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ABSTRACT
Spatial knowledge plays an essential role in human reasoning, permitting
tasks such as locating objects in the world (including oneself), reasoning
about everyday actions and describing perceptual information. This is also
the case in the field of mobile robotics, where one of the most basic (and
essential) tasks is the autonomous determination of the pose of a robot
with respect to a map, given its perception of the environment. This is
the problem of robot self-localisation (or simply the localisation problem).
This paper presents a probabilistic algorithm for robot self-localisation
that is based on a topological map constructed from the observation of
spatial occlusion. Distinct locations on the map are defined by means of a
classical formalism for qualitative spatial reasoning, whose base definitions
are closer to the human categorisation of space than traditional, numerical,
localisation procedures. The approach herein proposed was systematically
evaluated through experiments using a mobile robot equipped with a
RGB-D sensor. The results obtained show that the localisation algorithm
is successful in locating the robot in qualitatively distinct regions.
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1. Introduction

Currently, themost successful algorithms for robot self-localisation are based onprobabilisticmethods
that assumemaps of the environment defined bymeans of metric information (Thrun, Burgard, & Fox,
2005; Wolter, Freksa, & Latecki, 2008). One of the shortcomings of these methods, however, is that
they largely ignore the knowledge that humans have (and use) about the environment (Thrun, 2003).
Bridging the gap between probabilistic methods in robotics and knowledge about the robot’s domain
is not only of theoretical interest, but it is also an essential step towards equipping robots with
the capability of interpreting sensor data using high-level knowledge (Falomir, Museros, Castello, &
Gonzalez-Abril, 2013; Tapus & Siegwart, 2006). The use of common-sense knowledge represented as
spatio-temporal concepts is also of utmost importance in the development of robotic systems capable
of interacting with humans in a natural way (Deits et al., 2013; Moratz & Ragni, 2008).

The field of qualitative spatial reasoning (QSR) (Cohn & Renz, 2008) (a subfield of Knowledge
Representation in Artificial Intelligence) attempts the representation of common-sense spatial knowl-
edge based on qualitative properties of the domain, aiming to achieve cognitively plausible theories
about spatial information. For instance, QSR theories include a mereotopological theory based on the
connectivity between spatial regions, the definition of occlusion and parallax, the formalisation of
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2 P. E. SANTOS ET AL.

relative location and spatial vagueness, as well as the definition of qualitative theories about distance,
boundaries, shapes and so forth (as overviewed in Ligozat, 2011).

Traditional QSR formalisms, however, are independent of observer viewpoints (apart from a few
exceptions, e.g. Randell, Witkowski, & Shanahan, 2001), giving limited application to robotics research.
In previous work (Fenelon, Santos, Dee, & Cozman, 2013; Santos, 2007; Santos, Dee, & Fenelon, 2009;
Souchanski & Santos, 2008), we have proposed a dynamic formalism about space in which qualitative
changes observed by a mobile robot are the building blocks of the system, therefore including the
observer in a QSR formalism. These approaches were developed in classical logic languages and,
therefore, were not capable of handling sensor uncertainties.

In this context, the present paper proposes a probabilistic localisation algorithm based on a
qualitative representation derived from a QSR formalism about object occlusion. We, therefore,
bring together both qualitative and probabilistic (quantitative) reasoning techniques to bear on
a problem which is inherently viewpoint-dependent. The contributions of this work are twofold:
first, it contributes to research on robot localisation by introducing an algorithm that accomplishes
probabilistic localisation using non-metric information defined over a qualitative spatial reasoning
formalism; second, this work contributes to QSR by presenting an experimental evaluation of a
viewpoint-basedQSR theory implementedwithin a probabilistic localisation algorithm in a real robotic
domain.

The algorithm presented in this paper was tested on our ActiveMedia Pioneer Peoplebot mobile
robot thatwas teleoperated through an indoor environmentwhile an RGB-D sensor (that is, aMicrosoft
Kinect) captured a sequence of snapshots around reference objects.

This work builds upon various QSR formalisms, in particular the region connection calculus (RCC)
(Randell, Cui, & Cohn, 1992) and the region occlusion calculus (ROC) (Randell et al., 2001). We outline
the works which provide our foundation in Section 3, with our proposed extensions described in
Section 4. For reasoning about space, we define a qualitative map, upon which the robot can be
localised: this stage is presented in Section 5.

The key technical contribution of this paper is a set of algorithms linking the qualitative map, the
QSR formalism and robot perception via probabilistic reasoning. This can be found in Section 6, with
our experimental set-up and evaluation in Section 7.

The novelty of the work proposed in this paper is the investigation of a high-level representation of
space information, and how to combine it with probabilistic methods, in order to provide an intuitive
way of handling robot localisation at a level of abstraction closer to the human categorisation of space.

2. Related work

Research in robot mapping has over 30 years of history and its major results are summarised in the
extensive literature surveys presented by Thrun (2003) and Boal, Sánchez-Miralles, and Arranz (2014).
Boal et al. (2014) divides the maps currently investigated in the robotic literature into four classes:
(1)metricmaps that represent the robot domain bymeans of its geometrical properties (Filliat &Meyer,
2003; Leonard & Durrant-Whyte, 1991); (2) topological maps that encode the environment by a graph
whose nodes represent possible locations and edges between nodes represent that two locations are
connected (Liu & Siegwart, 2014; Ranganathan & Dellaert, 2011; Remolina & Kuipers, 2004); (3) hybrid
(or hierarchical) maps which represent the environment by a combination of metrical and topological
information (Konolige, Marder-Eppstein, & Marthi, 2011; Zivkovic, Bakker, & Krose, 2005); and, (4)
semantic (or cognitive) maps that contain high-level information about the environment, including
object types, functionalities and their interrelations (Nüchter & Hertzberg, 2008; Posada, Hoffmann, &
Bertram, 2014; Vasudevan, Gächter, Nguyen, & Siegwart, 2007). According to Boal et al. (2014) metric
representations of maps allow very accurate localisation algorithms, at the expense of an increasing
computational complexity related to the high dimensionality of the entities involved. Topological
maps, on the other hand, provide a more compact representation of the robot’s domain than the
metric approach, but require more complex processing of the sensory information and are more
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JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 3

prone to perceptual aliasing (which is the problem of two distinct places being perceived as the same
location). The development of hybrid maps aims to combine the precision of a metric representation
with the more abstract representation of the robot’s location given by the topological map. Semantic
maps go one step upwards in terms of abstracting the robot’s space, where relational information is
used to allow high-level reasoning along with localisation procedures.

