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Abstract

The analysis of soil–structure interaction is a vast field of interest in the area of civil engineering. Any realistic representation of its

behaviour is a complex numerical task owing to its extremely variable mechanical behaviour. In this paper a Boundary Element Method

formulation (BEM) for the analysis of SSI is presented in which all dependent interactions (superstructure, infrastructure and the supporting

soil) are considered. Thus, the soil is treated as an inhomogeneous continuum supported by a rigid and adhesive interface and modelled by

BEM using the 3D Kelvin solution. The raft foundation and the superstructure are represented by finite shell and 3D frame elements. In order

to estimate the accuracy and the potentiality of the proposed numerical formulation, some examples are validated by comparison with similar

approaches, and other simulations are presented, to stress the need to analyse the inhomogeneous soil–raft-superstructure system as a whole.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Soil–structure interaction (SSI) represents an integrated

system. However, this complex problem is always analysed

in separate parts. This simplification is generally necessary

because of the intrinsic complexity of treating SSI as a

whole, as each of the sub-systems, by itself, represents a

vast field of possible mechanical idealizations and a wide

choice of physical and geometrical parameters. Two

different approaches to the problem are commonly found.

One group of researchers is concerned with applying

rigorous models to the superstructure and they usually

consider the soil as a rigid base or use very simple models

for the continuum. On the other hand, other authors are more

interested in applying rigorous mechanical models to the

soil without coupling it to the superstructure and/or they just

consider a raft or a simple two-dimensional frame resting on

the deformable soil.

However, several studies analyse SSI as an integrated

system, but most of them simplify the problem by

considering the structure in two-dimensional space [1,2]

and the soil a homogeneous isotropic linear continuum in an

infinite half-space, ignoring its highly heterogeneous and

discontinuous nature [3–7].

Within the context of this integrated modelling strategy,

much research effort has been dedicated over many decades

to the modelling of the soil, considering it as an

inhomogeneous continuum. One line of research models

the heterogeneous media via analytical or semi-analytical

formulations. The pioneering work of Burmister [8,9]

discusses the technique of transforming integrals into partial

differential equations (PDE), from which stress values are

calculated for a given force applied on the surface of a two

or three-stratum inhomogeneous medium. Poulos [10]

integrated the solutions of Burmister for any type of

loading, while Gibson [4] analysed the state of stress in an

elastic inhomogeneous half-space, assuming a linear rise of

stiffness with depth, for a given concentrated force on the

surface. In addition, Chan et al. [11] generalised the

solutions of Burmister for vertical and horizontal forces

applied to the interior of two elastic strata forming the

inhomogeneous half-space. Their solutions result from the

use of the Fourier expansion of the Navier–Cauchy

0955-7997/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.enganabound.2004.03.002

Engineering Analysis with Boundary Elements 28 (2004) 1111–1121

www.elsevier.com/locate/enganabound

* Corresponding author. Tel.: þ55-16-273-9455; fax: þ55-16-273-9481.

E-mail address: paiva@sc.usp.br (J.B. de Paiva).

http://www.elsevier.com/locate/enganabound


equations. Hence, as in Burmister’s work, the solutions are

approximated to a series of exponential functions. Davies

and Banerjee [12] repeated the approach used in Ref. [11],

considering forces applied only at the boundary between

strata.

Another line of research makes use of the powerful

numerical methods for modelling heterogeneous media.

Within this approach, two well-known methods are used on

most occasions: Finite Element Method (FEM) and

Boundary Element Method (BEM). Examples of FEM

applied to SSI problems can be found in the literature

[13–21], but this technique leads to a cumbersome

procedure involving generating a mesh over the whole

region, which makes FEM inappropriate for semi-infinite

problems. In contrast, BEM is very well suited to the

simulation of infinite elastic problems, because of its

intrinsic formulation [22–25].

In one of the articles cited above [24], the technique

known as the method of successive stiffness was applied,

using Kelvin solutions to 2D problems. In this article, each

layer of soil is treated as a homogeneous, isotropic and

elastic region, to which equilibrium and compatibility

conditions are applied.

