
Strong Probabilistic Planning

Silvio do Lago Pereira, Leliane Nunes de Barros and Fábio Gagliardi Cozman
Institute of Mathematics and Statistics - University of São Paulo

Rua do Matão, 1010 - São Paulo, Brazil

Abstract

We consider the problem of synthesizing policies, in do-
mains where actions have probabilistic effects, that are
optimal in the expected-case among the optimal worst-
case strong policies. Thus we combine features from
nondeterministic and probabilistic planning in a single
framework. We present an algorithm that combines
dynamic programming and model checking techniques
to find plans satisfying the problem requirements: the
strong preimage computation from model checking is
used to avoid actions that lead to cycles or dead ends, re-
ducing the model to a Markov Decision Process where
all possible policies are strong and worst-case optimal
(i.e., successful and minimum length with probability
1). We show that backward induction can then be used
to select a policy in this reduced model. The resulting
algorithm is presented in two versions (enumerative and
symbolic); we show that the latter version allows plan-
ning with extended reachability goals.

Introduction
Planning under uncertainty has many facets; in particular,
actions can range from completely nondeterministic to prob-
abilistic. The latter situation is typically modelled with
Markov Decision Processes (MDPs) (Boutilier, Dean, &
Hanks 1999; Bonet & Geffner 2003). However, it is not
always possible to model a real problem under the assump-
tions of additive costs and Markovian transitions demanded
by MDPs (Dolgov & Durfee 2005). In this paper we look
into situations that go beyond the usual theory of MDPs but
that still lead to efficient solution algorithms.

Our proposal is inspired on assumptions adopted in non-
deterministic planning; that is, planning where actions have
uncertain outcomes but are not associated with probabili-
ties (Giunchiglia & Traverso 1999). Plans are then required
to offer strong guarantees; for example, plans must reach a
goal state for sure and through an acyclic path that has min-
imum length. We embrace these requirements as they seem
most appropriate in many real planning problems, indepen-
dently of whether one has probabilities or not. But suppose
that one does have probabilities on transitions and actions

Copyright © 2007, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

have uniform costs. We ask, How can one find strong poli-
cies that maximize expected rewards? If the reader finds it
surprising that a standard MDP may fail to produce such a
policy, consider our Example 1.

We use strong probabilistic planning to refer to situa-
tions where one wishes to produce an optimal worst-case
strong policy that minimizes the expected number of steps to
goal states. We show that model checking (MC) techniques
can be employed to great effect in strong probabilistic plan-
ning. We start discussing straightforward reachability goals;
i.e., reaching a goal state with certainty while minimizing
the number of steps. However, we also present a symbolic
version of our planner that is even capable of handling ex-
tended reachability goals (Pistore, Bettin, & Traverso 2001;
Lago, Pistore, & Traverso 2002). With these goals, we can
also impose constraints on states visited during policy exe-
cution.

We should note that in principle we are dealing with a
constrained MDP; that is, an MDP with additional constraints
on functionals of the trajectories (Puterman 1994, page 229).
There are two difficulties in directly resorting to the theory
of constrained MDPs. First, it is not entirely obvious how to
model constraints such as “probability zero that a cycle oc-
curs” in a way that leads to efficient search for policies. Sec-
ond, general constrained MDPs fail the dynamic program-
ming principle, and thus are not solved by backward induc-
tion; rather, constrained MDPs may depend on randomized
policies obtained by linear programming (Altman 1999). We
show that strong probabilistic planning admits a backward
reasoning scheme; thus we find that our model-checking
strategy is more illuminating and yields better results than
a general approach based on constrained MDPs.

The remainder of this paper is organized as follows. The
next section briefly points out the differences between non-
deterministic and probabilistic actions. We then present a
review of algorithms for MC/MDP-based planning, where we
contribute with a unifying perspective that seeks to com-
pare them on a common ground. The insights produced by
this analysis steer us to our algorithms for strong probabilis-
tic planning. We describe two algorithms, one enumerative
and one symbolic, and prove that they return a policy that is
expected-case optimal among the strong policies which are
worst-case optimal. We also discuss our implementation and
then close the paper.

Actions: nondeterministic and probabilistic
Uncertainty generally interferes with two important aspects
of the planning task: observability and determinism. Due to
uncertainty, the current state may not be precisely known.
Moreover, even when the current state is known, after exe-
cuting certain actions, the next state may not be precisely
predicted (Ghallab, Nau, & Traverso 2004). In this work,
we will deal only with uncertainty about the predictability
of next states. To model this kind of uncertainty, one can
consider two entities:

• the agent, an entity which plans to achieve its goals; and

• the nature, an entity whose intentions are unknown and
whose actions can interfere with the agent actions.

