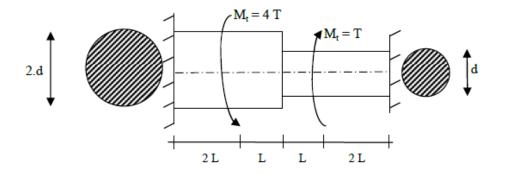
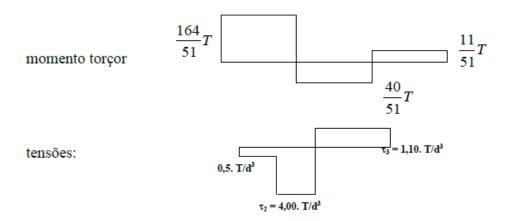
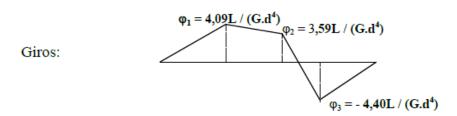

São Paulo, dezembro de 2015.

- 1) a. Determinar a dimensão "a" de modo a se ter a mesma tensão de cisalhamento máxima nos trechos B-C e C-D.
 - b. Com tal dimensão pede-se a máxima tensão de cisalhamento no trecho A-B.


Respostas:

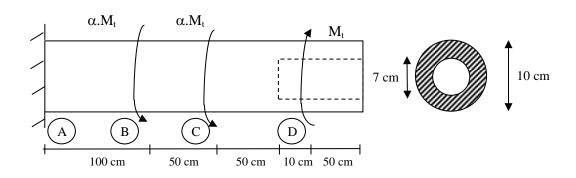
$$a = \frac{189739,20.(11,5^4 - 8^4)}{8^3.11,5.3924,04} = 110cm$$


para a = 110 cm, o momento torçor e a tensão no trecho A-B é dada por:


$$R = 833,7 \, KNcm$$

 $\tau_{A-B} = 7,14 \, KN/ \, cm^2$

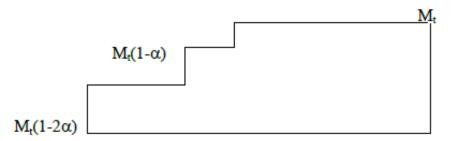
- 2) Determinar diagramas de:
- a. Momento torçor;
- b. tensões de cisalhamento máximas (módulos);
- c. Ângulos de rotação. Também é conhecido G.



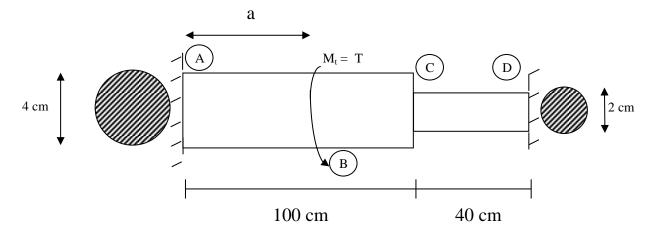
Respostas:

3) Pede-se determinar o valor do parâmetro " α " nos seguintes casos: a) para que o giro da seção B seja nulo ($\phi_B = 0$); b) para que o giro da seção D venha a ser nulo ($\phi_D = 0$).

Respostas:


a) Para que o giro em B seja zero:

$$\varphi_{\mathsf{B}} = \frac{M_{t}(1-2.\alpha).100}{G.J} = 0 \longrightarrow \alpha = \frac{1}{2}$$


b) Para que o giro em D seja zero:

$$\varphi_{D} = \frac{32.M_{t}(1-2.\alpha).100}{G.\pi.10^{4}} + \frac{32.M_{t}(1-\alpha).50}{G.\pi.10^{4}} + \frac{32.M_{t}.50}{G.\pi.10^{4}} + \frac{32.M_{t}.100}{G.\pi.(10^{4}-7^{4})} = 0 \longrightarrow$$

$$\alpha = \frac{6,632}{5} = 1,33$$

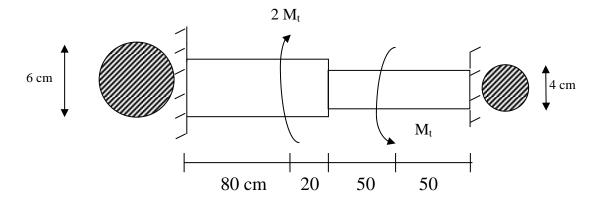
4) Calcular qual deve ser a posição (a = ?) da carga torçora (T) para que as tensões de cisalhamento máximas nos trechos AB e CD sejam iguais.