The primary objective of the present paper is to expand

the approach presented by Maier and Novati [24] to the

analysis of a three-dimensional stratified half-space by

BEM, taking into account the flexible superstructure by

FEM, using shell elements and three-dimensional beam

elements.

2. The boundary element method applied to problems

in elastostatics

In the absence of volume forces, the Navier–Cauchy

equations are given by:

ui;jjðsÞ þ
1

1 2 2·n
·uj;jiðsÞ ¼ 0; i; j ¼ 1; 2; 3 ð1Þ

where uiðsÞ is the displacement in the orthogonal direction i

from the point s inside the solid and satisfies certain

boundary conditions, and n is Poisson’s ratio. These domain

equations can further be expressed as surface equations,

which are represented by the Somigliana Identity:

uiðpÞþ
ð
G

pp
ijðp;SÞ·ujðSÞ›GðSÞ ¼

ð
G

up
ijðp;SÞ·pjðSÞ›GðSÞ ð2Þ

where p and S are, respectively, the source point where a

unit force is applied and a boundary point at the surface, uj

and pj are, respectively, the real displacement field and

surface forces on the boundary S in the jth direction, while

up
ij and pp

ij represent weighted field coefficients which

indicate the response obtained in the direction j in S; to a

force applied in the direction i at the point p: This identity is

based on Betti’s reciprocal theorem and weighted or

fundamental solutions given by up
ij and pp

ij represent

particular solutions of the partial differential equations of

Eq. (1) for a given boundary condition.

The strategy to obtain the boundary integral equations

involves transferring p; which is inside the body, to the

boundary. Thus, expression (2) can be written as follows:

CijðPÞ·ujðPÞ þ
ð
G

pp
ijðP; SÞ·ujðSÞ·›GðSÞ

¼
ð
G

up
ijðP; SÞ·pjðSÞ·›GðSÞ ð3Þ

where the integral in Eq. (3) is defined in the sense of the

Cauchy principal value [26] and Cij are coefficients that

depend on the problem’s geometry [27]. The fundamental

solutions used herein are the known Kelvin solutions

presented in Ref. [28] for the three-dimensional case.

Since the analytical solutions of expression (3) are not

given in closed form, they have to be estimated numerically.

Hence, the Boundary Element Method (BEM) is based on the

assembly of a system of algebraic equations resulting from

boundary integral equations, Eq. (3), written in terms of

nodal variables that are approximated to the boundary values

using shape functions. The integral equations of Eq. (3) are

then written without considering the domain forces as:

CijðPÞ·ujðPÞ þ
XNE

k¼1

lJl·
ð
G

pp
ijðP; SÞ·CðSÞ›jðSÞ·ðUiÞ

k

¼
XNE

k¼1

lJl·
ð
G

up
ijðP; SÞ·CðSÞ›jðSÞ·ðPiÞ

k ð4Þ

where NE, c; J are, respectively, the number of boundary

elements, the shape function and the Jacobian transform-

ation. In this paper, all the surfaces of the soil layers were

discretized into flat triangular elements [29] with linear shape

functions of the form Ciðj1; j2; j3Þ ¼ ji; where ji are

homogeneous coordinates [29].

The integrals proposed in Ref. (4) cannot, however, be

solved analytically for any generic surface; hence the use of

numerical techniques such as those given in Refs. [30,31].

In the present paper, the integral equations are calculated

numerically by using a three-dimensional triangular quad-

rature integral [29].

It is possible to assemble the shape matrices of Eq. (4),

which takes on the following form:

½H�·{U} ¼ ½G�·{P} ð5Þ

where the Dirichlet and/or Neumann boundary conditions of

the given problem are applied at each nodal point.

