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21. Introdu
tionA 
redal network provides a graphi
al representation for impre
ision inprobabilisti
 statements [10, 12, 19℄.1 Su
h graphi
al models 
an be viewedas Bayesian networks with relaxed numeri
al parameters: ea
h node in thegraph represents a random variable, and ea
h variable is asso
iated with aset of probability measures | the \size" of the sets of probability measuresen
odes the impre
ision in probability values. Su
h a model 
an be usedto study robustness of probabilisti
 models, to investigate the behavior ofgroups of experts, or to represent in
omplete or vague knowledge aboutprobabilities [28℄.An inferen
e with a 
redal network is typi
ally understood as the 
ompu-tation of upper and lower probabilities for ea
h 
ategory of a query variable.This 
al
ulation, under the most 
ommonly adopted semanti
s for 
redalnetworks (using strong extensions), is NP-hard even for polytree-shapednetworks [15℄. Exa
t and approximate algorithms have been proposed inthe literature, but no algorithm 
an handle large 
redal networks exa
tly| even networks with a few nodes 
an present unsurmountable diÆ
ulties.In this paper we propose new algorithms for inferen
e in 
redal networks.The 
entral idea is to use bran
h-and-bound te
hniques to sear
h for up-per and lower probability values. We also propose a new algorithm forouter approximations in polytree-shaped 
redal networks, whi
h we 
allA/R+. This new algorithm modi�es Tessem's A/R algorithm to produ
esigni�
antly better approximations.Se
tions 2 and 3 review elements of the theory of 
redal networks. Se
-tion 4 presents a bran
h-and-bound framework for inferen
es in 
redal net-works. Se
tions 5 and 6 fo
us on polytree-shaped 
redal networks: Se
tion5 introdu
es the A/R+ algorithm and Se
tion 6 des
ribes a number ofbran
h-and-bound te
hniques applied to polytree-shaped 
redal networks.2. Credal sets and 
redal networksA set of probability distributions for variable X , 
alled a 
redal set, isdenoted by K(X) [23℄. In this paper we assume that every variable is 
ate-gori
al and that every 
redal set is 
losed and 
onvex with a �nite numberof verti
es. A 
onditional 
redal set is a set of 
onditional distributions,obtained applying Bayes rule to ea
h distribution in a 
redal set of jointdistributions [28℄. The 
redal sets fK(X jY = y) : y is a 
ategory of Y g1See the overview paper on graphi
al models for impre
ise probabilities in this issue.



3are separately spe
i�ed when there is no 
onstraint on the 
onditional setK(X jY = y1) that is based on the properties of K(X jY = y2), for anyy1 6= y2 | that is, the 
onditional sets bear no relationship to ea
h other.A 
olle
tion of separately spe
i�ed 
redal sets for X 
onditional on Y isdenoted by K(X jY ). Given a 
olle
tion of marginal and 
onditional 
redalsets, an extension of these sets is a joint 
redal set with the given marginaland 
onditional 
redal sets.Given a 
redal set K(X) and a fun
tion f(X), the lower and upperexpe
tations of f(X) are respe
tively E[f(X)℄ = minp(X)2K(X)Ep[f(X)℄and E[f(X)℄ = maxp(X)2K(X)Ep[f(X)℄ (here Ep[f(X)℄ indi
ates standardexpe
tation). Lower and upper probabilities are de�ned similarly.A 
redal network is a dire
ted a
y
li
 graph where ea
h node of the graphis asso
iated with a variable Xi and with a 
olle
tion of 
onditional 
redalsets K(Xijpa(Xi)), where pa(Xi) denotes the parents of Xi in the graph.Note that we have a 
onditional 
redal set for ea
h 
ategory of pa(Xi). Aroot node is asso
iated with a single marginal 
redal set.We take that in a 
redal network every variable is independent of itsnondes
endants 
onditional on its parents. In this paper we adopt the
on
ept of strong independen
e: two variables X and Y are strongly inde-pendent when every extreme point of K(X;Y ) satis�es standard sto
hasti
independen
e of X and Y (that is, p(X jY ) = p(X) and p(Y jX) = p(Y ))[12℄. When ne
essary, we use strong 
onditional independen
e: X and Yare strongly independent 
onditional on Z when every extreme point ofK(X;Y jZ = z) satis�es standard sto
hasti
 independen
e 
onditional onevery 
ategory z.The strong extension of a 
redal network is the largest extension thatsatis�es the independen
e relations just dis
ussed. That is, the strongextension is the 
onvex hull of all joint distributions that satisfy the fol-lowing Markov property: every variable is strongly independent of its non-des
endants 
onditional on its parents [13℄. Given a 
redal network withN variables, with lo
al separately spe
i�ed 
redal sets K(Xijpa(Xi)), thestrong extension of the network is then the 
onvex hull of the set of jointdistributions(p(X) : p(X) = NYi=1 p(Xijpa(Xi)) ; (1)p(Xijpa(Xi) = �k) is a vertex of K(Xijpa(Xi) = �k)) :Note that a 
redal network 
an have several extensions [12℄; in this paperwe fo
us on strong extensions.Figure 1 shows a small polytree-shaped 
redal network with separatelyspe
i�ed 
redal sets. Variables X1, X2, X4 and X5 are binary and variable
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Æ
��X1Æ
��X2 Æ
��X3 Æ
��X4Æ
��X5HHj��* HHj��*K(X1)K(X2) K(X3jX1; X2) = fK(X3jx1;1; x2;1) ; K(X3jx1;1; x2;2) ;K(X3jx1;2; x2;1) ; K(X3jx1;2; x2;2)g

