0:32℄.Bounds for 
onditional probability 
an be easily obtained [46℄:Pr(XQ = xQjXE) = Pr(XQ = xQ;XE)Pr(XQ = xQ;XE) +PXQ 6=xQ Pr(XQ;XE) ;(6)Pr(XQ = xQjXE) = Pr(XQ = xQ;XE)Pr(XQ = xQ;XE) +PXQ 6=xQ Pr(XQ;XE) :As an alternative approa
h, we have observed that a straightforward nor-malization of in
omplete results often provides an ex
elent approximationto the 
omplete inferen
e. To illustrate this possibility, suppose again wehave Pr(X = x0) = 0:12, Pr(X = x1) = 0:56, Pr(X = x2) = 0:17. Anapproximate inferen
e 
an be produ
ed by normalization: Pr(X = x0) �0:13, Pr(X = x1) � 0:62, Pr(X = x2) � 0:18.The main problem is how to organize 
utset instantiations, so that most



16of the probability mass is qui
kly generated.5 The next se
tion des
ribesa method that is suited to adaptive 
onditioning. Note that the order of
utset instantiations makes inferen
es in some sub-networks to be updatedmore often than in others | thus we obtain a method that automati
allydistributes the 
omputational e�ort among sub-networks.5.6. Exe
ution phase: generating 
utset instantiationsTo generate instantiations, we exploit the intuition that the \farther" asub-network is from the query variables, the smaller the e�e
t of the sub-network in the inferen
e of interest. If a sub-network Ni has little e�e
ton the inferen
e, relatively few instan
es of Ni should be visited whenprodu
ing probability bounds. Su
h an e�e
t is obtained by varying the
utset variables of Ni more slowly than the 
utset variables for more 
riti
alsub-networks. The following pro
edure emerges: (i) order the sub-networksfrom \
losest" to \farthest" from the query variables; (ii) order the 
utsetvariables so that the variables for the \
losest" network vary more qui
kly;(iii) generate and pro
ess instan
es until time is exhausted.The 
hallenge in this pro
edure is to formalize a \distan
e" betweensub-networks. Our solution is inspired by results on 
onditional mutualinformation [40℄. Take a Bayesian network N over variables X. The 
ondi-tional mutual information of variables X and Y in N , denoted by I(X ;Y ),quanti�es un
ertainty redu
tion by random variables [9℄:I(X ;Y ) =XX;Y Pr(X;Y ) log Pr(X;Y )Pr(X) � Pr(Y ) :The mutual information is symmetri
 and represents a measure of the de-penden
e between two random variables. A natural idea is to evaluatethe \distan
e" between a sub-network and query variables by 
omputingthe mutual 
onditional information between query variables and variablesin the sub-network 
utsets (keeping all variables 
onditional on observedvariables). However, mutual 
onditional information is very expensive to
ompute (time spent is O(m exp(n)) for n variables, m of whi
h are queryvariables). We thus propose a heuristi
 method that relies on the monotoni
relationship between mutual 
onditional information and shortest-path dis-tan
e: Kjaerul� has proved that mutual 
onditional information betweenX and Y de
reases with in
reases in the shortest path (in N ) between Xand Y [39℄. Suppose then that we want to measure the in
uen
e of X ina query variable Y . A qui
k metri
 is to take the shortest-path algorithm,and �nd the number of edges between X and Y . If instead we have a set5Bounded 
onditioning has a built-in me
hanism to order instantiations [32℄, whilebounded re
ursive de
omposition resorts to Gibbs sampling to de
ide whi
h instantia-tions must be 
omputed and whi
h must be retrieved from an initialization phase [46℄.



