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21. IntrodutionA redal network provides a graphial representation for impreision inprobabilisti statements [10, 12, 19℄.1 Suh graphial models an be viewedas Bayesian networks with relaxed numerial parameters: eah node in thegraph represents a random variable, and eah variable is assoiated with aset of probability measures | the \size" of the sets of probability measuresenodes the impreision in probability values. Suh a model an be usedto study robustness of probabilisti models, to investigate the behavior ofgroups of experts, or to represent inomplete or vague knowledge aboutprobabilities [28℄.An inferene with a redal network is typially understood as the ompu-tation of upper and lower probabilities for eah ategory of a query variable.This alulation, under the most ommonly adopted semantis for redalnetworks (using strong extensions), is NP-hard even for polytree-shapednetworks [15℄. Exat and approximate algorithms have been proposed inthe literature, but no algorithm an handle large redal networks exatly| even networks with a few nodes an present unsurmountable diÆulties.In this paper we propose new algorithms for inferene in redal networks.The entral idea is to use branh-and-bound tehniques to searh for up-per and lower probability values. We also propose a new algorithm forouter approximations in polytree-shaped redal networks, whih we allA/R+. This new algorithm modi�es Tessem's A/R algorithm to produesigni�antly better approximations.Setions 2 and 3 review elements of the theory of redal networks. Se-tion 4 presents a branh-and-bound framework for inferenes in redal net-works. Setions 5 and 6 fous on polytree-shaped redal networks: Setion5 introdues the A/R+ algorithm and Setion 6 desribes a number ofbranh-and-bound tehniques applied to polytree-shaped redal networks.2. Credal sets and redal networksA set of probability distributions for variable X , alled a redal set, isdenoted by K(X) [23℄. In this paper we assume that every variable is ate-gorial and that every redal set is losed and onvex with a �nite numberof verties. A onditional redal set is a set of onditional distributions,obtained applying Bayes rule to eah distribution in a redal set of jointdistributions [28℄. The redal sets fK(X jY = y) : y is a ategory of Y g1See the overview paper on graphial models for impreise probabilities in this issue.



3are separately spei�ed when there is no onstraint on the onditional setK(X jY = y1) that is based on the properties of K(X jY = y2), for anyy1 6= y2 | that is, the onditional sets bear no relationship to eah other.A olletion of separately spei�ed redal sets for X onditional on Y isdenoted by K(X jY ). Given a olletion of marginal and onditional redalsets, an extension of these sets is a joint redal set with the given marginaland onditional redal sets.Given a redal set K(X) and a funtion f(X), the lower and upperexpetations of f(X) are respetively E[f(X)℄ = minp(X)2K(X)Ep[f(X)℄and E[f(X)℄ = maxp(X)2K(X)Ep[f(X)℄ (here Ep[f(X)℄ indiates standardexpetation). Lower and upper probabilities are de�ned similarly.A redal network is a direted ayli graph where eah node of the graphis assoiated with a variable Xi and with a olletion of onditional redalsets K(Xijpa(Xi)), where pa(Xi) denotes the parents of Xi in the graph.Note that we have a onditional redal set for eah ategory of pa(Xi). Aroot node is assoiated with a single marginal redal set.We take that in a redal network every variable is independent of itsnondesendants onditional on its parents. In this paper we adopt theonept of strong independene: two variables X and Y are strongly inde-pendent when every extreme point of K(X;Y ) satis�es standard stohastiindependene of X and Y (that is, p(X jY ) = p(X) and p(Y jX) = p(Y ))[12℄. When neessary, we use strong onditional independene: X and Yare strongly independent onditional on Z when every extreme point ofK(X;Y jZ = z) satis�es standard stohasti independene onditional onevery ategory z.The strong extension of a redal network is the largest extension thatsatis�es the independene relations just disussed. That is, the strongextension is the onvex hull of all joint distributions that satisfy the fol-lowing Markov property: every variable is strongly independent of its non-desendants onditional on its parents [13℄. Given a redal network withN variables, with loal separately spei�ed redal sets K(Xijpa(Xi)), thestrong extension of the network is then the onvex hull of the set of jointdistributions(p(X) : p(X) = NYi=1 p(Xijpa(Xi)) ; (1)p(Xijpa(Xi) = �k) is a vertex of K(Xijpa(Xi) = �k)) :Note that a redal network an have several extensions [12℄; in this paperwe fous on strong extensions.Figure 1 shows a small polytree-shaped redal network with separatelyspei�ed redal sets. Variables X1, X2, X4 and X5 are binary and variable



4
Æ��X1Æ��X2 Æ��X3 Æ��X4Æ��X5HHj��* HHj��*K(X1)K(X2) K(X3jX1; X2) = fK(X3jx1;1; x2;1) ; K(X3jx1;1; x2;2) ;K(X3jx1;2; x2;1) ; K(X3jx1;2; x2;2)g

