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Abstract. This paper presents an analytical solution developed to compute, in an
approximated form, bending moments from curvatures at different positions occupied by a
specific section of a sheet being bent while in a three-roll-bending machine. The distribution
of bending stresses is obtained, as well as the residual stresses resulting from springback of
the component at the end of the process. Elasto-plastic conditions under the viewpoint of the
deformation theory of plasticity are considered for a power law material. For a particular
application considered residual stresses as well as springback is computed. Results obtained
compare well with published results.
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1. INTRODUCTION

Several researchers along history have treated the problem of bending of metallic sheets.
An overview of the contributions, though incomplete, could start with initial solutions devised
for the elasto-plastic bending under plane strain conditions (Hill, 1950). From there on, stress
and strain distributions were determined (Lubahn and Sachs, 1950), with springback and work
hardening added later on (Denton, 1966). Experimental and theoretical analyses for
determination of residual stresses were developed during the seventies and eighties with
acceptable results. Improved solutions were obtained recently (Tan et al., 1994) as applied to
pure bending. No direct application of these solutions, however, appears for the case of roll
bending.

In the present work basic equations are developed for this problem, under the framework
of the theory of deformation plasticity, alleviating some restrictions, while still getting a
closed form solution.

2. BASIC EQUATIONS

2.1 Model

In continuous sheet bending of thin plates, normal planes may be considered to remain
plane on bending and to converge to a center of curvature, as illustrated in Figure 1.
Assuming that the principal directions of stress and strain coincide with the tangential, radial



and normal directions, respectively, allows us to deal with only three variables in each case.
For roll bending, internal efforts include some traction and shear components, but their effect
may be considered small compared to the effect of the bending moment. The problem
translates therefore to the determination of the values of the bending moment at different

stations where curvatures are supposed known.

2.2 Constitutive relations

In a principal coordinate system, as described above, the components of the stress tensor
σσ  are restricted to the tangential t, radial r and normal z component. For all points in an elastic
state we may write (Sidebottom & all, 1979)

Where E and ν are the elastic modulus and Poisson’s ratio, respectively. Under plane strain
conditions, the z-component may be considered null, so that equations above simplify to
render

Plastic strain components, on the other hand, may be determined from the deformation theory
of plasticity, for isotropic materials, under continuous loading on the hypothesis of
proportionality between principal shearing strains and the corresponding principal shear
stresses (Marin, 1952)
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Figure 1. Strain and stress distribution in a typical section of the sheet element.



Where the quantity 2k/3 is sometimes known as the plasticity modulus, being k a constant.
With only two strain components to worry about, and assuming volume constancy in the
plastic range, Equation (3) simplify to render

Combined values of strain and stress may be compared to one-dimensional results if
equivalent quantities are used. For many metallic materials equivalent values of strain and
stress are related through the Hollomon formula, which is a power law model with a work-
hardening index n,

Relating equivalent stresses to equivalent strains. This expression is dependent on the
deviatoric components of stress tensor σσ ’

And on the total strains, that may be decomposed into elastic and plastic components (Lee and
Liu, 1967)

A simplification of these expressions may devise if we consider Equations (4) and (7) plus the
fact that the radial components of stress are small compared to the tangential ones, so they
may disregarded. The result is:

Which means that the equivalent strain and stress may be written in terms of the tangential
components as

The above expression (9) is useful to generate an approximation to the tangential stresses. In
order to do this we may get back to Equation (3), substitute the above result, expand the
power term into a Taylor series, approximated to the first term, and find
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So that formally

Will be the set of bending strains required to define the components of the strain tensor.
Components of the stress tensor may be obtained directly from the tangential component,
Equation (10) and the results above applied to Equation (1) and (3).

