
1 INTRODUCTION  

Metal cutting is a quite complex phenomenon, of 
multi physics type, where elasticity and plasticity, 
fracture, contacts, heat transfer, among others takes 
place simultaneously. Much work has been devoted 
to its understanding. Initially having an experimental 
character and afterwards theoretical as well. Since 
the forties several attempts were made pursuing a 
linking between empirical knowledge and 
theoretical modeling. Such attempts begun at forties 
(Piispanen, 1948) and (Merchant 1945), 
concentrating in explain the mechanisms of the chip 
formation. A recent review can be seen in (Mackerle 
1999). 
In metal cutting the material is subjected to 
extremely high strains in two principal regions: the 
shear zone or primary deformation zone, and another 
zone, known as secondary deformation zone. 
Determination of stresses and temperatures in this 
region is a central problem in understanding 
machining processes, as the problem is of a coupled 
one. 
Many models were developed to address this 
solution. Of particular success were the ones 
considering the finite element tool, using update 
Lagrange scheme. Here it is presented some details 
of one such a solution, regarding some previous 
work in the area (Lin, 1990, 1992, 1995), 
(Komvopoulos, 1991), (Tay 1976 and Stevenson 
1983), (Rebelo & Kobayashi, 1980) and (Muraka & 
all, 1979). A quasi-static solution with typical 
machining parameters will be formulated and 
implemented in this work. 

2 FORMULATION 

2.1 Orthogonal Cutting Model  
The chip formation model to analyze has the 
geometry shown in Figure 1. In it is possible to 
distinguish two regions separated by a division line 
AB, the cutting line, marking the positions 
separation is going to take place. Dimensions for 
this part of the workpiece are shown in mm, in the 
same figure. It corresponds to a region of the 
workpiece where deformation is localized. For the 
mechanical and thermal problems, boundary 
conditions shown in Figure 2 apply. In the left lower 
side, it was prescribed null velocities, for the 
horizontal, 1, and vertical, 2, directions. 
Temperatures have a fixed value To.  
 

 
Figure 1. Chip formation model 
 
 

(c ) 2001 Swets @ Zeitlinger, Lisse ISBN 90 2651 822 6 

 

Thermo Mechanical Model for Orthogonal Metal Cutting 

M. R. Madrigal 
Dept. Mechatronics and Mechanical Systems Engineering, Polyt echnic School, University of S. Paulo, Brazil 

J. B. de Aguiar & G. F. Batalha 
Dept. Mechatronics and Mechanical Systems Engineering, Polytechnic School, University of S. Paulo, Brazil 

ABSTRACT: A finite element model of the orthogonal metal cutting process with a coupled thermal-elastic-
plastic constitutive equation under large deformations based on update Lagrangian formulation is presented. 
Plane strain conditions with a flow stress function of strain, strain rate, work hardening and temperature is 
assumed. Principle of virtual work is applied in order to construct an equilibrium rate solution. The problem is 
formulated, discretized and the resulting equations solved with the finite element method. As an application 
the temperature field is computed for the case of machining AISI 1020 steel. The stress field is also shown in 
order to present the coupled problem. The interface problem is modeled with a simple Coulomb friction 
surface. The model produced good agreement with results presented in the literature.  

 

L = 2 mm 

h = 0,75 mm 

tc =0,25 mm 

A B 

γ 

α 

Vc 



Figure 2. Set of boundary conditions. 
. 
The tool, on the other hand, is supposed constructed 
with high speed steel capable of heating and 
approaching the workpiece with a velocity Vc. It is 
assumed rigid. Geometry of it depends on the rake 
angle γ and the clearance angle α. 

No restrictions are imposed to the velocities in the 
other surfaces. Contact with heat transfer associated 
occurs in the chip tool interface, where normal 
velocity components equal the prescribed velocity in 
the same direction, whenever there is no open 
condition in the contact interface.  
 
2.2 Constitutive Law 
 
During contact between tool and workpiece, a part 
from the large strains of the process, friction occurs. 
Energy consumed in the process is largely 
transformed into heat, raising the temperature of the 
interacting elements. Thermal strains are naturally 
induced by the change in temperature. 
Assuming the total deformation rate as being the 
sum of three parts, an elastic, a plastic and a thermal 
one: 
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Allows us to describe the elastic portion of the 
constitutive relation by 
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Being Ce the elastic tensor relating the elastic part of 
the deformation gradient with the Jaumann rate of 
the Cauchy stress. Plastic deformations are assumed 
to comply with normality, so that 
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Which is an expression that depends on the plastic 
potential F, assumed associated to a Mises type of 
loading function f, 
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The determination of the parameter λ, which may 
vary throughout the straining, comes from the 
consistency condition: 
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And leads to the following  
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Where H’ is the strain hardening parameter, for 
conditions of isotropic hardening, and N the normal 
to the yield surface, and Dp the equivalent plastic 
strain rate, respectively. On performing the indicated 
operations, the final form of the elastic-plastic 
matrix will be 
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Where 

IIJCe KG +′= 2                          (8) 

With G and K the elastic shear and bulk moduli, 
respectively, and the J’and I the unit tensors, the 
first one in the deviatoric plane (Aravas, 1995). 