K(X4jX3) = fK(X4jx3;1) ;K(X4jx3;2) ; K(X4jx3;3)gK(X5jX3) = fK(X5jx3;1) ;K(X5jx3;2) ; K(X5jx3;3)gFigure 1. Credal network with separately spei�ed redal sets.X3 has three ategories. The symbol xi;j indiates the jth ategory ofvariable Xi.3. Inferenes and inferene algorithmsA marginal inferene in a redal network is the omputation of lower/upper probabilities in an extension of the network. If Xq is a query variableand XE represents a set of observed variables, then an inferene is theomputation of tight bounds for p(XqjXE) for one or more ategories ofXq. The only known polynomial algorithm for strong extensions is the 2Ualgorithm, whih proesses polytrees with binary variables [19℄. Other thanthis \poket" of tratability, all other situations seem to o�er tremendousomputational hallenges. In partiular, inferene is a NP-hard problemeven for polytrees [15℄.For inferenes in strong extensions, the distributions that minimize ormaximize p(Xq jXE) are verties of the extension [19℄. As these verties areombinations of verties of loal redal sets (Expression (1)), the problemwe fae is one of ombinatorial optimization: we must �nd a vertex for eahloal redal setK(Xijpa(Xi)) so as to maximize/minimize p(XqjXE). Thusone an generate inferenes by enumerating all ombinations of verties [5℄,2or possibly exploring additional struture in separately spei�ed redal sets[9, 15℄. In any ase, enumeration algorithms an be understood as meth-ods that perform probabilisti propagation (muh in the style of variableelimination or juntion tree algorithms) by exhanging set-valued messagesduring the propagation. Enumeration/set-propagation algorithms an be2The enumeration method proposed by Cano, Cano and Moral [5℄ has been im-plemented in the JavaBayes system version 0.347 (a freely available inferene enginedistributed at http://www.pmr.poli.usp.br/ltd/Software/javabayes).



5used in relatively small networks, and an be dwarfed even in seeminglytrivial models.We an also view an inferene as a ontinuous optimization problem.Consider the omputation of a posterior upper probability. The goal is tomaximize the probability valuep(Xq = xq;kjXE) = PX1;:::;XNnfXq ;XEgQi p(Xijpa(Xi))PX1;:::;XNnXE Qi p(Xijpa(Xi)) ; (2)by �nding a distribution p(Xijpa(Xi)) in eah loal redal setK(Xijpa(Xi))(for eah variable Xi and eah ategory of pa(Xi)). Given our assumptionof redal sets with �nitely many verties, the maximization is subjet tolinear onstraints.This maximization problem belongs to the �eld of signomial program-ming [2℄, as �rst observed by Andersen and Hooker [1℄. Signomial pro-grams are generally solved by dividing the feasible set (\branhing" onvarious subsets) and obtaining outer approximations (\bounding" the ob-jetive funtion in eah subset) [2, 18℄. That is, signomial programming issolved by branh-and-bound proedures. The great advantage of signomialprogramming over more general optimization problems is that it is possibleto obtain bounds for signomial programs using geometri programming |a well establish �eld that an be takled eÆiently through onvex pro-gramming [2℄. Note that strong extensions enode rather large signomialprograms | the \degree of diÆulty" of a geometri program dependson the number of polynomial terms in the program, and Expression (2)summarizes a large number of suh terms.Instead of resorting to enumeration tehniques or signomial program-ming, a di�erent approah for exat inferene is to manipulate the valuesof the joint distribution p(X) diretly. That is, instead of optimizing Ex-pression (2), one optimizes the linear frational funtionp(Xq = xq;kjXE) = PX1;:::;XNnfXq ;XEg p(X)PX1;:::;XNnXE p(X) ;subjet to non-linear onstraints on p(X). Note that the number of valuesof p(X) is exponential on the number of variables in the network. Andersenand Hooker present a sophistiated algorithm to irumvent these diÆul-ties, but their algorithm still requires signomial programming in auxiliaryoptimization problems [1℄.Given the diÆulties of exat inferene, approximate inferene algorithmshave reeived onsiderable attention in the literature. We distinguish be-tween outer and inner approximations; the former produe intervals thatenlose the lower and upper probabilities, while the latter produe intervalsthat are enlosed by the orret probability interval. Tessem's A/R algo-rithm was the �rst one to produe tratable outer approximate inferene



