

# Gases e líquidos, estados, propriedades PVT e equações de estado



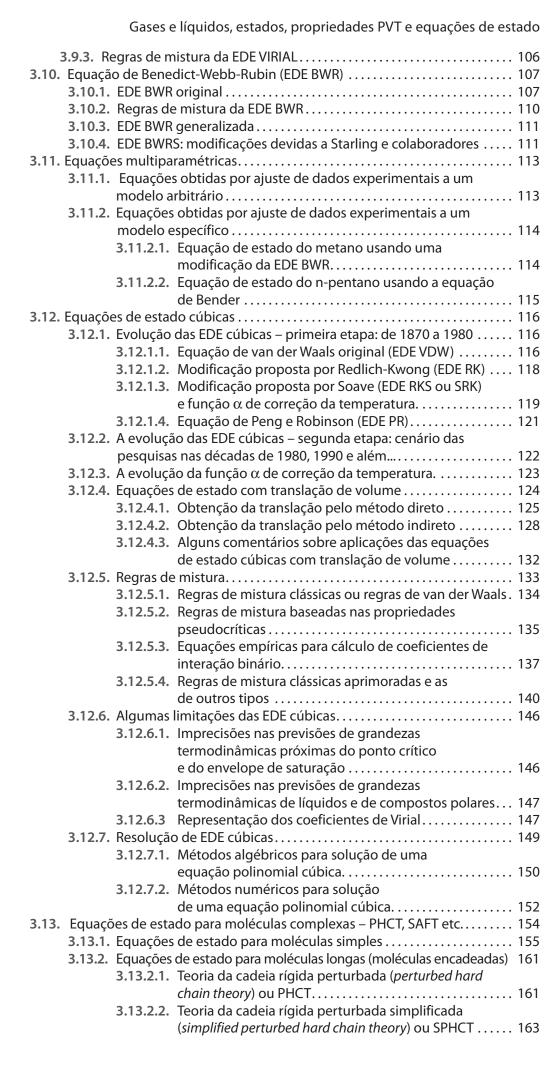
Sendo uma forma econômica de retratar a realidade, a equação é uma mensagem cifrada, compreensível por quem domina os conceitos nela representados, não importando o idioma de quem a criou nem de quem a lê (Venturoli T. Beleza matemática, Veja, 37 (47), ed. 1881:140-1, 24/11/2004).

Os assuntos deste capítulo são: propriedades PVT dos fluidos e equações de estado (EDE). Destas últimas, são apresentadas as EDE tradicionais e as mais modernas. São comentados os seguintes aspectos: qualidades que uma EDE deve apresentar, importância, classificações, descrições e recomendações de uso. São enfatizados certos aspectos mais importantes, como Teorema (ou Lei, ou Princípio) dos Estados Correspondentes, Equações de Estado Cúbicas; EDE com parâmetros específicos, regras de mistura para adaptar as EDE às misturas. É um dos capítulos mais extensos e apresenta as bases para os assuntos a serem abordados na terceira parte deste livro (Capítulos 6 a 11). Nomenclatura e referências bibliográficas. Os exercícios propostos e resolvidos referentes a este capítulo estão no Capítulo 5.