17of variables X and a set of query variables Y, we take the average of allshortest-paths between variables inX and the setY|we 
all the resultingquantity by Minimal Mean Distan
e (MMD):MMD(X;Y) = jXjXi d(Xi;Y)jXj ;where d(X;Y ) is length of the shortest-path between X and Y .On
e we obtain the MMD of every 
utset variable, we sort the variables sothat variables with larger MMD are modi�ed less often than variables withsmaller MMD. In addition to the sorting 
utset variables, we 
an improvethe speed of 
onvergen
e of probability bounds by paying attention to theorder of instantiations for 
ategories in ea
h 
utset variable. For example,if a 
utset 
ontains binary variables X and Y , we may 
hoose to visitx1 before x0, regardless of the order in whi
h we visit y0 and y1. Wemust �rst visit instantiations that potentially 
ontain the most probabilitymass, looking for good instantiations (as in Henrion's sear
h method [30℄).To �nd an order for the values of a 
utset variable X we 
ompute theposterior probability of X with respe
t to the sub-network that 
ontainsX ; we then visit �rst the values of X with highest posterior probability. Wehave observed that this te
hnique often in
reases dramati
ally the speed of
onvergen
e for probability bounds.At this point, the original network has been de
omposed, 
a
hes havebeen allo
ated, 
utset variables and their 
ategories have been properlysorted. Should we now 
onsider distributing 
a
hes after sorting instan-tiations? One 
ould argue that the 
a
he allo
ation strategy should takeinto a

ount the order of 
utset instantiations | 
a
hes should be moreuseful for those variables that 
hange less often. However we have foundempiri
ally that it is more important to allo
ate 
a
hes based on the sizeof sub-networks than on 
utset orderings. Again we fa
e a situation wheremany alternatives 
ould be 
on
eived, with no obvious \optimal" solutionfor the 
a
hing strategy. We 
onje
ture that the most eÆ
ient (in terms oftime) s
heme should dynami
ally modify 
a
hes during inferen
e, assigningmemory to those large 
utsets that 
hange more often. In any event, wehave de
ided to follow the simple yet eÆ
ient 
a
hing strategy des
ribedin Se
tion 5.4.5.7. The 
omplete algorithmSe
tion 5.1 sket
hed the main steps of adaptive 
onditioning, leaving un-de�ned several aspe
ts of the algorithm. In fa
t, it is pro�table to thinkof adaptive 
onditioning as a generi
 strategy: divide a network to satisfyspa
e 
onstraints, then pro
ess sub-networks as required to meet time 
on-straints. However at this point we 
an present a more detailed des
ription



181. Use d-separation to dis
ard variables that 
annot a�e
t the inferen
e.2. Use 
onditioning to re
ursively divide the resulting network into sub-networks, until every separator requires less spa
e than the availablememory (Se
tion 5.3). To do so, re
ursively produ
e jun
tion treesfor the various sub-networks and \break" them whenever separatorsbe
ome larger than a 
ertain limit.3. If there is memory left after the division of the network, assign 
a
hesto store intermediate results (Se
tion 5.4): Assign a 
a
he unit toea
h sub-network in de
reasing order of network size, until availablememory is exahusted.4. If there are time 
onstraints:(a) Order 
utset variables using Mean Minimal Distan
e, and order
ategories of 
utset variables by lo
al posterior probability.(b) Apply Expression (4), performing lo
al inferen
es for as mu
htime as possible. Before exe
uting ea
h inferen
e, verify whetherthis \sub-inferen
e" is in the 
a
he; if yes, then reuse it; if no,then apply a 
lustering method to obtain the ne
essary sub-inferen
e and update the 
a
he with the new result.5. Obtain probability bounds (or return a single distribution when in-feren
e is a
tually 
ompleted) using Expressions (5) and (6).Figure 5. Adaptive 
onditioning.of several design de
isions that, by analysis and experimentation, we re-gard as most adequate for implementation. Figure 5 
ontains a detaileddes
ription.The exe
ution phase is responsible for instantiating the 
utset variablesin the prede�ned order, running 
lustering algorithms in ea
h sub-network,
a
hing results whenever possible, and 
omputing Expression (4). Whentime is exhausted, probability bounds are produ
ed. Note that the numberof inferen
es grows exponentially with the number of variables in 
utsets;given a Bayesian network with n variables and 
utsets of width w
 thatde
ompose the network into ws sub-networks, the number of inferen
esperformed by adaptive 
onditioning is O (ws � exp(w
)).As an example, 
onsider the network N in Figure 6, 
ontaining onlybinary variables. The �gure shows a de
omposition of N into three sub-networks, by 
onditioning on C and B. Dashed nodes represent \dummy"variables that are always observed and do not 
hange the 
omplexity ofinferen
es in the 
orresponding sub-networks. We wish to 
ompute thejoint probability of E and F . We have to 
ompute the following probabil-



