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Abstract

The Noisy-OR function is extensively used in probabiliseasoning, and usually jus-
tified with heuristic arguments. This paper investigatas sé conditions that imply the
Noisy-OR function.

1 INTRODUCTION

This paper examines the foundations of a popular pattermatfgbilistic reasoning, thHoisy-
ORcombination function. This function has been used extehgin artificial intelligence, both
in purely probabilistic models and in models that combir@bability and logic.

When building a probabilistic model, one must often deahveétvariableX that depends
directly on several variables;, . ..,Y,. The Bayesian network fragment in Figure 1 shows a
possible situation, where variablEsare parents oX. In this case calX acollider [16].

To specify a Bayesian network, each collider must be astsatiaith a probability distri-
butionp(X|Y3,...,Y,). Assume all variables are binary with valuEqfor “true”) and F' (for
“false”). Then the complete specification@fX|Y;, ..., Y, ) requires2” probability values. An
attractive strategy is to find methods that spepif¥ |Y3, . . ., Y;,) using fewer parameters.

The Noisy-OR function is a compact representation for ts&rithution of colliders. The idea
is to start withn probability values;, wherep; is the probability tha{ X = 7'} conditional on
{Y; =T} and{Y; = F} for j #i. Thatis,

pi = p(X = T|Y; =T, {Yg = F};l:l,j;éi) :

The probabilitieg, are calledink probabilities Suppose each variabl¢ is examined and, if it
is T, then there is chandg — p;) that it is flipped toF’; if Y; is F', then is stays witlF". Denote
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by Y/ the result of flipping (or not);. Finally, suppose that
X=VYy V.- vY))

that is, X is the OR combination of thE’. A Noisy-OR function is thus a disjunction of “noisy”
versions ofY;. The distribution ofX conditional ony;,...,Y, is

pX=TY:,...Y,)=1- [] @-p). (1)

Y =T

Given its history of good service, the Noisy-OR has been theab of intense investigation
in the literature. However it does not seem that the follgnguestion has been asked so far: Is
there a simple set of conditions on colliders that forced\bisy-OR function to be adopted? A
solid foundation for the Noisy-OR function is currently angortant issue, as this function is a
critical component of models that merge logical rules arabpbilistic data. A justification of
the Noisy-OR function based on a set of axioms should be Lisefwinting out exactly what
is assumed by the model, and suggesting alternative mdatelsgh modification/removal of
axioms. An axiomatic characterization of the Noisy-OR s plurpose of this paper.

Section 2 discusses some of the motivating factors that leavo widespread adoption of
the Noisy-OR function, focusing on the “causal” and “rulesbd” applications of the function.
Sections 3, 4 and 5 present two possible axiomatizationgh&®Noisy-OR function. Section 6
concludes the paper.

2 ARGUMENTSFOR NOISY-OR

The Noisy-OR combination function is quite intuitive, ag#isentially postulates an OR com-
bination among slightly corrupted versions of the variahfe ...,Y,. This rationale is quite
appealing in at least two situations.

e Suppose each; is interpreted as a “cause” of. Each activeY; is then causingX with
probabilityp;. Causes are active or not independently of each otherXahdppens when
one or more of its causes are active.

e Suppose each edgé «+ Y; is interpreted as an implication, much like a Prolog rule. As
in Prolog, a sequence of rulés < Y; with identical consequent may then mean the

Figure 1. A colliderX with parentsYi,...,Y,. For the purposes of this paper, nodes and
variables are equivalent.



disjunction of the antecedents. Eaghmay be viewed as the probability that a rule is
actually fired, independently of other rules.

The Noisy-OR function was proposed by Pearl (apparentliij@asame time as similar pro-
posals appeared in other fields) [14]. The motivation forgiraposal was to reduce the elicita-
tion effort involved in building a Bayesian network. Thiggament for Noisy-OR was detailed
by Henrion [10], and a new ingredient was added: Id&ek probability p; that X is T" even
when allY; are F'. Other extensions of the Noisy-OR model ensued, for examplsy-AND,
Noisy-MAX [6, 17].