## Sumário

| 3. | Gase | es e líquidos, estados, propriedades PVT e equações de estado                | 61 |
|----|------|------------------------------------------------------------------------------|----|
|    | 3.1. | Estado das substâncias                                                       | 68 |
|    | 3.2. | Descrição de duas experiências simples                                       | 68 |
|    |      | 3.2.1. Primeira experiência: vaporização de um componente puro               | 68 |
|    |      | 3.2.2. Segunda experiência: vaporização de misturas                          | 70 |
|    | 3.3. | O que acontece com as moléculas na mudança de estado?                        | 71 |
|    |      | 3.3.1. As forças que atuam nas moléculas                                     | 71 |
|    |      | 3.3.2. Quando um líquido muda de estado: a vaporização                       | 72 |
|    |      | <b>3.3.3.</b> Pressão de vapor                                               | 73 |
|    |      | 3.3.4. Temperatura crítica                                                   | 74 |
|    | 3.4. | Definição de alguns termos usuais: gás supercrítico, gás subcrítico, vapor   |    |
|    |      | saturado, líquido saturado, líquido comprimido e líquido sub-resfriado       | 74 |
|    | 3.5. | Superfície PVT de substâncias puras                                          | 75 |
|    |      | <b>3.5.1.</b> Gráficos das superfícies PVT                                   | 75 |
|    |      | 3.5.2. Projeção (ou diagrama) PV                                             | 76 |
|    |      | 3.5.3. Projeção (ou diagrama) PT                                             | 78 |
|    |      | 3.5.4. Região líquido-vapor                                                  | 79 |
|    |      | 3.5.5. Comparação entre a projeção (ou diagrama) PT para                     |    |
|    |      | substâncias puras e para misturas                                            | 80 |
|    | 3.6. | Importância das propriedades PVT nos cálculos termodinâmicos                 | 80 |
|    | 3.7. | Generalidades sobre equações de estado                                       | 81 |
|    |      | 3.7.1. O que são equações de estado?                                         | 81 |
|    |      | 3.7.2. A equação de estado mais simples: a equação                           |    |
|    |      | dos gases ideais (GI)                                                        | 82 |
|    |      | 3.7.3. Classificação das equações de estado                                  | 82 |
|    | 3.8. | Equações de estado derivadas do teorema dos estados                          |    |
|    |      | correspondentes (TEC)                                                        | 87 |
|    |      | <b>3.8.1.</b> Teorema dos estados correspondentes original e suas limitações | 87 |
|    |      | <b>3.8.1.1.</b> Correção do teorema dos estados correspondentes              | 89 |
|    |      | <b>3.8.2.</b> Gráfico generalizado do fator de compressibilidade             | 89 |
|    |      | 3.8.2.1. Regras de mistura para os gráficos generalizados                    | 90 |
|    |      | 3.8.2.2. Usos práticos do gráfico generalizado do fator de                   |    |
|    |      | compressibilidade (cálculo de propriedades                                   |    |
|    |      | volumétricas, extrapolação de dados e identificação                          |    |
|    |      | do estado de uma substância)                                                 | 91 |
|    |      | 3.8.3. Equações analíticas derivadas do teorema dos estados                  |    |
|    |      | correspondentes                                                              | 94 |
|    |      | 3.8.3.1. Equação de estado de Lee e Kesler EDE LK                            | 94 |
|    |      | 3.8.3.2. Modificação da regra de mistura da EDE LK proposta                  |    |
|    |      | por Plöcker et al. (1978) ou EDE LKP                                         | 96 |
|    | 3.9. | 1 3 ' '                                                                      | 97 |
|    |      | 3.9.1. Generalidades sobre a EDE VIR                                         | 97 |
|    |      | 3.9.2. Métodos para cálculo dos coeficientes de Virial                       | 99 |
|    |      | 3.9.2.1. Cálculo do segundo coeficiente de Virial pelo método                |    |
|    |      | de Pitzer e Curl                                                             | 00 |
|    |      | 3.9.2.2. Cálculo do segundo coeficiente de Virial pelo método                |    |
|    |      | de Pitzer e Curl modificado para moléculas polares 1                         | 01 |
|    |      | 3.9.2.3. Cálculo do segundo coeficiente de Virial por contribuição           |    |
|    |      | de grupos – método de McCann e Danner (1984) 1                               |    |
|    |      | 3.9.2.4. Cálculo do terceiro coeficiente de Virial                           | 05 |