K(X4jX3) = fK(X4jx3;1) ;K(X4jx3;2) ; K(X4jx3;3)gK(X5jX3) = fK(X5jx3;1) ;K(X5jx3;2) ; K(X5jx3;3)gFigure 1. Credal network with separately spe
i�ed 
redal sets.X3 has three 
ategories. The symbol xi;j indi
ates the jth 
ategory ofvariable Xi.3. Inferen
es and inferen
e algorithmsA marginal inferen
e in a 
redal network is the 
omputation of lower/upper probabilities in an extension of the network. If Xq is a query variableand XE represents a set of observed variables, then an inferen
e is the
omputation of tight bounds for p(XqjXE) for one or more 
ategories ofXq. The only known polynomial algorithm for strong extensions is the 2Ualgorithm, whi
h pro
esses polytrees with binary variables [19℄. Other thanthis \po
ket" of tra
tability, all other situations seem to o�er tremendous
omputational 
hallenges. In parti
ular, inferen
e is a NP-hard problemeven for polytrees [15℄.For inferen
es in strong extensions, the distributions that minimize ormaximize p(Xq jXE) are verti
es of the extension [19℄. As these verti
es are
ombinations of verti
es of lo
al 
redal sets (Expression (1)), the problemwe fa
e is one of 
ombinatorial optimization: we must �nd a vertex for ea
hlo
al 
redal setK(Xijpa(Xi)) so as to maximize/minimize p(XqjXE). Thusone 
an generate inferen
es by enumerating all 
ombinations of verti
es [5℄,2or possibly exploring additional stru
ture in separately spe
i�ed 
redal sets[9, 15℄. In any 
ase, enumeration algorithms 
an be understood as meth-ods that perform probabilisti
 propagation (mu
h in the style of variableelimination or jun
tion tree algorithms) by ex
hanging set-valued messagesduring the propagation. Enumeration/set-propagation algorithms 
an be2The enumeration method proposed by Cano, Cano and Moral [5℄ has been im-plemented in the JavaBayes system version 0.347 (a freely available inferen
e enginedistributed at http://www.pmr.poli.usp.br/ltd/Software/javabayes).



5used in relatively small networks, and 
an be dwarfed even in seeminglytrivial models.We 
an also view an inferen
e as a 
ontinuous optimization problem.Consider the 
omputation of a posterior upper probability. The goal is tomaximize the probability valuep(Xq = xq;kjXE) = PX1;:::;XNnfXq ;XEgQi p(Xijpa(Xi))PX1;:::;XNnXE Qi p(Xijpa(Xi)) ; (2)by �nding a distribution p(Xijpa(Xi)) in ea
h lo
al 
redal setK(Xijpa(Xi))(for ea
h variable Xi and ea
h 
ategory of pa(Xi)). Given our assumptionof 
redal sets with �nitely many verti
es, the maximization is subje
t tolinear 
onstraints.This maximization problem belongs to the �eld of signomial program-ming [2℄, as �rst observed by Andersen and Hooker [1℄. Signomial pro-grams are generally solved by dividing the feasible set (\bran
hing" onvarious subsets) and obtaining outer approximations (\bounding" the ob-je
tive fun
tion in ea
h subset) [2, 18℄. That is, signomial programming issolved by bran
h-and-bound pro
edures. The great advantage of signomialprogramming over more general optimization problems is that it is possibleto obtain bounds for signomial programs using geometri
 programming |a well establish �eld that 
an be ta
kled eÆ
iently through 
onvex pro-gramming [2℄. Note that strong extensions en
ode rather large signomialprograms | the \degree of diÆ
ulty" of a geometri
 program dependson the number of polynomial terms in the program, and Expression (2)summarizes a large number of su
h terms.Instead of resorting to enumeration te
hniques or signomial program-ming, a di�erent approa
h for exa
t inferen
e is to manipulate the valuesof the joint distribution p(X) dire
tly. That is, instead of optimizing Ex-pression (2), one optimizes the linear fra
tional fun
tionp(Xq = xq;kjXE) = PX1;:::;XNnfXq ;XEg p(X)PX1;:::;XNnXE p(X) ;subje
t to non-linear 
onstraints on p(X). Note that the number of valuesof p(X) is exponential on the number of variables in the network. Andersenand Hooker present a sophisti
ated algorithm to 
ir
umvent these diÆ
ul-ties, but their algorithm still requires signomial programming in auxiliaryoptimization problems [1℄.Given the diÆ
ulties of exa
t inferen
e, approximate inferen
e algorithmshave re
eived 
onsiderable attention in the literature. We distinguish be-tween outer and inner approximations; the former produ
e intervals thaten
lose the lower and upper probabilities, while the latter produ
e intervalsthat are en
losed by the 
orre
t probability interval. Tessem's A/R algo-rithm was the �rst one to produ
e tra
table outer approximate inferen
e