Resposta:

Por equilíbrio:

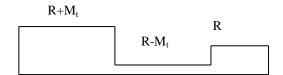
$$\frac{32.(R+T).a}{\pi .G.4^4} + \frac{32.(R).(100-a)}{\pi .G.4^4} + \frac{32.(R).40}{\pi .G.2^4} = 0$$

$$R = \frac{-T}{740}a$$


Para que as tensões de cisalhamneto sejam iguais nos trechos AB e Cd é necessário então:

$$\tau_{AB} = \tau_{CD}$$
, assim

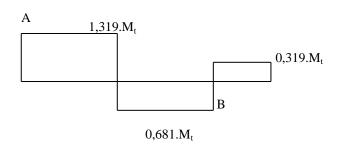
$$\frac{16.(\frac{740-a}{740}T)}{\pi.4^3} = \frac{16.(\frac{T.a}{740})}{\pi.2^3} \longrightarrow a = \frac{740}{9} = 82,2cm$$


5) Para o eixo indicado, pede-se o valor admissível do momento M_t (torque) sabendose que $\bar{\tau}=10\,\text{KN/cm}^2$. Pede-se ainda, para esse valor de M_t , o giro máximo, indicando a seção onde ocorre.

Dado $G = 8000 \text{ KN/cm}^2$

Resposta:

O diagrama de corpo livre fica:



Por equilíbrio:

$$\left(\frac{32}{\pi.8000}\right).\left(\frac{(R+M_t).80}{6^4} + \frac{(R-M_t).20}{6^4} + \frac{(R-M_t).50}{4^4} + \frac{(R).50}{4^4}\right) = 0 \longrightarrow$$

 $R = 0.319M_{t}$

Assim, o diagrama do momento torçor é dado por:

Verificar onde ocorre tensão máxima nos trechos A e B, pois em A é onde tem-se o maior esforço e em B, onde tem-se um diâmetro menor que o de A.

Em A:

$$J = \frac{\pi . d^4}{32}$$

$$\tau = \frac{M_t r}{J} = \frac{16.M_t}{\pi . d^3} = \frac{16.1,319.M_t}{\pi . 6^3} \le 14 \longrightarrow M_t \le 450,30 \text{ KN.cm}$$

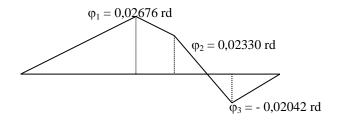
Em B:

$$J = \frac{\pi . d^4}{32}$$

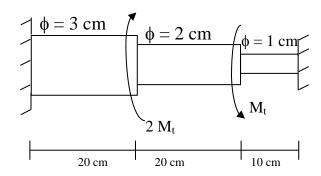
$$\tau = \frac{M_t r}{J} = \frac{16.M_t}{\pi . d^3} = \frac{16.0,681.M_t}{\pi . 4^3} \le 14 \longrightarrow M_t \le 258,19 \text{ KN.cm}$$

Portanto:

$$M_t = 258,19 \text{ KN.cm}$$

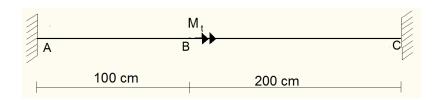

O giro é dado por:

$$\phi = \frac{M_{t}L}{G.J}$$

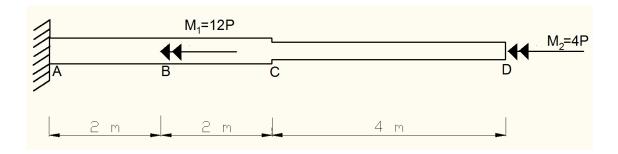

$$\phi_{1} = \frac{32.1,319.258,19.80}{8000.\pi.(6)^{4}} = 0,02676 \text{ rd}$$

$$\phi_{2} = \phi_{1} + \frac{32.(-0,681.258,19).20}{8000.\pi.(6)^{4}} = 0,02330 \text{ rd}$$