|                      | 3.13.2.3. Teoria da perturbação termodinâmica ou TPT e equações de estado para cadeias de esferas rígidas (hard-sphere chain equation of state) ou EDE CER |          |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                      | 3.13.2.4. Teoria da cadeia anisotrópica perturbada (perturbed anisotropic chain theory) ou PACT                                                            |          |
| 3.13                 | 3.3. Equações de estado para fluidos associantes                                                                                                           |          |
|                      | 3.13.3.1. Teoria da cadeia associada anisotrópica                                                                                                          |          |
|                      | perturbada (associated perturbed anisotropic                                                                                                               |          |
|                      | chain theory) ou APACT                                                                                                                                     | 168      |
|                      | 3.13.3.2. Teoria estatística do fluido associante (statistical                                                                                             |          |
|                      | associating fluid theory) ou SAFT – EDE SAFT                                                                                                               |          |
|                      | e suas variantes                                                                                                                                           | 169      |
|                      | 3.13.3.3. Equação de estado cúbica ampliada para associaçã                                                                                                 | 0        |
|                      | (cubic plus association equation of state) ou EDE CPA                                                                                                      | ۱ 169    |
|                      | <b>3.13.3.4.</b> Equações de estado para cadeias heteronucleares                                                                                           |          |
|                      | (heteronuclear chains equation of state)                                                                                                                   | 175      |
|                      | comendações, comparações e comentários finais sobre                                                                                                        |          |
| •                    | uações de estado                                                                                                                                           |          |
|                      | 4.1. Diretrizes gerais                                                                                                                                     | 177      |
| 3.14                 | <b>4.2.</b> Considerações sobre a capacidade preditiva das                                                                                                 | 177      |
| 2.1                  | equações de estado                                                                                                                                         |          |
|                      | 4.4. Comparação com dados experimentais                                                                                                                    |          |
|                      | 4.5. Comentários finais e perspectivas futuras                                                                                                             |          |
|                      | menclatura                                                                                                                                                 |          |
|                      | ferências bibliográficas                                                                                                                                   |          |
|                      | ercícios                                                                                                                                                   |          |
| Jiiii Exe            |                                                                                                                                                            | 220      |
| Lista de figu        | ras                                                                                                                                                        |          |
|                      |                                                                                                                                                            |          |
| Figura 3.1.          | Variação da temperatura com o tempo no aquecimento de água                                                                                                 |          |
|                      | pura (pressão = 1 atm)                                                                                                                                     |          |
| Figura 3.2.          |                                                                                                                                                            |          |
| F: 2.2               | água-álcool etílico (pressão = 1 atm)                                                                                                                      | 70       |
| Figura 3.3.          | Esquema da relação entre a energia intermolecular existente                                                                                                | 70       |
| Figure 2.4           | entre duas moléculas (φ) e a distância (r) entre elas                                                                                                      | 72       |
| Figura 3.4.          | Esquema de uma superfície PVT (completa e suas projeções                                                                                                   | 76       |
| Figura 3.5.          | PT, TV e PV) de substância puraSuperfície PVT para substância pura: projeção PV                                                                            | 76<br>77 |
| Figura 3.5.          | Superfície PVT para substância pura: projeção PT                                                                                                           |          |
| Figura 3.7.          | Superfície PVT para substância pura: região de equilíbrio                                                                                                  | 70       |
| rigara 5.7.          | líquido-vapor com as linhas de título do vapor                                                                                                             | 79       |
| Figura 3.8.          | Diagrama PT para substâncias puras e para misturas                                                                                                         |          |
| Figura 3.9.          | Fator de compressibilidade para alguns fluidos puros                                                                                                       |          |
| 119010.0021          | no estado gasoso                                                                                                                                           | 88       |
| Figura 3.10.         |                                                                                                                                                            |          |
| <b>3</b> · · · · · · | $(Z_{ls})$ em função do fator de compressibilidade crítico $(Z_{ls})$                                                                                      |          |
|                      | (Hougen et al., 1959)                                                                                                                                      | 88       |
| Figura 3.11.         |                                                                                                                                                            |          |
|                      | para várias pressões reduzidas de saturação P <sub>sat</sub>                                                                                               |          |
|                      | (Hougen et al., 1959)                                                                                                                                      | 88       |
| Figura 3.12a         | a. Gráfico generalizado de Z = $f(T_r, P_r)$ para $Z_c = 0.27$                                                                                             |          |
|                      | (Hougen et al., 1959)                                                                                                                                      | 90       |
| Figura 3.12b         | <b>b.</b> Gráfico generalizado de Z = $f(T_r, P_r)$ para $Z_c = 0.27$ (Hougen et al.,                                                                      |          |
|                      | 1959) – região de baixa pressão                                                                                                                            | 90       |
| Figura 3.13.         | Correção para o fator de compressibilidade de gases quando                                                                                                 |          |
|                      | / -/ U // U ougon of al (1050)                                                                                                                             | an       |