19
D

C

B

G

E F

A

N

N

N

B’

C’

B’

1

3

2

Figure 6. A de
omposition for the Bayesian network in Figure 1.ities: PrN1 (C j B0 = b0) (
omputed twi
e), PrN2 (E;F j C 0 = 
0; B0 = b0)(
omputed four times), and PrN3 (B) (
omputed only on
e).As dis
ussed in Se
tion 5.5, we have dis
arded the possible strategyof distributing di�erent exa
t and approximate algorithms through sub-networks. We have found mixture-of-algorithms strategies to be less e�e
-tive, for anytime purposes, than just applying the same variable eliminationalgorithm a
ross sub-networks. However, we 
onje
ture that su
h a strat-egy 
ould be interesting in various situations, for example in parallelizedengines with di�erent pro
essing 
hara
teristi
s.5.8. Comparison to anyspa
e algorithmsA 
omparison between adaptive 
onditioning and adaptive variable elim-ination or re
ursive 
onditioning ne
essarily depend on how we are to intro-du
e anytime behavior into the latter two algorithms. These 
omparisons
an illuminate several aspe
ts of adaptive 
onditioning.The obvious way to obtain anytime behavior with adaptive variable elim-ination is to run approximate algorithms inside bu
kets | for example,to run Gibbs sampling (as in [41℄) or bounded 
onditioning (similarly toDe
hter's loop 
utset suggestion [21℄). However, we are left with a prob-lem: if intermediate results in one bu
ket are improved, how should the newresults be propagated to other bu
kets? The solution would be to applyanytime algorithms in su
h a way that di�erent portions of a network 
ouldbe pro
essed independently | a solution that paves the way to adaptive
onditioning. It is a
tually easier to think of adaptive variable eliminationas a derivative of adaptive 
onditioning, be
ause the �rst algorithm is aspe
ial 
ase of the se
ond one (obtained when the 
onditioning operationsare not \wide" enough to a
tually \
ut" the network into sub-networks).We have found that adaptive 
onditioning is easier to understand and im-



20plement than other possible 
ombinations of adaptive variable eliminationplus anytime algorithms.Re
ursive 
onditioning is a 
lever algorithm with many possible variants.It 
ould be
ome an anytime algorithm by 
omputing a limited number ofterms in Expression (2). However this partial 
omputation s
heme is noteasy to implement in re
ursive 
onditioning, as the power of the algorithm
omes just from the way the 
omputation of many terms is \entangled"in a dtree. We are again led to the 
on
lusion that we must \
ut" someportions of the network from others, so as to organize partial sums. Thatis, instead of splitting networks until single-node sub-networks, we muststop splitting earlier. In fa
t, adaptive 
onditioning 
an be understood asa 
lose 
ousin of re
ursive 
onditioning in the following sense: the inferen
epro
ess in adaptive 
onditioning 
an be represented as a dtree where leavesare sub-networks (and sub-networks are pro
essed in an anytime fashion).Despite the similarity between adaptive and re
ursive 
onditioning, thereare signi�
ant di�eren
es between them. The obvious, and possibly themost important di�eren
e is that adaptive 
onditioning dire
tly allows any-time behavior, as dis
ussed in the previous paragraph. Note that there isa pri
e to pay for anytime behavior: while adaptive 
onditioning degrades,in the limit of s
ar
e memory, to brute for
e instantiation of Expression(2), re
ursive 
onditioning takes O(n exp(w logn)) time in the same 
ir-
umstan
es. A se
ond notable di�eren
e between adaptive and re
ursive
onditioning is that the �rst algorithm 
an handle arbitrary sets of queryvariables, while the se
ond one fo
uses on the 
omputation of a singleprobability value for a single variable. A third di�eren
e is that adaptive
onditioning tries to use as mu
h memory as possible before it 
onsidersthe use of 
a
hes (networks are divided until memory 
onstraints are sat-is�ed, but not more than that); re
ursive 
onditioning instead moves thewhole inferen
e to a very thin stru
ture and then uses the available memoryfor 
a
hing. Be
ause �nding a reasonable 
a
hing strategy is a non-trivialproblem, it makes sense to redu
e its importan
e.5.9. Comparison to anytime algorithmsAdaptive 
onditioning o�ers some signi�
ant advantages over existinganytime algorithms. The algorithm produ
es en
losing bounds as approx-imations, unlike sto
hasti
 approximations and loopy propagation algo-rithms. Experiments show that 
onvergen
e of these bounds is very fast,even within relatively stringent memory 
onstraints (Se
tion 6). We shouldadd that adaptive 
onditioning is mu
h faster than standard sto
hasti
 ap-proximation algorithms, at least for the kinds of \large" networks that 
anbe found in the literature; that is, in our tests we observed that ex
ellentbounds were obtained long before a similar approximation was produ
edby Gibbs sampling and similar s
hemes. Adaptive 
onditioning also fares