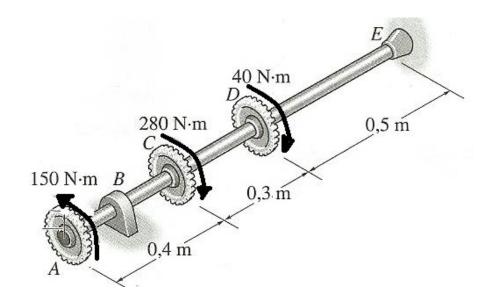
$$\phi_{3} = \phi_{1} + \phi_{2} + \frac{32.(-0,681.258,19).50}{8000.\pi.(4)^{4}} = -0,02042 \text{ rd}$$



6) Para o eixo indicado pede-se o momento torçor M_t admissível, sabendo-se que: $\bar{\tau} = 10 \, \text{KN/cm}^2$


Resposta: $M_t = 17,20 \text{ KN.m}$

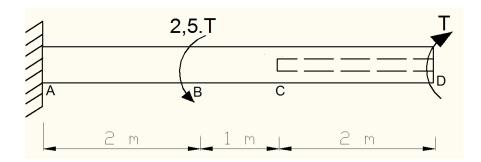
7) Um eixo de seção circular cheia, com diâmetro de 8 cm, está engastado em ambas as extremidades e submetido a um momento de torção com posição e sentido conforme figura abaixo. Pede-se determinar o máximo valor de momento torçor (M_t), sabendo-se que a tensão tangencial na seção transversal não deve ultrapassar, em módulo, 10 kN/cm². Com o valor de M_t obtido, calcule o giro da seção B. Use $G = 8000 \text{ kN/cm}^2$.


Resposta: $M_t = 1508 \text{ kN cm. } \theta_B = 0.0313 \text{ rad}$

- 8) Para o eixo a seguir submetido aos momentos de torção indicados, obtenha:
- a) O maior valor admissível de P;
- b) Para o P obtido no item anterior, calcule a rotação em D; Adote: G = 800 kN/cm²; tensão de cisalhamento admissível = 1 kN/cm² Diâmetro do trecho AC = 8 cm; Diâmetro do trecho CD = 4 cm.

Resposta: P = 3,14 kN; b) $Rot_d = -0,289 \text{ rad}$.

9) As engrenagens acopladas ao eixo de aço com a extremidade E fixa estão sujeitas aos torques mostrados na figura. Supondo que o módulo de elasticidade transversal seja de 80 GPa e o eixo tiver diâmetro de 14mm, determinar a máxima tensão cisalhante da estrutura e a rotação do eixo em A. O eixo gira livremente dentro do mancal em B.

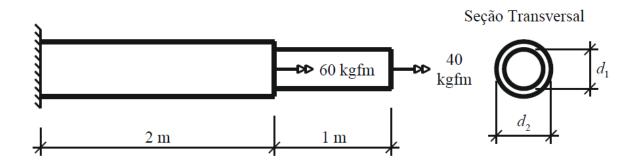


Resposta:

$$\tau_{max} = 315,6 \text{ MPa}$$

$$\theta_{A} = -0.212 \text{ rad}$$

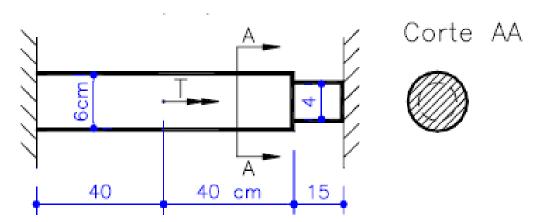
10) Calcular o valor admissível do momento torçor T considerando-se os sentidos indicados na figura. Para este valor, verificar se existe alguma seção, além do engaste, com giro nulo. Caso exista, determinar sua posição. Dados: $\tau_{adm} = 150$ MPa, G = 8000 kN/cm². Diâmetro do trecho AC = 5cm; Trecho CD é de uma seção vazada de diâmetro interno de 3cm.