A patrticularly relevant characteristic of the Noisy-OR ¢tion is itsexplaining awayprop-
erty. Assuming variableg;, . . ., Y, are (unconditionally) independent of each other, exphani
away occurs when, for any distingt andY’,

p(Vi=TIX=T,Y; =T,Y 45) <pYi=T|X =T,Y ), (2)
whereY ;; indicates an arbitrary instantiation of all variablg$. }7_, ;. ;-

The idea behind property (2) is simple: upon obsenjig = 7'}, belief in{Y; = T}
decreases as an explanation for the observed §vént T'}, regardless of any configuration of
the parents ofX .

Wellman and Henrion define the explaining away property ihgh8y different form [21],
requiring that

However, the use of equality in the definion of the explairemgy property is perhaps not so
advisable, as it allows for situations where the obserwaiid’; (after observation of X = T'})
simply does not change the belief¥ih

The Noisy-OR function satisfies Expression (2) for any valtithe link probabilities in the
open interval0, 1); if the more liberal property (3) is adopted, then the No@g-function leads
to explaining away for any value of the link probabilitiesx@aining away is one of several
gualitative patterns of probabilistic reasoning that candferred to asynergypatterns among
parents of a variable [2, 20, 21]. We note that Lucas has alstopwvard a thorough analysis of
the interaction between qualitative patterns and sevasy” combination functions [12].

The general properties of the Noisy-OR function and its ga@imations were captured by
Heckerman and Breese in their definitiona#usal independend®]. Here the causal inter-
pretation is obviously present. The idea is that eHcis a cause associated with an inhibitory
variablel;. The variablel; is binary withp(I; = T) = p;. The actual effect of] is given by
the conjunctiony; A I;. There is causal independence in the sense that the varialalee (un-
conditionally) independent of each other and of all vaeabf,, .. .. Y,. Finally, a deterministic
functiong takes{Y; A I;}!_, as input and produces. Figure 2 depicts the structure of the causal
independence model.



Zhang and Poole have also investigated the structure iné-Rjuadditionally assuming that
is itself a combination of two-place functions [22]. The B@iOR function and its most popular
generalizations all satisfy this additional assumptianfalct, one of the important properties of
the Noisy-OR function is that it greatly simplifies inferenalgorithms due to its factorization in
smaller terms.

A slightly different stream of research has focused on thee afsNoisy-OR functions for
combination of logical/probabilistic rules. The undenlgitheme is to combine probabilistic
rules such as

X (u) <& Y(u,v),

where X andY are now relations among objects of some domain, jamlinterpreted as the
probability that the rule “fires” [8, 11, 13, 15]. The difficulhere is thatX (u) (for a givenu)
may be associated with several rules, one for each instiantiaf v. Thus one must decide how
to combine the available probabilistic information &r{u), Y (u, v1),...,Y (u,v,). The most
popular combination function is exactly the Noisy-OR [8, 1B]. Consequently, the Noisy-
OR function has become a central element in the interfacedsst logical and probabilistic
reasoning.

While several arguments for the Noisy-OR function are basedausal models, many ap-
plications of this function have no causal basis (partidulen rule-based domains). The next
sections discuss the justification of the Noisy-OR funcfrom a neutral perspective.

3 PROPERTIESOF COMBINATION FUNCTIONS

Assume that’, ..., Y, are binary variables that are (unconditionally) independéeach other,
and.X is a binary variable that directly depends¥n. .., Y,. All binary variables have values
T andF.

In his presentation of the Noisy-OR function, Pearl argues the following property is
desirable for any combination function [14]:

Accountability: The probability of{ X = T} must be zero if alk; are set taF'.

Another property advocated by Pearkiception independencéhe idea is that any; may
be inhibited with probability; under certain conditions:

Figure 2: Inhibitory variables and the combination funotio
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Exception independence: The value ofX is affected by each; only through(Y; A I;), where
thel,,..., I, are inhibitory variables that are (unconditionally) indedent of each other
and of the variable¥, ..., Y.

This is exactly the causal-independence property disduasgection 2 [9].

Exception independence implies the structure in Figuretigrey is a function of the{Y; A
I;}™_,. Now, g may be any function, including a probabilistic one. Thusétis not yet a definite,
unique form forp(X Y7, ..., Y,).

An additional, and rather substantive, condition that espnt in the literature is to takeas
a deterministicfunction. This is certainly a strong condition that cannetdefended from first
principles; it is probably better to take it as a propertyt thifectively definesthe meaning of
combination functions. Hence:

Determinism: The value ofX is produced by a deterministic functigitiy; A I;,..., Y, A I,).

