
PPL 1.0

Propositional Probabilistic Logic Package

User Manual

André da Costa Teves, Danillo Paulo Couto

Paulo S. de S. Andrade, Fabio G. Cozman

andreteves@gmail.com, danillo couto@yahoo.com.br

p s s a@yahoo.com.br, fgcozman@usp.br

August 16, 2007

1

Contents

1 Introduction 3

1.1 A little bit of history . 3
1.2 Background . 3
1.3 PPL overview . 4

2 Downloading PPL 5

3 Pre-requisites 6

4 Installation 7

5 Using PPL 8

5.1 Starting off . 9
5.2 Sintax . 9
5.3 The function p . 9
5.4 Inserting sentences and probabilities 10
5.5 Inference . 10

6 Examples 10

7 The Consistency Checker 12

7.1 The algorithm . 12
7.2 Comunication with PPL . 12

8 Acknowledgements 14

2

1 Introduction

1.1 A little bit of history . . .

Proposals for the union between logic and the probabilities theory go back to
the research of George Boole in the last century [1], and have been discussed
frequently in the last decades [2, 3]. The reason for this interest is the
potential generality of this unifying language, with potential applications in
knowledge representation, objects description in group technology, expert
systems for diagnostics, learning from rules, information search and recovery,
description of resources distributed in a network [4] and planning under
uncertainty.

Nowadays there as two main approaches for the combination of logic
and probabilities. The first one basically associates probabilities to general
sentences expressed in some logic. The second (and more recent) one starts
by restricting the language and assuming independence relations so as to
guarantee uniqueness in probabilistic assessments. These two approaches
are, in many aspects, complementary. Probabilistic logic offers big flexibility,
but typically dispense the representation of independence relations; on the
other hand, the “relational probabilistic model” uses independence relations,
but offers limited flexibility.

1.2 Background

Propositional logic, given its relatively simple sintax and semantics, offers
an useful starting point for knowledge representation [5]. The basic syntatic
element in this logic is the concept of propositional variable or atomic for-
mula formula that can assume one of two values, true or false. A literal is
either an atomic formula or its negation. In this text compound formulas
are indicated by the greek letters φ, ψ and θ with or without indexes. A
disjunction of literals is a clause. A Conjunctive Normal Form (CNF) is a
conjunction of clauses, denoted by C1 ∧ . . . Cr where Ci is a clause.

The semantics of any expression in propositional logic depends on a map-
ping that establishes a correspondence between the variables in the formula
to facts in a target domain. A truth assignment is a vector assigning either
value true or false to each propositional variable of an expression (these as-
signments are often called possible worlds [3]). If we have n propositional
variables, there are 2 n truth assignments. A conjunctive formula is true
if all its component formulas are true, otherwise it is false. A disjunctive
formula is false only if all its component formulas are false, otherwise it is
true. A negative formula is true (false) if its component formula is false
(true).

A formula φ is satisfiable if it is true in some possible world ω; then
ω is a model for φ (M(φ, ω)). If φ has no model it is unsatisfiable. A
formula ψ entails a formula θ (ψ |= θ) if every model for ψ is a model for θ.

3

An inference ψ ` θ determines whether a premise ψ entails a conclusion θ.
satisfiability problem (SAT) is: given a CNF ψ with m clauses C1 , . . . Cm
, is ψ satisfiable? This question has a strong relationship to logic entailment
and logic inference because ψ |= θ iff ψ ∧ ¬θ is unsatisfiable. That is, it is
possible to approach inference as SAT problem. A particular kind of SAT
problem is the k-SAT, a SAT which every clause has k literals.

An important limitation of propositional logic, from a point of view
of knowledge representation, is its inability to deal with uncertainty. As
stressed by Neapolitan [6]: “We also must acknowledge that in some cases
the truth of certain premisses may be suggestive of the truth of a conclusion,
but not imply it conclusively.” To overcome this difficulty, propositional
probabilistic logic extends propositional logic by attaching probability as-
sessments to formulas. In this context,

The counterpart of SAT in probabilistic logic is the probabilistic satis-
fiability problem (PSAT) [7]. The PSAT structure is similar to SAT but it
poses the following question: is there a probability distribution satifying a
set of m assessments that assign probability interval to P (φi) for a set of
formulas {φi}

m

i=1
over n propositions.