Suppose that the agent and the nature are in a game: the
agent starts by choosing an action α from the set

�
and, de-

pending on this action, the nature chooses its action from
the set ��� α � . For example, consider the scenario depicted
in Figure 1: when the agent chooses action throw-coin,
the nature should in turn choose its action from the set��� throw-coin ����� turn-tail-up, turn-head-up 	 . Since nature
actions can interfere with agent actions, the best choice for
the agent depends on what information it has about nature
behavior. Clearly, if the agent knows exactly how nature
chooses its actions, there is no uncertainty about the next
state (i.e., deterministic planning). Thus, in planning under
uncertainty about the predictability of next states, we always
assume that agent has not certainty about nature behavior.

s
0

s
0

throw-coin

s
1

s
2

’

turn-tail-up

turn-head-up

possible nature actions

agent action

Figure 1: Uncertainty model as a game against nature.

There are two main uncertainty models (LaValle 2006)
that are usually considered in planning under uncertainty1:

• nondeterministic: the agent has no idea about how the
nature chooses its action from ��� α � ;

• probabilistic: the agent has observed the nature and gath-
ered statistics about how frequently the actions in �
� α �
are chosen by nature.

If a nondeterministic model is considered then it is only
known that the nature will make a choice from ��� α � . In this
case, a pessimist strategy for agent action selection should
be appropriate. On the other hand, if a probabilistic model is
considered then, for each agent action α � � , a probability
distribution over ��� α � should be specified as part of the
model. In this case, the strategy for agent action selection
should be optimal with respect to this information.

1In a nondeterministic model, uncertainty is not measured and
is also called Knightian uncertainty; while in a probabilistic model,
uncertainty is measurable and is also called risk (Trevizan, Coz-
man, & de Barros 2007).

Approaches for planning under uncertainty
In this section we offer a unified perspective on planning un-
der uncertainty as we present the necessary background for
the latter sections. We would like to stress that a combined
presentation of nondeterministic and probabilistic planning
has rarely appeared in the literature; thus we devote consid-
erable space to this discussion.

The approaches of interest here are:

• Model checking (MC), used for planning under nondeter-
ministic uncertainty models; and

• Markovian decision processes (MDP), used for planning
under probabilistic uncertainty models.

Both approaches are very attractive, but for different rea-
sons: the main advantage of MC is the effectiveness of the
solutions; while the main advantage of MDP is the efficiency
of the solutions. Nondeterministic planning based on MC
aims the synthesis of effective plans, that are guaranteed to
achieve a goal state regardless of nature behavior. On the
other hand, probabilistic planning based on MDP leads to ef-
ficient plans, that yield optimal expected-case performance
with respect to the information about nature behavior, if ex-
ecuted numerous times for the same problem.

Nondeterministic planning based on MC

The basic idea underlying nondeterministic planning based
on MC is to solve problems model-theoretically (Giunchiglia
& Traverso 1999).

Definition 1. A nondeterministic planning domain is a tuple� ��
�� ,
�

, ��� , where:

• � is a finite nonempty set of states;
•
�

is a finite nonempty set of actions;
• ������� � ������� 0,1 	 is a state transition function. �

We assume that
�

contains a trivial action τ such that, for
all σ ��� , we have that ��� σ, τ, σ ����� 1 if and only if σ � σ � .
So, when agent executes action τ in a certain state, it always
remains in this same state. Intuitively, action τ represents the
fact that agent can choose do nothing in any state. Given a
state σ and an action α, the set of α-successors of σ, denoted
by ��� σ,α � , is the set � σ � �!��� σ,α, σ �"��� 1 	 .

A policy in a nondeterministic planning domain
�

is a
partial function π �#��� �

, that maps states to actions. A
nondeterministic policy is a partial function π � �$� 2 %'&(

, that maps states to sets of actions. The set � π of states
reached by a policy π is � σ �)� σ,α �*� π 	,+�� σ ���)� σ,α �*�
π and σ �)�-��� σ,α �!	 . Given a policy π, the corresponding
execution structure

�
π is the subsystem of

�
that has � π

as set of states and contains all transitions induced by the
actions in policy π.

Definition 2. A nondeterministic planning problem is a tu-
ple ./��
 � , s0, 01� , where:

•
�

is a nondeterministic planning domain;
• s0 ��� is an initial state;
• 032*� is a set of goal states. �

Given a nondeterministic planning problem, we distin-
guish among three kinds of solutions:

• a weak solution is a policy that may achieve the goal, but
due to nondeterminism, is not guaranteed to do so. A pol-
icy π is a weak solution if some finite path in

�
π , starting

from s0, reaches a state in 0 (Cimatti et al. 1997).

• a strong solution is a policy that always achieves the goal,
in spite of nondeterminism. A policy π is a strong solution
if the subsystem

�
π is acyclic and all paths starting from

s0 reach a state in 0 (Cimatti, Roveri, & Traverso 1998).

• a strong-cyclic solution is a policy that always achieves
the goal, under the fairness assumption that execution will
eventually exit from cycles. A policy π is a strong-cyclic
solution if all paths in

�
π starting from s0 reach a state in0 (Daniele, Traverso, & Vardi 1999).

The strong nondeterministic planning algorithm. The
strong nondeterministic planning algorithm, adapted from
the work of Cimatti, Roveri, & Traverso (1998), allows us to
synthesize plans that are guaranteed to reach a goal state, re-
gardless of nondeterminism. This algorithm is correct, com-
plete and returns an optimal worst-case policy π, in the sense
that the worst path in the execution structure

�
π has minimal

length.