| Figura 3.14.  | Esquema do gráfico generalizado de $Z = f(P_r, T_r)$ para $Z_c = 0.27$ :                                                             |   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------|---|
| Eigura 2 1E   | regiões e linhas que identificam o estado das substâncias                                                                            | 2 |
| Figura 3.15.  | Esquema do gráfico generalizado do fator de compressibilidade em função das propriedades reduzidas $T_c = P_r$ , para $Z_c = 0.27$ : |   |
|               | várias isotermas, ponto crítico e envelope de saturação                                                                              | 2 |
| Figura 3.16.  | Correlação de k <sub>ii</sub> para sistemas hidrocarboneto–                                                                          | _ |
| <b></b>       | hidrocarboneto (Plöcker et al., 1978)                                                                                                | б |
| Figura 3.17.  | Correlação k <sub>ii</sub> para sistemas nitrogênio-hidrocarboneto                                                                   |   |
|               | (Plöcker et al., 1978) 96                                                                                                            | 5 |
| Figura 3.18.  | Correlação de k <sub>ii</sub> para sistemas dióxido de carbono –                                                                     |   |
|               | hidrocarboneto (Plöcker et al., 1978)                                                                                                | 7 |
| Figura 3.19.  | Correlação de k <sub>ij</sub> para os sistemas hidrogênio –                                                                          |   |
| F: 2.20       | hidrocarboneto (Plöcker et al., 1978)                                                                                                | 7 |
| Figura 3.20.  | Segundo coeficiente de Virial para alguns gases (Paul, 1951;                                                                         | _ |
| Figure 2.21   | Prausnitz, 1969; Myers e Seider, 1976)                                                                                               | / |
| Figura 3.21.  | Segundo coeficiente de Virial para o benzeno – os pontos são os dados experimentais e as curvas, os valores calculados               |   |
|               | com os modelos (adaptado de Tsonopoulos, 1974)                                                                                       | n |
| Figura 3.22.  | Terceiro coeficiente de Virial – dados experimentais e valores                                                                       | , |
|               | calculados pela equação de Chueh e Prausnitz (1967a)                                                                                 |   |
|               | (adaptado de Prausnitz, 1969)                                                                                                        | 5 |
| Figura 3.23.  | Valores da correção $\alpha = a/a_c$ para vários hidrocarbonetos (Soave, 1972) 120                                                   | 0 |
| Figura 3.24.  | Parâmetro S <sub>RKS</sub> da equação 3.35 em função do fator                                                                        |   |
|               | acêntrico (gráfico construído com valores citados em Soave, 1972) 120                                                                | 0 |
| Figura 3.25.  | Comparação entre valores de $\alpha = (T_r)$ calculados com                                                                          |   |
|               | vários modelos: hidrogênio                                                                                                           | 4 |
| Figura 3.26.  | Comparação entre valores de $\alpha = f(T_r)$ calculados com vários                                                                  | _ |
| Figure 2.27   | modelos: etano                                                                                                                       |   |