If the assessments are such that no probability distribution p over truth
assignments can be specified, the assessments are inconsistent. The consis-
tency problem of probabilistic satisfiability is: given a set of assessments,
determine whether they are inconsistent or not. The inference problem of
probabilistic satisfiability is: given a set of assessments and a formula φ,
obtain the infimum of P (φ) — that is, the infimum value α such that the
constraint P (φ) = α and the assessments are consistent. The infimum is
denoted by P (φ) and called the lower probability of φ. This infimum is
attained because probabilitisc assessments on the logical formulas and con-
straints

∑
ω P (ω) = 1, P (ω) ≥ 0 define a bounded polyhedron in the space

of probability measures over truth assignments.
Like SAT, PSAT is a NP-complete [7].

1.3 PPL overview

The construction of a probabilistic logic knowledge base is not a simple task.
Formulas must be inserted; assessments associated with them; consistency
must be checked, and revisions must be made continuously.

Currently the only system that allows interactive development of a prob-
abilistic logic base, to the best of our knowledge, is the Check Coherence
(CkC) package. CkC is distributed for noncommercial use, for Windows
platforms only, at http://www.dipmat.unipg.it/~{}upkd/paid/software.html.
The package deals with PSAT and allows conditioning on events of zero prob-
ability, a possibility that for the time being we avoid in our software. CkC
asks the user to enter each formula and assessment in a sequence of steps,
using an graphical interface to guide the process. While the CkC package

4

http://www.dipmat.unipg.it/~{}upkd/paid/software.html

is useful and very general in its operation, we find that the manipulation of
formulas is excessively rigid and a bit difficult at times

We have thus decided to investigate a different strategy to edit proba-
bilistic logic bases. Our idea was to start from a well known prototyping
language, and add features to this language so that it can serve as a conve-
nient, simple and easy-to-learn editor of probabilistic logic bases. We wanted
to create a tool that could be easily extended by others; that could be freely
distributed; and that could run in a variety of operating systems. After a
comparative analysis of several prototyping languages currently available,
we settled on the Python language (http://www.python.org), as it has a
clean syntax, a free implementation and an associated development system.

In the PPL package, the user types in arbitrary propositional formulas,
using an intuitive syntax (described in the system manual). The user inter-
acts with the package using the friendly Python editor (the IDLE system),
and the user can benefit from all Python facilities such as memory control
and string processing. The package can call functions that translate for-
mulas into CNF if so desired. The user can attach either probabilities or
probability intervals to formulas, and check consistency at any point in time.
To check consistency, the package executes calls to the consistency checker
described in the section 7.1.

2 Downloading PPL

To get PPL, you have two options:

1. You can download the gzip/tar file PPL-1.0.tar.gz . You have to use
the gunzip and tar utilities to obtain all the files.

2. You can download the zip file PPL-1.0.zip. You have to use one of the
many utilities that read the zip format.

You can also download a manual (pdf or postscript).
Downloading and unpacking the PPL distribution should produce several

directories and files:

- A to CNF directory, the package responsable for making the conversion
to the conjuntive normal form.

- A geracol directory, with the inference algorithm (for more informa-
tion see section 7.1) used by PPL and two important files: ppl file.txt

and saida.txt. They are responsable for the comunication between
PPL and Geracol (see section ??).

- A Readme directory that contains this manual and miscellaneous in-
formation, such as list of changes and bugs

5

http://www.python.org

- PPL.py

Important: If you download PPL, we ask you to notify us (andreteves@gmail.com
or danillo couto@yahoo.com.br) with a small email message. This software
is experimental and will be evolving soon as we test it and kill bugs. We
would like to know who has it so that we can send messages indicating
patches and new versions. Even if you do not want to receive messages,
send us a message indicating that you have the software but you do not
want any messages. Thanks.

3 Pre-requisites

Before unpacking PPL you must have the following enviroments already
installed in your computer:

ANSI C

You must download an IDE that uses Mingw port of GCC (GNU Compiler
Collection) as it’s compiler. If you are using Windows we recommend Dev
C++ 5 or newer, you can find it at http://www.bloodshed.net/devcpp.html.