3. Analysis of layered soil by the successive stiffness
method

Expression (5) is here extended to a homogeneous,

isotropic and linear solid. Inhomogeneous problems can be

solved by considering a combination of problems of
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adjacent homogeneous domains, while applying the necess-

ary equilibrium and compatibility conditions at the inter-

faces of the domains [26,29].

Consider a layered soil with h layers (Fig. 1). For any

given layer i; it is possible to write the correlation between

the influence matrices of Eq. (5) as:

½ ½Hi
t� ½Hi

b� ½Hi
s� �·

Ui
t

Ui
b

Ui
s

2
66664

3
77775 ¼ ½ ½Gi

t� ½Gi
b� ½Gi

s� �·

Pi
t

Pi
b

Pi
s

2
66664

3
77775
ð6Þ

where the subscripts t, b and s represent quantities

pertaining to the upper (top), lower (bottom) and side

boundaries and U and P are, respectively, nodal displace-

ments and tractions of the top, bottom or side boundaries.

Expansion of Eq. (6) gives:

½Hi
tt� ½Hi

tb� ½Hi
ts�

½Hi
bt� ½Hi

bb� ½Hi
bs�

½Hi
st� ½Hi

sb� ½Hi
ss�

2
664

3
775·

Ui
t

Ui
b

Ui
s

8>><
>>:

9>>=
>>;

¼

½Gi
tt� ½Gi

tb� ½Gi
ts�

½Gi
bt� ½Gi

bb� ½Gi
bs�

½Gi
st� ½Gi

sb� ½Gi
ss�

2
664

3
775·

Pi
t

Pi
b

Pi
s

8>><
>>:

9>>=
>>; ð7Þ

Equilibrium and compatibility conditions can then be

imposed on displacements and stresses along the boundary

between the ith and ði þ 1Þth layers. For cases in which there

are no relative movements between contact nodes, i.e. the

case of ideal friction without the existence of prescribed

forces at the interface and with an undisturbed side

boundary, the conditions can be expressed as:

{ui
t} ¼ {uiþ1

b } ð8:1Þ

{pi
t} ¼ 2{piþ1

b } ð8:2Þ

{us} ¼ {0} ð8:3Þ

{ps} ¼ {0} ð8:4Þ

with i varying from 1 to h2 1:

Assuming that the lateral surface is sufficiently remote, it

is possible to adopt Eqs. (8.3) and (8.4) in Eq. (7) and thus

obtain the influence matrix of each layer, which is given by:

Pi
t

Pi
b

( )
¼

½Ki
tt� ½Ki

tb�

½Ki
bt� ½Ki

bb�

" #
·

Ui
t

Ui
b

( )
ð9Þ

Hence, applying Eq. (9) to each layer i; and invoking

Eqs. (8.1) and (8.2), this layer can easily be related to its

neighbours.

In the lowest layer i ¼ 1; the displacement at this base is

null, giving a fixed medium and for which expression (9)

can be re-written as:

{P1
t } ¼ ½K1

tt�·{U1
t } ð10Þ

{P1
b} ¼ ½K1

bt�·{U1
t } ð11Þ

For i ¼ 2; one has, from expression (9):

{P2
t } ¼ ½K2

tt�·{U2
t } þ ½K2

tb�·{U2
b} ð12Þ

{P2
b} ¼ ½K2

bt�·{U2
t } þ ½K2

bb�·{U2
b} ð13Þ

After applying the conditions Eqs. (8.1), (8.2) and (10) to

Eq. (13), we have:

{U2
b} ¼ 2½ðK1

tt þ K2
bbÞ

21·K2
bt�·{U2

t } ð14Þ

and substitution of Eq. (14) in Eq. (12) gives:

{P2
t } ¼ ½½K2

tt�2 ½K2
tb�·ð½K

1
tt� þ ½K2

bb�Þ
21·½K2

bt��·{U2
t } ð15Þ

which may be written:

{P2
t } ¼ ½K̂2�·{U2

t } ð16Þ

The above equation represents the influence of layers 1 and

2. Hence, applying Eqs. (9), (8.1) and (8.2) to the layers i

and i þ 1; we have:

{Pi
t} ¼ b½Ki

tt�2 ½Ki
tb�·ð½K̂

i21� þ ½Ki
bb�Þ

21·½Ki
bt�c·{Ui

t} ð17Þ

Thus, for the topmost layer i ¼ h and:

{P
h
t } ¼ ½K̂h�·{U

h
t } ð18Þ

where P
h
t and U

h
t are the nodal parameters at the soil

surface.