| Figura 3.27.  | Esquema mostrando a consideração de translação fixa                                                                                  | ) |
| Figura 3.28.  | (t) em função da temperatura reduzida (T <sub>.</sub> ). Dados                                                                       |   |
|               | experimentais, $V_{\text{exp}}$ , e valores calculados com a EDE VDW,                                                                |   |
|               | V <sub>calc</sub> (dados de Terron, 1988)                                                                                            | б |
| Figura 3.29.  | Classificação das regras de mistura (adaptado de                                                                                     | _ |
| 3             | Muhlbauer e Raal, 1995)                                                                                                              | 1 |
| Figura 3.30.  | Segundo coeficiente de Virial – comparações entre dados                                                                              |   |
|               | experimentais e modelos para estimá-lo                                                                                               |   |
|               | (Mak e Lielmezs, 1989)                                                                                                               |   |
| Figura 3.31.  | Esquema da resolução de uma EDE cúbica                                                                                               | O |
| Figura 3.32a. | Esquema da solução de uma EDE cúbica (região de equilíbrio                                                                           | _ |
| Fig 2 22b     | líquido-vapor com três raízes)                                                                                                       | 1 |
| Figura 3.32b. | Esquema da solução de uma EDE Cúbica (Região de Equilíbrio líquido-vapor com três raízes) – Raízes com e sem significado físico. 15  | 1 |
| Figura 3.33.  | Comparação entre fatores de compressibilidade para a esfera                                                                          | 1 |
| rigula 5.55.  | rígida obtida a partir de diferentes equações de estado e por                                                                        |   |
|               | dados gerados por simulação (Sadus, 1994)                                                                                            | 1 |
| Figura 3.34.  | Esquema dos possíveis gráficos usados para comparação entre dados                                                                    |   |
|               | experimentais $(P_{exp})$ e valores calculados com os modelos $(P_{calc})$ :                                                         |   |
|               | modelos e dados experimentais com ajuste deficitário                                                                                 | 1 |
| Figura 3.35.  | Esquema dos possíveis gráficos usados para comparação entre dados                                                                    |   |
|               | experimentais $(P_{exp})$ e valores calculados com os modelos $(P_{calc})$ :                                                         |   |
| F1 0.01       | modelos e dados experimentais com ajuste adequado                                                                                    | 3 |
| Figura 3.36.  | Fatores de compressibilidade da amônia – dados                                                                                       | , |
| Eigura 2 27   | experimentais e valores calculados (Tarakad et al., 1979)                                                                            | / |
| Figura 3.37.  | Fatores de compressibilidade do dióxido de enxofre – dados experimentais e valores calculados (Tarakad et al., 1979) 187             | 7 |
|               | - Mados experimentais e valores calculados (Taraxad et al., 19/9) 10/                                                                |   |