In this work, we investigate a probabilistic localisation algorithm on topological maps defined over
qualitative (or non-metrical) spatial relations. Therefore, the work proposed in this paper falls at the
intersection between topological and semantic mapping.

Methodologically, our work has its roots on the localisation procedure presented by Levitt and
Lawton (1990), where a topological map was built by regions bounded by sets of lines connecting
pairs of point-wise landmarks. This idea inspired the development of several spatial representations.
For instance, Schlieder (1996) proposes a spatial representation (called panorama) that constrains the
location of a point with respect to the visual ordering of point-wise objects observed around the robot.
The notion of qualitative navigation is defined in Schlieder (1996) and Stolzenburg (2010) in terms of
changes in this ordering information, as the observer crosses each of the virtual lines defined by the
reference objects.

An approach closely related to our work is that of Fogliaroni, Wallgrün, Clementini, Tarquini, and
Wolter (2009), which considers extended convex objects to be landmarks, and decomposes navigable
space based on a model of object occlusion and visibility. More specifically, that model generates a
tessellation of the navigable space in terms of portions of space that were visible, partially visible and
occluded. The ordering in which these attributes are observed is also used to qualify the regions of
space within the tessellation. Following similar ideas, Santos et al. (2009) propose a qualitative spatial
theory based on a logical formalisation of occlusion and the observation of cast shadows. Preliminary
results of applying this theory to a mobile robot domain for the task of localisation are presented
in Fenelon et al. (2013). Also related to the approach proposed here is the method introduced in
McClelland, Campbell, and Estlin (2013) which builds a map using the relative positions of landmarks.
These methods are usually based on some human-level conceptualisation of space, some of them
grounded on recent findings in cognitive psychology (Wolter et al., 2008). However, they are incapable
of handling sensor noise, which limits their applicability to well-controlled, deterministic domains.
A more complete overview of qualitative representations for robot localisation is presented in Wolter
et al. (2008).

The most successful localisation methods in robotics are based on probabilistic algorithms. Prob-
abilistic localisation algorithms are usually defined on top of Bayesian filtering (Thrun, 2003; Thrun
et al., 2005). In a nutshell, this is a recursive algorithm consisting of two parts: prediction (where the
belief over the current state of a robot – usually its position and orientation – is calculated on the prior
belief of a previous state); andmeasurement update (whereby the predicted current state is weighted
by the probability of a measurement on this state). This basic definition summarises works onMarkov
localisation (Fox, Burgard, & Thrun, 1999) and localisation procedures that use Kalman filters (Chen,
2012). The latter is a special case of the former, where sensor and motion models are linear Gaussian
functions. Methods known as Monte Carlo localisation (Dellaert, Fox, Burgard, & Thrun, 1999) extend
thebasicMarkov localisationby applying aparticle filter to represent the distribution of possible states.
These particles are updated according to the prediction of the next state (given the robot’s motion)
and are resampled according to the agent’s perception. These ideas have such a high acceptance in the
robotics field that the seminal work of Dellaert et al. (1999) has over 1000 citations, most of which are
related to the direct application of the method. Therefore, a complete survey of recent works related
to probabilistic localisation algorithms is a hard task. Surveys of early approaches to probabilistic robot
localisation can be found in Thrun (2003), Thrun et al. (2005).

Preliminary results on the framework reported in the present paper were shown in Pereira, Santos,
Martins, and Cozman (2013), where a qualitative-probabilistic approach is developed combining the
ideas of qualitative localisation using cast shadows proposed in Fenelon et al. (2013) with a Bayesian
filter. This approach proved to be successful on the tasks of robot localisation and self-calibration
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4 P. E. SANTOS ET AL.
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Figure 1. The RCC8 relations and their CND (Randell et al., 1992).

of the robot’s vision system through experiments using a mobile robot in a real environment.
The experiments reported in Pereira et al. (2013), however, assumed the localisation of a robot
manoeuvring around a single object and its unique shadow. The present paper generalises this idea
assuming a map defined over the occlusion between (any number of) pairs of objects. Thus, the ideas
presented here can be applied to maps over any number of occluded bodies. To the best of our
knowledge, this is the first work that presents empirical results on a probabilistic localisation algorithm
based on qualitative spatial information.

This paper assumes the usual notation in logic languages where lower case roman letters refer to
variables and upper case to constants (unless explicitly stated otherwise). Bold fonts in formulae will
be reserved for sets and probability distributions. The theory of occlusion upon which this work is
grounded is described in the next section.

3. Region occlusion calculus

The basic spatial theory used in this work is the ROC (Randell et al., 2001), which is an extension of the
RCC (Randell et al., 1992). RCC is a first-order axiomatisation of spatial relations based on a reflexive,
symmetric and non-transitive dyadic primitive relation of connectivity (C/2) between two regions.
Informally, assuming two regions x and y, the relation C(x , y), read as “x is connected with y”, is true if
and only if the closures of x and y have at least one point in common.

Assuming the C/2 relation, and two spatial regions x and y, the following base relations can be
defined: disconnected from (DC), part of (P), equal to (EQ), overlaps (O); partially overlaps (PO); externally
connected (EC); tangential proper part (TPP); non-tangential proper part (NTPP). RCC also includes the
inverse relations of P, TPP and NTPP, which are represented by a capital I appended to the relative
relation: PI, TPPI and NTPPI.