6in polytree-shaped networks [26℄. The A/R algorithm was later extendedto general topologies by Ha et al [20℄. Bounds have also been derived fromapproximate ombination of redal sets [27℄ and from approximate repre-sentation of redal sets [9℄. Inner approximations are usually produed withloal optimization methods and an be found in [1, 6, 5, 11, 29℄. Overviewsof inferene algorithms have been published by Cano and Moral [7, 8℄.4. Branh-and-bound tehniques for inferene with strong ex-tensionsIn this setion we disuss the use of branh-and-bound algorithms forinferene with strong extensions. The idea is to view inferene as a searh:we must �nd verties of loal redal sets that maximize/minimize Expres-sion (2). Even though we are inspired by signomial programming teh-niques, the idea here is to explore spei� properties of strong extensions.To simplify the disussion, we fous only on the omputation of upperprobabilities; the omputation of lower probabilities is analogous.Consider a generi maximization problem(P ) max f(w)s.t. g(w) � 0; w 2W;whereW � <n, f and g are a real valued funtions. In the �rst iteration ofa branh-and-bound algorithm, the problem P is divided in sub-instanesthat are easier to solve or approximate than P . The partitioning is made sothat the solution for P is present in one of the sub-instanes [24℄. Eah sub-instane Pi is then analyzed. If Pi an be quikly solved, then Pi is said tobe trivial. If Pi is trivial, then the maximum of f in Pi is omputed; if thisvalue is the highest value so far, it is retained as the urrent solution. If Piis non-trivial, then it is evaluated with a relaxed algorithm that produesouter and inner bounds for Pi. These bounds are ompared with the urrentsolution and:� if it an be proved that the solution spae of Pi annot ontain theglobal maximum, then Pi is disarded;� otherwise, Pi is said to be ritial and is solved through branh-and-bound.This proess is repeated for eah sub-instane while there is a promisingalternative.A depth-�rst branh-and-bound selets a promising sub-instane as soonas it is generated. The sub-instane is partitioned into new sub-instanes.



7A promising sub-instane is then seleted, and partitioned. The proe-dure ontinues this way until a trivial problem is reahed or until all sub-instanes of a partition are found not to be promising. At those pointsthe algorithm exeutes a baktraking step | that is, the algorithm re-turns to a previously evaluated sub-instane and selets a still unexploredsub-instane. The advantage of this sheme is the minimal memory on-sumption, beause a few sub-instanes are stored in memory at any giventime.A best-�rst branh-and-bound stores (potentially many) sub-instanesin a heap as it goes along.3 Sub-instanes stored in the heap are orderedaording to their outer bounds: the top element in the heap has themaximum outer bound. The algorithm always takes the �rst ritial sub-instane from the heap to be proessed and possibly partitioned. When asub-instane is seleted, it is evaluated; if it is ritial, it is partitioned andtheir ritial sub-problems are inserted in the heap. Thus the heap ontainsevery sub-instane that was onsidered ritial when it was generated. Thenodes in the heap an be understood as the \frontier" of all sub-instanesstill unexplored. The advantage of best-�rst branh-and-bound is that itallows us to improve approximations; we an gradually re�ne outer andinner bounds by looking at all the nodes in the \frontier" (see Setion 6.3).The disadvantage of best-�rst searh is the potentially enormous ost inmemory (neessary to store the heap).Figures 2 and 3 present a onvenient and informal summary of the depth-�rst and best �rst branh-and-bound tehniques. These desriptions wereadapted respetively from [25℄ and [3℄. In both proedures the funtions rand s are used as a pruning mehanism, and r is used to drive the searhas well.Any branh-and-bound algorithm relies on two deisions: how to produebounds, and how to deompose a problem into sub-problems. We nowonsider the omputation of an upper probability p(Xq = xq;k jXE) for agiven redal network N . The disussion of bounding methods is postponedto the next setion; here we deal with the deomposition strategy.Suppose an inferene is to be omputed for redal network N . The rootof the searh tree is then assoiated with N , and every node of the searhtree is assoiated with a redal network derived from N . Consider then anode of the searh tree assoiated with redal networkN 0. Selet one of theredal sets in N 0, say K(Xijpa(Xi) = �), and suppose this redal set hasv verties. Denote these verties by pk, k = 1 : : : v. Now reate v nodes ofthe searh tree and plae them as hildren of the original node. Eah one ofthese hildren nodes is assoiated with a \hildren" network N 0j . Network3A heap is a data struture where elements are kept sorted aording to some prioritysale. The elements with higher priority are in the \beginning" of the heap; the elementwith maximum priority is always the �rst one to be removed from the heap.