| Figura 3.38.               | Fatores de compressibilidade da mistura de dióxido de carbono + n-propano – dados experimentais                                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 3.39.               | e valores calculados (Tarakad et al., 1979)                                                                                                                                                  |
| Figura 3.40.               | (construída a partir de dados de Tarakad et al., 1979)                                                                                                                                       |
| Figura 3.41.               | gás natural (construída a partir de dados de Tarakad et al., 1979) 191<br>Desvio porcentual médio quadrático global, DMQ%global,<br>para vários modelos, originados da comparação de valores |
| Figura 3.42.               | calculados com dados experimentais de volume molar                                                                                                                                           |
| Figura 3.43.               | de simulação molecular                                                                                                                                                                       |
| Figura 3.44.               | (notar que $Z_{esfera\ rígida} = Z_{repulsão} + Z_{atração} - ver item 3.13.1)$                                                                                                              |
| Lista de tabel             | as                                                                                                                                                                                           |
| Tabala 2.1                 | Candiañ a anno a anno año a de catada de nas estisferas                                                                                                                                      |
| Tabela 3.1.                | Condições que as equações de estado devem satisfazer                                                                                                                                         |
| Tabela 3.2.<br>Tabela 3.3. | Qualidades que as equações de estado devem apresentar                                                                                                                                        |
| Tabela 3.4.                | equação do gás ideal (GI)                                                                                                                                                                    |
| Tabela 3.5.                | Classificação segundo o tipo de abordagem de obtenção (ver Capítulo 2 – item 2.5.3)                                                                                                          |
| Tabela 3.6.                | Fator de compressibilidade no ponto crítico para várias substâncias (Hougen et al., 1959)                                                                                                    |
| Tabela 3.7.                | Constantes das equações 3.42 a 3.45 para a substância simples e para a substância-referência (Lee e Kesler, 1975) 95                                                                         |
| Tabela 3.8.                | Principais informações da literatura sobre coeficientes de virial                                                                                                                            |
| Tabela 3.9.                | Valores das constantes da equação de Pitzer e Curl para cálculo do segundo coeficiente de Virial                                                                                             |
| Tabela 3.10.               | Cálculo dos coeficientes da equação 3.64 (Tsonopoulos, 1974; Vetere, 1974)                                                                                                                   |
| Tabela 3.11.               | Parâmetros a e b da equação 3.65 (Tsonopoulos, 1974, 1975 e 1978)                                                                                                                            |
| Tabela 3.12.               | Coeficientes para a equação 3.71 (McCann e Danner, 1984)                                                                                                                                     |
| Tabela 3.13.               | Constantes para a EDE BWR <sup>+</sup> - (Reid e Sherwood, 1966)                                                                                                                             |
| Tabela 3.14.               | Literatura sobre compilação de valores e métodos de                                                                                                                                          |
| Tubela 5.14.               | obtenção das constantes da EDE BWR original                                                                                                                                                  |
| Tabela 3.15.               | Parâmetros Aj e Bj da EDE BWRS (Starling e Ham, 1972a, b)                                                                                                                                    |
| Tabela 3.16.               | Coeficientes da equação 3.148 para o ar                                                                                                                                                      |
| Tabela 3.17.               | Parâmetros para as equações 3.149 e 3.150, para o                                                                                                                                            |
|                            | metano (Kedge e Trebble, 1999)                                                                                                                                                               |
| Tabela 3.18.               | Parâmetros das equações 3.151 e 3.152 para o n-pentano                                                                                                                                       |
|                            | (Cibulka et al., 2001)                                                                                                                                                                       |
| Tabela 3.19.               | Função f(v) para as equações de estado cúbicas<br>VDW, RK, RKS e PR                                                                                                                          |