These properties make no claims that causal effects arerkt woen though they certainly
make sense in a causal model, the properties are supposedé¢atsal with respect to causality.

An eminently reasonable requirement @rs that its application be “associative” and “com-
mutative.” This requirement has been proposed by Zhang aonteRas part of thelefinition
of causal independence [22], and is satisfied in Noisy-ORS\NAND, Noisy-MAX, and other
“Noisy-XX” models in the literature. Lucas has also exanditieis requirement in detail [12].

Associativity: Forany{Yy,...,Y,}, g(Y1,....Yn) =g(...9(9(Y,Y;),Ys) ..., Y)) (for distinct
i,j,k,0), and the value of does not change for any permutation of its inputs.

Associativity and determinism restrict considerably thegble functiong, but there are still
several possible functions. The following theorem clasitigis issue; here and in the remainder
of the paperA & B denotes the XOR operation farand B.

Theorem 1 Accountability, exception independence, determinisrd, agsociativity, are satis-
fied only by four two-place functiongA, B): {F, AN B,A® B, AV B}.

Proof. The effect of the associativity and determinism is to reswur attention to two-place
boolean functiong (A, B). There are sixteen boolean functias(si, B), but not all of them are
valid. Functions withy(F, F') = 1 must be discarded, because these functions leadXoA =
F,B = F) = 1 and violate accountability. Four other functions are nanoutative; the
remaining four functions are listed in the theorem. QED

We note that Theorem 1 has essentially been proved by Lu2as [1
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Exception independence, associativity and determinigsaiructural” properties that define
the nature of combination functions. To proceed, furtherdtiions must be adopted — condi-
tions that capture the intended meaning for combinationtfans. The next two sections explore
this path.

4 EXPLAINING AWAY AND REVERSE INDEPENDENCE

A possible condition to impose on any combination functisrthat the function satisfies the
explaining away property (2). That is, multiple parefis. .., Y, should “compete” forX.
Consider the following requirement, inspired by Wellmaml &tenrion analysis of qualitative
reasoning [21]:

Explaining Away: The property (2) is satisfied as long 8s . . ., Y,, are (unconditionally) in-
dependence of one another, when link probabilities and prababilities for they; are in
the open interval (0,1).

The Noisy-OR function satisfies accountability, exceptiotiependence, determinism, as-
sociativity and explaining away. Do these five propertiaply the Noisy-OR function? That
is, do they work as aaxiomatizationof the Noisy-OR function? The answer to this question
requires the treatment of conditioning events with zerdophbility — as these events appear in
the explaining away pattern for several possipfeinctions. The discussion of zero probability
events is deferred to the Appendix; the main conclusion is:

Theorem 2 Accountability, exception independence, associatidigyerminism and explaining
away are satisfied only by two two-place functigid, B): {A & B, AV B}.

It should be noted that Theorem 2 is only obtained for thectsttefinition of explaining
away that uses Expression (2). If the less strict Expresdprs used, then all four functions
mentioned in Theorem 1 satisfy the conditions of Theorem 2.

Thus the explaining away property does not single out thes\N@IR function. So, instead
of the explaining away property, consider the following gedy, first explored by Agosta [1].
SupposeX is produced by a combination function from (unconditiopgihdependent parents
Yi,...,Y,. Given the even{ X = F'}, shouldn’t the parent¥], ..., Y, still be independent of
one another? Becausé was just obseved to be “inactive,” one might argue that iedepnce
relations should be preserveédhe property of interest is:

Reverseindependence If X is produced by a combination of (unconditionally) indepemce
parentsyy, ..., Y,, then the parents are independent conditiongl.®8n= F'}.

Note that such conditional independence relations aremplied by d-separation, as d-separation would not
sanction any independence among parents conditionpKoa: F'}.
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9(A, B) | p(T|F,F) | p(T|F,T) | p(TT,F) | p(T|T,T)
F 0 0 0 0
ANB 0 0 0 Pq
A® B 0 q p p+q—2pq
AV B 0 q p p+q—pq

Table 1: The probabilities(X = T'|Y7,Y5) for the four functions in Theorem 1.

Agosta denotes reverse independence by CICItmditional inter-causal independerjce
[1], but perhaps we should not focus only on causal integpiets for such a property.

It turns out that reverse independence alone is not enouigiply the Noisy-OR function:

Theorem 3 Accountability, exception independence, associatigiéyerminism and reverse in-
dependence are satisfied only by two two-place functoAsB): {F, AV B}.