8Proedure dfbb(P ):1. If P is trivial and its maximum f(w) is suh that f(w) > faux,then faux  f(w) and return.2. Otherwise, deompose P into a list L of sub-instanes Pi. For eahPi, if r(Pi) � s(Pj) for all Pj in L, and if r(Pi) > faux, then allreursively dfbb(Pi).Figure 2. Depth-�rst branh-and-bound: input is the problem P ; algorithmuses a global variable faux (initialized with �1), and funtions r and s thatompute respetively outer and inner bounds. In the end, max f(w) is stored infaux.N 0j inherits all redal sets from N 0 exept the set K(Xijpa(Xi) = �); theredal set K(Xijpa(Xi) = �) is replaed by distribution pj . This deom-position proedure is then applied reursively, following the branh-and-bound algorithm. Using this deomposition strategy, there is a gradual\thinning" of the loal redal sets. Any leaf node of the searh tree on-tains a Bayesian network, obtained by a partiular seletion of verties inloal redal sets. When a leaf node is reahed, the omputation of prob-abilities is \trivial": a variable elimination algorithm is used to performinferene in the Bayesian network at the leaf [14℄.This deomposition strategy depends on the seletion of redal sets forexpansion. We always selet the non-expanded redal set nearest to thequeried variable, but we always keep the query variable to be proessed last(a similar riterion is used by Draper and Hanks [17℄ to deal with partialevaluation of belief nets). We have tried several riteria for seleting redalsets to expand, and we found that the proedure just desribed is quiteappropriate.5. Bounds and the A/R+ algorithmThe disussion so far has been ompletely general and an be appliedto any redal network. In this setion we onentrate on algorithms thatprodue outer and inner bounds for inferenes with polytree-shaped redalnetworks (note that inferene with polytree-shaped networks is already aNP-hard problem [15℄). We again fous on upper probabilities; an outerbound for an upper probability is a number that is larger than the upperprobability, while an inner bound for an upper probability is a number thatis smaller than the upper probability.



9Proedure bfbb(P ):1. fmax  �1; initialize a heap OPEN with P .2. Repeat:(a) Remove an instane Q from OPEN (Q is thus the instanewith the largest value of r in the heap);(b) if Q is ritial, deompose Q into a list L of sub-instanes Qi(sub-instane Qi with feasible region Wi), and for eah Qi:i. If Qi is trivial, alulate the maximum value of f in Wi,denoted by fi. If fi > fmax then fmax  fi.ii. Otherwise, if r(Qi) � fmax, insert Qi in OPEN; if inaddition s(Qi) > fmax, then fmax  s(Qi).() If OPEN is empty, stop.Figure 3. Best-�rst branh-and-bound: input is the problem P ; algorithm usesfuntions r and s that ompute respetively outer and inner bounds; the elementsin OPEN heap are sorted with respet to their r bound. In the end, maxf(w) isstored in fmax.An inner bound an be produed by any method that maximizes Expres-sion (2) up to a loal maximum. Loal optimization algorithms like gradientdesent or the expetation-maximization algorithm an produe suh innerbounds [11, 29℄. It is also possible to obtain inner bounds with geneti pro-gramming, simulated annealing and similar methods [5, 6℄. Generally thesemethods require tuning several parameters; we have implemented some ofthem and notied that, while they produe reasonable solutions, they arefar from easy to apply. We have thus developed a new algorithm for innerbounds using loal searh (reported elsewhere [16℄). The idea is to �x allprobabilities p(Xijpa(Xi)), exept one | and then to �nd the maximizingvalue just for this \free" density, whih an be done easily (the maximiza-tion problem has beome a frational linear one). One the maximizingvalues for the \free" density are found, this density is �xed at its maximiz-ing values, and a di�erent density is \freed." Thus the algorithm followsa maximizing path where eah movement hanges only one density in theredal network, moving between verties of a single loal redal set at anygiven step. This algorithm produes exellent inner bounds (in many asesthe exat upper probability is found) and runs rather quikly.4Outer bounds for inferene in polytree-shaped redal networks an begenerated with Tessem's A/R algorithm [26℄. The �rst assumption in4The development of the algorithm for inner bounds was joint work with Cassio Polpode Campos.



10Tessem's algorithm is that every redal set is approximated by a olle-tion of probability intervals. Suh approximation is always possible (andalways an outer approximation), as we an obtain the probability interval� minp(X)2K(X) p(xj) ; maxp(X)2K(X) p(xj)� (3)for any ategory xj of a variable X (and likewise for onditional probabilityvalues). Obviously the replaement of redal sets by probability intervalsintrodues potential inauraies into inferenes.Tessem's entral idea was to generalize Pearl's belief propagation algo-rithm to aommodate probability intervals (in an approximate way). Thefuntions � and � used in belief propagation are still de�ned with identialpurposes, but they are now interval-valued. Thus probability intervals formarginal probabilities p(X) are omputed from two interval-valued vetors�(X) and �(X) that ontain interval-valued versions of preditive and ret-rospetive support for X . These vetors are omputed from interval-valued\messages" that X reeives from its parents and hildren. If Y and Z de-note, respetively, a parent node and a hild node of X , then the messagesthat X reeives from those nodes are denoted by �X (Y ) and �Z(X).The messages manipulated by the A/R algorithm are omputed usinginterval arithmeti and two additional tehniques alled annihilation andreinforement (thus the name A/R). To understand the mehanis of A/R,it is interesting to look at a partiular operation, the omputation of theinterval-valued funtion �. Consider a funtion �(X) to be omputed ata node X with parents Y1; : : : ; Yk. Figure 4 shows the omputation of thelower value ��(X) (the same operations an be adapted to ompute theupper value ��(X)).The algorithm in Figure 4 initially ombines the interval-valued messagesthat X reeives from its parents into a \joint" interval-valued funtion �(step 1), using interval multipliation. Then the algorithm applies theannihilation operation (steps 3a and 3b) to determine a joint distributionp(Y1; : : : ; Yk) that minimizes the sum of produts in step 3. Variable S0ontrols how muh probability mass an be distributed during annihilation.Tessem developed similar operations for omputation of messages �X (Yi)and �Zi(X) (where Zi is a hild of X). The A/R algorithm also employsdiret interval multipliation to generate the funtion �(X). Finally, thealgorithm uses annihilation or reinforement operations to \normalize" thefuntions �X(Yi), �Zi(X), and �(X)�(X) (\normalization" means simplyomputing bounds that aount for the fat that probability distributionsadd up to one).The A/R algorithm is lever, but it an be signi�antly improved asfollows. Consider a new method to ompute the interval-valued �(X):1. For eah interval-valued message �X (Yi) reeived byX , reate a redal