The set constitutedby the relationsDC, EQ, PO, EC, TPP,NTPP, TPPI, andNTPPI is the jointly exhaustive
and pairwise disjoint set (JEPD) usually referred to as RCC8. The continuous transitions between the
RCC8 relations, for two regions x and y, are shown as a conceptual neighbourhood diagram (CND) in
Figure 1. By continuous transitions, we mean that in between adjacent vertices of the graph there can
be no other possible relation qualifying the state of the two regions. That is, assuming that the objects
move continuously on the plane, these are the only transitions that are possible.

Using RCC8 relations, along with the primitive relation TotallyOccludes(x , y, ν) (which stands for
“x totally occludes y with respect to the viewpoint ν”), the ROC defines the 20 base JEPD relations.
Figure 2 shows a graphical representation of the ROC relations between two objects, represented as
a white and a shaded region. In this figure, the shaded region corresponds to the first argument, and
the white region to the second argument of ROC relations. For instance, the relation PartiallyOccludes-
TPP(x , y) is depicted with the shaded region x occluding the white region y, while the 2D projection
of the shaded object is a tangential proper part (TPP) of the 2D projection of the white object. It is
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JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 5

Figure 2. ROC relations between two objects (white and shaded regions).

worth noting that the relations on mutual occlusion occur if and only if at least one of the objects is
non-convex. ROC also defines a CND (introduced in Randell &Witkowski, 2002) that we do not present
in this paper for brevity.

ROCmakes a distinction between the occupancy regions of bodies and their images (or projections)
from the viewpoint of an observer. This distinction is accomplished by assuming two functions: the
function region(x), which maps a body x to its 3D occupancy region, and the function image(x , ν)

that maps a body x to the body’s 2D projection, as seen from a viewpoint ν. The viewpoint in ROC is
modelled as a pinhole camera whose parameters are not important for the qualitative theory.

It is worth pointing out also that the “I” in the relations TotallyOccludesTPPI(x , y, ν) and
TotallyOccludesNTPPI(x , y, ν) represents the inverse of TPP and NTPP, respectively; so, for instance,
TotallyOccludesTPPI(x , y, ν), means that the body x totally occludes the body y, but image(y) is the
tangential proper part of image(x) (i.e. TPPI(image(x , ν), image(y, ν)) ). The superscript “−1” in some
ROC relations represents the inverse of the occlusion part of the relation.

4. Relative positions

As well as the 20 ROC relations, this work assumes observer-relative positions of pairs of objects by
means of the relations Left, Right, Closer and Further. Given two distinct bodies x and y and a viewpoint
ν (and assuming that the observer’s horizon is fixed and that the field of view is restricted) the relative
positions are as follows:

• Left(x , y, ν), representing the fact that “x is to the left of y from viewpoint ν” (analogously,
Right(x , y, ν));
• Further(x , y, ν), represents the fact that “x is further than y from viewpoint ν” (analogously,

Closer(x , y, ν)).

In this work, these relations are grounded on data from the vision system, given the depth
information (e.g. provided by an RGB-D sensor) and the distance from the centroids of the objects’
images to the left border of the camera field of view. More formally, let dist_from_left(image(o, ν))

(read as distance from the left border) be a function that maps an image of an object o and a viewpoint
ν to the distance of the image’s centroid to the left border of ν’s field of view; and, depth(image(o, ν))

be a function that maps the image of an object o to the depth of o with respect to ν (i.e. the distance
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6 P. E. SANTOS ET AL.

from the object to the observer). Thus, the relations Left, Right, Closer and Further can be defined by
the formulae below.

Left(x , y, ν)↔ dist_from_left(image(x , ν)) < dist_from_left(image(y, ν)).

Right(x , y, ν)↔ dist_from_left(image(x , ν)) > dist_from_left(image(y, ν)).

Further(x , y, ν)↔ depth(image(x , ν)) > depth(image(y, ν)).

Closer(x , y, ν)↔ depth(image(x , ν)) < depth(image(y, ν)).

The relations on relative positions introduced above are transitive, irreflexive and asymmetric. For
completion, we also have to include the relationsNonLeftRight(x , y, ν) (stating that “x is neither left nor
right of y”) and NonCloserFurther(x , y, ν) (stating that “x is neither closer nor further than y”). However,
these cases rarely occur in real vision data.

5. Qualitative map

Although ROC is defined on non-convex physical bodies, in this work, we use the subset of ROC that is
related to convexobjects only. This constraint simplifies thebase vocabulary of ROCwithout interfering
on the generality of the localisation procedure, since in this paper the localisation is accomplished over
the convex hulls of the objects’ images.

Considering the ROC relations between (the convex hulls of) objects o1 and o2 from a viewpoint
ν, only the following relations and their inverses have models since themutually occludes relations do
not hold with respect to convex hulls:

• NonOccludesDC(o1, o2, ν);
• NonOccludesEC(o1, o2, ν);
• PartiallyOccludesPO(o1, o2, ν) (and PartiallyOccludesPO(o1, o2, ν)−1);
• PartiallyOccludesTPP(o1, o2, ν) (and PartiallyOccludesTPP(o1, o2, ν)−1);
• PartiallyOccludesNTPP(o1, o2, ν) (and PartiallyOccludesNTPP(o1, o2, ν)−1);
• TotallyOccludesTPPI(o1, o2, ν) (and TotallyOccludesTPPI(o1, o2, ν)−1);
• TotallyOccludesEQ(o1, o2, ν) (and TotallyOccludesEQ(o1, o2, ν)−1);
• TotallyOccludesNTPPI(o1, o2, ν) (and TotallyOccludesNTPPI(o1, o2, ν)−1).

The definition of a qualitative map using occlusion relations depends on the notion of lines of sight,
that is understood here as the virtual tangent lines that can be drawn on the borders between pairs of
objects.