The proof of this theorem is discussed in the Appendix.

Explaining away and reverse independence do not uniqughyyithe Noisy-OR function
when adopted separately. However, we uniquely obtain theyNOR function by adopting both
properties:

Theorem 4 Accountability, exception independence, associatisdéigrminism, explaining away
and reverse independence are only satisfied by the Noisy+Qfdn.

Thus we have identified one possible path for axiomatizirgNiisy-OR function, in the
form of the six conditions in Theorem 4 (a similar conclusman be obtained using results
by Lucas [12]). One may wonder whether an alternative axiaaon is possible with less
conditions; one such axiomatization is presented in thé sestion.

5 CUMULATIVITY

Consider then a collideX with two parents; andY,. Table 1 shows the probability values for
p(X = T1Y;,Y5) for the four possible functiongindicated in Theorem 1. The link probabilities
arep=pX =T|Y1=T,Y2=F)andgq=p(X =T|Y1=F, Y, =T).

Among all functions in Table 1, the Noisy-XOR function haoanewhat unpleasant feature:
the probability of{ X = T} conditional on{Y; = T,Y, = T} may besmallerthan the prob-
ability of {X = T} conditional on eithe{Y; = T,Y, = F}or{Y; = F,Y; = T}. It seems
reasonable to expect that a combination function shoulcbgpiiee that the more inputs are active,
the higher is the probability of the collidéf.



Consider then the following property:

Cumulativity: If two configurationsY; andY, of parentsyy, ..., Y, are identical, except that
some variables are set1oin Y; and toF' in Yy, thenp(X = TY) > p(X = T|Y.) for
link probabilities in the open interval, 1).

While the explaining away and reverse independence piiepate found in the literature
and reflect standard facts about the Noisy-OR, cumulatigityt new (albeit straightforward)
assumption on combination functions.

Note that, once cumulativity is assumed, accountabilisetomost of its appeal. In fact,
accountability is not even necessary in the presence of ladivity:

Theorem 5 Exception independence, associativity, determinism ancugativity are only sat-
isfied by Noisy-OR functions.

Proof. By direct verification of Table 1, the Noisy-OR is the only piide function for the case
of two parents. Expression (1) then shows that the Noisy-@Rtfon satisfies the condition for
any number of parents. Functions that prodiicier all inputs equal taF' violate cumulativity
and need not be considered. QED

6 CONCLUSION

The Noisy-OR function has been one of the most effectivestém elicitation of probabilistic
models, particularly models that have a causal basis. Timistion has recently been adopted
as a central element in approaches that merge logical rakkgrbabilistic information. As
applications of Noisy-OR move away from purely causal msdilis important it is to have a
solid foundation for this function. The purpose of this pajgeto present justifications of the
Noisy-OR function that are based on sets of simple yet apgeptoperties.

To summarize, there are two sets of properties that implyihisy-OR function:

e Accountability, exception independence, associatidiggerminism, explaining away and
reverse independence.

¢ Exception independence, associativity, determinism amncudativity.

The first set of properties contains conditions that haven beeg associated with the Noisy-
OR function, usually in connection to causal models. Th@sdaset is more compact, and is
perhaps appropriate as a common foundation for both “caasdl“rule-based” applications of

the Noisy-OR function. These sets of properties can now led ts investigate combination
functions that go beyond the Noisy-OR, either by droppingnagroperties, or by modifying

others.



A PROOFSFOR SECTION 4

This section discusses the proof of Theorems 2, 3 and 4. A fgungents depend on decisions
regarding conditioning on events of zero probability.

Start with the simplest situation: take the structure inuFégl and assume that only two
parents}; andY;, are present. Table 1 contains the probabilitie¥ Y7, Y3) for the four func-
tions in Theorem 1, where the link probabilities are= p(X = T|Y; = T,Y, = F) and
¢=p(X =T|Yi = F,Y; = T).

To verify the explaining away condition, it is necessary ¢onputep(Y; = T|X =T.,Y, =
T) andp(Y; = T|X = T); explaining away occurs when the former is strictly smattem the
latter. Denote byy the probability of the eventY; = T'} and by the probability of the event
{Y; = T}. Recall thatt; andY; are assumed (unconditionally) independent by the expigini
away condition.