11Computing ��(X):1. Construt the interval-valued funtion �(Y1; : : : ; Yk) by interval-multipliation of the messages �X(Yi) reeived by X (thesemessages are also interval-valued). Denote by ��(Y1; : : : ; Yk)and ��(Y1; : : : ; Yk) respetively the lower and upper values of�(Y1; : : : ; Yk).2. Initialize S  PY1;:::;Yk ��(Y1; : : : ; Yk).3. For eah value x of X :(a) Sort the lower probabilities p(X = xjY1; : : : ; Yk) in inreasingorder. Denote by I(z) the zth on�guration of (Y1; : : : ; Yk) inthe ordering.(b) Distribute probability mass onsistently with �(Y1; : : : ; Yk) asfollows:i. Initialize p(Y1; : : : ; Yk)  ��(Y1; : : : ; Yk) for all(Y1; : : : ; Yk).ii. Initialize  1, S0  S.iii. While S0 < 1:A. p(I()) min(��(I()); 1� S0 + ��(I()).B. S0  S0 + ��(I())� ��(I()).C.  + 1.() �(x)  PY1;:::;Yk p(xjY1; : : : ; Yk) p(Y1; : : : ; Yk).Figure 4. Computation of ��(X) in the A/R algorithm. The input is the set oflower probabilities p(Xjpa(X)) and the messages �X(Yi) for Yi 2 pa(X).set KX(Yi) that is the largest redal set with lower/upper probabil-ities represented by �X(Yi). Suh a redal set an be easily gener-ated [4, 22℄.2. Eliminate eah parent Yi by multiplying verties of KX(Yi) and ver-ties of K(X jY1; : : : ; Yk), and summing out the parents Yi.3. Use the resulting redal set K(X) to produe probability intervals�(X) through Expression (3).Step 2 performs an exat ombination of verties obtained from reeivedintervals and loal distributions. This proedure operates with redal sets,then ollapses potentially omplex redal sets into probability intervals,loally using redal sets and propagating interval messages.The operations just disussed an be extended to other interval-valued



12messages used in belief propagation. For example, messages �Zi(X) areomputed using similar operations as for �(X). We thus obtain the A/R+algorithm:Run all the steps of the A/R algorithm, but whenever interval-valuedmessages must be multiplied, onvert the messages into redal sets,operate with the redal sets loally, and onvert the results bak toprobability intervals.The basi fat about A/R+ is that (proof in the Appendix):Theorem 1. Interval-valued messages generated by the A/R+ algorithmare inluded or equal to interval-valued messages generated by the A/Ralgorithm, and inlude or are equal to probability intervals generated by(exat) set-valued message propagation.We note that the redal sets handled by A/R+ an still beome unman-ageably omplex in some situations. When we must ompute a messagethat requires an exessively omplex redal set, we simply resort to the orig-inal approximation proposed by Tessem (we have a threshold indiating themaximum number of verties the algorithm should handle expliitly).5As the next setion indiates, outer approximations generated by theA/R+ algorithm are usually muh more aurate than the ones produedby A/R. The apparently mild di�erene between the algorithms leads toan order of magnitude improvement in the bounds.6. ExperimentsWe have run a series of experiments with the branh-and-bound, A/Rand A/R+ algorithms. Our purpose was to evaluate the auray andomputational ost of these algorithms.6.1. The A/R and A/R+ algorithmsTo evaluate the performane of the A/R+ algorithm, partiularly inomparison with the A/R algorithm, we ran two experiments.The �rst experiment aimed at omparing the relative error of the A/Rand A/R+ algorithms. Consider the omputation of p(X5 = x5;1) for threesets of networks with the graph given by Figure 5: a) the �rst group (305The A/R+ algorithm an be made even more exible: we an postpone the re-onversion of redal sets to interval-valued form until we reah a point where the numberof verties in the messages exeeds some limit. We have not tried this option so far.