6in polytree-shaped networks [26℄. The A/R algorithm was later extendedto general topologies by Ha et al [20℄. Bounds have also been derived fromapproximate 
ombination of 
redal sets [27℄ and from approximate repre-sentation of 
redal sets [9℄. Inner approximations are usually produ
ed withlo
al optimization methods and 
an be found in [1, 6, 5, 11, 29℄. Overviewsof inferen
e algorithms have been published by Cano and Moral [7, 8℄.4. Bran
h-and-bound te
hniques for inferen
e with strong ex-tensionsIn this se
tion we dis
uss the use of bran
h-and-bound algorithms forinferen
e with strong extensions. The idea is to view inferen
e as a sear
h:we must �nd verti
es of lo
al 
redal sets that maximize/minimize Expres-sion (2). Even though we are inspired by signomial programming te
h-niques, the idea here is to explore spe
i�
 properties of strong extensions.To simplify the dis
ussion, we fo
us only on the 
omputation of upperprobabilities; the 
omputation of lower probabilities is analogous.Consider a generi
 maximization problem(P ) max f(w)s.t. g(w) � 0; w 2W;whereW � <n, f and g are a real valued fun
tions. In the �rst iteration ofa bran
h-and-bound algorithm, the problem P is divided in sub-instan
esthat are easier to solve or approximate than P . The partitioning is made sothat the solution for P is present in one of the sub-instan
es [24℄. Ea
h sub-instan
e Pi is then analyzed. If Pi 
an be qui
kly solved, then Pi is said tobe trivial. If Pi is trivial, then the maximum of f in Pi is 
omputed; if thisvalue is the highest value so far, it is retained as the 
urrent solution. If Piis non-trivial, then it is evaluated with a relaxed algorithm that produ
esouter and inner bounds for Pi. These bounds are 
ompared with the 
urrentsolution and:� if it 
an be proved that the solution spa
e of Pi 
annot 
ontain theglobal maximum, then Pi is dis
arded;� otherwise, Pi is said to be 
riti
al and is solved through bran
h-and-bound.This pro
ess is repeated for ea
h sub-instan
e while there is a promisingalternative.A depth-�rst bran
h-and-bound sele
ts a promising sub-instan
e as soonas it is generated. The sub-instan
e is partitioned into new sub-instan
es.



7A promising sub-instan
e is then sele
ted, and partitioned. The pro
e-dure 
ontinues this way until a trivial problem is rea
hed or until all sub-instan
es of a partition are found not to be promising. At those pointsthe algorithm exe
utes a ba
ktra
king step | that is, the algorithm re-turns to a previously evaluated sub-instan
e and sele
ts a still unexploredsub-instan
e. The advantage of this s
heme is the minimal memory 
on-sumption, be
ause a few sub-instan
es are stored in memory at any giventime.A best-�rst bran
h-and-bound stores (potentially many) sub-instan
esin a heap as it goes along.3 Sub-instan
es stored in the heap are ordereda

ording to their outer bounds: the top element in the heap has themaximum outer bound. The algorithm always takes the �rst 
riti
al sub-instan
e from the heap to be pro
essed and possibly partitioned. When asub-instan
e is sele
ted, it is evaluated; if it is 
riti
al, it is partitioned andtheir 
riti
al sub-problems are inserted in the heap. Thus the heap 
ontainsevery sub-instan
e that was 
onsidered 
riti
al when it was generated. Thenodes in the heap 
an be understood as the \frontier" of all sub-instan
esstill unexplored. The advantage of best-�rst bran
h-and-bound is that itallows us to improve approximations; we 
an gradually re�ne outer andinner bounds by looking at all the nodes in the \frontier" (see Se
tion 6.3).The disadvantage of best-�rst sear
h is the potentially enormous 
ost inmemory (ne
essary to store the heap).Figures 2 and 3 present a 
onvenient and informal summary of the depth-�rst and best �rst bran
h-and-bound te
hniques. These des
riptions wereadapted respe
tively from [25℄ and [3℄. In both pro
edures the fun
tions rand s are used as a pruning me
hanism, and r is used to drive the sear
has well.Any bran
h-and-bound algorithm relies on two de
isions: how to produ
ebounds, and how to de
ompose a problem into sub-problems. We now
onsider the 
omputation of an upper probability p(Xq = xq;k jXE) for agiven 
redal network N . The dis
ussion of bounding methods is postponedto the next se
tion; here we deal with the de
omposition strategy.Suppose an inferen
e is to be 
omputed for 
redal network N . The rootof the sear
h tree is then asso
iated with N , and every node of the sear
htree is asso
iated with a 
redal network derived from N . Consider then anode of the sear
h tree asso
iated with 
redal networkN 0. Sele
t one of the
redal sets in N 0, say K(Xijpa(Xi) = �), and suppose this 
redal set hasv verti
es. Denote these verti
es by pk, k = 1 : : : v. Now 
reate v nodes ofthe sear
h tree and pla
e them as 
hildren of the original node. Ea
h one ofthese 
hildren nodes is asso
iated with a \
hildren" network N 0j . Network3A heap is a data stru
ture where elements are kept sorted a

ording to some prioritys
ale. The elements with higher priority are in the \beginning" of the heap; the elementwith maximum priority is always the �rst one to be removed from the heap.