Considering the lines of sight and ROC relations, we define a discretisation of the space around pairs
of objects into qualitatively distinct relations. This discretisation, exemplified in Figure 3, represents
a qualitative map defined on occlusion relations between two objects (O1 and O2), whereby the
regions marked with the numbers 1, 2, 3, 4 and 5 refer to regions where a viewpoint ν would observe
Right(O1,O2, ν) and also:

• in Region 1 ν observes NonOccludesDC(O1,O2, ν);
• in Region 2: NonOccludesEC(O1,O2, ν);
• in Region 3: PartiallyOccludesPO(O2,O1, ν);
• in Region 4: TotallyOccludesTPPI(O1,O2, ν); and,
• in Region 5: TotallyOccludesNTPPI(O1,O2, ν).

An analogous qualification applies for the non-labelled regions in Figure 3. This idea can be easily
extended to any number of referent objects: Figure 4 shows an analogousmap related to three objects.

The qualitative map shown in Figure 4 divides the space around the three objects (red (r), blue (b)
and green (g) boxes) into 28 regions defined by the lines of sight between every pair of these objects
and their observer-relative positions. It is worth noting that there are regions around the target objects
in Figure 4 that were not marked (and not considered in the map). These are regions that are near the
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JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 7

Figure 3. Distinct regions implied by the observation of occlusion relations between two objects (global view).

Figure 4. A representation of the qualitative map with 28 distinct regions. The lines of sight between the objects define the
boundaries between regions. The colours of the lines in this figure are only to help its visualisation, they do not have any special
meaning.

target objects (or are results of multiple intersections of regions defined with respect to various pairs
of objects) and whose sizes are negligible with respect to the size of the robot and, thus, were not
considered as positions in the map. As we shall see later in this paper, if the robot happens to pass
over these regions, it keeps the belief in the previous location inferred until it reaches the next region
marked in the map.

The regions in the map on Figure 4 are defined by Formulae (1)–(28) below.

located(R1, ν, b, g, r)← ((PartiallyOccludesTPPI(b, g, ν)∧ (1)

Right(b, g, ν) ∧ Further(b, g, ν)))

∧ ((NonOccludesDC(b, r, ν)∧
Left(b, r, ν)))

∧ ((NonOccludesDC(g, r, ν)∧
Left(g, r, ν) ∧ Closer(g, r, ν))).

located(R2, ν, b, g, r)← TotallyOccludesNTPPI(b, g, ν) (2)

∧ ((NonOccludesDC(g, r, ν)∧
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8 P. E. SANTOS ET AL.

Figure 5. A snapshot captured while the robot was on region R12 on the map (Figure 4).

Left(g, r, ν) ∧ Closer(g, r, ν))).

...

located(R12, ν, b, g, r)← (NonOccludesDC(b, g, ν) (12)

∧ Left(b, g, ν) ∧ Front(b, g, ν))

∧ (PartiallyOccludesPO(b, r, ν)

∧ Right(b, r, ν) ∧ Front(b, r, ν))

∧ (NonOccludesDC(g, r, ν) ∧ Right(g, r, ν)).

...

located(R28, ν, b, g, r)← NonOccludesDC(b, r, ν)∧ (28)

NonOccludesDC(b, g, ν)∧
NonOccludesDC(g, r, ν).

According to Formula (12), a robot located in region R12 (on the map in Figure 4) will see objects b
and g as NonOccludesDC ; bwill be to the left and in front of g; b and r will be PartiallyOccludesPO; while
b will be to the right and in front of r; and, finally, g and r will be seen as NonOccludesDC and g will be
to the right of r. A snapshot taken by the robot located in R12 is shown in Figure 5.

In order to accomplish robot self-localisation, we extend the probabilistic algorithm proposed in
Pereira et al. (2013) to take into account occlusion information from any number of objects in the
scene. Although the localisation procedure can be applied over any finite number of objects, in the
presentation below, we always refer to the 28 regions defined on the occlusion relations between 3
distinct objects (as shown in Figure 4).

6. Probabilistic qualitative self-localisation

We refer to belief distribution as the posterior probabilities over state variables, conditioned on the
available data. We use the notation bel(st) := P(st |e0:t); that is, the belief bel(st) is the probability of a
state (st) given all the evidence (e0:t) up to an instant (t). In this work, the state st indicates the region
where the robot is located at instant t (given by qualitative maps such as that shown in Figure 4), and
(e0:t) represents the evidence, denoted in terms of occlusion relations between pairs of objects from
instant 0 to instant t. This evidence is provided by the ROC relations as observed from a viewpoint
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JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 9

(cf. defined in Formulae (1)–(28) for the diagram in Figure 4). The goal of the algorithm is to find the
value of st that maximises bel(st).

In the remainder of this paper, we use the letter N to represent the number of distinct locations on
a map (e.g. N = 28 on the map shown in Figure 4).

In order to compute the beliefs, we use:

bel(st) = P(st |e0:t)
= P(st |e0:t−1, et)
= ηP(et |st , e0:t−1)P(st |e0:t−1),

where η is a normalisation constant. Using aMarkov hypothesis, the next state is independent of earlier
measurements e0:t−1; hence:

bel(st) = ηP(et |st)P(st |e0:t−1).

This expression is themeasurement update (Thrun et al., 2005). Its first term P(et |st) is, in fact, the image
model. Its second term (known as the updated belief P(st |e0:t−1) = bel(st)) must be calculated before
incorporating the evidence et .

The updated belief bel(st) represents a one-step prediction of the next state st , obtained by
conditioning st on the previous state st−1, as follows:

bel(st) =
∑

st−1
P(st |st−1, e0:t−1)P(st−1|e0:t−1)

=
∑

st−1
P(st |st−1)P(st−1|e0:t−1).

In the previous expression, the term P(st |st−1) is the state transition model. In this work, the transition
model P(st |st−1) refers to the qualitative motion across the regions defined in the qualitative map
(such as those shown in Figure 4). The transition model encodes the probability of a state change,
given a moving action and the ROC CND (as explained in detail in Section 6.2 below).