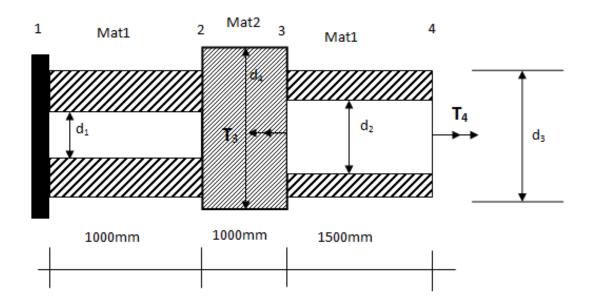
Resolução:

T = 245,4 kN.cm. A posição a 4,74 m do engaste possui giro nulo.

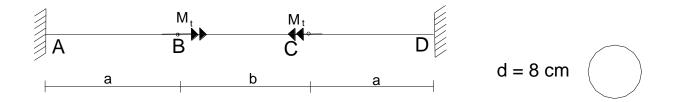
11) Achar os diâmetros d_1 e d_2 .


São dados:
$$\begin{cases} \overline{\tau} = 800 \text{ kgf/cm}^2 \text{ (tensão admissível ao cisalhamento)} \\ G = 210 \text{ GPa (módulo de elasticidade transversal)} \end{cases}$$

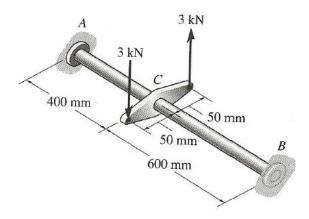
Respostas:


$$d_1 = 2,95 \text{ cm}$$
 ; $d_2 = 4,00 \text{ cm}$

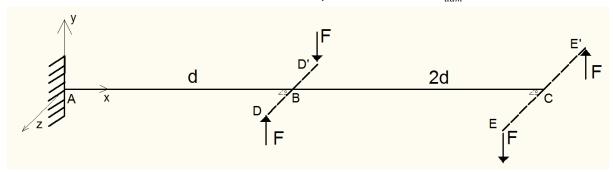
12) Calcular o valor máximo do momento T aplicado sabendo-se que o material suporta no máximo uma tensão de cisalhamento de $\tau_{máx}$ de 10 kN/cm².



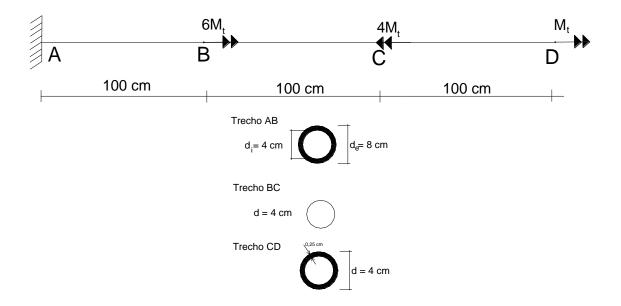
Resposta: Tmáx = 489,0 kN.cm.


13) Determine o diâmetro d_4 do eixo formado por dois materiais Mat1 e Mat2, para que a rotação na seção 4 seja nula. O eixo esquematizado na figura tem carregamentos T_3 =250kN*m atuando na seção 3 e T_4 =100 kN*m atuando na seção 4, engastado na extremidade 1. Considerar d_1 = 90mm, d_2 = 120mm, d_3 = 180mm; com G_{mat1} = 56 GPa e G_{mat2} = 70 GPa. Considerar também que o eixo no tramo 2-3 é maciço e os trechos 1-2 e 3-4 são vazados, com diâmetro interno de d_1 e d_2 , respectivamente, e diâmetro externo de d_3 . Determinar também a tensão máxima de cisalhamento do eixo.