Forg(A, B) = AV B, we obtain:

(¢ — pqg+ p)a
(¢ —pg+pa+ql—a)

a((q —pg+p)B+p(l—5))
al(lg—pg+p)B+p(l—p)+1—-a)g

PV =T X=T,Y,=T) =

pV1=T|X=T)=
Forg(A, B) = A @ B, we obtain:

(¢ — 2pg + p)a
(¢ —2pg+p)a+q(l—a)

a((g — 2pg+p)B+p(1 — B))
a((¢g—2pg+p)f+p(l—p5))+(1—a)g
Thus, both Noisy-OR and Noisy-XOR satisfy the explainingggwondition for two parents (as
long as the relevant probabilities are different from 0 andhis condition is assumed in the
remainder of this section). The same process of direct eatifin shows thaj(A, B) = AA B
fails the explaining away property, a8y, =T/ X =T.Y, =T) =p(Y1 =T|X =T) = 1 for
this function.

PN =TI X=T,Y,=T) =

M =T|X =T) =

The remaining situation is the functiaiiA, B) = F. In this case(A = T|X = T) must be
defined for the zero probability evehX = T'}. Note also that a few other combination functions
generate conditioning on zero probabilities; for examtle functiong(A, B) = A A B leads to
zero probability conditioning fop(Y; = 71X = T,Y; = F'). Conditioning on zero probabilities
is a delicate situation that can be handled by several mstf®)4, 5, 7, 18, 19]. Here the
difficulty is that{ X = T,Y> = F'} may be a logical impossibility (consider the situation weher
g(A, B) = F; then{X = T} is logically impossible). One solution is to remove any fiioc
that can lead to such inconveniencies. A possibly more ategygproach is as follows. Suppose
we have a leak probability that X will be 7', independent of any other event, and then we
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Figure 3. Leak variablé with probabilitye for two parents; andYs.

Figure 4: VariableX with several parents: all parents, . .., X,, are lumped intdV.

examine the behavior of probabilitiesas+ 0. Thus we consider the structure in Figure 3. Here
no conditioning with zero probabilities occurs. kg4, B) = F', we obtain:

pYi=TIX=T,Y,=T)=p\;, =T|X =T) = o,

and we thus remove this function from consideration. Théabditiesp(Y; =T|X =T,Y; =

T) andp(Y, = T|X = T) can be computed for all four functions in Theorem 1 with leak
probabilitye; the conclusion is the same (after tedious algebraic méatipuas): for two parents,
only Noisy-OR and Noisy-XOR satisfy the conditions in Thewor2.

It remains to be shown that the explaining away conditionaigsBed by Noisy-OR and
Noisy-XOR functions with more than two parents. To show,thie can lump every formula
other thanX andY” into a variablé? that is active with probability(7). The resulting structure
is presented in Figure 4.

Now for the Noisy-OR function we have

p(X|Y1,Y2) =Y p(X[V1,Ya)(1 = p(W)) + p(W),

wherep(X|Y1, Y3) is the Noisy-OR combination df; andYs. Itis possible possible to show, af-
ter tedious algebraic manipulations, that explaining ae@gurs for any (W) with non-extreme
values. Likewise, for the Noisy-XOR function we have

P(X[Y1.Y2) =) p(X[V1,Y2)(1 = 2p(W)) + p(W),

wherep(X Y7, Y,) is not the Noisy-XOR combination df; andY;. Explaining away again
occurs for any (W) with non-extreme values. These results are still valid éiree add a leak
probabilitye, effectively merging the structures in Figures 3 and 4. Wis tbbtain Theorem 2.
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g(A,B) | p(Yi=TIX=FY,=T)| pY,=T|X=F)
F a Q
AANB a(l=pq)/(1 —apq) | a(l—PBpqg)/(1— abpq)

a(l—p—q+2pq) a(l—p—PBq+28pq)
A® B a(l—ap—g+2apq) a(l—ap—Bq+2abpq)
AVB a(l—p)/(1 - ap) a(l—p)/(1 - ap)

Table 2: The probabilitieg(Y; = T|X = F,Y, = T) andp(Y; = T|X = F) for the four
functions in Theorem 1.

As for Theorem 3, computgy; = T|X = F, Y, = T) andp(Y; = T|X = F) from Table 1
for the four functions in Theorem 1. There is no conditionimgzero probability events, and the
resulting probabilities are given in Table 2. Direct vesdtfion leads to Theorem 3 for structures
with two parents; more parents can be handled using the danotuse depicted in Figure 4.