The value of a state st is a region Ri where i = 1, . . . ,N. The term P(st−1|e0...t−1) is the belief
calculated on the previous iteration:

bel(st−1) = P(st−1|e0:t−1).

Therefore, the posterior belief (or prediction) is the combination of previous expressions:

bel(st) =
∑

st−1
P(st |st−1)P(st−1|e0:t−1) =

∑

st−1
P(st |st−1)bel(st−1).

Finally, the belief is given by:

bel(st) = ηP(et |st)bel(st) = ηP(et |st)
∑

st−1
P(st |st−1)bel(st−1).

6.1. The localisation procedure

The robot estimates its relative location using images captured from an RGB-D sensor. Given the
robot’s perceptions described as ROC relations between pairs of objects, a Bayesian filter is used to
infer the robot’s position.

This ROC-enhanced Bayesian filter we call the Probabilistic Qualitative Self-Localisation algorithm
(PQS), shown in Algorithm 1. The algorithm is initialised with a uniform distribution on the robot’s
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10 P. E. SANTOS ET AL.

(a) (b) (c)

Figure 6. Example of the segmentation process applied on the original snapshot shown in Figure 5.

position (P(S0) in Algorithm 1). Then PQS calls a Perceptual Procedure (called PP algorithm, shown
in Algorithm 2) that returns the evidences with maximum probability from the set of all evidences
(i.e. every region on the qualitative map). The PP algorithm is subsequently detailed further in this
paper. Given the evidence set, the PQS algorithm first calculates probabilities for all the N regions of
the qualitative map (here the set of regions is denoted by St), then it returns the beliefs about the
current region (st). Finally, PQS runs a Bayesian prediction step where the posterior belief bel(St+1)
is calculated, which takes into account the current beliefs for all states (given the evidence). The
probability of the next states (given the current state) is given by the transition model.

Algorithm 1 PQS(〈S1, . . . , SN〉, image, ν)

1: bel(S1) = P(S0) = [ 1N , . . . , 1N ]
2: while (1) do

3: Et ← max PP(image, ν)

4: bel(St) = ηP(St|E0:t) = ηP(Et|St) ∗ bel(St)
5: st ←− argmax

st
P(St|E0:t)

6: bel(St+1) =
∑
st
P(St+1|st)P(st |et)

7: end while

In the PP, described in Algorithm 2, the occlusion and relative position relations between pairs of
objects are evaluated by detected features. These features are the degree of connectivity between the
nearest sides of the objects, the distance between the objects, the object’s depth, the ratio between
the area of their bounding boxes and also the relative position of the object’s bounding box.

All the necessary features are extracted from the images using off-the-shelf computer vision
algorithms. In order to obtain the object’s bounding boxes from the snapshots taken from the robot’s
viewpoint, we use a morphological operator along with saturation values on the images obtained to
perform the regionof interest segmentation. Figure 6 showsanoutputof this segmentationprocedure.
The relative positions between pairs of objects are obtained directly from the sensor data, as described
in Section 4.

The algorithm analyses pairs of objects and qualifies the qualitative relations between them (i.e. the
relations on occlusion and relative positions detailed in Section 3). This is accomplished by considering
the connectivity between segmented objects, along with depth information, in a two-tier procedure:
firstly, the contours of all segmented objects are normalised to a fixed value and summed up, pixel by
pixel; subsequently, this fixed value is subtracted once from all contours. As a result, only the pixels
where overlapping objects were detected remain in the image (as exemplified in Figure 6).

Cases where total occlusion occurs are handled by using a flag that is set if occlusion was detected
in immediately previous frames. This flag is then cleared once a transition is observed.
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Algorithm 2 PP(Scene, ν)

1: Segment scene to obtain the region of interest
2: Qualitatively classify the spatial relations between pairs of objects
3: for all regions Ri on the qualitative map do

4: P(e = Ri)← �(located(Ri , ν, b, g, r))

5: end for
6: return argmaxe P(E);

In Algorithm 2, the function � maps every possibility of localisation to a real value in the interval
[0, 1]. This value is defined by the number of predicates satisfied in the body of the located formula.
For instance, a formula that has all of its body satisfied receives value 1, whereas a formula that has 3
out of 4 body predicates satisfied receives the value .75.

6.2. Models

The Bayesian filter presupposes the definition of two probability models: the sensor model and the
transition model. In Algorithm 1, the sensor model is the image model (P(et |st)), whilst the transition
model (P(St+1|st)) represents the transition between regions in the map and is used for calculating
the posterior belief (line 6 of Algorithm 1). Next, we describe how the image and motion models were
designed.

6.2.1. The imagemodel
The image model is encoded by P(et |st), which indicates the probability of the sensor to perceive the
correct evidence related to a given state. In this paper, we assumed a discretised Gaussian model. This
is a N × Nmatrix that shows high probability values on the main diagonal and a fast decrease in value
the further the matrix entry is from the main diagonal. This represents the idea that the greater the
number of regions that have to be traversed in order to go from a region Ri to a region Rj (i �= j), the
smaller the corresponding probability of transition.

6.2.2. The transitionmodel
The transitionmodel conveys the probability of a change in the robot’s location given amoving action
and the ROC CND. Informally, considering a map (such as that shown in Figure 4), and a possible
location of the observer, the CND of the ROC gives the possible changes in the sensor data as the
robotmoves to the neighbouring regions on themap (i.e. any of the relations on the CND graph that is
connected by an edge to the relation qualifying the current observation). Assuming a steady speed of
robotmotion around the target objects, the transitionmodel assigns aweight on the possible next po-
sition of the robot representing the probability of changes between locations. This weight is inversely
proportional to the regions’ sizes and is dependent on the neighbouring relations on the CND with
respect to the current perception (this dependence is represented as a function of the motion action).