8Pro
edure dfbb(P ):1. If P is trivial and its maximum f(w) is su
h that f(w) > faux,then faux  f(w) and return.2. Otherwise, de
ompose P into a list L of sub-instan
es Pi. For ea
hPi, if r(Pi) � s(Pj) for all Pj in L, and if r(Pi) > faux, then 
allre
ursively dfbb(Pi).Figure 2. Depth-�rst bran
h-and-bound: input is the problem P ; algorithmuses a global variable faux (initialized with �1), and fun
tions r and s that
ompute respe
tively outer and inner bounds. In the end, max f(w) is stored infaux.N 0j inherits all 
redal sets from N 0 ex
ept the set K(Xijpa(Xi) = �); the
redal set K(Xijpa(Xi) = �) is repla
ed by distribution pj . This de
om-position pro
edure is then applied re
ursively, following the bran
h-and-bound algorithm. Using this de
omposition strategy, there is a gradual\thinning" of the lo
al 
redal sets. Any leaf node of the sear
h tree 
on-tains a Bayesian network, obtained by a parti
ular sele
tion of verti
es inlo
al 
redal sets. When a leaf node is rea
hed, the 
omputation of prob-abilities is \trivial": a variable elimination algorithm is used to performinferen
e in the Bayesian network at the leaf [14℄.This de
omposition strategy depends on the sele
tion of 
redal sets forexpansion. We always sele
t the non-expanded 
redal set nearest to thequeried variable, but we always keep the query variable to be pro
essed last(a similar 
riterion is used by Draper and Hanks [17℄ to deal with partialevaluation of belief nets). We have tried several 
riteria for sele
ting 
redalsets to expand, and we found that the pro
edure just des
ribed is quiteappropriate.5. Bounds and the A/R+ algorithmThe dis
ussion so far has been 
ompletely general and 
an be appliedto any 
redal network. In this se
tion we 
on
entrate on algorithms thatprodu
e outer and inner bounds for inferen
es with polytree-shaped 
redalnetworks (note that inferen
e with polytree-shaped networks is already aNP-hard problem [15℄). We again fo
us on upper probabilities; an outerbound for an upper probability is a number that is larger than the upperprobability, while an inner bound for an upper probability is a number thatis smaller than the upper probability.



9Pro
edure bfbb(P ):1. fmax  �1; initialize a heap OPEN with P .2. Repeat:(a) Remove an instan
e Q from OPEN (Q is thus the instan
ewith the largest value of r in the heap);(b) if Q is 
riti
al, de
ompose Q into a list L of sub-instan
es Qi(sub-instan
e Qi with feasible region Wi), and for ea
h Qi:i. If Qi is trivial, 
al
ulate the maximum value of f in Wi,denoted by fi. If fi > fmax then fmax  fi.ii. Otherwise, if r(Qi) � fmax, insert Qi in OPEN; if inaddition s(Qi) > fmax, then fmax  s(Qi).(
) If OPEN is empty, stop.Figure 3. Best-�rst bran
h-and-bound: input is the problem P ; algorithm usesfun
tions r and s that 
ompute respe
tively outer and inner bounds; the elementsin OPEN heap are sorted with respe
t to their r bound. In the end, maxf(w) isstored in fmax.An inner bound 
an be produ
ed by any method that maximizes Expres-sion (2) up to a lo
al maximum. Lo
al optimization algorithms like gradientdes
ent or the expe
tation-maximization algorithm 
an produ
e su
h innerbounds [11, 29℄. It is also possible to obtain inner bounds with geneti
 pro-gramming, simulated annealing and similar methods [5, 6℄. Generally thesemethods require tuning several parameters; we have implemented some ofthem and noti
ed that, while they produ
e reasonable solutions, they arefar from easy to apply. We have thus developed a new algorithm for innerbounds using lo
al sear
h (reported elsewhere [16℄). The idea is to �x allprobabilities p(Xijpa(Xi)), ex
ept one | and then to �nd the maximizingvalue just for this \free" density, whi
h 
an be done easily (the maximiza-tion problem has be
ome a fra
tional linear one). On
e the maximizingvalues for the \free" density are found, this density is �xed at its maximiz-ing values, and a di�erent density is \freed." Thus the algorithm followsa maximizing path where ea
h movement 
hanges only one density in the
redal network, moving between verti
es of a single lo
al 
redal set at anygiven step. This algorithm produ
es ex
ellent inner bounds (in many 
asesthe exa
t upper probability is found) and runs rather qui
kly.4Outer bounds for inferen
e in polytree-shaped 
redal networks 
an begenerated with Tessem's A/R algorithm [26℄. The �rst assumption in4The development of the algorithm for inner bounds was joint work with Cassio Polpode Campos.



10Tessem's algorithm is that every 
redal set is approximated by a 
olle
-tion of probability intervals. Su
h approximation is always possible (andalways an outer approximation), as we 
an obtain the probability interval� minp(X)2K(X) p(xj) ; maxp(X)2K(X) p(xj)� (3)for any 
ategory xj of a variable X (and likewise for 
onditional probabilityvalues). Obviously the repla
ement of 
redal sets by probability intervalsintrodu
es potential ina

ura
ies into inferen
es.Tessem's 
entral idea was to generalize Pearl's belief propagation algo-rithm to a