13networks) ontained only variables with three ategories and two vertiesper loal redal set; b) the seond group (15 networks) ontained onlyvariables with three ategories and three verties per loal redal set; )the third group (15 networks) ontained only variables with four ategoriesand two verties per loal redal set.����X1����X2 ����X3����X4 ����X5����X6 ����X7 ����X8����X9����X10 ����X11 ����X12��R- -��R ��� -��RAAAAU- 6 -
Figure 5. Polytree used in experiments.The numerial parameters for eah redal network were randomly gener-ated with uniform distributions [21℄. For every network in this test set, theupper probability p(X5 = x5;1) was omputed with an exat enumerationalgorithm, in some ases running during a onsiderable amount of time.The relative error was then measured between the exat answer and theresults obtained with the A/R and A/R+ algorithms. The mean error forthe A/R algorithm was: 38% (�rst group), 15% (seond group) and 27%(third group). The mean error for the A/R+ algorithm was: 4% (�rstgroup), 1% (seond group) and 4% (third group). Even though the sam-ples were rather small, these tests indiate the superior performane of theA/R+ algorithm (the main limiting fator in the number of samples and in-ferenes in this experiment was the time required by the exat enumerationalgorithm to run).To ompare the amplitude of probability intervals omputed by the A/Rand A/R+ algorithms, we run a few additional tests with the graph inFigure 5. We generated �ve groups of redal networks, eah one ontain-ing one hundred networks. Groups were haraterized by the number ofategories per variable and number of verties per loal redal set. Table 1summarizes the results of inferenes on the event fX12 = x12;1g. While thisexperiment does not reveal by itself the auray of A/R+, note the de-rease in interval length (remember that the orret intervals are enlosedby the intervals generated by A/R+).To avoid the possibility that di�erenes between A/R+ and A/R arejust being magni�ed by the partiular graph in Figure 5, we onsidered aseond experiment with a set of randomly generated polytrees (using thegenerator desribed by Ide and Cozman [21℄). In all inferenes we ould try,we veri�ed the same pattern of redution in the relative error. We generated



14Table 1. Comparison of interval lengths omputed with the A/R and A/R+algorithms.# ategories # verties A/R mean A/R+ meaninterval length interval length03 02 0.47 0.3903 03 0.61 0.5603 04 0.67 0.6304 02 0.45 0.3604 03 0.52 0.479 di�erent polytrees, eah with 20 variables; for eah polytree, we generated5 sets of loal redal sets. For eah node of this set of networks, we runthe A/R and the A/R+ algorithms, and in some of them we omparedthe approximations with the exat inferenes (obtained with a branh-and-bound algorithm). The mean length of the intervals generated by theA/R algorithm are signi�antly larger than the mean length for the A/R+algorithm.6.2. Depth-�rst branh-and-boundWe have tested the depth-�rst version of the branh-and-bound algo-rithm for omputation of exat inferenes. We ran experiments with net-works ontaining variables with tree and four states. Eah on�gurationwas again tested using several randomly generated redal nets [21℄. Themain goal was to evaluate the redution in omputational osts for infer-ene, ompared to exat enumeration algorithms.First we took the polytree in Figure 5. Results for queries on variableX5 (with depth-�rst branh-and-bound) are reported in Table 2. The tableshows results when the branh-and-bound algorithm uses A/R and A/R+as bounding methods. The �rst four olumns summarize the harateris-tis of eah group of networks and inferenes; the remaining four olumnsompare the performane of branh-and-bound using A/R and A/R+ asbounding methods.We observe that the size of the searh tree explored by branh-and-boundis usually a tiny fration of the potential number of verties of the strongextension. Note the enormous di�erene between potential verties of thestrong extension and atually expanded verties. We an also see thatA/R+ is superior to A/R.As another example of the eÆieny of the algorithm, take the ompu-tation of p(X8 = x8;1) in the graph of Figure 5, with variables with threeategories, and with a random olletion of redal sets, where eah redal