More specifically, the transition model is represented by a N × N transition matrix relating every
possibility of state transition in themap (in the case of themap shown in Figure 4 it is a 28×28matrix).
The entries in this matrix are composed of amultiplication by a real constant (representing theweight)
and the function of the moving action. As mentioned above, the real constant is inversely related to
the size of the region in themap, representing the probability of state transitions according to the size
of the region: the larger the region, the lower the probability of state transition. The function represents
perceived occlusion features that modulate the probability for a state change (i.e. the probability will
be greater with respect to changes to locations related to neighbouring relations on the ROC CND,
degrading gracefully tomore distant regions). It is worth recalling that, in this work, the robot’s motion
is inferred from image changes with respect to visual features qualifying occlusions between pairs of
objects. Thus, when the robot approximates a borderline region, the detection of certain occlusion
features related to the next region increases the probability of a state change.

The entries in the N × N transition matrix representing the motion model are normalised by rows.
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12 P. E. SANTOS ET AL.

(a) (b)

Figure 7. Experimental scenario. (a) Snapshot of the test domain. (b) Robot trajectory around the objects.

7. Experimental results

To verify the performance of the proposed PQS algorithm, experiments were conducted using our
ActiveMedia Pioneer Peoplebot mobile robot, whose onboard computer runs the Robot Operating
System (ROS) (Quigley et al., 2009). Three boxes of distinct colours (red, green and blue) and varying
sizeswere carefully positioned in a triangular formation in an indoor environment forming aqualitative
map akin to that illustrated in Figure 4. In addition, in order to capture both colour and depth images,
the well-known Microsoft Kinect sensor was mounted on the base of the robot, whilst a joystick was
used to teleoperate the robot through the environment. Figure 7(a) shows a snapshot of the robot in
the environment during the experiments.

It is worth pointing out the two key design issues of our experimental set-up. Firstly, the Kinect
sensor has an angular field of view of 57◦ horizontally and 43◦ vertically. Secondly, the distance
between the boxes was, at most, 5m, due to space constraints. As a result, the Kinect sensor was
conveniently mounted facing leftwards and the trajectory was carefully planned so that only left turns
would be performed during the experiments, also ensuring that all regions of the qualitativemapwere
visited at least once. The immediate area in which the robot was acted was in an open floor, where
people were able to move around the room, thus the experiment involved considerable noise.

A detailed log was obtained from three subsequent runs that were saved for offline processing.
Figure 7(b) shows the trajectory followed during the first of three runs around the objects. The log is
comprised of the robot’s raw odometry data (logged at 10Hz), as well as registered pairs of colour and
depth images with resolution of 640× 480 pixels (saved at 30Hz) – a total of 9483 pairs of images. At
each run, the trajectory followed was deliberately veered off-course at random – whilst keeping the
same route – in order to (a) increase variability of the collected samples, hence increasing the number
of distinct viewpoints; and, as a result, (b) prevent the recorded data-set from issues such as biasing
and lack of generalisation.

Within the data-set, only 11% of the collected images contained all three target objects, whilst 45%
contained two objects, 41% had only one object and in 3% of the images no object was present. The
ground truth of the data-set was manually annotated. In order to facilitate this annotation, we used
markings on the floor (invisible to the robot) to represent the borders of the regions in the qualitative
map.

Results from the PQS algorithm tested on the recorded data-set were compared with the answers
from the PP-algorithm (described in Section 6.1), that provides the possible location of the robot by
simply evaluating the qualitative relations (i.e. without using the Bayesian filter). From this comparison,
we verified whether the probabilistic algorithm contributed to the localisation procedure in map
locations where not all target objects could be perceived.
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Table 1 represents a confusionmatrix with the results of PQS algorithm, inwhich the rows represent
the actual location of the robot and the columns represent the algorithm output. Themain diagonal of
this matrix represents the percentage of true positives. We can see that in regions R2, R3, R4, R6, R10,
R11, R12, R13, R15, R21, R22, R24, R25 and R28 the PQS algorithm had above 90% accuracy. Accuracy
between 70 and 90% was obtained in regions R1, R5, R14, R16, R19, R20 and R23 and between 50 and
70% was obtained in regions R7, R17 and R26. The localisation procedure in regions R8, R9, R18 and
R27 had accuracy below 50%.

Table 1 also shows that most false positives were cases where the algorithm located the robot in
the immediate neighbourhood of its actual location. This is represented by the high density of false
positives around the main diagonal of matrix 1, but also in some of the entries far from the main
diagonal (whose cells also represent neighbouring regions of the correct robot location). These cases
happened mainly at positions closer to the border limits of the regions, where the visual distinction
between occlusion relations cannot be precisely captured by the vision system. Considering, however,
that we want a system capable of locating a robot in qualitatively distinct regions of space, and that
the border limits in the map cannot be distinguished from the bordering regions, it is conceivable to
include the immediate neighbour regions to a robot location (that falls in the direction of the robot
motion) as true positives. By doing that, the overall accuracy of our localisation algorithm improves
considerably (as shown in Table 2).

Table 2 presents a more detailed description of the results obtained with PQS compared with
the results obtained by running the localisation procedure using only the PP algorithm (without the
Bayesian filter). The first two columns of Table 2 represent, respectively, the actual location of the robot
(column “Region”) and the number of snapshots taken at this location (column “#im”); next, there are
four columns under the label “#objects per image” representing the number of objects contained in
the set of images of the related location. Accuracy results for the localisation procedure using only
the PP algorithm are shown in column “PP”, whereas accuracy results for the probabilistic algorithm
introduced in this paper are under the label “PQS”. The columns “PP-n” and “PQS-n” represent the
results of PP and PQS including as true positives the inferred locations that were direct neighbours of
the robot’s actual location, taking into account the robot’s direction of motion.

Comparing the results shown in columns “PP” and “PQS” (Table 2), we see that the Bayesian filter
considerably improved the robot localisation provided by the PP algorithm in some regions where
only one object could be seen (regions R6 and R28). In the remaining regions the accuracy results for
both PP and PQS were similar.