21well against bounded 
onditioning and sear
h-based anytime te
hniques,be
ause adaptive 
onditioning essentially 
ontains su
h methods and addsvarious improvements. Instead of raw bounded 
onditioning, adaptive 
on-ditioning tries to use all the available memory; instead of sear
hing forprobability terms in the whole network, adaptive 
onditioning tries to dis-tribute the sear
h on sub-networks in an organized fashion.Adaptive 
onditioning 
an be easily employed if a purely anytime infer-en
e algorithm is required (that is, if there are no memory 
onstraints, justtime 
onstraints). The planning phase now has to sele
t a 
utset so as toobtain the fastest 
onvergen
e of bounds. Our strategy in su
h situations isto simply divide a network in its largest separator (more re�ned strategies
an be devised in future work). We note an important property of su
h ex-pli
it de
omposition: as we obtain truly independent sub-networks, we 
aneasily apply di�erent levels of 
omputational e�ort to distin
t portions of anetwork. It would be diÆ
ult to do so using any straightforward anytimevariant of adaptive variable elimination.6. Tests and resultsWe have implemented adaptive 
onditioning as des
ribed in Se
tion 5.7,using the standard variable elimination algorithm to pro
ess sub-networks.We have tested real and simulated networks with a variety of spa
e andtime 
onstraints.6 We illustrate our results with inferen
es in real networks.For ea
h network, we produ
e inferen
es for the variables whose set of d-
onne
ted variables are the largest | that is, we sele
t the hardest querieswithout observations. The in
lusion of observations does not 
hange theproperties of the algorithm but would introdu
e several 
omplexities intothe testing pro
edure (whi
h variables to observe, whi
h values to set asobserved), so we de
ided not to take observations into a

ount.6.1. The Alarm networkConsider �rst the Alarm network [2℄, with memory 
onstraints on sepa-rators. We limited separators to 
ontain from 3 to 24 
oating point values(note the very stringent 
onstraints). We also imposed time 
onstraintsfrom 1 to 3 se
onds (time 
onstraints are imposed on overall running time,6We run tests in a Pentium 4 1.7Ghz with 1GByte of memory running Linux2.4.7-10; the algorithm was 
oded in the Java language and tested with the JVM1.3.1 01 from Sun Mi
rosystems. Libraries for the variable elimination algorithmare based on the inferen
e engine for the JavaBayes system, freely available athttp://www.
s.
mu.edu/~javabayes.



