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Abstract

The Noisy-OR function is extensively used in probabilisticreasoning, and usually jus-
tified with heuristic arguments. This paper investigates sets of conditions that imply the
Noisy-OR function.

1 INTRODUCTION

This paper examines the foundations of a popular pattern of probabilistic reasoning, theNoisy-
ORcombination function. This function has been used extensively in artificial intelligence, both
in purely probabilistic models and in models that combine probability and logic.

When building a probabilistic model, one must often deal with a variableX that depends
directly on several variablesY1; : : : ; Yn. The Bayesian network fragment in Figure 1 shows a
possible situation, where variablesYi are parents ofX. In this case callX acollider [16].

To specify a Bayesian network, each collider must be associated with a probability distri-
butionp(XjY1; : : : ; Yn). Assume all variables are binary with valuesT (for “true”) andF (for
“false”). Then the complete specification ofp(XjY1; : : : ; Yn) requires2n probability values. An
attractive strategy is to find methods that specifyp(XjY1; : : : ; Yn) using fewer parameters.

The Noisy-OR function is a compact representation for the distribution of colliders. The idea
is to start withn probability valuespi, wherepi is the probability thatfX = Tg conditional onfYi = Tg andfYj = Fg for j 6= i. That is,pi = p�X = T jYi = T; fYj = Fgnj=1;j 6=i� :
The probabilitiespi are calledlink probabilities. Suppose each variableYi is examined and, if it
is T , then there is chance(1� pi) that it is flipped toF ; if Yi is F , then is stays withF . Denote�Escola Politécnica, Univ. de São Paulo, São Paulo, Brazil. Email: fgcozman@usp.br
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by Y 0i the result of flipping (or not)Yi. Finally, suppose thatX = (Y 01 _ Y 02 _ � � � _ Y 0n);
that is,X is the OR combination of theY 0i . A Noisy-OR function is thus a disjunction of “noisy”
versions ofYi. The distribution ofX conditional onY1; : : : ; Yn isp(X = T jY1; : : : ; Yn) = 1� Yi:Yi=T(1� pi): (1)

Given its history of good service, the Noisy-OR has been the object of intense investigation
in the literature. However it does not seem that the following question has been asked so far: Is
there a simple set of conditions on colliders that forces theNoisy-OR function to be adopted? A
solid foundation for the Noisy-OR function is currently an important issue, as this function is a
critical component of models that merge logical rules and probabilistic data. A justification of
the Noisy-OR function based on a set of axioms should be useful in pointing out exactly what
is assumed by the model, and suggesting alternative models through modification/removal of
axioms. An axiomatic characterization of the Noisy-OR is the purpose of this paper.

Section 2 discusses some of the motivating factors that haveled to widespread adoption of
the Noisy-OR function, focusing on the “causal” and “rule-based” applications of the function.
Sections 3, 4 and 5 present two possible axiomatizations forthe Noisy-OR function. Section 6
concludes the paper.

2 ARGUMENTS FOR NOISY-OR

The Noisy-OR combination function is quite intuitive, as itessentially postulates an OR com-
bination among slightly corrupted versions of the variables Y1; : : : ; Yn. This rationale is quite
appealing in at least two situations.� Suppose eachYi is interpreted as a “cause” ofX. Each activeYi is then causingX with

probabilitypi. Causes are active or not independently of each other, andX happens when
one or more of its causes are active.� Suppose each edgeX  Yi is interpreted as an implication, much like a Prolog rule. As
in Prolog, a sequence of rulesX  Yi with identical consequentX may then mean themY1 mX mYn: : : ��	��R

Figure 1: A colliderX with parentsY1; : : : ; Yn. For the purposes of this paper, nodes and
variables are equivalent.
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disjunction of the antecedents. Eachpi may be viewed as the probability that a rule is
actually fired, independently of other rules.

The Noisy-OR function was proposed by Pearl (apparently at the same time as similar pro-
posals appeared in other fields) [14]. The motivation for theproposal was to reduce the elicita-
tion effort involved in building a Bayesian network. This argument for Noisy-OR was detailed
by Henrion [10], and a new ingredient was added: theleak probability pL that X is T even
when allYi areF . Other extensions of the Noisy-OR model ensued, for exampleNoisy-AND,
Noisy-MAX [6, 17].