At this point, the influence of the inhomogeneous soil is

entirely expressed by Eq. (18), which can be solved directly

by applying the given loading conditions on the surface or

by coupling the superstructure, using FEM or BEM.

4. Superstructure composed of laminar elements

To simulate the raft via the FEM, we superpose two

independent formulations, one to represent the membrane

Fig. 1. Layered soil subjected to forces on the surface, base of boundary, top

and side.
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effect and the other the plate effect. The finite element

adopted is thus a combination of the triangular membrane

element, with a rotational degree of freedom, called Free

Formulation, according to Bergan and Felippa [32], and the

triangular plate element called Discrete Kirchhoff Theory

(DKT) described by Batoz [33]. This flat shell element is

formulated by generating a stiffness matrix for a plane

triangle in a three-dimensional space. The resulting

combined plate-membrane system is represented by:

KðFFþDKTÞ·u
nodal
ðFFþDKTÞ

¼ F
ðFFþDKTÞ

ð19Þ

where the displacement parameters of element e with nodes

i; j and k at the vertices are expressed by:

{ue}T ¼ {ð u v ux3
w ux1

ux2
Þið: :Þjð: :Þk} ð20Þ

where u; v and w are the displacements and ux1
; ux2

and ux3

are the rotations obtained in the directions 1, 2 and 3,

respectively, at each vertex node.

5. Superstructure composed of 3D buildings subjected

to vertical and horizontal forces

The buildings are modeled with three-dimensional finite

bar elements representing the linear elements of beams and

columns, without considering the effect of torsion on them.

The slabs in the buildings are considered as diaphragms

with infinitely stiff horizontal planes, for which reason the

horizontal displacements on each floor (u; v and ux3
) are the

same. Therefore, all the influences of the columns and

beams on each floor are transferred to a single master node,

which is at the torsion centre. This building model

considerably reduces the number of degrees of freedom of

the final system.

The vertical forces are applied to the beams, either

pointwise or distributed, while the horizontal and torsional

forces, caused by the effect of wind should be applied

pointwise at the center of torsion for each floor.

On the ground, the columns are coupled to the shell

elements of the raft, forming a stiffness matrix that contains

the influence of the raft-building set. The influence of the

soil must then be coupled to this system, so that the soil–

raft-building system can be analysed.

6. BEM–FEM coupling

Many techniques are used to combine the boundary

and FEMs. However, these may be collected, for

simplicity, into two approaches: (i) treating the boundary

element as a part of the finite element region and (ii)

treating the finite element as equivalent to a boundary

element region. Both algebraic approaches are clearly

presented in Ref. [29]. To apply the BEM–FEM coupling

using the successive stiffness method to represent the soil

and the conventional FEM, formulated in Sections 4 and 5,

to handle the superstructure, it is reasonable to use the

first approach (i), because the inversion of the non-banded

G matrix has already been performed in the intrinsic

formulation.

Briefly, the BEM–FEM coupling technique applied

here consists in representing the forces at the soil surface

given in Eq. (18), as nodal reactions between the contact

elements across the superstructure-soil interface. Provided

the reactions of the raft are expressed as forces already

integrated into the domain and transformed into equival-

ent nodal forces in each BEM element, the surface forces

of the soil can be expressed by nodal parameters

distributed in the element. Hence, coupling requires

transforming the surface forces into equivalent concen-

trated forces. This approach is presented below and more

details can be seen in Ref. [29].