22

Figure 7. Interval width for inferen
es with the Alarm network (query variableis BP).just as it would be the 
ase in a real-time system). For the Alarm net-work we run tests with almost every possible memory 
on�guration, asthis network is relatively small and serves well as a ben
hmark. In theAlarm network, exa
t inferen
e for BP requires a separator of size 25 |that is, memory beyond this quantity is useless. However we observed thatex
elent answers 
an be obtained if size larger than 13 is allowed.Figure 7 is a graph of \quality � spa
e � time" for the marginal prob-ability of variable BP. \Quality" is represented by the interval betweenlower and upper probability bounds for one of the 
ategories of BP. Notethe dramati
 in
reases in quality (de
reases in interval length) for somesmall di�eren
es in memory | a little more memory sometimes leads togreat improvements in the de
omposition pro
ess.We would like to stress that a graph su
h as the one in Figure 7 
an hardlybe built with existing te
hniques, and the great appeal of adaptive 
ondi-tioning is exa
tly the possibility of balan
ing time and spa
e 
onstraintssimultaneously while 
ontrolling quality.Figure 8 shows a di�erent \quality � spa
e � time" graph; here we plotthe Kullba
k-Leibler divergen
e or relative entropyD(Pr k P̂ r) between theprobability of the exa
t inferen
e Pr(Xq) and the approximation based onnormalizing an in
omplete inferen
e P̂ r(Xq):D(Pr k P̂ r) =XXq Pr(Xq) log Pr(Xq)P̂ r(Xq)
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Figure 8. Relative Entropy for the Alarm network (query variable is BP).In the 
ase of the Alarm network, Xq = BP . Note the quality of inferen
esfor relatively s
ar
e memory and time resour
es. Again we see that qualityvaries somewhat dis
ontinuously.6.2. The Link networkConsider now the Link network [35℄, a large network with 724 nodes (al-most all of them binary), representing linkage between two genes. Figure 9shows interval length for query variable DO 56 d p. This variable is appro-priate be
ause inferen
es with it require a very large number of requisitevariables. Figure 10 shows the error in approximating by normalization ofin
omplete results, again for variable DO 56 d p.Our tests were run with memory 
onstraints that should be 
lose tostripped-down embedded systems. We varied separator size from only 65
oating point values to 129 
oating point values. We note the enormousmemory savings that 
an be obtained with adaptive 
onditioning: we 
anobtain almost exa
t answers within 3 se
onds with a maximum separatorof just 80 
oating point values.In Figures 9 and 10 we observe regions where errors in
rease dramati
ally.They indi
ate operation points that should be avoided in real appli
ationswith stripped down bounded agents and embedded systems. We 
an alsoobserve the e�e
t of 
a
hes in the inferen
e pro
ess. In Figure 7 for exam-ple, for separator sizes bigger than 12 we see a smooth region where theperforman
e in
reases with time and memory. As the de
omposition of the
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Figure 9. Bound width for Link inferen
es.

Figure 10. Relative Entropy for Link inferen
es.



25network remains almost the same for separator sizes wider than 12, theperforman
e in
reases with memory is due to 
a
he allo
ation.6.3. The Diabetes networkThe experiments just reported used very stringent spa
e 
onstraints; it
ould be argued that typi
al probabilisti
 inferen
e employs larger mem-ory resour
es. In this se
tion we move to networks with huge memoryrequirements for inferen
e.We have 
ondu
t tests with models that follow the usual pattern of dy-nami
 Bayesian network; that is, networks with a regular stru
ture 
on-taining repeating blo
ks. Our results are illustrated using the Diabetesnetwork.7 The stru
ture we used was an expansion of Diabetes into 24sli
es, ea
h 
ontaining 17 variables. The model is parti
ularly interestingbe
ause Diabetes 
ontains some \linking" variables that are 
onne
ted toall sli
es, and is therefore harder to handle than purely repeating dynami
Bayesian networks. The goal was to produ
e inferen
es for the variablebg 24 (at the \bottom" of the 24th sli
e). The largest separator for thisnetwork (using a maximum weight heuristi
) 
ontains 64 variables. Asvariables have six 
ategories on average, we would need an astronomi
allylarge amount of memory to 
ondu
t exa
t inferen
e with standard variableelimination. Adaptive 
onditioning instead fa
es no diÆ
ulties, and 
anprodu
e the exa
t answer in less than 3 se
onds, using a separator size of1500 
oating point values. We ran tests in Diabetes using separator sizesof 1300 to 4000 and time 
onstraints from 1000 ms to 5000 ms. As we seein Figure 11 and in Figure 12, 
hanges in separator sizes from 1500 to 4000did not a�e
t the quality signi�
antly. However, for separator sizes lessthan 1500, the network de
ompositons 
hanged and the quality degraded
onsiderably.We 
lose by noting that the experiments reported here are not the onlyones we have 
ondu
ted, and were not sele
ted as su