A particularly relevant characteristic of the Noisy-OR function is itsexplaining awayprop-
erty. Assuming variablesY1; : : : ; Yn are (unconditionally) independent of each other, explaining
away occurs when, for any distinctYi andYj,p(Yi = T jX = T; Yj = T;Y�ij) < p(Yi = T jX = T;Y�ij) ; (2)

whereY�ij indicates an arbitrary instantiation of all variablesfYkgnk=1;k 6=i;k 6=j.
The idea behind property (2) is simple: upon observingfYj = Tg, belief in fYi = Tg

decreases as an explanation for the observed eventfX = Tg, regardless of any configuration of
the parents ofX.

Wellman and Henrion define the explaining away property in a slightly different form [21],
requiring that p(Yi = T jX = T; Yj = T;Y�ij) � p(Yi = T jX = T;Y�ij) : (3)

However, the use of equality in the definion of the explainingaway property is perhaps not so
advisable, as it allows for situations where the observation of Yj (after observation offX = Tg)
simply does not change the belief inYi.

The Noisy-OR function satisfies Expression (2) for any valueof the link probabilities in the
open interval(0; 1); if the more liberal property (3) is adopted, then the Noisy-OR function leads
to explaining away for any value of the link probabilities. Explaining away is one of several
qualitative patterns of probabilistic reasoning that can be referred to assynergypatterns among
parents of a variable [2, 20, 21]. We note that Lucas has also put forward a thorough analysis of
the interaction between qualitative patterns and several “noisy” combination functions [12].

The general properties of the Noisy-OR function and its generalizations were captured by
Heckerman and Breese in their definition ofcausal independence[9]. Here the causal inter-
pretation is obviously present. The idea is that eachYi is a cause associated with an inhibitory
variableIi. The variableIi is binary withp(Ii = T ) = pi. The actual effect ofYi is given by
the conjunctionYi ^ Ii. There is causal independence in the sense that the variables Ii are (un-
conditionally) independent of each other and of all variablesY1; : : : ; Yn. Finally, a deterministic
functiong takesfYi^Iigni=1 as input and producesX. Figure 2 depicts the structure of the causal
independence model.
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Zhang and Poole have also investigated the structure in Figure 2, additionally assuming thatg
is itself a combination of two-place functions [22]. The Noisy-OR function and its most popular
generalizations all satisfy this additional assumption. In fact, one of the important properties of
the Noisy-OR function is that it greatly simplifies inference algorithms due to its factorization in
smaller terms.

A slightly different stream of research has focused on the use of Noisy-OR functions for
combination of logical/probabilistic rules. The underlying theme is to combine probabilistic
rules such as X(u) p � Y (u; v);
whereX andY are now relations among objects of some domain, andp is interpreted as the
probability that the rule “fires” [8, 11, 13, 15]. The difficulty here is thatX(u) (for a givenu)
may be associated with several rules, one for each instantiation of v. Thus one must decide how
to combine the available probabilistic information onX(u), Y (u; v1); : : : ; Y (u; vn). The most
popular combination function is exactly the Noisy-OR [8, 11, 13]. Consequently, the Noisy-
OR function has become a central element in the interface between logical and probabilistic
reasoning.

While several arguments for the Noisy-OR function are basedon causal models, many ap-
plications of this function have no causal basis (particularly in rule-based domains). The next
sections discuss the justification of the Noisy-OR functionfrom a neutral perspective.

3 PROPERTIES OF COMBINATION FUNCTIONS

Assume thatY1; : : : ; Yn are binary variables that are (unconditionally) independent of each other,
andX is a binary variable that directly depends onY1; : : : ; Yn. All binary variables have valuesT andF .

In his presentation of the Noisy-OR function, Pearl argues that the following property is
desirable for any combination function [14]:

Accountability: The probability offX = Tg must be zero if allYi are set toF .

Another property advocated by Pearl isexception independence. The idea is that anyYi may
be inhibited with probabilitypi under certain conditions:mI1 m̂mY1 mg m̂mYn mIn: : :: : : X- - �? ?��	��R

Figure 2: Inhibitory variables and the combination function g.
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Exception independence: The value ofX is affected by eachYi only through(Yi ^ Ii), where
theI1; : : : ; In are inhibitory variables that are (unconditionally) independent of each other
and of the variablesY1; : : : ; Yn.

This is exactly the causal-independence property discussed in Section 2 [9].

Exception independence implies the structure in Figure 2, whereg is a function of thefYi ^Iigni=1. Now,g may be any function, including a probabilistic one. Thus there is not yet a definite,
unique form forp(XjY1; : : : ; Yn).

An additional, and rather substantive, condition that is present in the literature is to takeg as
a deterministicfunction. This is certainly a strong condition that cannot be defended from first
principles; it is probably better to take it as a property that effectively definesthe meaning of
combination functions. Hence:

Determinism: The value ofX is produced by a deterministic functiong(Y1 ^ I1; : : : ; Yn ^ In).
These properties make no claims that causal effects are at work. Even though they certainly

make sense in a causal model, the properties are supposed to be neutral with respect to causality.