When considering the direct neighbours of the correct robot location (shown in columns “PP-n”
and “PQS-n”), we can see a considerable improvement in accuracy in both algorithms. However, PQS
had a more expressive improvement, as we can see on regions R5, R9, R18 and R27. In particular R9,
R18, R27 and R28 were regions where the robot always observed a single object and, therefore, the
decision of the robot’s location based solely on occlusion was under-constrained. In this case, the
probabilistic algorithm provided the necessary support to infer the robot’s location to the immediate
neighbour of its actual position.

The regions where the accuracy results of PP and PQS had the lowest results (whether considering
the neighbourhoods or not) were R8, R17 and R26. Two factors explain this poor performance: the size
of these regions (as shown in the map on Figure 4) and the camera’s limited field of view. Looking at
Figure 4, we note that R8, R17 and R26 are the largest regions on the map and that they are defined
by means of the observation of every pair of the three objects r, v and g as NonOccludesDC. However,
the camera used to observe the environment had a limited field of view, implying that most images
captured in these regions had only one or two objects. Therefore PP and PQS could not pin down the
exact robot location, as there were other (competing) possibilities, given the observations of distinct
objects in these regions. This problem could be solved by including an active vision system that
searches for every object pair before making a decision. The development of such system within our
framework is an issue left for future work.
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Table 2. PP and PQS accuracy results considering the number of objects per image.

#objects per image
Region #im 0 1 2 3 PP (%) PQS (%) PP-n (%) PQS-n (%)

R1 112 0 3 78 31 85.7 84.8 99.1 100.0
R2 115 0 55 60 0 100.0 99.1 100.0 100.0
R3 415 0 3 346 66 96.1 97.1 100.0 100.0
R4 290 0 0 46 244 96.9 96.9 97.6 97.6
R5 101 0 9 87 5 70.3 70.3 76.2 79.2
R6 64 0 64 0 0 71.9 100.0 71.9 100.0
R7 87 0 7 80 0 70.1 70.1 75.9 78.2
R8 1452 0 661 698 93 38.4 38.2 43.9 44.1
R9 194 1 193 0 0 .0 .0 .0 87.1
R10 102 0 4 71 27 92.2 92.2 100.0 100.0
R11 124 0 50 74 0 100.0 100.0 100.0 100.0
R12 91 0 3 30 58 92.3 92.3 100.0 100.0
R13 240 0 0 105 135 91.7 91.7 97.9 97.9
R14 54 0 7 31 16 83.3 83.3 100.0 100.0
R15 162 0 148 14 0 100.0 100.0 100.0 100.0
R16 44 0 7 37 0 84.1 84.1 100.0 100.0
R17 1651 0 577 986 88 52.0 51.8 52.4 52.5
R18 509 0 509 0 0 .0 .0 .0 90.2
R19 46 0 1 15 30 73.9 73.9 84.8 84.8
R20 263 0 103 160 0 76.4 76.4 76.4 76,4
R21 34 0 0 4 30 85.3 97.1 100.0 100.0
R22 52 0 0 0 52 92.3 92.3 100.0 100.0
R23 56 0 3 5 48 87.5 87.5 92.9 94.6
R24 252 0 95 157 0 91.7 92.1 91.7 92.1
R25 64 0 2 32 30 95.3 98.4 98.4 100.0
R26 1970 0 725 1109 136 60.1 62.5 60.5 63.5
R27 503 3 497 3 0 .0 .0 .0 99.4
R28 436 295 141 0 0 .0 100.0 .0 100.0

8. Discussion

The use of a formal representation of object occlusion in robotic localisation tasks was hypothesised in
the paper that introduced the ROC. Fogliaroni et al. (2009) and Randell et al. (2001) explored a similar
idea on a deterministic localisation algorithm that was further extended in Tassoni, Fogliaroni, Bhatt,
and De Felice (2011) to represent 3D maps of the environment. The maps used for localisation in the
present paper resemble themaps defined in Fogliaroni et al. (2009) and Tassoni et al. (2011). However,
to the best of our knowledge, the present work is the first working implementation of these ideas
within a probabilistic algorithm and the first to evaluate the resulting localisation procedure on real
robot data.

The qualitative maps based on occlusion (as proposed in this paper) are constructed with the lines
of sight between pairs of landmarks. Taking that literally, we may have to consider, for every pair of
landmarks, the combination of diagrams such as that shown in Figure 3. The tessellation of space
generated by this combination, assuming an increasing number landmarks, would impose a dense
map to the algorithm, that may not have much relation to the high-level, qualitative, knowledge of
the world that motivates the development of this work. Instead, we assume a strategy to select the
most salient objects in the environment as target objects. Thus, not all objects in the environment
should serve as landmarks, but only a selected few objects: those that are relevant to the task at hand
(e.g. a service robot in a warehouse may have to use containers as landmarks), or that are distinctive
features in the environment (e.g. most people navigate around the city of San Francisco using the
relative positions of China Town, Fisherman’s Wharf and the Ferry Tower). Currently, the map is given
as input to the robot (i.e. the landmarks are selected by the system designer), automatic map building
following the ideas presented here is an open issue.
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In short, the localisation procedure developed in this paper is a Bayesian filter, with appropriate
probabilities attached to sensor and transition models. The complexity of the Bayesian filter iteration
is quadratic on the number of possible states (that is, in the number of distinct regions N). Consider
n objects in our environment; for each pair of objects, we have to consider four lines of sight when
we build the relevant regions in our qualitative map (see Figures 3 and 4 as examples). Now the
number of distinct regions generated by an arrangement of m lines is 1 +m +m(m − 1)/2 (Stanley,
2004, Section 1.1); to these regions we should add a polynomial (in m) number of possible regions
on the lines themselves. Hence, we have a number of regions that is polynomial on the number of
objects (note that this is an upper bound on the number of regions, because many regions that are
geometrically possible are not used in the qualitative map, as mentioned in Section 5). In other words,
with n objects we have m = O(n2) lines and N = O(m2) regions; if the Bayesian filter algorithm has
complexity in O(N2), it follows that it has complexity O(n8) with respect to the number n of objects
(since O(N2) = O((m2)2) = O(m4) = O((n2)4) = O(n8)).