The approach described so far will be applied to the case

of transverse loading, although it can be extended to the

other two directions. Fig. 2 shows the transverse surface

forces and the equivalent nodal forces.

In Fig. 2, gi; gj and gk represent the surface forces at

vertices i; j and k of a generic element, while Fi; Fj and Fk

represent the equivalent nodal forces at the respective

nodes.The work due to the external load in the element’s

transverse direction can be expressed as:

Te ¼
ð

A
gðx1; x2Þ·wðx1; x2ÞdA ð21Þ

where wðx1; x2Þ and A are, respectively, the transverse

displacement field within the element domain and the area

of the element. When the variation of the displacement field

is assumed to be linear:

w ¼ wij1 þ wjj2 þ wkj3 ð22Þ

Similarly, the surface forces can be expressed as:

g ¼ gij1 þ gjj2 þ gkj3 ð23Þ

After transforming the Cartesian coordinates into homo-

geneous coordinates [34] and substituting the expressions

for g and w into Eq. (21), we have:

Te ¼
ð

A
ðgij1 þgjj2 þgkj3Þ·ðwij1 þwjj2 þwkj3ÞdA ð24Þ

Fig. 2. Equivalent surface and nodal forces.
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Moreover, minimising the portion of potential energy due

to external loading and keeping in mind that the integralÐ
A f ðj1; j2; j3ÞdA can be determined by:ð
A
j
h1

1 j
h2

2 j
h3

3 dA ¼ 2A
h1!h2!h3!

ðh1 þ h2 þ h3 þ 2Þ!
ð25Þ

the transverse nodal force vector is then given by:

Fi

Fj

Fk

8>><
>>:

9>>=
>>; ¼

A

12
·

2 1 1

1 2 1

1 1 2

2
664

3
775·

gi

gj

gk

8>><
>>:

9>>=
>>; ð26Þ

By following the same procedure in the other directions,

the relation between the nodal and surface forces for the

case of the Free Formulation and DKT element can be

written as:

F‘
i

F‘
j

F‘
k

8>><
>>:

9>>=
>>; ¼ ½ �Q�·

g‘
i

g‘
j

g‘
k

8>><
>>:

9>>=
>>; ð27Þ

where ‘ ¼ 1; 2; 3 represent the three orthogonal directions

of the element and the matrix �Q is given by:

½ �Q� ¼
A

12
·

2 1 1

1 2 1

1 1 2

2
664

3
775 ð28Þ

Summing the contributions of all the finite elements and

then minimising the energy functional, gives:

½Kfem�·{Ufem} ¼ {Ffem} 2 ½ ��Q�·{Pr} ð29Þ

where Ufem;Ffem;Pr;Kfem and ��Q are, respectively, the

vector of superstructure displacements, the vector of

equivalent nodal forces due to external loading, the

expanded vector of surface force due to soil reaction,

the global stiffness matrix of the shell structure and the

expanded transformation matrix resulting from the con-

tribution of all the boundary elements.

Hence, by substituting Eq. (20) into Eq. (18) and

applying equilibrium and compatibility conditions between

the contact surfaces, we obtain:

½Kfem�·{Ufem} ¼ {Ffem} 2 ½ ��Q�·½K
_h�·{U

h
t } ð30Þ

Eq. (30) can be simplified here, resulting in:

½Kbem=fem�·{Ubem=fem} ¼ {Fbem=fem} ð31Þ

with:

½Kbem=fem� ¼ ½Kfem� þ ½Q�·½K̂h� ð32Þ

7. Numerical examples

The ad hoc algorithm developed herein allows for both

the independent analysis of the inhomogeneous soil and the

analysis of the soil–raft-superstructure as a whole.

7.1. Finite layer with linear variation of modulus

This example presents an analysis of the soil, treated an

inhomogeneous, linear isotropic medium. For the specific

case of an uniformly distributed load applied to a circular

region on the soil surface, the governing law for the stiffness

Fig. 3. Finite stratum under uniform circular loading.