STRONGNONDETERMINISTICPLANNING 4"5-6
1 π 7�8
2 π 9#7;:<4 σ, τ 6>= σ ?)@�A
3 while π B π 9 do
4 S 7 STATESCOVEREDBY 4 π 9 6
5 if s0 ? S then return π 9
6 π 7 π 9
7 π 9 7 π 9DC PRUNE(STRONGPREIMAGE 4 S 6 , S 6
8 return failure

The basic planning step in this algorithm is performed
by function STRONGPREIMAGE � S � , which returns the set of
pairs � σ,α � such that execution of action α in state σ neces-
sarily leads to a state in S. This function is defined as:

STRONGPREIMAGE � S �)���#� σ,α ��� (FE ��� σ,α �)2 S 	
By iterating the strong preimage function, from the set

of goal states 0 , the algorithm builds up a finite backward
search tree (Figure 2). Since the set of states is finite and
this function is monotonic with respect to set inclusion, i.e.,0G2 STRONGPREIMAGE1 �H01�I2 STRONGPREIMAGE2 �H01�I2JKJLJ 2 STRONGPREIMAGEn �H01� , after a finite number of iter-
ations, a fixpoint is obtained.

G

Figure 2: A backward search tree built after three iterations
of the strong preimage function.

During this iterative process, the algorithm maps the
states in the search tree to actions (or sets of actions) and,

therefore, a policy is synthesized as a side effect. At each
iteration, the set of states covered by π � , the policy under
construction, is obtained by the following function:

STATESCOVEREDBY � π � ����� σ �M� σ,α �)� π � 	
If there exists a strong policy to reach a state in 0 , from

the initial state s0, then in one of the iterations, the condition
s0 � STATESCOVEREDBY � π �"� is satisfied and the algorithm
returns policy π � as solution to the planning problem.

Finally, to avoid the assignment of new actions to states
already covered in previous iterations (i.e. to avoid cycles
and to guarantee optimal worst-case policies), the algorithm
uses the following function:

PRUNE � R,S �����#� σ,α �)� R � σ N� S 	
Probabilistic planning based on MDPs
The basic idea underlying probabilistic planning based on
MDP is to represent the planning problem as an optmization
problem (Boutilier, Dean, & Hanks 1999).

Definition 3. A probabilistic planning domain is a tuple
� �
"� ,

�
, ��� , where:

• � is a finite nonempty set of states;
•
�

is a finite nonempty set of actions;
• ������� � �����PO 0,1 Q is a state transition function. �

Given two states σ,σ � and an action α, the probability of
reaching σ � by executing α in σ is ��� σ,α, σ �"� . Further-
more, for each state σ ��� , if there exists α and σ � such that��� σ,α, σ � � E 0, then R σ S TVU ��� σ,α, σ � �-� 1. Particularly,
for the trivial action τ , we must have:

��� σ, τ, σ �"�)�
W

0 iff σ
E

σ �
1 iff σ � σ �

Given a state σ, the set of executable actions in σ, denoted
by

� � σ � , is the set � α �YX σ �Z��� such that ��� σ,α, σ �"� E 0 	 .
A policy in a probabilistic planning domain

�
is a total

function π �[�\� �
, that maps states to actions. Given a

policy π, the corresponding execution structure
�

π is the
subsystem of

�
that has � as set of states and contains all

transitions induced by the actions in policy π.

Definition 4. A probabilistic planning problem is a tuple.]��
 � , 0�� , where:

•
�

is a probabilistic planning domain;
• 032*� is a set of goal states. �

A reward function ^_� �$� IR ` is a function that maps
states to rewards. Intuitively, when the agent reaches a state
σ it receives a reward ^a� σ � . In the case of probabilistic
planning for reachability goals, given a set of goal states 0 ,
a Boolean reward function can be defined as following:

^b� σ �)�
W

0 iff σ N�10
1 iff σ �10

A reward is an “incentive” that attracts the agent to goal
states. Moreover, to force the agent to prefer shortest paths
to goal states, at each executed step, future rewards are dis-
counted by a factor 0 c γ c 1 (The use of such discount
factor also guarantees convergence of fixpoint computations
(Puterman 1994).). Hence, if the agent reachs a goal state

by following a path with n steps, it receives a reward of γn.
Since the agent wants to maximize its reward, it should min-
imize the expected length of paths to goal states.

The optimal expected-value of a state σ can be computed
as the fixpoint of the following equation (Bellman 1957):

vn � σ �)�;deef
eeg
^a� σ � iff n � 0
max

α T %1h σ i � gn � σ,α �1	 iff n j 0,

where the expected gain in state σ when action α is executed,
denoted by g � σ,α � , is defined as:

gn � σ,α ��� γ � R
σ S TVU ��� σ,α, σ �"��� vn k 1 � σ ���

By selecting an action α that produces the optimal value
for a state σ, for each σ ��� , we can build an optimal policy:

π lM� σ �)� arg max
α T %1h σ i � gn � σ,α �!	