15Table 2. Exat inferene on x5;1 in the network of Figure 3 with depth-�rstbranh-and-bound. Columns indiate the number of networks tested (#s), thenumber of ategories per variable (#), the number of verties in eah redal set(#v), the total number of potential verties for the strong extension (#p), thetime spent in inferenes (t) and the number of expanded nodes in the searh tree(#n).#s # #v #p t A/R #n AR t A/R+ #n A/R+ses ses(mean) (mean) (mean) (mean)35 3 2 221 5.4 3356.8 0.97 365.710 3 3 321 395 254559.3 17.44 7271.210 4 2 235 1511 527756.8 584 37143.7set has three verties. In this ase, depth-�rst branh-and-bound obtainedthe exat solution after examining just 4634 verties of the strong exten-sion | note that the strong extension potentially ontains 350 verties.The relative error between the exat result and the inner bound, and theexat result against A/R+ are 0.002 and 0.015 respetively.We have observed suh behavior in many experiments on randomly gen-erated networks. We have observed that polytrees with up to 10 variablesan be usually handled without problems.6.3. Best-�rst branh-and-boundWe have also investigated the performane of best-�rst branh-and-boundmethods for inferene. Our tests indiated that the amount of memory re-quired by these algorithms is too large for exat inferene | that is, thesize of the OPEN heap grows too quikly. However, it is still possible touse best-�rst branh-and-bound for approximate outer intervals. The basiidea is to run the algorithm up to a presribed memory limit; upon termi-nation, the OPEN heap is examined, and the element with the maximumbound is seleted and returned. Note that the top of the heap has the max-imum value of the outer bound r amongst all elements in the frontier | itsr value is thus guaranteed to be an outer bound for the original problem(it may even ontain the exat upper probability, in whih ase the wholefrontier displays the same r value). As more sub-problems are generatedand stored in the OPEN heap, the outer bound for the top of the heapan either stay the same or derease, as sub-problems have feasible regionsthat are ontained in their generating problem.We have onduted tests where the algorithm in Figure 3 terminates aftera presribed number of searh nodes. Experimental results are summarized



16by Table 3. The objetive was to measure auray after evaluating at most25,000 nodes of the searh tree (in some ases the exat result was obtainedbefore that). We used the graph in Figure 3 and produed several redalnetworks by generating random loal redal sets. The upper probabilitiesp(X5 = x5;1), p(X7 = x7;1) and p(X8 = x8;1) were omputed for eah oneof the resulting networks. Table 3 shows the harateristis of the gener-ated networks and the \quality" of approximations; here we present thedi�erene between the answer generated by best-�rst branh-and-boundand the inner bound generated by loal searh (disussed at the beginningof Setion 5). We also show the di�erene between the A/R+ outer boundand the inner bound, for omparison. Similar results were obtained in testswith randomly generated graphs.Table 3. Mean di�erene between outer and inner approximations forp(X5 = x5;1), p(X7 = x7;1) and p(X8 = x8;1). The branh-and-bound proedureterminates after evaluating 25,000 nodes of searh tree. Columns indiate theinferene, the number of networks tested, the number of ategories per variable,the number of verties in eah redal set, the total number of potential vertiesfor the strong extension, and the relationship between outer and inner bounds,with best-�rst branh-and-bound and A/R+ algorithms. The symbol A/R+*denotes the di�erene between A/R+ approximations and inner bounds, whilethe symbol bfbb* indiates the di�erene between best-�rst branh-and-boundapproximations and inner bounds.Inferene # net. # at. # vert. # potential A/R+* bfbb*verties (mean) (mean)X5 = x5;1 16 03 03 321 0.006 0.00008X5 = x5;1 10 03 04 242 0.024 0.011X5 = x5;1 10 04 03 335 0.035 0.025X7 = x7;1 16 03 03 332 0.016 0.011X7 = x7;1 10 03 04 264 0.021 0.012X7 = x7;1 10 04 03 335 0.022 0.017X8 = x8;1 16 03 03 350 0.017 0.007X8 = x8;1 10 03 04 2100 0.014 0.009X8 = x8;1 04 04 03 3101 0.035 0.029
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Figure 6. Transformed redal network.7. Inferene with network fragmentsIf the redal networkN is large, it may not be possible to run the branh-and-bound algorithms to optimality. In this setion we propose strategiesto handle suh problems. The basi idea is to divide the redal network inparts and to run branh-and-bound in these sub-networks, in some suitableorder. We illustrate this idea through an example.Consider the network in Figure 5, with variables with three ategoriesand two verties per redal set. Suppose that we want to ompute ex-at lower and upper probabilities for variable X7 and that our spae andtime onstraints allow us to perform an exat inferene just for X5, butnot for X7. We then run branh-and-bound and obtain lower and up-per probabilities for X5. For example, in a partiular instane of thenetwork shown in Figure 5, we obtained p(X5 = x5;1) 2 [0:199; 0:587℄,p(X5 = x5;2) 2 [0:084; 0:375℄, and p(X5 = x5;3) 2 [0:212; 0:604℄. We aneasily generate the largest redal set that is onsistent with these intervals.We obtain K(X5) de�ned by the vertiesf(0:413; 0:375; 0:212); (0:312; 0:084; 0:604); (0:587; 0:084; 0:329);(0:199; 0:197; 0:604); (0:587; 0:201; 0:212); (0:199; 0:375; 0:426)g:Now we an remove X5 and its asendants from the network, and re-plae X5 by a new node X 05 that has the marginal redal set of X5 asits marginal redal set. The transformed network is displayed in Figure6. We then run exat branh-and-bound inferene for X7, obtaining in-tervals p(X7 = x7;1) 2 [0:091; 0:447℄, p(X7 = x7;2) 2 [0:157; 0:564℄, andp(X7 = x7;3) 2 [0:208; 0:591℄. Inidentally, we omputed the same infer-enes with the exhaustive algorithm in the JavaBayes system and obtainedthe same values.If inferenes in the transformed redal network are still unfeasible, we anrun an approximate inferene algorithm in the transformed redal network.Consider running Tessem's algorithm in the network in Figure 6. We obtain