The practical implications of this work reside in the fact that the qualitative representation of
possible robot locations facilitates the definition of robot goals in terms of high-level relations. Such
relations are both easily understandable by a non-expert user, and directly related to the map of the
robot’s environment. Additionally, various robot tasks do not require a fully defined metrical map, or
the exact location of the agent, but only a relative localisation of the robot with respect to objects in
the domain.

The qualitative-probabilistic self-localisation algorithm proposed in this work (called PQS) was
evaluated on data from three distinct runs of a robot around coloured objects (red, blue and green
boxes) disposed around an indoor corridor connecting various offices. Coloured boxes were chosen
as target objects in order to simplify the vision processing task, whose development towards the
perception of more complex target objects was outside the scope of this paper.

It is worth reiterating that, whilst the space around the boxes was free to allow manoeuvring, the
robot environment was not completely empty, as there were doors, plants and other objects located
around. Data collection was accomplished with humans moving normally within the area.

The experimental results presented in the previous section show that the localisation algorithmwas
capable of locating the robot in the correct region in most of the images collected. This is represented
by the high accuracy values shown in the main diagonal of the confusion matrix (Figure 1). It is worth
noting that in the majority of the cases where the algorithm was not capable of providing the exact
location, it placed the robot in a neighbouring region of the actual robot’s location (according to the
map in Figure 4). As mentioned above, these cases were related to positions closer to the border
limits of the regions, where the visual distinction between occlusion relations could not be precisely
captured by the vision system.

We also compared PQS with a deterministic algorithm (PP algorithm, Algorithm 2), that works by
simply comparing the observation with a set of rules relating the robot’s location with the observation
ofobject’s occlusion. This comparison shows that theBayesianfilter, appliedonqualitative information,
was successful in improving the accuracy results of the localisation algorithm in regions of high
uncertainty (i.e. in locations where the robot could not observe all the occlusion relations necessary to
precisely define its position in the map).

The PP method is a deterministic algorithm, that works fine provided that there is enough inf-
ormation to infer a fact (in the present case it infers the heads of Formulae (1)–(28) provided that
the relations in their bodies hold). However, in the absence of information it fails. In contrast, the
Bayesian filter, implemented in the PQS algorithm, allows the inference of the robot’s position in
these situations, since it takes into account past perceptions and a previous prediction of the current
location, as well as the current perception. This fact is illustrated in Table 3 that relates the number of
target objects observed in the scenes (column “#Objects”) with the accuracy results for the Perceptual
Procedure (column “PP”) and the Probabilistic Qualitative Self-Localisation algorithm (column “PQS”)
over all regions in themap. In this table, we see that PQS greatly outperforms PP in situations where no
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Table 3. Algorithm performance with respect to the number of objects per scene.

# Objects # Images PP (%) PQS (%)

0 299 .0 70.9
1 3867 11.4 44.1
2 4228 86.8 90.2
3 1089 89.7 99.3

object, or only one object, is present in the scene, whereas both algorithms have similar performances
in situations where more than one object is observed.

It is worth noting also, from Table 3, that PQS had a better performance in the situations where no
object was observed, than in situations containing only one object. This is due to the fact that, in the
latter situation, the predicted belief was competing with the hypothesis of “total occlusion”, whereas
therewere no competing hypotheseswith respect to the former case: the inferencewas guidedmainly
by the prediction step of the Bayesian filter.

9. Conclusion and open issues

This paper developed a novel approach to robot localisation using a qualitative representation about
spatial relations implementedwithin a Bayesian filter. Qualitative representations, in general, provide a
higher level (compact) abstraction thanmetric data that is closer to thehumanconceptualisationof the
world. Therefore, the ultimate aim of this work is the development of intelligent robot systems capable
of reasoning and interacting on the human environment using common-sense knowledge. This goal
was highlighted in Thrun (2003) as one of the shortcomings of the pure probabilistic algorithms for
robotics, and is on the research agenda of the cognitive robotics field (Levesque & Lakemeyer, 2008;
Reiter 2001). Within this context, the present paper concentrates on a particular aspect of qualitative
space representation, which is one of the key aspects in robot navigation using vision sensors: the
representation of (and reasoning about) object occlusion.

The main contribution of the work proposed in this paper is providing a higher level of representa-
tion to complement current Simultaneous Localisation andMap-Building (SLAM) algorithms in order to
leverage human-like knowledge representation and reasoning, and thus to provide an intuitive way of
handling localisation at a level of abstraction closer to the human categorisation of space. This is a step
toward a more effective interaction between humans and robots. We do not claim that the algorithm
investigated in this paper outperforms traditional localisation techniques on metric, topological or
semantic maps. Rather than comparing the algorithm proposed in this work with current, numerical
methods for localisation, we intend to combine both approaches in order to use the high-precision of
the numerical methods with our localisation procedure based on a qualitativeway of representing the
world. This is a task for future investigations.

We are also currently investigating extensions of the ideas presented in this paper towards the
representation of a 3D map that could be used by a flying agent (such as a quadrotor). To this end,
there is the need to consider other modalities of qualitative relations in the underlying theory, such as
relations about direction or shape. The development of a more robust object recognition module, so
that general objects could be used as targets, is also in order. Although the environment in which the
robot was immersed was not static (as there were people moving in the corridor) the target objects
did not move. Relaxing this constraint is also an issue for future investigations.

We believe that the approach described in this paper could be used within a complete SLAM
algorithm, so that the whole qualitative map could be learned from the observations of the robot
around the environment. This is another issue for future work.
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