A policy π is a solution for a probabilistic planning prob-
lem . if and only if π is an optimal policy for . (Ghallab,
Nau, & Traverso 2004). According to this definition, any
probabilistic planning problem has a “solution”, since it is
always possible to find optimal policies. Note, however, that
this does not mean that such solution allows the agent to
reach a goal state: an optimal policy is independent of the
initial state of the agent.

The probabilistic planning algorithm. The probabilis-
tic planning algorithm, based on the value-iteration method
(Bellman 1957), allows us to synthesize optimal expected-
case policies for probabilistic planning problems.

PROBABILISTICPLANNING(5)
1 foreach σ ?nm do v0 4 σ 6n7po�4 σ 6
2 n 7 0

3 loop
4 n 7 n q 1

5 foreach σ ?nm do
6 foreach α ?>rs4 σ 6 do
7 gn 4 σ,α 6n7 γ tvu σ S wyx 4{z-4 σ,α, σ 9 6|t vn } 1 4 σ 9 6~6
8 vn 4 σ 6n7 maxα w��>� σ � : gn 4 σ,α 6HA
9 πn 4 s 6n7 argmaxα w��>� σ � : gn 4 σ,α 6~A
10 if max

σ wyxa� vn 4 σ 6�� vn } 1 4 σ 6 ��� ε then return πn

The probabilistic planning algorithm starts by assigning
value ^a� σ � to each state σ �,� . Then, it iteratively refines
this value by selecting an action that maximizes the expected
gain. At each iteration n, and for each state σ, the value
vn � σ � is computed from the value vn k 1 � σ � , that was com-
puted at the previous iteration. It can be shown that there
exists a maximum number of iterations needed to guarantee
that this algorithm returns an optimal policy (Ghallab, Nau,
& Traverso 2004). However, in practical applications, the
condition used to stop iteration is the following:

max
σ TVUI�vn � σ �n� vn k 1 � σ � � c ε

With this condition, the algorithm guarantees that the re-
turned policy is an ε-optimal policy, i.e., for each state σ ��� ,
the expected value v � σ � does not differ from the optimum
value v lM� σ � by more than an arbitrarily small fixed error ε.

Comparison between the approaches
In this section, we present a brief comparison between the
algorithms for probabilistic planning and for nondetermin-
istic planning based on a planning domain (Figure 3). By
analyzing the solutions that these two algorithms find for
similar planning problems, we intend to indicate the advan-
tages of each one and move toward a third alternative, which
combines both of them (the resulting algorithm is presented
in the next section).

s
1

s
3

s
0

s
2

a (1.0)

s
5

s
4

d (0.5)

b (0.5)

d (1.0)

b (0.5)

d (0.1)

d (0.9)

b (0.8)
b (0.2)

c (0.7)

b (0.9)
b (0.1)

a (1.0)

c (0.3)

d (0.5)

a (1.0)

c (0.9)
c (0.1)

Figure 3: A domain where actions have uncertain effects.

The next example shows the frailties of probabilistic plan-
ning when strong policies are required.

Example 1. Consider
�

the planning domain depicted in
Figure 3 and 0$��� s5 	 is the set of goal states. For this
problem, the algorithm PROBABILISTICPLANNING ��
 � , 0����
returns the following policy (with γ � 0.9):

π � s0 ��� d
π � s1 ��� τ
π � s2 ��� c
π � s3 ��� c
π � s4 ��� d
π � s5 ��� τ

This policy is an optimal expected-case solution, i.e., it
has shortest execution in the expected-case. By executing
action d in state s0, we expect that in 90% of the executions
the goal state can be reached with only one step. This is
very efficient and, in some applications, this could be ad-
vantageous, even if 10% of the executions fail to reach the
goal state. However, there are many other practical applica-
tions where failures are unacceptable. In such applications,
a plan that may lead to longer executions, but necessarily
reaches the goal, is preferable to a plan that in the optimistic
case may reach the goal earlier, but in the pessimist case
may no longer reach the goal. Clearly, the policy returned
by the probabilistic algorithm is weak for state s0, because
it cannot guarantee that the goal state will be reached from
this state. Therefore, if an application does not permit fail-
ures, a weak policy is inappropriate. On the other hand, if
s2 is considered as the initial state, the returned policy is a
strong-cyclic solution (a better solution, because it guaran-
tees to reach the goal state from s2). However, due to cycles,

the number of steps that a strong-cyclic policy need to reach
a goal state is unbounded (e.g., in Figure 3, too many steps c
could be needed until agent could leave state s2). Therefore,
if an application is critical in terms of time, a strong-cyclic
policy is inappropriate. �

The next example illustrate the danger of excessive free-
dom in nondeterministic planning.