| Tabela 3.20.      | Parâmetros das equações 3.225 a 3.227 para substâncias puras (Kutney et al., 1997)                                                  | 9 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|---|
| Tabela 3.21.      | Algumas EDE cúbicas com translação de volume - translação                                                                           |   |
| <b>T.</b> I. 2.22 | obtida pelo método indireto                                                                                                         |   |
| Tabela 3.22.      | Valores das constantes $\chi_k$ da equação 3.237                                                                                    |   |
| Tabela 3.23.      | Constantes Ai (i = 0 a 5) da equação 3.251                                                                                          |   |
| Tabela 3.24.      | Parâmetros das equações 3.257, 3.259 e 3.260 (Magoulas e Tassios, 1990) 13                                                          | 3 |
| Tabela 3.25.      | Coeficientes de interação binários da regra de mistura clássica para as várias EDE e sistemas diferentes                            | 4 |
| Tabela 3.26.      | Valores de $\omega$ $\Omega$ ai e $\Omega$ bi para algumas substâncias (Chueh e Prausnitz, 1967a, b, c; Prausnitz e Chueh, 1968) 13 | 6 |
| Tabela 3.27.      | Valores do parâmetro de interação, kij, para alguns binários                                                                        | U |
|                   | (Chueh e Prausnitz, 1967a, b, c)                                                                                                    | 7 |
| Tabela 3.28.      | Resumo das correlações para coeficientes binários de interação:                                                                     | _ |
| T-1-1-2 20        | os coeficientes Cij+                                                                                                                |   |
| Tabela 3.29.      | Valores das constantes Bi (i = 1 a 6) da equação 3.282                                                                              | U |
| Tabela 3.30.      | Equações de cálculo dos parâmetros das equações de estado                                                                           | _ |
| <b>T.</b> I. 0.04 | cúbicas para misturas nas regras clássicas aprimoradas                                                                              | 2 |
| Tabela 3.31.      | Fatores de compressibilidade críticos calculados com EDE                                                                            | _ |
| T.                | e valores experimentais                                                                                                             |   |
| Tabela 3.32.      | Valores das constantes A a H da equação 3.299 (Mak e Lielmezs, 1989) . 14                                                           | 8 |
| Tabela 3.33.      | Valores de u, w, $\Omega_a$ , $\Omega_b$ , e as equações de cálculo dos termos $\alpha$ ,                                           | ^ |
| Tabala 2 24       | para as EDE VDW, RK, RKS, PR                                                                                                        | 9 |
| Tabela 3.34.      | Algoritmo de cálculo para obtenção das raízes de uma EDE cúbica                                                                     | 2 |
| Tabela 3.35.      | pelo método de Newton-Raphson                                                                                                       | 2 |
| labela 3.33.      | – equação 3.342                                                                                                                     | 6 |
| Tabela 3.36.      | Sumário das modificações do termo repulsivo das EDE cúbicas                                                                         | O |
| Tabela 5.50.      | – equação 3.342                                                                                                                     | 8 |
| Tabela 3.37.      | Sumário das modificações simultâneas dos termos atrativo e                                                                          | • |
|                   | repulsivo das EDE cúbicas                                                                                                           | 9 |
| Tabela 3.38.      | EDE PHCT                                                                                                                            |   |
| Tabela 3.39.      | Trabalhos envolvendo extensões da EDE SPHCT e                                                                                       |   |
|                   | cálculos práticos                                                                                                                   | 3 |
| Tabela 3.40.      | EDE SPHCT                                                                                                                           |   |
| Tabela 3.41.      | Cálculos práticos da EDE SPHCT                                                                                                      |   |
| Tabela 3.42.      | EDE CER original                                                                                                                    |   |
| Tabela 3.43.      | EDE CER para dímeros ou EDE TPT-D                                                                                                   |   |
| Tabela 3.44.      | Equação de estado SAFT original                                                                                                     | 0 |
| Tabela 3.45.      | Equação de estado SSAFT                                                                                                             |   |
| Tabela 3.46.      | Equação de estado HS-SAFT                                                                                                           |   |
| Tabela 3.47.      | Equação de estado LJ-SAFT                                                                                                           |   |
| Tabela 3.48.      | Equação de estado SW-SAFT                                                                                                           |   |
| Tabela 3.49.      | Equação de estado VR-SAFT 17.                                                                                                       |   |
| Tabela 3.50.      | Aplicações da equação de estado SAFT original e suas variantes 17.                                                                  | 3 |
| Tabela 3.51.      | Dois modelos com graus de preditividade diferentes                                                                                  | 8 |
| Tabela 3.52.      | Trabalhos relevantes sobre revisões, análises de desempenho                                                                         |   |
|                   | e comparações envolvendo equações de estado 18-                                                                                     | 4 |
| Tabela 3.53.      | Equações de estado para estimar densidade e fugacidade na fase                                                                      |   |
|                   | gasosa: hierarquia de emprego, modelos e sistemas estudados 18                                                                      | 8 |
| Tabela 3.54.      | Modelos e estudados no trabalho de Trebble e Bishnoi (1986) 19                                                                      |   |
| Tabela 3.55.      | Vantagens e desvantagens das EDE cúbicas (adaptado                                                                                  |   |
|                   | de Valderrama, 2003)                                                                                                                | 4 |
| Tabela 3.56.      | EDE cúbicas: recomendações de uso para diversas propriedades                                                                        |   |
|                   | de fluidos puros                                                                                                                    | 4 |
| Tabela 3.57.      | EDE cúbicas e regras de mistura: recomendações de uso para misturas                                                                 |   |
|                   | de naturezas diversas                                                                                                               | 5 |