Table 1

Percentage error of the central surface displacement

Thickness factor h=a Layers Error (%)

2 2 13.36

2 3 2.20

2 5 1.54

8 3 52.96

8 7 19.44

8 20 0.71

Fig. 4. (a) Thick plate on a non-deformable base; (b) discretization of a quarter of the plate; (c) Physical and geometric parameters of soil and shell.
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modulus is considered to follow a linear increase with depth

(see Fig. 3). The results given in Table 1 demonstrate the

formulation’s consistency, even when the relation h=a is

varied, and the inclusion of additional layers as this index

ðh=aÞ increases is necessary in order to represent better the

linear variation of the soil’s rigidity. The relative errors of the

central surface displacement are obtained by comparing

the values found by this formulation with those calculated by

the semi-analytical expression of Burmister in Refs. [8,9].

7.2. Thin plate on a non-deformable base

In this case, the displacement and bending moment

response in a thin square plate in contact with soil is

estimated. The rigid base plane is located 10 m below the

surface. Fig. 4 illustrates the discretisation, and the physical

and geometric characteristics of the soil.

The results of this formulation are compared with other

studies, showing a strong congruence with the values found

by Fraser and Wardle [35] and Sadecka [36] as it can be seen

in Table 2. The first authors [35] model the semi-infinite,

using surface elements [37], in which the matrix is obtained

using integral transform techniques, and Sadecka [36]

calculates the displacements along the depth of the soil

strata defined by non-linear weight functions, introducing

the influence of the thin plate supported on the free surface

of the soil and using FEM.

7.3. Loading on a square area with a rough rigid base

In this example, the soil surface is subjected to an

external load distributed over a square area (see Fig. 5).

The resulting displacements calculated by the present

method, the approximate Steinbrenner method and the

Burmister models [8,9] for the elastic medium are listed in

Table 3 for several depths of the rigid base. For the region

of the discretized surface we used a mesh with 748 nodes,

of which 441 nodes (800 elements) were allocated to the

central area of the loaded square and 307 nodes (518

elements) to the load-free area. The modulus of elasticity

adopted for the soil was 100 MPa and its Poisson’s ratio

was 0.3.

Table 3 shows good agreement between the values

obtained with this formulation and the semi-analytical

model of Burmister [8,9]. As Poulos [10] indicates,

Steinbrenner’s simple approximate method underestimates

the displacement values and, as the undeformable layer

approaches the soil surface, these values are 10–15%

lower. On the other hand, with the formulation presented

here, this variation does not influence the results, which

show an error of less than 1%.

Table 4 illustrates the robustness of the present

formulation when it is applied to different numbers of

layers representing the stratified homogeneous medium.

The present approach is compared with the well-known

Mindlin’s formulation [39] for the elastic half-space and

there is good agreement between the two, even when several

layers are used to simulate the homogeneous half-space.

7.4. Multi-storey building on raft foundation supported

on an inhomogeneous soil

The purpose of this example is to check the effect of both

the variation of the soil’s properties with depth and the

position of the undeformable layer on a multi-storey

building supported on a raft foundation.

The strains and forces acting on the beams, columns and

raft foundation, as well as the soil’s reaction forces, are

Table 2

Results for some points on the thin plate

Point of plate Fraser and

Wardle [35]

Kolar̂ and

Nemec [38]

Sadecka

[36]

Present

work

A [Deflections

w £ 1023 (m)]

7.30 5.36 6.18 6.47

B [Deflections

w £ 1023 (m)]

4.50 4.73 3.97 4.62

C [Deflections

w £ 1023 (m)]

2.80 3.76 2.25 2.95

A [Moments M11

(kN/m2)]

6.20 3.09 6.58 6.22

Fig. 5. Finite stratum under uniform loading.
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based on a 12-storey residential building plan whose

permanent forces are stipulated in the Brazilian Code

NBR 6118 [40] and variable wind forces specified in the

Brazilian Code NBR-6123 [41]. The same mesh of elements

as those of the previous example 7.3 is used, except that, in

the area where loading is applied, the shell structure is now

coupled and the building loaded onto it.