ommodate probability intervals (in an approximate way). Thefun
tions � and � used in belief propagation are still de�ned with identi
alpurposes, but they are now interval-valued. Thus probability intervals formarginal probabilities p(X) are 
omputed from two interval-valued ve
tors�(X) and �(X) that 
ontain interval-valued versions of predi
tive and ret-rospe
tive support for X . These ve
tors are 
omputed from interval-valued\messages" that X re
eives from its parents and 
hildren. If Y and Z de-note, respe
tively, a parent node and a 
hild node of X , then the messagesthat X re
eives from those nodes are denoted by �X (Y ) and �Z(X).The messages manipulated by the A/R algorithm are 
omputed usinginterval arithmeti
 and two additional te
hniques 
alled annihilation andreinfor
ement (thus the name A/R). To understand the me
hani
s of A/R,it is interesting to look at a parti
ular operation, the 
omputation of theinterval-valued fun
tion �. Consider a fun
tion �(X) to be 
omputed ata node X with parents Y1; : : : ; Yk. Figure 4 shows the 
omputation of thelower value ��(X) (the same operations 
an be adapted to 
ompute theupper value ��(X)).The algorithm in Figure 4 initially 
ombines the interval-valued messagesthat X re
eives from its parents into a \joint" interval-valued fun
tion �(step 1), using interval multipli
ation. Then the algorithm applies theannihilation operation (steps 3a and 3b) to determine a joint distributionp(Y1; : : : ; Yk) that minimizes the sum of produ
ts in step 3
. Variable S0
ontrols how mu
h probability mass 
an be distributed during annihilation.Tessem developed similar operations for 
omputation of messages �X (Yi)and �Zi(X) (where Zi is a 
hild of X). The A/R algorithm also employsdire
t interval multipli
ation to generate the fun
tion �(X). Finally, thealgorithm uses annihilation or reinfor
ement operations to \normalize" thefun
tions �X(Yi), �Zi(X), and �(X)�(X) (\normalization" means simply
omputing bounds that a

ount for the fa
t that probability distributionsadd up to one).The A/R algorithm is 
lever, but it 
an be signi�
antly improved asfollows. Consider a new method to 
ompute the interval-valued �(X):1. For ea
h interval-valued message �X (Yi) re
eived byX , 
reate a 
redal



11Computing ��(X):1. Constru
t the interval-valued fun
tion �(Y1; : : : ; Yk) by interval-multipli
ation of the messages �X(Yi) re
eived by X (thesemessages are also interval-valued). Denote by ��(Y1; : : : ; Yk)and ��(Y1; : : : ; Yk) respe
tively the lower and upper values of�(Y1; : : : ; Yk).2. Initialize S  PY1;:::;Yk ��(Y1; : : : ; Yk).3. For ea
h value x of X :(a) Sort the lower probabilities p(X = xjY1; : : : ; Yk) in in
reasingorder. Denote by I(z) the zth 
on�guration of (Y1; : : : ; Yk) inthe ordering.(b) Distribute probability mass 
onsistently with �(Y1; : : : ; Yk) asfollows:i. Initialize p(Y1; : : : ; Yk)  ��(Y1; : : : ; Yk) for all(Y1; : : : ; Yk).ii. Initialize 
 1, S0  S.iii. While S0 < 1:A. p(I(
)) min(��(I(
)); 1� S0 + ��(I(
)).B. S0  S0 + ��(I(
))� ��(I(
)).C. 
 
+ 1.(
) �(x)  PY1;:::;Yk p(xjY1; : : : ; Yk) p(Y1; : : : ; Yk).Figure 4. Computation of ��(X) in the A/R algorithm. The input is the set oflower probabilities p(Xjpa(X)) and the messages �X(Yi) for Yi 2 pa(X).set KX(Yi) that is the largest 
redal set with lower/upper probabil-ities represented by �X(Yi). Su
h a 
redal set 
an be easily gener-ated [4, 22℄.2. Eliminate ea
h parent Yi by multiplying verti
es of KX(Yi) and ver-ti
es of K(X jY1; : : : ; Yk), and summing out the parents Yi.3. Use the resulting 
redal set K(X) to produ
e probability intervals�(X) through Expression (3).Step 2 performs an exa
t 
ombination of verti
es obtained from re
eivedintervals and lo
al distributions. This pro
edure operates with 
redal sets,then 
ollapses potentially 
omplex 
redal sets into probability intervals,lo
ally using 
redal sets and propagating interval messages.The operations just dis
ussed 
an be extended to other interval-valued



12messages used in belief propagation. For example, messages �Zi(X) are
omputed using similar operations as for �(X). We thus obtain the A/R+algorithm:Run all the steps of the A/R algorithm, but whenever interval-valuedmessages must be multiplied, 
onvert the messages into 
redal sets,operate with the 
redal sets lo
ally, and 
onvert the results ba
k toprobability intervals.The basi
 fa
t about A/R+ is that (proof in the Appendix):Theorem 1. Interval-valued messages generated by the A/R+ algorithmare in
luded or equal to interval-valued messages generated by the A/Ralgorithm, and in
lude or are equal to probability intervals generated by(exa
t) set-valued message propagation.We note that the 
redal sets handled by A/R+ 
an still be
ome unman-ageably 
omplex in some situations. When we must 
ompute a messagethat requires an ex
essively 
omplex 
redal set, we simply resort to the orig-inal approximation proposed by Tessem (we have a threshold indi
ating themaximum number of verti
es the algorithm should handle expli
itly).5As the next se
tion indi
ates, outer approximations generated by theA/R+ algorithm are usually mu
h more a