2.3 Equilibrium Condition 

Equilibrium of the part P, workpiece, on a rate form 
derives from equating internal and external virtual 
work rates (Hill, 1959): 
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Where Vo and So are the volume and surface of the 
body in the reference configuration, respectively.  

V1=0
V2=0

V1=-Vc
V2=  0

 



The virtual velocity field is assumed time 
independent and obeying the boundary conditions. 
The nominal, or Lagrange stress is denoted by s, the 
nominal traction on So by fo and body force by on Vo 
by bo (Yamada, 1973). If we consider the 
expressions above and perform the indicated 
operations we may write that 
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Where its geometric part may have the velocity 
gradient L factored out through a matrix Dg 
(Obikawa, 1966). Discretized the part with finite 
elements, being the nodal velocities V the 
independent variables, results in the matrix form: 
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With the loading rate term composed of the parts: 
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Where α , thermal expansion and θ, temperature, 
couple the problem.   

2.4 Unsteady State Thermal Conduction Analysis. 

The integral form of the energy equation to be 
solved is given by the following expression 
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Where ρ  is the density, c is the specific heat, k is 
the thermal conductivity, and W is the rate of 
dissipation due to friction and plasticity effects: 

 
dVDWdSW

t
slc

t
V

p
p

S

f ∫∫ =⋅= σηµ &&& ;ut         (14) 

Where η measures the part of the plastic work 
converted into heat while µ represents the friction 
coefficient associated with tangential forces t. On 
applying the principle of virtual temperatures and 
upon discretizing the same volume with the above 

interpolation function (Rebelo and Kobayashi, 1980) 
as: 
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Friction dissipation at the interface in slip condition.  

2.5 Contact Problem 

Solution of the contact problem, between tool and 
workpiece is based on Coulomb’s law. In it, 
localized stick or slip conditions depend on the 
magnitude of the friction coefficient. For conditions 
of rigid stick, dissipation potential is added to the 
general virtual work statement used above. In the 
contact interface adhesion and slipping/sticking 
contact occur. Considered the discretization used 
above, the final result is the addition of stiffness 
term Kf to the left side of expression and a vector 
term to the right side (Cheng and Kikuchi, 1985). 

2.6 Separation Criterion 

As the tool advances, each node on the path line was 
assumed to separate at the cutting edge into a chip 
surface node and a machined surface node when the 
strain energy density reached a critical value (Lin, 
1992). 

3. MODEL IMPLEMENTATION 

A quasi-static simulation, including the model 
parameters considered above was implemented and 
results are shows ahead. The model was run 
assuming a HSS tool having a rake angle of 8 
degrees, moving with a velocity of 122 m/min. 
Coefficient of friction between 0.2 and 0.5 were 
considered. The workpiece was assumed made of 
AISI 1020, E= 207 GPa, ν=0,292, σo=210 MPa. The 
model was implemented using an ABAQUS FEM 
code (ABAQUS, 1994). Chip formation and 
separation during the process is shown in Figure 3. 
Figure 4 shows the equivalent plastic strains. It 
concentrates in the primary shear zone and close to 
the tool-chip interface, in agreement with the 
Merchant’s theory. Figure 6 shows the isotherms of 
the temperature distribution in the tool, chip and 
workpiece. It shows the temperature rise due to the 
combined effects of two principal heat sources, the 
plastic strain in the shear plane and the frictional 
heat dissipation in the chip -tool interface. In 
generating this plot it was assumed room 
temperature as initial condition, To.  Maximum 
temperatures occur inside the shear zone and at the 
secondary shear zone. 



 

Figure 4. Equivalent Stress 

 
Figure 3. Chip formation: (red) undeformed, black, deformed 
 

 



 
 
 

 

Figure 5. Equivalent plastic strain 
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Figure 6. Cutting temperature distribution 



4. CONCLUSIONS 

Overall observation of the results produced and 
comparison with some of the available results in the 
open literature show good agreement. Temperature 
fields, as well as stress fields behave like, and have 
values in the range of the ones obtained 
experimentally or numerically. In the primary zone, 
top temperatures in the vicinity of 600 degrees were 
obtained. Only conduction to the tool was allowed 
and that in a half- and-half proportion. Top 
temperatures a little bit lower should be expected 
that the heat transfer in the supposed isolated 
portions of the model do occur. Allowance for 
radiation or exchange with lubricants, when they are 
present, would include small modifications to the 
model. In what concerns the stresses, again good 
results are obtained, with discrepancies of the order 
of 30%. The model presented could be modified also 
to include anisotropic effects as well as incorporate 
cinematic hardening conditions. In it the Shirakashi 
expression for the description of behaviour of 
metallic materials in a equivalent setting was used 
(Usui & Shirakashi, 1982). Forces, can also be 
computed from this model, by integration of the 
stresses (Madrigal, Batalha & de Aguiar, 2000), and 
they present the trend and range of measured results.  
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