Fig. 6 illustrates the plans of the analysed structure, the

tables of the geometry and the forces considered to act on

each structural element of the multi-storey building. The raft

self-weight load was neglected in the analysis. Fig. 7 shows

the calculated transverse displacements ðwÞ along the raft’s

AA cut, considering the soil–raft-building interaction for

four cases (see Fig. 6a).

Note that taking into account the soil’s rigidity through-

out its depth results in a significant alteration in the

displacement values of the soil–raft-building system, since

the relative differences between cases b and c is about 90%

(see Fig. 7). This influence proves to be more relevant

than that of the position of the indeformable layer, since

Table 4

Vertical displacement (m) of point A for different layers

h ¼ h=L Present work

(layers)

% Error

½100ðw 2 wexactÞ=wexact�

50 0.2037 (1) 20.24

50 0.2037 (2) 20.28

50 0.2036 (5) 20.33

100 0.2041 (1) 20.06

200 0.2042 (1) 20.02

wexact ¼ 0:2042 (Mindlin’s formulation)

Table 3

Vertical displacement (m) of point A

h ¼ h=L Burmister [8,9] Present work (% error) Steinbrenner (% error)

1 0.1290 0.1299 (0.7) 0.1171 (9.2)

2 0.1639 0.1650 (0.7) 0.1564 (4.6)

5 0.1876 0.1883 (0.4) 0.1845 (1.7)

50 0.2026 0.2037 (0.5) 0.2022 (0.2)

Fig. 6. (a) Configuration of the structural scheme and the cases considered. (b) Schematic plan of the raft-building model. (c) Floor plan of the building. (d)

Tables of the forces and dimensions of the building’s linear elements.
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the relative difference in displacements between cases a and

b is in the order of 30%.

Fig. 8 shows the distribution of bending moments Mx2
on

the raft for case b. The critical values are located in the

contact between column and raft, and the maximum value

obtained is about 0.20 MNm/m in column D4. The negative

values indicate that the inferior fibers of the raft are

tensioned.

Fig. 9 shows the values of the stresses ðs33Þ mobilized

over the whole area of contact between soil and raft. The

contact stress distribution is similar to that of bending

moments, and the traction values obtained are around

0.06 MPa in case b.

Horizontal and vertical displacements at each storey

along column C3 are depicted in Fig. 10, and comparisons

between these displacements for case b and the rigid base

are presented. The biggest difference occurs in vertical

deflections where for case b the values are about three times

those found for the rigid base.

Fig. 11 depicts bending moment distribution on column

A3 and beam B9 storeys 2 and 3, for the building resting on

undeformable soil and case c. The difference in moment

between the two cases is particularly pronounced for dead

loading, where the values for case c are around 100%

greater than for undeformable soil case.

Table 5 presents the normal force that occurs in

four columns, viz. a corner column A1, an edge column

B1 and two central columns B2–B3. The results

Fig. 7. Vertical displacements along section AA.

Fig. 8. Bending moments M2 between soil and raft for the case b. Fig. 9. Contact forces between soil and raft for the case b.
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give an indication that the columns’ normal values are

closely distributed around the average, i.e. there is a

more uniform redistribution of forces because the

mobilisation of the soil–raft-building system occurs

simultaneously.

In the solution of the linear system generated by

coupling the soil-shell-multi-storey building—as in the

present example—the resulting matrix is not symmetric,

but sparse, with 26% nonzero elements (see Fig. 12).

Thus, it is imperative to use sparse techniques for the

solution of the problem. In the present research three

different methods of solving the final linear equations

were used: (i) the Fortran 90 code that uses IMSL

routines [42]; (ii) the iterative method GMRES [43]

optimized with a diagonal preconditioning (Jacobi); and

(iii) the Harwell sparse matrix package MA28 [44].