urate than the ones produ
edby A/R. The apparently mild di�eren
e between the algorithms leads toan order of magnitude improvement in the bounds.6. ExperimentsWe have run a series of experiments with the bran
h-and-bound, A/Rand A/R+ algorithms. Our purpose was to evaluate the a

ura
y and
omputational 
ost of these algorithms.6.1. The A/R and A/R+ algorithmsTo evaluate the performan
e of the A/R+ algorithm, parti
ularly in
omparison with the A/R algorithm, we ran two experiments.The �rst experiment aimed at 
omparing the relative error of the A/Rand A/R+ algorithms. Consider the 
omputation of p(X5 = x5;1) for threesets of networks with the graph given by Figure 5: a) the �rst group (305The A/R+ algorithm 
an be made even more 
exible: we 
an postpone the re-
onversion of 
redal sets to interval-valued form until we rea
h a point where the numberof verti
es in the messages ex
eeds some limit. We have not tried this option so far.



13networks) 
ontained only variables with three 
ategories and two verti
esper lo
al 
redal set; b) the se
ond group (15 networks) 
ontained onlyvariables with three 
ategories and three verti
es per lo
al 
redal set; 
)the third group (15 networks) 
ontained only variables with four 
ategoriesand two verti
es per lo
al 
redal set.����X1����X2 ����X3����X4 ����X5����X6 ����X7 ����X8����X9����X10 ����X11 ����X12��R- -��R ��� -��RAAAAU- 6 -
Figure 5. Polytree used in experiments.The numeri
al parameters for ea
h 
redal network were randomly gener-ated with uniform distributions [21℄. For every network in this test set, theupper probability p(X5 = x5;1) was 
omputed with an exa
t enumerationalgorithm, in some 
ases running during a 
onsiderable amount of time.The relative error was then measured between the exa
t answer and theresults obtained with the A/R and A/R+ algorithms. The mean error forthe A/R algorithm was: 38% (�rst group), 15% (se
ond group) and 27%(third group). The mean error for the A/R+ algorithm was: 4% (�rstgroup), 1% (se
ond group) and 4% (third group). Even though the sam-ples were rather small, these tests indi
ate the superior performan
e of theA/R+ algorithm (the main limiting fa
tor in the number of samples and in-feren
es in this experiment was the time required by the exa
t enumerationalgorithm to run).To 
ompare the amplitude of probability intervals 
omputed by the A/Rand A/R+ algorithms, we run a few additional tests with the graph inFigure 5. We generated �ve groups of 
redal networks, ea
h one 
ontain-ing one hundred networks. Groups were 
hara
terized by the number of
ategories per variable and number of verti
es per lo
al 
redal set. Table 1summarizes the results of inferen
es on the event fX12 = x12;1g. While thisexperiment does not reveal by itself the a

ura
y of A/R+, note the de-
rease in interval length (remember that the 
orre
t intervals are en
losedby the intervals generated by A/R+).To avoid the possibility that di�eren
es between A/R+ and A/R arejust being magni�ed by the parti
ular graph in Figure 5, we 
onsidered ase
ond experiment with a set of randomly generated polytrees (using thegenerator des
ribed by Ide and Cozman [21℄). In all inferen
es we 
ould try,we veri�ed the same pattern of redu
tion in the relative error. We generated



14Table 1. Comparison of interval lengths 
omputed with the A/R and A/R+algorithms.# 
ategories # verti
es A/R mean A/R+ meaninterval length interval length03 02 0.47 0.3903 03 0.61 0.5603 04 0.67 0.6304 02 0.45 0.3604 03 0.52 0.479 di�erent polytrees, ea
h with 20 variables; for ea
h polytree, we generated5 sets of lo
al 
redal sets. For ea
h node of this set of networks, we runthe A/R and the A/R+ algorithms, and in some of them we 
omparedthe approximations with the exa
t inferen
es (obtained with a bran
h-and-bound algorithm). The mean length of the intervals generated by theA/R algorithm are signi�
antly larger than the mean length for the A/R+algorithm.6.2. Depth-�rst bran
h-and-boundWe have tested the depth-�rst version of the bran
h-and-bound algo-rithm for 
omputation of exa
t inferen
es. We ran experiments with net-works 
ontaining variables with tree and four states. Ea
h 
on�gurationwas again tested using several randomly generated 
redal nets [21℄. Themain goal was to evaluate the redu
tion in 
omputational 
osts for infer-en
e, 
ompared to exa
t enumeration algorithms.First we took the polytree in Figure 5. Results for queries on variableX5 (with depth-�rst bran
h-and-bound) are reported in Table 2. The tableshows results when the bran
h-and-bound algorithm uses A/R and A/R+as bounding methods. The �rst four 
olumns summarize the 
hara
teris-ti
s of ea
h group of networks and inferen
es; the remaining four 
olumns
ompare the performan
e of bran
h-and-bound using A/R and A/R+ asbounding methods.We observe that the size of the sear
h tree explored by bran
h-and-boundis usually a tiny fra
tion of the potential number of verti
es of the strongextension. Note the enormous di�eren
e between potential verti
es of thestrong extension and a
tually expanded verti
es. We 
an also see thatA/R+ is superior to A/R.As another example of the eÆ
ien
y of the algorithm, take the 
ompu-tation of p(X8 = x8;1) in the graph of Figure 5, with variables with three
ategories, and with a random 
olle
tion of 
redal sets, where ea
h 
redal