#### 3.1. Estado das substâncias

A experiência de viver nos diz que habitamos em um Universo composto de materiais diversos, sendo alguns líquidos, outros sólidos e outros gasosos. Sob condições ambientes de pressão e temperatura (por exemplo, 1 atm e 25°C), a água é líquida, o ácido benzóico é sólido e o ar é gasoso. Mantendo a pressão constante (1 atm, no caso) e resfriando-a até 0°C, a água passará para o estado sólido, formando o gelo. Se a água for aquecida a 100°C, iniciar-se-á sua evaporação. Assim, o ácido benzóico também funde a certa temperatura e, se esta aumentar, ele passará para o estado gasoso. As constatações anteriores podem ser observadas, na prática, sem grande dificuldade. Já com técnicas e equipamentos adequados, vê-se que o oxigênio torna-se líquido ou sólido quando submetido a altas pressões e temperaturas bem baixas. São usadas, como exemplo, substâncias puras, mas situações semelhantes ocorrem quando existem misturas: soluções líquidas, misturas de gases, líquidos ou sólidos.

Desse modo, é evidente para o observador comum verificar as substâncias apresentarem-se em determinado estado (sólido, líquido ou gasoso) dependendo da pressão (P) e da temperatura (T) às quais estão submetidas. Além de P e T, outras variáveis influem, como, por exemplo, volume e quantidade de matéria (massa ou mol). No caso de misturas, as concentrações das espécies que a formam serão outras variáveis a considerar. No entanto, isso também vem sendo constatado na prática.

Neste capítulo, vamos tecer algumas considerações sobre os estados das substâncias. Primeiramente vamos analisar o que acontece realizando duas experiências bem simples que podem ser feitas sem muitas dificuldades descritas a seguir.

### 3.2. Descrição de duas experiências simples

As duas experiências em questão envolvem uma substância pura (primeira experiência) e uma mistura (segunda experiência). Com a observação dos resultados serão introduzidos vários conceitos importantes da Termodinâmica Química.

#### 3.2.1. Primeira experiência: vaporização de um componente puro

Um recipiente de vidro cheio de água pura (cerca de 1 kg de água), em temperatura ambiente (aproximadamente 20°C), é colocado em um forno aquecido (T > 300°C) que consome 5 kW de potência. A pressão dentro do forno é a atmosférica (1 atm). A água será aquecida e, depois de certo tempo, ferverá. Enquanto ainda fria, colocamos um termômetro na água, de modo a observarmos a variação da temperatura (T) durante o processo de aquecimento. Com os dados da temperatura em função do tempo, constrói-se o gráfico da Figura 3.1.

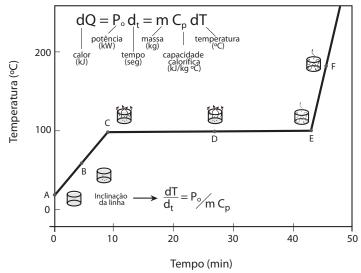



Figura 3.1. Variação da temperatura com o tempo no aquecimento de água pura (pressão = 1 atm).

Observando-se, então, o gráfico resultante, pode-se comentar o que acontece nos pontos marcados de A até F:

 Ponto A: o recipiente com água acabou de ser colocado no forno. O líquido está na temperatura ambiente (mais ou menos 20°C), mas, com a adição de calor, não ficará