An eminently reasonable requirement ong is that its application be “associative” and “com-
mutative.” This requirement has been proposed by Zhang and Poole as part of thedefinition
of causal independence [22], and is satisfied in Noisy-OR, Noisy-AND, Noisy-MAX, and other
“Noisy-XX” models in the literature. Lucas has also examined this requirement in detail [12].

Associativity: For anyfY1; : : : ; Yng, g(Y1; : : : ; Yn) = g(: : : g(g(Yi; Yj); Yk) : : : ; Yl) (for distincti,j,k,l), and the value ofg does not change for any permutation of its inputs.

Associativity and determinism restrict considerably the possible functionsg, but there are still
several possible functions. The following theorem clarifies this issue; here and in the remainder
of the paper,A� B denotes the XOR operation forA andB.

Theorem 1 Accountability, exception independence, determinism, and associativity, are satis-
fied only by four two-place functionsg(A;B): fF;A ^ B;A�B;A _ Bg.
Proof. The effect of the associativity and determinism is to restrict our attention to two-place
boolean functionsg(A;B). There are sixteen boolean functionsg(A;B), but not all of them are
valid. Functions withg(F; F ) = 1 must be discarded, because these functions lead top(XjA =F;B = F ) = 1 and violate accountability. Four other functions are not commutative; the
remaining four functions are listed in the theorem. QED

We note that Theorem 1 has essentially been proved by Lucas [12].
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Exception independence, associativity and determinism are “structural” properties that define
the nature of combination functions. To proceed, further conditions must be adopted — condi-
tions that capture the intended meaning for combination functions. The next two sections explore
this path.

4 EXPLAINING AWAY AND REVERSE INDEPENDENCE

A possible condition to impose on any combination function is that the function satisfies the
explaining away property (2). That is, multiple parentsY1; : : : ; Yn should “compete” forX.
Consider the following requirement, inspired by Wellman and Henrion analysis of qualitative
reasoning [21]:

Explaining Away: The property (2) is satisfied as long asY1; : : : ; Yn are (unconditionally) in-
dependence of one another, when link probabilities and prior probabilities for theYi are in
the open interval (0,1).

The Noisy-OR function satisfies accountability, exceptionindependence, determinism, as-
sociativity and explaining away. Do these five propertiesimply the Noisy-OR function? That
is, do they work as anaxiomatizationof the Noisy-OR function? The answer to this question
requires the treatment of conditioning events with zero probability — as these events appear in
the explaining away pattern for several possibleg functions. The discussion of zero probability
events is deferred to the Appendix; the main conclusion is:

Theorem 2 Accountability, exception independence, associativity,determinism and explaining
away are satisfied only by two two-place functionsg(A;B): fA� B;A _ Bg.

It should be noted that Theorem 2 is only obtained for the strict definition of explaining
away that uses Expression (2). If the less strict Expression(3) is used, then all four functions
mentioned in Theorem 1 satisfy the conditions of Theorem 2.

Thus the explaining away property does not single out the Noisy-OR function. So, instead
of the explaining away property, consider the following property, first explored by Agosta [1].
SupposeX is produced by a combination function from (unconditionally) independent parentsY1; : : : ; Yn. Given the eventfX = Fg, shouldn’t the parentsY1; : : : ; Yn still be independent of
one another? BecauseX was just obseved to be “inactive,” one might argue that independence
relations should be preserved.1 The property of interest is:

Reverse independence If X is produced by a combination of (unconditionally) independence
parentsY1; : : : ; Yn, then the parents are independent conditional onfX = Fg.

1Note that such conditional independence relations are not implied by d-separation, as d-separation would not
sanction any independence among parents conditional onfX = Fg.
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g(A;B) p(T jF; F ) p(T jF; T ) p(T jT; F ) p(T jT; T )F 0 0 0 0A ^B 0 0 0 pqA� B 0 q p p+ q � 2pqA _B 0 q p p+ q � pq
Table 1: The probabilitiesp(X = T jY1; Y2) for the four functions in Theorem 1.

Agosta denotes reverse independence by CICI (forconditional inter-causal independence)
[1], but perhaps we should not focus only on causal interpretations for such a property.

It turns out that reverse independence alone is not enough toimply the Noisy-OR function:

Theorem 3 Accountability, exception independence, associativity,determinism and reverse in-
dependence are satisfied only by two two-place functionsg(A;B): fF;A _Bg.
The proof of this theorem is discussed in the Appendix.