Example 2. Consider
�

the planning domain depicted
in Figure 3, s0 the initial state and 0���� s5 	
the set of goal states. For this problem, the algo-
rithm STRONGNONDETERMINISTICPLANNING ��
 � , s0, 01��� re-
turns the following nondeterministic policy:

π � s0 �)� a
π � s2 �)��� a, b, d 	
π � s3 �)��� a, c 	
π � s4 �)� d
π � s5 �)� τ

This policy is an optimal worst-case strong solution, i.e.,
it necessarily reaches to reach the goal state with a bounded
number of steps (that is minimal in the worst-case). Be-
cause in the nondeterministic model there is no preference
among actions, any one of the six policies corresponding to
this nondeterministic solution can be selected for execution:

π1 ���#� s0, a � , � s2, a � , � s3, a � , � s4, d � , � s5, τ �!	
π2 ���#� s0, a � , � s2, a � , � s3, c � , � s4, d � , � s5, τ �!	
π3 ���#� s0, a � , � s2, b � , � s3, a � , � s4, d � , � s5, τ �!	
π4 ���#� s0, a � , � s2, b � , � s3, c � , � s4, d � , � s5, τ �!	
π5 ���#� s0, a � , � s2, d � , � s3, a � , � s4, d � , � s5, τ �!	
π6 ���#� s0, a � , � s2, d � , � s3, c � , � s4, d � , � s5, τ �!	
Although an agent would prefer to select the policy π4,
which has the possibility of reaching the goal with two steps,
it can even select the worst of them (π1), which always needs
exactly four steps to reach the goal state. Therefore, if an ap-
plication needs an efficient strong policy, a nondeterministic
strong policy is inappropriate. �
Remark. As we have seen, the probabilistic planning al-
gorithm cannot guarantee to find policies that avoid failures
and cycles (i.e. strong policies); conversely, the nondeter-
ministic planning algorithm cannot guarantee to select the
best strong policy. Thus, we propose a third algorithm,
named strong probabilistic planning, that can guarantee to
find an optimal expected-case policy among those policies
which are optimal in the worst-case.

Strong probabilistic planning
The strong probabilistic planning combines two common
approaches for planning under uncertainty. In this frame-
work, the MC approach is used to guarantee that only opti-
mal worst-case strong solutions can be synthesized during
the planning task, while the MDP approach is used to guar-
antee that an optimal expected-case policy, among those that
are optimal in the worst-case, is returned by the planning al-
gorithm.

We present two versions of the algorithm for strong prob-
abilistic planning: an enumerative version, where states are

explicitly represented and manipulated by standard set op-
erations, and a symbolic version, where states are implicitly
represented by propositional formulas and can be manipu-
lated by efficient operations on MTBDD’s (Bryant 1986).

Enumerative strong probabilistic planning
Given a planning problem .���
 � , s0, 01� , where

�
is a

probabilistic planning domain, the strong probabilistic plan-
ning algorithm starts by constructing an initial policy that
maps each goal state σ ��0 to the trivial action τ , and by
assigning optimal expected-value 1 for each one of them.
After this, in each subsequent iteration, the algorithm al-
ternates strong preimage (Mller-Olm, Schimidt, & Steffen
1999) and optimal expected-value computations. By using
the strong preimage computation, it guarantees that the syn-
thesized policy will necessarily reach a goal state (without
possibility of failure and with a bounded number of steps);
and, by using the optimal expected-value computation, it
guarantees that, whenever a state is mapped to more than
one action by the strong preimage computation, only an op-
timal action will be chosen in that state. Example 3 gives
some intuition about how the the strong probabilistic plan-
ning algorithm works.

s
5

s
4

d (1.0)

(a) first iteration

s
3

s
5

s
4

d (1.0)

c (0.7)

b (0.9)
b (0.1)

a (1.0)

c (0.3)

(b) second iteration

s
3

s
2

s
5

s
4

d (0.5)

d (1.0)

b (0.8)
b (0.2)

c (0.7)

c (0.3)

d (0.5)

a (1.0)

c (0.9)
c (0.1)

(c) third iteration

b (0.8)

s
3

s
0

s
2

a (1.0)

s
5

s
4b (0.5)

d (1.0)

b (0.5)

d (0.1)

d (0.9)
b (0.2)

c (0.7)

c (0.3)

(d) fourth iteration

Figure 4: Strong probabilistic planning algorithm execution.

Example 3. Let γ � 0.9 and consider the planning problem.]��
 � , s0, � s5 	M� , where
�

is the planning domain depicted
in Figure 3. Initially, we have π ���#� s5, τ �!	 and v � s5 �)� 1:

• In the first iteration (Figure 4-a), the pruned strong preim-
age of � s5 	 is �#� s4, d �!	 and the expected gain for execut-
ing action d in state s4 is g � s4, d ��� γ � 1.0 � v � s5 �)� 0.9.
Thus, we let v � s4 �)� 0.9 and π ���#� s4, d � , � s5, τ �!	 .

• In the second iteration (Figure 4-b), the pruned strong
preimage of � s4, s5 	 is �#� s3, a � , � s3, c ��	 . With this strong
preimage computation, we can avoid action b, which

could cause a failure (i.e., going from s3 to s1 leads the
agent to a dead end). The expected gain for the remaining
actions are:

g � s3, a �)� γ � 1.0 � v � s4 ��� 0.81
g � s3, c �)� γ ��� 0.3 � v � s4 �>� 0.7 � v � s5 �!�)� 0.87

With this optimal expected-case value computation, we
can give preference to action c. Now, we let v � s3 ��� 0.87
and π ���#� s3, c � , � s4, d � , � s5, τ �!	 . Thus, when we have
to select among actions that certainly lead to the goal, we
choose the one that produces the maximum expected gain.