18the intervals p(X7 = x7;1) 2 [0:053; 0:502℄, p(X7 = x7;2) 2 [0:116; 0:663℄,and p(X7 = x7;3) 2 [0:128; 0:644℄. We note that Tessem's algorithm alonein the omplete example network produed the intervals p(X7 = x7;1) 2[0:040; 0:524℄, p(X7 = x7;2) 2 [0:106; 0:698℄, and p(X7 = x7;3) 2 [0:097; 0:667℄.8. ConlusionThis paper has proposed a olletion of simple ideas that advane thestate of a�airs onerning inferenes in redal networks. Perhaps the follow-ing perspetive is useful. As far as exat inferene with strong extensionsis onerned, our branh-and-bound methods go onsiderably beyond whatan be done with existing enumeration tehniques. However, they an han-dle relatively small networks, and they should be most e�etive as tools forevaluating other (approximate) algorithms. It seems that general mediumand large redal networks will hardly admit exat inferene, and approxi-mate algorithms are likely to be important in those situations. Thus oneshould have fast and aurate approximate methods, and one should haveways to validate the auray of these approximate methods.In this perspetive, it is possible that the A/R+ algorithm will be theontribution with most pratial signi�ane, while the branh-and-boundapproah will serve as a validation tool for other algorithms. In fat, thebranh-and-bound strategy is best viewed as a family of solutions for infer-ene in strong extensions. Depth-�rst and best-�rst tehniques an be usedin di�erent senarios, as they require di�erent levels of resoures and havedi�erent harateristis. Outer approximations are ertainly \safer" thaninner ones, being able to produe both approximations an give valuableinformation about inferenes.Note that, even though we have restrited our experiments to polytree-shaped networks, multi-onneted redal networks an be handled by bound-ing tehniques suh as the algorithms of Ha et al [20℄ and Cano et al [9℄.We also would like to emphasize the idea that a network an be proessedin piees, as disussed in the previous setion. Suh a strategy seems to beappropriate for large networks, possibly using di�erent levels of aurayin eah one of the partial inferenes.AknowledgementsThis work has reeived generous support from HP Labs; we thank MarshaDuro from HP Labs for establishing this support and Edson Nery from



19HP Brazil for managing it. The work has also been supported by CNPq(through grant 3000183/98-4) and by CAPES.We thank Jaime Ide for generating the random networks that were usedin our tests, and Cassio Polpo de Campos for leading the development andimplementation of inner bounds.Appendix A. Proof of Theorem 1We �rst show that the approximate intervals alulated by the A/R+algorithm are ontained in those omputed by the A/R algorithm. Thenwe show that A/R+ produes outer approximations.Part I: Both A/R and A/R+ maximize/minimize the same quantities,at every step of the propagation sheme. In eah step of message propa-gation, the A/R+ algorithm enfores a onstraint that A/R does not (theonstraint that messages reeived by a node X from its parents representa normalized quantity). To illustrate this fat, note that step 1 in Figure 4uses diret interval multipliation and does not onstrain funtions de�nedby � to add to one. Thus the feasible set in eah optimization is smallerfor A/R+ than it is for A/R, and onsequently the bounds omputed byA/R+ for the preditive support and the �Z(X) messages are tighter thanthose omputed by A/R. As the omputation of lower and upper probabili-ties for any node X is obtained by manipulating these messages reursively,results produed by A/R+ are equal to or tighter than approximations byA/R at every message propagation.Part II: Eah operation transforming redal sets into intervals (Expres-sion (3)) produes outer bounds, beause it enlarges the feasible set in eahoptimization problem generated during propagation. When intervals areloally transformed into redal sets, the optimization problems manipu-lating these redal sets produe the tighest possible bounds; however theystart from larger feasible sets and onsequently ontain the exat set-valuedmessages. Thus at any node X we obtain bounds that ontain the orretupper and lower probabilities.Referenes1. K. A. Andersen and J. N. Hooker. Bayesian logi. Deision Support Sys-tems, 11:191{210, 1994.2. M. Avriel. Advanes in Geometri Programming. Plenum Press, New York,1980.
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