Explaining away and reverse independence do not uniquely imply the Noisy-OR function
when adopted separately. However, we uniquely obtain the Noisy-OR function by adopting both
properties:

Theorem 4 Accountability, exception independence, associativity,determinism, explaining away
and reverse independence are only satisfied by the Noisy-OR function.

Thus we have identified one possible path for axiomatizing the Noisy-OR function, in the
form of the six conditions in Theorem 4 (a similar conclusioncan be obtained using results
by Lucas [12]). One may wonder whether an alternative axiomatization is possible with less
conditions; one such axiomatization is presented in the next section.

5 CUMULATIVITY

Consider then a colliderX with two parentsY1 andY2. Table 1 shows the probability values forp(X = T jY1; Y2) for the four possible functionsg indicated in Theorem 1. The link probabilities
arep = p(X = T jY1 = T; Y2 = F ) andq = p(X = T jY1 = F; Y2 = T ).

Among all functions in Table 1, the Noisy-XOR function has a somewhat unpleasant feature:
the probability offX = Tg conditional onfY1 = T; Y2 = Tg may besmallerthan the prob-
ability of fX = Tg conditional on eitherfY1 = T; Y2 = Fg or fY1 = F; Y2 = Tg. It seems
reasonable to expect that a combination function should guarantee that the more inputs are active,
the higher is the probability of the colliderX.
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Consider then the following property:

Cumulativity: If two configurationsY1 andY2 of parentsY1; : : : ; Yn are identical, except that
some variables are set toT inY1 and toF inY2, thenp(X = T jY1) > p(X = T jY2) for
link probabilities in the open interval(0; 1).

While the explaining away and reverse independence properties are found in the literature
and reflect standard facts about the Noisy-OR, cumulativityis a new (albeit straightforward)
assumption on combination functions.

Note that, once cumulativity is assumed, accountability loses most of its appeal. In fact,
accountability is not even necessary in the presence of cumulativity:

Theorem 5 Exception independence, associativity, determinism and cumulativity are only sat-
isfied by Noisy-OR functions.

Proof. By direct verification of Table 1, the Noisy-OR is the only possible function for the case
of two parents. Expression (1) then shows that the Noisy-OR function satisfies the condition for
any number of parents. Functions that produceT for all inputs equal toF violate cumulativity
and need not be considered. QED

6 CONCLUSION

The Noisy-OR function has been one of the most effective tools for elicitation of probabilistic
models, particularly models that have a causal basis. This function has recently been adopted
as a central element in approaches that merge logical rules and probabilistic information. As
applications of Noisy-OR move away from purely causal models, it is important it is to have a
solid foundation for this function. The purpose of this paper is to present justifications of the
Noisy-OR function that are based on sets of simple yet appealing properties.

To summarize, there are two sets of properties that imply theNoisy-OR function:� Accountability, exception independence, associativity,determinism, explaining away and
reverse independence.� Exception independence, associativity, determinism and cumulativity.

The first set of properties contains conditions that have been long associated with the Noisy-
OR function, usually in connection to causal models. The second set is more compact, and is
perhaps appropriate as a common foundation for both “causal” and “rule-based” applications of
the Noisy-OR function. These sets of properties can now be used to investigate combination
functions that go beyond the Noisy-OR, either by dropping some properties, or by modifying
others.

8



A PROOFS FOR SECTION 4

This section discusses the proof of Theorems 2, 3 and 4. A few arguments depend on decisions
regarding conditioning on events of zero probability.

Start with the simplest situation: take the structure in Figure 1 and assume that only two
parents,Y1 andY2, are present. Table 1 contains the probabilitiesp(XjY1; Y2) for the four func-
tions in Theorem 1, where the link probabilities arep = p(X = T jY1 = T; Y2 = F ) andq = p(X = T jY1 = F; Y2 = T ).

To verify the explaining away condition, it is necessary to computep(Y1 = T jX = T; Y2 =T ) andp(Y1 = T jX = T ); explaining away occurs when the former is strictly smallerthan the
latter. Denote by� the probability of the eventfY1 = Tg and by� the probability of the eventfY2 = Tg. Recall thatY1 andY2 are assumed (unconditionally) independent by the explaining
away condition.