• In the third iteration (Figure 4-c), the pruned strong
preimage of � s3, s4, s5 	 is �#� s2, a � , � s2, b � , � s2, d �!	 .
Now, the strong preimage computation avoids action c,
which could cause cycle. The expected gains for the other
actions are:

g � s2, a �)� γ ��� 1.0 � v � s3 �!�)� 0.79
g � s2, b �)� γ ��� 0.2 � v � s3 �n� 0.8 � v � s5 �!�)� 0.88
g � s2, d ��� γ ��� 0.5 � v � s3 �>� 0.5 � v � s4 �!�)� 0.80

Being action b the best choice in state s2. Thus, we let
v � s2 ��� 0.88 and π ���#� s2, b � , � s3, c � , � s4, d � , � s5, τ �!	

• Finally, in the last iteration (Figure 4-d), the pruned
strong preimage of � s2, s3, s4, s5 	 is �#� s0, a � , � s0, b �!	 .
The action d, which could cause failure, is eliminated.
The expected gains are:

g � s0, a �)� γ ��� 1.0 � v � s2 �!�)� 0.789
g � s0, b �)� γ ��� 0.5 � v � s3 �n� 0.5 � v � s2 �!�)� 0.787

Now, action a is the best choice. Thus, we let v � s0 �)� 0.80
and π �\�#� s0, a � , � s2, b � , � s3, c � , � s4, d � , � s5, τ �!	 . Be-
cause the initial state s0 is covered by this policy, the
strong probabilistic planning stops and returns π as so-
lution (which corresponds to policy π4 in the comparison
section). �

The enumerative version. The enumerative version of
the strong probabilistic planning algorithm is composed of
two functions: the STRONGPROBABILISTICPLANNING func-
tion, that performs the strong preimage computation, and the
CHOOSE function2, that performs the optimal expected-value
computation.

STRONGPROBABILISTICPLANNING 4"5-6
1 foreach σ ?�@ do v 4 σ 6n7 1

2 π 7�8
3 π 9 7;:<4 σ, τ 6>= σ ?)@�A
4 while π B π 9 do
5 S 7 STATESCOVEREDBY 4 π 9 6
6 if s0 ? S then return π 9
7 π 7 π 9
8 π 9 7 π 9YC CHOOSE 4 PRUNE 4 STRONGPREIMAGE 4 S 6 , S 6~6
9 return failure

CHOOSE 4 R 6
1 π 7�8

2Because all paths in a strong policy have a bounded number
of steps (finite horizon), a discount factor is no longer necessary
to guarantee convergence; however, it is still necessary to force the
agent to give preference to shortest paths.

2 foreach σ ? STATESCOVEREDBY 4 R 6 do
3 A 7;: α =<4 σ,α 6[? R A
4 foreach α ? A do
5 g 4 σ,α 6n7 γ t,u σ S w��>� σ,α � 4{zs4 σ,α, σ 9 6|t v 4 σ 9 6~6
6 v 4 σ 6n7 maxα w A g 4 σ,α 6
7 π 7 π C :<4 σ,arg maxα w A g 4 σ,α 6~6~A
8 return π

The following theorems are the main results because they
prove that backward induction works for our model.

Theorem 1. If a probabilistic planning problem . has a
strong solution, the algorithm STRONGPROBABILISTICPLAN-
NING returns an optimal worst-case strong policy for . .

Proof. We denote by πi the policy built in the i-th iteration
of the algorithm. By definition, a state σ ��� is covered
by π0 if and only if σ is a goal state; thus, π0 covers all
states from which, in the worst case, there is a path of length
0 to a goal state. In the first iteration, if the initial state
s0 is covered by π0, clearly, the algorithm returns an opti-
mal worst-case policy for . . Otherwise, the pruned strong
preimage of the set S0 of states covered by π0 is computed.
For each pair � σ,α ��� PRUNE � STRONGPREIMAGE � S0 � , S0 �!� ,
all α-successors of σ are goal states, independently
of the chosen actions; thus, the policy π1 � � π0 +
CHOOSE � PRUNE � STRONGPREIMAGE � S0 � , S0 �!�!� covers all
states from which, in the worst case, there is a path of
length 1 to a goal state. By the inductive hypotesis, for
j c i, policy πj covers all states from which, in the worst
case, there exists a path of length j to a goal state. There-
fore, in the i-th iteration, if the initial state s0 is covered
by πi k 1, the algorithm returns an optimal worst-case pol-
icy for . . Otherwise, the pruned strong preimage of the
set Si k 1 of states covered by πi is computed. If � σ,α ���
PRUNE � STRONGPREIMAGE � Si k 1 � , Si k 1 ��� , then at least one
α-successor of σ takes, in the worst case, i � 1 steps to
reach a goal state (otherwise the state σ would have been
covered by policy πi k 1 and, thus, been pruned). There-
fore, independently of the chosen actions, the policy πi � �
πi k 1 + CHOOSE � PRUNE � STRONGPREIMAGE � Si k 1 � , Si k 1 �!�!�
covers all states from which, in the worst case, there is a
path of (optimal) length i to a goal state. �
Theorem 2. The optimal worst-case strong policy returned
by algorithm STRONGPROBABILISTICPLANNING is optimal in
the expected-case.