15Table 2. Exa
t inferen
e on x5;1 in the network of Figure 3 with depth-�rstbran
h-and-bound. Columns indi
ate the number of networks tested (#s), thenumber of 
ategories per variable (#
), the number of verti
es in ea
h 
redal set(#v), the total number of potential verti
es for the strong extension (#p), thetime spent in inferen
es (t) and the number of expanded nodes in the sear
h tree(#n).#s #
 #v #p t A/R #n AR t A/R+ #n A/R+se
s se
s(mean) (mean) (mean) (mean)35 3 2 221 5.4 3356.8 0.97 365.710 3 3 321 395 254559.3 17.44 7271.210 4 2 235 1511 527756.8 584 37143.7set has three verti
es. In this 
ase, depth-�rst bran
h-and-bound obtainedthe exa
t solution after examining just 4634 verti
es of the strong exten-sion | note that the strong extension potentially 
ontains 350 verti
es.The relative error between the exa
t result and the inner bound, and theexa
t result against A/R+ are 0.002 and 0.015 respe
tively.We have observed su
h behavior in many experiments on randomly gen-erated networks. We have observed that polytrees with up to 10 variables
an be usually handled without problems.6.3. Best-�rst bran
h-and-boundWe have also investigated the performan
e of best-�rst bran
h-and-boundmethods for inferen
e. Our tests indi
ated that the amount of memory re-quired by these algorithms is too large for exa
t inferen
e | that is, thesize of the OPEN heap grows too qui
kly. However, it is still possible touse best-�rst bran
h-and-bound for approximate outer intervals. The basi
idea is to run the algorithm up to a pres
ribed memory limit; upon termi-nation, the OPEN heap is examined, and the element with the maximumbound is sele
ted and returned. Note that the top of the heap has the max-imum value of the outer bound r amongst all elements in the frontier | itsr value is thus guaranteed to be an outer bound for the original problem(it may even 
ontain the exa
t upper probability, in whi
h 
ase the wholefrontier displays the same r value). As more sub-problems are generatedand stored in the OPEN heap, the outer bound for the top of the heap
an either stay the same or de
rease, as sub-problems have feasible regionsthat are 
ontained in their generating problem.We have 
ondu
ted tests where the algorithm in Figure 3 terminates aftera pres
ribed number of sear
h nodes. Experimental results are summarized



16by Table 3. The obje
tive was to measure a

ura
y after evaluating at most25,000 nodes of the sear
h tree (in some 
ases the exa
t result was obtainedbefore that). We used the graph in Figure 3 and produ
ed several 
redalnetworks by generating random lo
al 
redal sets. The upper probabilitiesp(X5 = x5;1), p(X7 = x7;1) and p(X8 = x8;1) were 
omputed for ea
h oneof the resulting networks. Table 3 shows the 
hara
teristi
s of the gener-ated networks and the \quality" of approximations; here we present thedi�eren
e between the answer generated by best-�rst bran
h-and-boundand the inner bound generated by lo
al sear
h (dis
ussed at the beginningof Se
tion 5). We also show the di�eren
e between the A/R+ outer boundand the inner bound, for 
omparison. Similar results were obtained in testswith randomly generated graphs.Table 3. Mean di�eren
e between outer and inner approximations forp(X5 = x5;1), p(X7 = x7;1) and p(X8 = x8;1). The bran
h-and-bound pro
edureterminates after evaluating 25,000 nodes of sear
h tree. Columns indi
ate theinferen
e, the number of networks tested, the number of 
ategories per variable,the number of verti
es in ea
h 
redal set, the total number of potential verti
esfor the strong extension, and the relationship between outer and inner bounds,with best-�rst bran
h-and-bound and A/R+ algorithms. The symbol A/R+*denotes the di�eren
e between A/R+ approximations and inner bounds, whilethe symbol bfbb* indi
ates the di�eren
e between best-�rst bran
h-and-boundapproximations and inner bounds.Inferen
e # net. # 
at. # vert. # potential A/R+* bfbb*verti
es (mean) (mean)X5 = x5;1 16 03 03 321 0.006 0.00008X5 = x5;1 10 03 04 242 0.024 0.011X5 = x5;1 10 04 03 335 0.035 0.025X7 = x7;1 16 03 03 332 0.016 0.011X7 = x7;1 10 03 04 264 0.021 0.012X7 = x7;1 10 04 03 335 0.022 0.017X8 = x8;1 16 03 03 350 0.017 0.007X8 = x8;1 10 03 04 2100 0.014 0.009X8 = x8;1 04 04 03 3101 0.035 0.029
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Figure 6. Transformed 
redal network.7. Inferen
e with network fragmentsIf the 
redal networkN is large, it may not be possible to run the bran
h-and-bound algorithms to optimality. In this se
tion we propose strategiesto handle su
h problems. The basi
 idea is to divide the 
redal network inparts and to run bran
h-and-bound in these sub-networks, in some suitableorder. We illustrate this idea through an example.Consider the network in Figure 5, with variables with three 
ategoriesand two verti
es per 
redal set. Suppose that we want to 
ompute ex-a
t lower and upper probabilities for variable X7 and that our spa
e andtime 
onstraints allow us to perform an exa
t inferen
e just for X5, butnot for X7. We then run bran
h-and-bound and obtain lower and up-per probabilities for X5. For example, in a parti
ular instan
e of thenetwork shown in Figure 5, we obtained p(X5 = x5;1) 2 [0:199; 0:587℄,p(X5 = x5;2) 2 [0:084; 0:375℄, and p(X5 = x5;3) 2 [0:212; 0:604℄. We 
aneasily generate the largest 
redal set that is 
onsistent with these intervals.We obtain K(X5) de�ned by the verti
esf(0:413; 0:375; 0:212); (0:312; 0:084; 0:604); (0:587; 0:084; 0:329);(0:199; 0:197; 0:604); (0:587; 0:201; 0:212); (0:199; 0:375; 0:426)g:Now we 
an remove X5 and its as
endants from the network, and re-pla
e X5 by a new node X 05 that has the marginal 
redal set of X5 asits marginal 
redal set. The transformed network is displayed in Figure6. We then run exa
t bran
h-and-bound inferen
e for X7, obtaining in-tervals p(X7 = x7;1) 2 [0:091; 0:447℄, p(X7 = x7;2) 2 [0:157; 0:564℄, andp(X7 = x7;3) 2 [0:208; 0:591℄. In
identally, we 
omputed the same infer-en
es with the exhaustive algorithm in the JavaBayes system and obtainedthe same values.If inferen
es in the transformed 
redal network are still unfeasible, we 
anrun an approximate inferen
e algorithm in the transformed 
redal network.Consider running Tessem's algorithm in the network in Figure 6. We obtain