Forg(A;B) = A _B, we obtain:p(Y1 = T jX = T; Y2 = T ) = (q � pq + p)�(q � pq + p)�+ q(1� �) ;p(Y1 = T jX = T ) = �((q � pq + p)� + p(1� �))�((q � pq + p)� + p(1� �)) + (1� �)q :
Forg(A;B) = A� B, we obtain:p(Y1 = T jX = T; Y2 = T ) = (q � 2pq + p)�(q � 2pq + p)� + q(1� �) ;p(Y1 = T jX = T ) = �((q � 2pq + p)� + p(1� �))�((q � 2pq + p)� + p(1� �)) + (1� �)q :
Thus, both Noisy-OR and Noisy-XOR satisfy the explaining away condition for two parents (as
long as the relevant probabilities are different from 0 and 1; this condition is assumed in the
remainder of this section). The same process of direct verification shows thatg(A;B) = A ^ B
fails the explaining away property, asp(Y1 = T jX = T; Y2 = T ) = p(Y1 = T jX = T ) = 1 for
this function.

The remaining situation is the functiong(A;B) = F . In this casep(A = T jX = T ) must be
defined for the zero probability eventfX = Tg. Note also that a few other combination functions
generate conditioning on zero probabilities; for example,the functiong(A;B) = A ^B leads to
zero probability conditioning forp(Y1 = T jX = T; Y2 = F ). Conditioning on zero probabilities
is a delicate situation that can be handled by several methods [3, 4, 5, 7, 18, 19]. Here the
difficulty is thatfX = T; Y2 = Fg may be a logical impossibility (consider the situation whereg(A;B) = F ; thenfX = Tg is logically impossible). One solution is to remove any function
that can lead to such inconveniencies. A possibly more elegant approach is as follows. Suppose
we have a leak probability� that X will be T , independent of any other event, and then we
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mI1 m̂mY1 mg m̂mY2 mInmL? X- - �? ?��	��R
Figure 3: Leak variableL with probability� for two parentsY1 andY2.mI1 m̂mY1 ����_=� m̂mY2 mInmW? X- - �? ?��	��R

Figure 4: VariableX with several parents: all parentsX3; : : : ; Xn are lumped intoW .

examine the behavior of probabilities as�! 0. Thus we consider the structure in Figure 3. Here
no conditioning with zero probabilities occurs. Forg(A;B) = F , we obtain:p(Y1 = T jX = T; Y2 = T ) = p(Y1 = T jX = T ) = �;
and we thus remove this function from consideration. The probabilitiesp(Y1 = T jX = T; Y2 =T ) and p(Y1 = T jX = T ) can be computed for all four functions in Theorem 1 with leak
probability�; the conclusion is the same (after tedious algebraic manipulations): for two parents,
only Noisy-OR and Noisy-XOR satisfy the conditions in Theorem 2.

It remains to be shown that the explaining away condition is satisfied by Noisy-OR and
Noisy-XOR functions with more than two parents. To show this, we can lump every formula
other thanX andY into a variableW that is active with probabilityp(W ). The resulting structure
is presented in Figure 4.

Now for the Noisy-OR function we havep(XjY1; Y2) =XW p(XjY1; Y2)(1� p(W )) + p(W );
wherep(XjY1; Y2) is the Noisy-OR combination ofY1 andY2. It is possible possible to show, af-
ter tedious algebraic manipulations, that explaining awayoccurs for anyp(W ) with non-extreme
values. Likewise, for the Noisy-XOR function we havep(XjY1; Y2) =XW p(XjY1; Y2)(1� 2p(W )) + p(W );
wherep(XjY1; Y2) is not the Noisy-XOR combination ofY1 andY2. Explaining away again
occurs for anyp(W ) with non-extreme values. These results are still valid evenif we add a leak
probability�, effectively merging the structures in Figures 3 and 4. We thus obtain Theorem 2.
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g(A;B) p(Y1 = T jX = F; Y2 = T ) p(Y1 = T jX = F )F � �A ^B �(1� pq)=(1� �pq) �(1� �pq)=(1� ��pq)A� B �(1�p�q+2pq)�(1��p�q+2�pq) �(1�p��q+2�pq)�(1��p��q+2��pq)A _B �(1� p)=(1� �p) �(1� p)=(1� �p)
Table 2: The probabilitiesp(Y1 = T jX = F; Y2 = T ) andp(Y1 = T jX = F ) for the four
functions in Theorem 1.

As for Theorem 3, computep(Y1 = T jX = F; Y2 = T ) andp(Y1 = T jX = F ) from Table 1
for the four functions in Theorem 1. There is no conditioningon zero probability events, and the
resulting probabilities are given in Table 2. Direct verification leads to Theorem 3 for structures
with two parents; more parents can be handled using the same structure depicted in Figure 4.

Finally, Theorems 2 and 3 directly imply Theorem 4.
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