2.3 Bending moment

Focusing attention into the specific case of the three roll bending process, Figure 2 shows
that, each section of the sheet, at some moment, is submitted to different conditions of
straining. If we follow a specific section, while rolling from position A till position E, we will
notice that the stresses are small, in the elastic range. Bending is predominant, with values of
bending moment ranging from zero, position A, to the maximum elastic bending moment my ,
position E, whose value may be computed from :

Where the radius of curvature at position E is such that the maximum stresses in the section
will reach the yield value Sy, being t the thickness of the metallic sheet and r the radius of
curvature. In order to expand the above expressions, logarithmic strains were put as

For the case where we have very neither small radius of curvature nor stretching of the sheet.
The condition where the first yield stresses appear does not correspond, however to the

point where curves for the elastic part of the one-dimensional stress-strain diagram intercept
the elasto-plastic region (Queener and Angelis, 1968).

So that, in general, elastic plus elasto-plastic conditions will be present in any section after
point E is surpassed. For any position y up to the transition point y0, elastic stresses prevail
contributing to the total bending moment in the section with:
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While the remaining stresses, which obey the elastoplastic conditions, contribute with:

The above expression may be evaluated numerically. Fortunately its denominator differs very
little from one, so that a close-form approximation can be written:

And the total bending moment will be the sum of me plus mp. (Tan & all, 1994)

2.4 Springback

After passing the position of maximum flexure, station B, Figure 2, the bending moment
is gradually decreased to zero, station C. When this happens, stresses try to relieve themselves
by straightening the bent plate. This causes springback and leaves the sheet with residual
stresses. In order to describe the first effect, let rb and rc denote the radii of curvature before
and after unloading. Unloading is elastic.

If the length of an element located a distance y from the neutral layer, between two
sections ∆l0 apart, before unloading, station B, is

Where ∆αb is the angle involved before unloading, and

Then the corresponding elastic strains obtained upon unloading will be

Whereas the unloading bending moment to be applied to the maximum bending moment
results to be

Therefore, solving Equation (21) for rc we get
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Defined as the final expression for the determination of the curvatures after springback.

2.5 Residual stresses

In order to determine the stresses left in the sheet after removal of the loading, we may
subtract the elastic stresses, caused by unloading at every position y of the sheet, from the
stresses already there. The resulting stresses will be the residual ones. Starting at Equation
(23), and performing the subtraction, we get the final result:

3. APPLICATIONS

Expressions derived above may be applied directly to the problem of bending a sheet on a
three-roll device. The arrangement illustrated in Figure 2 may be used in order to show this. It
is regarded as known the final desirable curvature of the plate at C, and desired to know what
the maximum curvature, which happens to occur at B, should be so that after springback the
required final form is obtained. If it is considered Equation (23) on setting the curvature at B
as the free variable, curvature rb results to be the root of equation:
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And therefore all we have to do is to solve the above for rb. Newton’s method may be used
among others, (Hughes, 1987).
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Figure 2. A roll bending apparatus (Marciniak, 1991)

4. RESULTS

The above development was used to compute springback as well as residuals stresses.
This paper deals with the specific case of a sheet of SAE 1008 Steels, for which E = 200 GPa,
ν = 0.33, K = 541 MPa and n = 0.252, with thickness of 3mm, bent to a final radius of 0.135
m. Results are shown in Fig. 3. Comparison with X-ray measurements as reported in the
literature, is presented. The characteristic S-shape is obtained in both cases, with top stresses
occurring at similar positions.

In much the same way, variations of curvature due to springback, as a function of the
maximum curvature, may be considered. Figure 4 shows the behavior the variation of
curvatures for SAE 1008 and an aluminum alloy AA 6061-O.

5. CONCLUSION

The development presented here, which covers some results included in the literature,
though simple produces good results and might be very useful in industry. Further

Figure 3. Predicted and measured curves for residual stresses after spring back for steel SAE 1008.

Figure 4. Predicted curvature variations (Springback) versus maximal curvature.
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improvements in the model, including effects like damage and anisotropy, are predicted for
the next steps of the work.
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