Finally, Theorems 2 and 3 directly imply Theorem 4.

Acknowledgements

This work has received generous support from HP Labs and BIBiThe work has also been
supported by CNPq (through grant 3000183/98-4).

References

[1] J. M. Agosta. “Conditional inter-causally independenmbde distributions, a property of
“noisy-or’ models. InProc. Conf. on Uncertainty in Artificial Intelligen¢c@p. 9-16, San
Francisco, 1991. Morgan Kaufmann.

[2] J. H. Bolt, S. Renooij, and L. C. van der Gaag. Upgradindp@gmous signs in QPNSs. In
Conf. on Uncertainty in Artificial Intelligencgp. 73—-80, San Francisco, California, 2003.
Morgan Kaufmann.

[3] G. Coletti. Coherent numerical and ordinal probahitistssessmentdEEE Transactions
on Systems, Man and Cybernetfi24(12):1747-1753, 1994.

[4] F. G. Cozman. Algorithms for conditioning on events of@éwer probability. InProc.
of the Fifteenth Int. Florida Artificial Intelligence Reseh Society Conf.pp. 248-252,
Pensacola, Florida, 2002.

[5] B. de Finetti. Theory of probability, vol. 1-2Wiley, New York, 1974.

11



[6] F. J. Diez. Parameter adjustment in Bayes networks: Emealized noisy OR-gate. In
Proc. Conf. on Uncertainty in Artificial Intelligen¢pp. 99-105, San Francisco, California,
1993. Morgan Kaufmann.

[7] A. Gilio and R. Scozzafava. Conditional events in prabgbassessment and revision.
IEEE Transactions on Systems, Man and Cyberne®ié¢€l2):1741-1746, 1994.

[8] S. Glesner and D. Koller. Constructing flexible dynameadiéf networks from first-order
probalistic knowledge bases. 8ymbolic and Quantitative Approaches to Reasoning with
Uncertainty pp. 217-226, 1995.

[9] D. Heckerman and J. S. Breese. Causal independencedbalpitity assessment and in-
ference using Bayesian networks. Technical Report MSROZFRS8, Microsoft Research,
March 1994.

[10] M. Henrion. Some practical issues in constructing dfefietworks. InUncertainty in
Artificial Intelligence 3 North-Holland, Amsterdam, 1989.

[11] M. Jaeger. Relational Bayesian networksPhoc. Conf. on Uncertainty in Artificial Intel-
ligence pp. 266—-273, San Francisco, California, 1997. Morgan Kaunin.

[12] P. Lucas. Bayesian network modelling by qualitativiégras. INnECAI, 2002.

[13] L. Ngo and P. Haddawy. Answering queries from contestisitive probabilistic knowledge
bases.Theoretical Computer Scienck71(1-2):147-177, 1997.

[14] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Netwark®lausible Inference
Morgan Kaufmann, San Mateo, California, 1988.

[15] D. Poole. Probabilistic Horn abduction and Bayesiatwoeks. Atrtificial Intelligence
64:81-129, 1993.

[16] P. Spirtes, C. Glymour, and R. Schein€3ausation, Prediction, and Search (second edi-
tion). MIT Press, 2000.

[17] S. Srinivas. A generalization of the noisy-OR model. Aroc Conf. on Uncertainty in
Artificial Intelligence pp. 208-215, San Francisco, 1993. Morgan Kaufmann.

[18] B. Vantaggi. Graphical representation of asymmetri@ptpoid structures. Iihird Int.
Symp. on Imprecise Probabilities and Their Applicatiqes. 560-574. Carleton Scientific,
2003.

[19] P. Walley. Statistical Reasoning with Imprecise Probabiliti€hapman and Hall, London,
1991.

[20] M. P. Wellman. Qualitative probabilistic networks fplanning under uncertaintyJncer-
tainty in Artificial Intelligence 2pp. 197-208, 1988.

12



[21] M. P. Wellman and M. Henrion. Explaining ‘explaining aw. IEEE Transactions on
Pattern Analysis and Machine Intelligendd(3):287-307, 1993.

[22] N. L.Zhang and D. Poole. Exploiting causal indepen@andayesian network inference.
Journal of Artificial Intelligence Researchp. 301-328, 1996.

13