The first, which is based on the direct method does

not take into account the sparse pattern property of the

final matrix, so it is not appropriate for this problem, as

can be verified from the execution time in Table 6.

The second is the most conventional iterative method

applied in solving sparse unsymmetric linear systems.

The computational cost of the method is the matrix-

vector product carried out at each iteration, and the

sparse pattern generated in the final matrix is not a

relevant factor for the convergence in the method. But

the performance dependence of GMRES [43] strongly

dependent on the condition number of the matrix, and

the application of BEM in elastostatic problems, in

general, does not generate a well-conditioned matrix

property, principally in the zone and BEM –FEM

coupling methods.

In the Harwell sparse matrix package MA28 [44], based

on Gauss elimination, the data structure of the matrix is a

determinant factor for rapid execution of code, due

essentially to the fill-in effect. However, the sparse pattern

generator software was not used to reduce the number of

operations. Despite this, the execution time obtained with

MA28 [44] showed it to be highly efficient in solving

problems based on the mixed BEM–FEM formulation.

Fig. 10. Horizontal and vertical displacements across the storeys (column C3).

Fig. 11. Bending moments (kNm) between storeys 2 and 3.

Table 5

Nominal forces (MN) in the columns of the ground floor for the several

cases of soil rigidity

Column Case a Case b Case c Case d Indeformable soil

A1 0.0687 0.0661 0.1139 0.0896 0.0359

B1 0.3021 0.3024 0.3222 0.3694 0.2875

B2 0.4670 0.4666 0.4330 0.4457 0.5153

B3 0.5477 0.5449 0.5116 0.5142 0.6205
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8. Conclusion

Inhomogeneous soil-structure interaction was analysed

by a BEM–FEM combination. The method of successive

stiffness proposed in Ref. [24] was extended to 3D

problems, including the influence of the structure’s

flexibility, using a shell finite element composed of DKT

[32] and Free Formulation [33] elements and the results

obtained show good agreement with those found in the

literature.

Example 7.1 compares analytical and numerical

responses. Table 1 presents shows good agreement

between both formulations and it also can be seen that

the robustness of the responses remained unaltered even

when very thin soil layers were considered. The

numerical results obtained in example 7.2 demonstrated

that the BEM–FEM coupling succeeded well and Table

2 shows the good quality of the displacement and

moment values compared with other approaches.

Example 7.3 is concerned with analysing stratified

homogeneous soil problems, so the present formulation

was compared with the semi-analytical model of [8,9] and

Steinbrenner’s well-known simplified approach. Results

presented in Table 3 demonstrate that the relative displace-

ment errors between [8] and our formulation kept below 1%,

where as Steinbrenner’s model leads the undeformable layer

is near the soil surface [10]. To verify the stability of the

present formulation when using several layers to represent

the medium, the conventional Mindlin formulation was

compared with this work, assuming that all layers have the

same physical properties and allowing the thickness of the

medium to tend to infinity. The values presented in Table 4

maintained the robustness of the responses and also

unaltered when compared with the analytical values.

The purpose of example 7.4 was to check the effects

of both the variation of the soil’s properties with depth

and the position of the undeformable layer on a multi-

storey building supported on a raft foundation. The

results demonstrated that both these influences are very

relevant to a more realistic analysis and design of the

building, as can be seen in Figs. 7–11 and Table 5. In

this example, the final matrix is sparse and two different

known sparse techniques were used. Table 6 showed that

it is imperative to apply an appropriate method for this

particular kind of matrix, and the free Harwell sparse

matrix package demonstrated good efficiency in solving

problems based on the mixed BEM–FEM formulation.

Finally, the method of successive stiffness offers two

computational advantages over the standard boundary

element method by zones (subregions), namely: (1) fewer

computational operations, and (2) lower storage-memory

requirements for equations of the final soil system. It

should also be pointed out that the influences of each

stratum can be computed independently, so that this

technique can be used for distributed-memory computers,

with the advantage of achieving high efficiency and

loading balance naturally.
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