18the intervals p(X7 = x7;1) 2 [0:053; 0:502℄, p(X7 = x7;2) 2 [0:116; 0:663℄,and p(X7 = x7;3) 2 [0:128; 0:644℄. We note that Tessem's algorithm alonein the 
omplete example network produ
ed the intervals p(X7 = x7;1) 2[0:040; 0:524℄, p(X7 = x7;2) 2 [0:106; 0:698℄, and p(X7 = x7;3) 2 [0:097; 0:667℄.8. Con
lusionThis paper has proposed a 
olle
tion of simple ideas that advan
e thestate of a�airs 
on
erning inferen
es in 
redal networks. Perhaps the follow-ing perspe
tive is useful. As far as exa
t inferen
e with strong extensionsis 
on
erned, our bran
h-and-bound methods go 
onsiderably beyond what
an be done with existing enumeration te
hniques. However, they 
an han-dle relatively small networks, and they should be most e�e
tive as tools forevaluating other (approximate) algorithms. It seems that general mediumand large 
redal networks will hardly admit exa
t inferen
e, and approxi-mate algorithms are likely to be important in those situations. Thus oneshould have fast and a

urate approximate methods, and one should haveways to validate the a

ura
y of these approximate methods.In this perspe
tive, it is possible that the A/R+ algorithm will be the
ontribution with most pra
ti
al signi�
an
e, while the bran
h-and-boundapproa
h will serve as a validation tool for other algorithms. In fa
t, thebran
h-and-bound strategy is best viewed as a family of solutions for infer-en
e in strong extensions. Depth-�rst and best-�rst te
hniques 
an be usedin di�erent s
enarios, as they require di�erent levels of resour
es and havedi�erent 
hara
teristi
s. Outer approximations are 
ertainly \safer" thaninner ones, being able to produ
e both approximations 
an give valuableinformation about inferen
es.Note that, even though we have restri
ted our experiments to polytree-shaped networks, multi-
onne
ted 
redal networks 
an be handled by bound-ing te
hniques su
h as the algorithms of Ha et al [20℄ and Cano et al [9℄.We also would like to emphasize the idea that a network 
an be pro
essedin pie
es, as dis
ussed in the previous se
tion. Su
h a strategy seems to beappropriate for large networks, possibly using di�erent levels of a

ura
yin ea
h one of the partial inferen
es.A
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al
ulated by the A/R+algorithm are 
ontained in those 
omputed by the A/R algorithm. Thenwe show that A/R+ produ
es outer approximations.Part I: Both A/R and A/R+ maximize/minimize the same quantities,at every step of the propagation s
heme. In ea
h step of message propa-gation, the A/R+ algorithm enfor
es a 
onstraint that A/R does not (the
onstraint that messages re
eived by a node X from its parents representa normalized quantity). To illustrate this fa
t, note that step 1 in Figure 4uses dire
t interval multipli
ation and does not 
onstrain fun
tions de�nedby � to add to one. Thus the feasible set in ea
h optimization is smallerfor A/R+ than it is for A/R, and 
onsequently the bounds 
omputed byA/R+ for the predi
tive support and the �Z(X) messages are tighter thanthose 
omputed by A/R. As the 
omputation of lower and upper probabili-ties for any node X is obtained by manipulating these messages re
ursively,results produ
ed by A/R+ are equal to or tighter than approximations byA/R at every message propagation.Part II: Ea
h operation transforming 
redal sets into intervals (Expres-sion (3)) produ
es outer bounds, be
ause it enlarges the feasible set in ea
hoptimization problem generated during propagation. When intervals arelo
ally transformed into 
redal sets, the optimization problems manipu-lating these 
redal sets produ
e the tighest possible bounds; however theystart from larger feasible sets and 
onsequently 
ontain the exa
t set-valuedmessages. Thus at any node X we obtain bounds that 
ontain the 
orre
tupper and lower probabilities.Referen
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