14) Considere-se um eixo biengastado, com momentos torçores M_t aplicados nos pontos B e C, veja figura. Admitindo-se que o valor de $G=10\ 000\ kN/cm^2$, determinar a relação a/b para que a capacidade do eixo seja máxima. Para a relação a/b obtida e sendo a tensão de cisalhamento admissível igual a $10\ kN/cm^2$, determinar o valor de M_t .

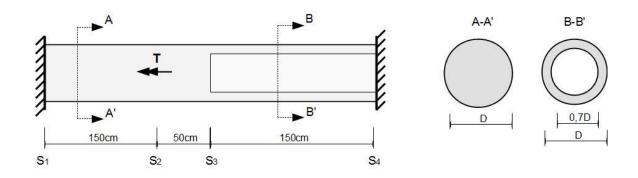


15) O eixo de aço tem diâmetro de 40mm e suas estremidades A e B são fixas. Se ele for submetido ao conjugado de forças, conforme desenho, qual será a tensão máxima de cisalhamento para as regiões AC e CB. Com essas tensões e sabendo que $\bar{\tau} = 10$ MPa, indique o coeficiente de segurança da estrutura.


Resposta: τ_{AC} = 14,32 Mpa; τ_{CB} = 9,55 Mpa; s = 0,7

16) A barra reta AC está no plano xy com seção transversal circular maciça de diâmetros "d" e "2d", respectivamente, nos trechos AB e BC. Nos pontos B e C estão ligadas perpendicularmente à barra AC as barras rígidas DD' e EE' de comprimento, respectivamente, de 20 cm e 30 cm. Ou seja, as barras DD' e EE' estão contidas no plano yz. Determine o máximo valor de "d", sabendo que F = 10 kN e $\tau_{adm} = 1~MPa$.

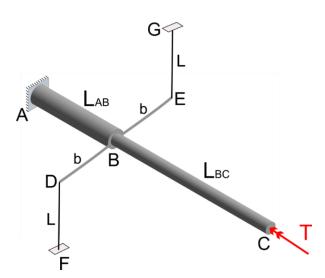
Resposta: d = 17 cm.


17) Para o eixo ilustrado na fig. 9.7, considerando-se uma tensão cisalhante admissível de valor 10 kN/cm² e G = 10 000 kN/cm², determinar o maior valor de torção de referência que se pode aplicar e o diagrama de giro ao longo da mesma.

Resposta: M_t = 41,89 kN cm. $\theta_B = (1/300) rad$, $\theta_C = (-14/300) rad$, $\theta_D = (-4/300) rad$

- 18) Para a estrutura submetida ao momento torçor T abaixo, pede-se:
 - a) Diagrama de momento torçor;
 - b) Tensão de cisalhamento máxima no trecho entre as seções S2 e S3.
 - c) Rotação da seção S3 em relação à seção S4.

Dados: $T = 100 \text{ kN.m}, D = 10 \text{ cm}. G = 8000 \text{ kN/cm}^2$

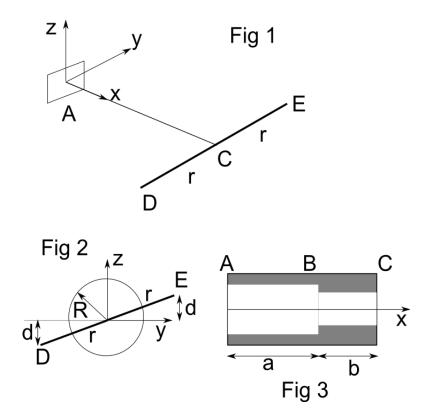


Respostas:

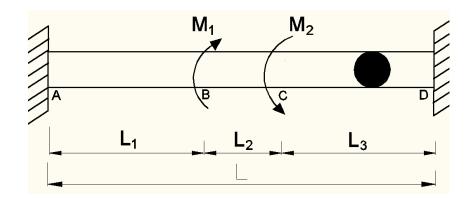
- a) Ts1 = -241,4 kNcm; Ts4 = 9758,6 kN.cm
- b) $Tau = 49.7 \text{ kN/cm}^2$
- c) Rotc = 0.245 rad