essful 
ases | rather,similar behavior was met in a large variety of tests.7. Con
lusionThis paper presents a dis
ussion of algorithms that simultaneously dis-play anytime and anyspa
e 
hara
teristi
s in Bayesian network inferen
e.We have attempted to provide a relatively broad des
ription of the manyfa
tors involved in su
h inferen
es, while keeping the exposition as simple7Diabetes is available for download on Bayesian Network Repository:http://www.
s.huji.a
.il/labs/
ompbio/Repository/networks.html.
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Figure 11. Bound width for Diabetes inferen
es.

Figure 12. Relative Entropy for Diabetes inferen
es.



27and dida
ti
 as possible. Our goal was to 
onstru
t algorithms that 
an add
exibility to probabilisti
 reasoning, without expli
itly getting into issuesof meta-reasoning.The main 
ontribution of this work is the adaptive 
onditioning algo-rithm. We 
ertainly make no 
laims that adaptive 
onditioning is theonly way to attain anytime anyspa
e behavior in Bayesian network infer-en
e. Given the large number of fa
tors involved in su
h inferen
es, it islikely that no optimal algorithm exists, whatever is meant by optimal; weshould instead fo
us on algorithms that exer
ise a balan
ed 
ombination oftrade-o�s. We suggest that the adaptive 
onditioning algorithm provides asensible balan
e between the ne
essary 
ompromises in anytime anyspa
eprobabilisti
 reasoning; we have tried several other 
ombinations of te
h-niques, only to �nd that they have marginal gain, if any, while enormously
ompli
ating matters. In this 
ontext, we feel that adaptive 
onditioningis an algorithm with 
lear strenghts, as it:1. allows simultaneous spa
e and time 
onstraints, and in
orporateste
hniques that allow �ne usage of available memory and time.2. smoothly 
ombines the most e�e
tive known te
hniques for inferen
e(
lustering and 
onditioning).3. is relatively easy to motivate and to understand; it is not too diÆ
ultto implement and does not rely on wildly diverse theoreti
al fa
ts; it
an be taught and appre
iated with mild e�ort.4. 
an easily explore three-dimensional trade-o�s involving \quality �spa
e � time"; we are not aware of previous work that has fa
ed thesetrade-o�s expli
itly.5. is ready for parallel implementation (several te
hniques for networkde
omposition in parallel systems are rather 
lose to adaptive 
on-ditioning [42, 49, 45℄), and 
an be dire
tly used in \hybrid" imple-mentations that 
ombine exa
t and approximate algorithms in sub-networks.The algorithm should be a parti
ularly valuable tool for probabilisti
 rea-soning in embedded systems (for example in robots with limited resour
es)and in multi-agent 
ommunities (for example in sensor networks).A notable 
hara
teristi
 of adaptive 
onditioning is that it 
an handlenetworks large enough to overwhelm existing exa
t algorithms. In fa
t,many of our tests with large networks 
annot be reprodu
ed with existing
lustering algorithms. Only anyspa
e algorithms su
h as re
ursive 
ondi-tioning 
an o�er exa
t solutions to the larger networks, but su
h algorithmsdo not have the anytime dimension that adaptive 
onditioning o�ers as well.



28Overall, we see that the lands
ape of trade-o�s between quality, timeand spa
e is rather dis
ontinuous: in some 
ases, relatively small 
hangesin memory 
an lead to large di�eren
es in running time. Su
h a behaviorsuggests that a meta-reasoner 
ould be quite e�e
tive in analyzing interme-diate steps of the 
omputation and determining that more memory or timewould be highly pro�table and worth paying for. Su
h a meta-reasonerwould be an interesting pie
e of work.Adaptive 
onditioning 
an 
ertainly be improved in many ways. Thereare several possible de
omposition and 
a
hing strategies, (parti
ularly dy-nami
 
a
hing strategies), and several methods to order variables and in-stantiations, that 
ould improve the performan
e of the algorithm. Wehave not 
aptured and tested the whole spe
trum of alternatives in thispaper, and we leave many open avenues for future resear
h.A
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