The expected-case optimality of the policy returned by the
algorithm STRONGPROBABILISTICPLANNING is derived from
the fact that function CHOOSE uses the optimality principle
(Bellman 1957) to choose the best action for each state cov-
ered by this policy.

Symbolic strong probabilistic planning
The basic idea underlying the symbolic version of the strong
probabilistic planning algorithm is to represent states as sets
of propositions and to consistently work with propositional
formulas that characterize sets of states. In order to do this,
a new definition of planning domain is needed:

Definition 5. A symbolic probabilistic planning domain is a
tuple

� ��
 P, � ,
�

, � , ��� , where:

• P is a finite nonempty set of atomic propositions;

• � is a finite nonempty set of states;

•
�

is a finite nonempty set of actions;

• ������� 2P is a state labeling function;

• ������� � �v����O 0,1 Q is a state transition function. �
Each atomic proposition p � P denotes a state property.

The set of atomic propositions which are satisfied in a state
σ ��� is denoted by ��� σ � . The intension of a propositional
formula ϕ in

�
, denoted by JϕK � , is the set of states in

�
which satisfies ϕ. Formally, we have3:

• JϕK ��� σ ����� ϕ ����� σ �!	 if ϕ � P

• J � ϕK �*��& JϕK

• Jϕ � ϕ � K � JϕK � Jϕ � K
• Jϕ � ϕ � K � JϕK + Jϕ � K
Furthermore, we assume that ������� σ � , for all state σ ��� .
Therefore, it follows that J � K �*� .

The trivial action τ � � and the transition function � are
defined as in the pure probabilistic case.

Definition 6. A symbolic probabilistic planning problem is
a tuple ./��
 � , s0, � ϕ,ϕ �"�!� , where:

•
�

is a symbolic probabilistic planning domain;

• s0 ��� is an initial state;

• � ϕ,ϕ �"� is an extended reachability goal. �
An extended reachability goal is a pair of propositional

formulas � ϕ,ϕ �"� : the preservation condition ϕ specifies a
property that should be satisfied in each state visited through
the path to a goal state (excepting the goal state); and the
achievement condition ϕ � specifies a property that should be
satisfied in all goal states, i.e., 03� Jϕ � K � .

Extended goals (Pistore, Bettin, & Traverso 2001; Lago,
Pistore, & Traverso 2002) represent an improvement on the
expressiveness of the reachability planning framework. By
using such goals, besides defining acceptable final states, we
can also establish preference among possible intermediate
states. Note that a reward function has the same expressive-
ness of extended goals; however, extended goals are high
level specifications.

An example of a symbolic probabilistic domain is de-
picted in Figure 5. The shadowed states are the ones that
can be covered by a policy for the extended reachability goal�~� q, p � q � r � , which specify that the agent should preserve
property � q (equivalently, avoid property q), until reaching
a state where the three properties p, q and r can be satisfied.
Other examples of useful extended reachability goals are:

• �~� , r � : to achieve property r;

• � p, r � : to achieve property r, by preserving property p;

• �~� q, r � : to achieve property r, by avoiding property q;

• � p �-� q, r � : to achieve r, by preserving p and avoiding q.

3For the sake of simplicity, we omit subscript � in J.K.

= {p, q, r}

s
6 = {p, q } s

0 = { }

s
1 = { r }

s
2 = { q }

s
3 = { q, r }

s
4= { p }

s
5= { p, r }

s
7

a (1.0)

a (1.0)

a (1.0)

b (1.0)d (0.4)

d (0.6)

d (1.0)

d (1.0)

c (0.7)

c (0.3)

b (.8.0) b (0.2)

c (1.0)

Figure 5: A symbolic probabilistic planning domain.
.

The symbolic version. The symbolic version for the al-
gorithm for extended reachability goals is very similar to
the enumerative one. The main difference is on the “inten-
sional” representation of set of states and on the definition
of the prune function, which is defined as following:

PRUNE � R,S,ϕ �����#� σ,α �)� R � σ � JϕK � and σ N� S 	
Given the strong preimage R of a set of states S, as well

as a preserving condition ϕ, the function PRUNE selects from
R all pairs � σ,α � , such that state σ has property ϕ and it
was not yet mapped to another action in a previous itera-
tion. By proceeding in this way, the prune function avoids
all intermediate states which does not satisfy the preserving
condition ϕ.