19. (Alfredo Gay) A figura ilustra um sistema formado por um eixo composto por dois segmentos AB e BC de mesmo material. O comprimento entre A e B vale "LAB" e entre B e C vale "LBC". O ponto A se encontra engastado. No ponto C é aplicado um torque "T" com o sentido indicado na figura. No ponto B estão fixadas no eixo duas barras rígidas DB e BE, ambas com comprimento "b". Nas pontas dessas barras existem dois fios com rigidez axial "EA" e comprimento "L", ortogonais às barras. Os fios estão localizados entre os pontos D e F, e E e G. Os pontos F e G encontram-se fixos. O diâmetro do eixo no trecho AB é "DAB". Pede-se:

- a). Escrever a equação de equilíbrio para o eixo ABC, em função do torque reativo no engaste " T_A " e do torque " T_B " atuante no ponto B pelo sistema de barras rígidas e fios. Fazer o diagrama de momento de torção no eixo em função de " T_A ", " T_B " e "T". b) Calcular " T_A " e " T_B ", bem como a rotação do ponto B " θ_B " com os valores
- numéricos fornecidos abaixo. c) Determinar a medida do diâmetro do eixo circular maciço no trecho entre os pontos B e C para que a rotação do ponto C " θ_{C} " seja menor do que 1,5°.
- d) Se o material do eixo suporta tensão de cisalhamento máxima de 50MPa, o diâmetro determinado no item anterior pode ser utilizado? Justifique todas as respostas com cálculos.



20. (Franzini) A suspensão de um veículo por barra de torção (barra AC) está esquematizada na Fig 1 abaixo. As rodas (não representadas) são acopladas nos pontos D e E pertencentes à barra rígida DE de comprimento 2r, enquanto que a extremidade A está engastada. Ao passar por um obstáculo, o desnivelamento vertical (na direção do eixo z) entre as rodas D e E é dado por 2d e solicita a barra AC em torção (ver Fig 2). A barra AC possui seção transversal circular vazada de raio externo constante e igual a R, comprimento L e é escalonada em dois trechos, AB e BC (ver Fig 3). O trecho AB possui momento de inércia polar (momento de inércia à torção) igual a L e comprimento L e nequanto que o trecho BC possui


momento de inércia polar 2J e comprimento b. A barra AC é fabricada em um material de módulo de elasticidade transversal G e possui tensão de cisalhamento admissível $\bar{\tau}$. Admitindo que a única solicitação à barra AC que compõe a suspensão seja devida ao momento de torção causado pelo desnivelamento entre as rodas e assumindo válida a teoria de pequenas rotações vista nas aulas, pedese:

- a) Determinar a rigidez torcional da suspensão (k) em função dos parâmetros geométricos e das propriedades do material. (Dica: a rigidez torcional pode ser entendida como o momento torçor necessário para causar uma rotação unitária entre as extremidades da barra AC. Nota: Calcule a rotação unitária com base na teoria vista em sala de aula, isto é, assumindo pequenas rotações.) Resposta: k =
- b) Calcule a rotação relativa entre as seções A e C, ϕ_{AC} , para os valores numéricos dados abaixo. Para os mesmos valores numéricos e, igualando a máxima tensão de cisalhamento existente na barra AC à tensão de cisalhamento admissível, determinar a e b. Mostre que a e b independem do valor de J.

Dados: $d=3cm, r=1,2m, R=6cm, L=2m, \bar{\tau}=100MPa, G=81GPa$ Resposta: $\phi_{AC}=rad$ a=m b=m

21.O eixo da figura a seguir é solicitado pelos momentos de torção M_1 e M_2 . Determinar os momentos reativos M_A e M_D . Indique as respostas no espaço indicado.

Respostas: $M_A = M_D =$