The remainder of the planning algorithm is as following:

STRONGPROBABILISTICPLANNING 4"5-6
1 foreach σ ? Jϕ 9 K � do v 4 σ 6n7 1

2 π 7�8
3 π 9 7':<4 σ, τ 6n= σ ? Jϕ 9 K �vA
4 while π B π 9 do
5 S 7 STATESCOVEREDBY 4 π 9 6
6 if s0 ? S then return π 9
7 π 7 π 9
8 π 9 7 π 9<C CHOOSE 4 PRUNE 4 STRONGPREIMAGE 4 S 6 , S 6~6
9 return failure

CHOOSE 4 R 6
1 π 7�8
2 foreach σ ? STATESCOVEREDBY 4 R 6 do
3 A 7;: α =<4 σ,α 6[? R A
4 foreach α ? A do
5 g 4 σ,α 6n7 γ t,u σ S w��>� σ,α � 4{zs4 σ,α, σ 9�6|t v 4 σ 9�6~6
6 v 4 σ 6n7 maxα w A g 4 σ,α 6
7 π 7 π C :<4 σ,arg maxα w A g 4 σ,α 6~6~A
8 return π

The following theorems prove that backward induction
also works for the symbolic version of our model.

Theorem 3. If a symbolic probabilistic planning problem. has a strong solution, the symbolic version of algorithm
STRONGPROBABILISTICPLANNING returns an optimal worst-
case strong policy for . .

Theorem 4. The optimal worst-case strong policy returned
by the symbolic version of algorithm STRONGPROBABILIS-
TICPLANNING is optimal in the expected-case.

The proofs to these theorems are straightforward from
proof of Theorem 1. Noticing that, besides prunning the
states already covered by the policy under construction, the
symbolic version of the function PRUNE also prunes states
that do not satisfy the extended reachability goal.

Implementation
All policies for the examples in this paper were synthe-
sized by programs which we have implemented. The algo-
rithm PROBABILISTICPLANNING was implemented in JAVA,
while the other two – STRONGNONDETERMINISTICPLANNING

and STRONGPROBABILISTICPLANNING – were implemented
in PROLOG. As the comparison of techniques does not
take into account efficiency issues, the use of different pro-
gramming languages for implementations does not affect
our analysis.

The code is available from the first author.

Conclusion
In this paper we have identified, and solved, the problem
of strong probabilistic planning. In essence, this is a sit-
uation with features of nondeterministic and probabilistic
planning: requirements on the goals mix worst-case and
expected analysis, and actions with (uniform) costs and
(Markovian) probabilities associated with them.

Our main contribution is to show that the resulting prob-
lem can be tackled by backward induction, thus producing
the enumerative and symbolic versions of the STRONGPROB-
ABILISTICPLANNER algorithm. While Theorems 1 and 2 deal
with straightforward reachability goals, Theorems 3 and 4
show that our techniques can be applied in much greater gen-
erality to extended reachability goals. With such goals we
can also impose constraints on states visited during policy
execution. Hence the symbolic framework is more expres-
sive than the enumerative one. As expressiveness increases
planner usability, the symbolic framework seems to be more
appropriate for practical planning applications.

The desire to combine features of nondeterministic and
probabilistic planning have led us to develop a perspective
for planning problems that integrates these features coher-
ently, as we feel that current literature treats these varieties
of planning as too isolated islands. We have tried to convey
some of this perspective in the third section of this paper; we
hope that the resulting blend improves understanding of this
multifaceted area.

References
Altman, E. 1999. Constrained Markov Decision Processes.
Florida: Chapman & Hall / CRC.

Bellman, R. E. 1957. Dynamic Programming. USA:
Princeton University Press.

Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence Research
11:1–94.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Cimatti, A.; Giunchiglia, F.; Giunchiglia, E.; and Traverso,
P. 1997. Planning via model checking: A decision proce-
dure for

� ^ . In ECP, 130–142.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Strong
planning in non-deterministic domains via model check-
ing. In Artificial Intelligence Planning Systems, 36–43.
Daniele, M.; Traverso, P.; and Vardi, M. Y. 1999. Strong
cyclic planning revisited. In ECP, 35–48.
Dolgov, D. A., and Durfee, E. H. 2005. Stationary deter-
ministic policies for constrained MDPs with multiple re-
wards, costs, and discount factors. In IJCAI, 1326–1331.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. USA: Morgan Kaufmann
Publishers Inc.
Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In ECP, 1–20.
Lago, U. D.; Pistore, M.; and Traverso, P. 2002. Plan-
ning with a language for extended goals. In Eighteenth
national conference on Artificial intelligence, 447–454.
Menlo Park, CA, USA: American Association for Artifi-
cial Intelligence.
LaValle, S. M. 2006. Planning Algorithms. USA: Cam-
bridge University Press.
Mller-Olm, M.; Schimidt, D.; and Steffen, B. 1999. Model
checking: A tutorial introduction. In SAS’99, LNCS 1694,
330–354.
Pistore, M.; Bettin, R.; and Traverso, P. 2001. Sym-
bolic techniques for planning with extended goals in non-
deterministic domains.
Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. John Wiley
& Sons, Inc.
Trevizan, F. W.; Cozman, F. G.; and de Barros, L. N. 2007.
Planning under Risk and Knightian Uncertainty. In Veloso,
M. M., ed., IJCAI, 2023–2028.