This is necessesary because the inference algorithm used by PPL (section
7.1) is written in C and should be recompiled in order to adapt it to your
computer.

Python

PPL was developed using Python 2.4. You can download it at http://www.python.org.
Python is compatible with UNIX, OS X, Windows and Macintosh OS

X.
Because PPL do not have an user interface, it works embedded in any

Python IDE. We recomend IDLE because it comes with almost all avail-
able Python distributions. If you don’t have any IDE installed you should
download it either.

Linear Programming tool

You can use GLPK (GNU Linear Programming Kit) or ILOG CPLEX.
GLPK is a set of routines written in ANSI C and organized in the form

of a callable library. If you are using a Unix system You can download it at
http://www.gnu.org/software/glpk/glpk.html.

If you are using Windows you can find it at http://gnuwin32.sourceforge.net/packages/glpk.htm
If you have acess to the commercial programm ILOG CPLEX it is

preferable to use this software, especially because it has proved to be con-
siderably faster than GLPK. You can find more information about it at
http://www.ilog.com/

6

http://www.bloodshed.net/devcpp.html
http://www.python.org
http://www.gnu.org/software/glpk/glpk.html
http://gnuwin32.sourceforge.net/packages/glpk.htm
http://www.ilog.com/

PPL presents full compatibility with ILOG CPLEX 10 and GLPK 4.9.

4 Installation

First off all you should install all the programs listed above (section 3),
acording to your operational system.

Now, unpack the downloaded file in a folder of your choice.

Creating the environment variables

You will have to create two environment variable: PYTHONPATH and PPLPATH.
The first one will be used by Python to identify a new module folder (it tells
Python which folder to search for a specific module when the command
import nameofthemodule is used) and the second one allows Python to
identify where PPL is installed. Probably, if you are using Pyhthon for the
first time this two variable will have the same content.

If you are using Linux, to create an environment variable that lives for-
ever, update your .bash profile file:

XXXPATH=/usr/local/XXX/bin export XXXPATH

To check if the variable was correctly created, use env in the terminal,
this command will list all existent environment variables

If you are using Windows go to:

My Computer → Properties → Advanced → Environment variables

and create the new variable pointing to the desired folder.

Compiling Geracol

with GLPK

The next step is to compile the geracol algorithm, which is written in C.
You can find in PPLPATH/geracol the folders CPLEX and GLPK. Among oth-
ers files, in each folder you will find the source file of Geracol (the inference
engine used by PPL - section 7.1) adapted to your favourite linear program-
ming solver.

To compile it in Windows using Dev C++ 5, go to:

Tools → Compiler Options → Compiler → Add the following commands
when calling compiler

and add the following line, or something similar(depending on where you
have installed GLPK):

7

C:/GnuWin32/lib/glpk.lib

Go to:

Tools → Compiler Options → Directories → Libraries

and add the path (again, or something similar to that):

C:/GnuWin32/lib

Go to:

Tools → Compiler Options → Directories → C includes

and add the path:

C:/GnuWin32/include

Now you can copile it! I hope these steps will work for you!
Finally, to execute Geracol is necessary to have the file with the extension

.dll in the same directory (PPLPATH/geracol). For example, glpk49.dll,
where the number following the name of the file is related with the version
of GLPK.

with CPLEX

To compile Geracol you must have the file Makefile in the same direc-
tory of the source file and check if the path for the ILOG CPLEX library
corresponds to:

/usr/ilog/cplex100/include/ilcplex/cplex.h

Now you just have to type Makefile in the terminal, which will generate
the executable Geracol.

To execute the programm it is needed to have the files for the parameters
modification in the format PRM: altparam.prm and normparam.prm in the
same directory of the executable geracol.

5 Using PPL

In the following sections we will present all commands you need to know in
order to use the PPL package.

8

5.1 Starting off

First you have to import the module called PPL.py. To do that, in your
Python IDE just type:

>>> import PPL

This will work only if your environment variable PYTHONPATH is cor-
rectly configured (see section 4).

5.2 Sintax

There is a specific sintax that must be followed in order to insert a sentence.
In general, a sentence is a set of operators and args. The possible operators
are:

- Null-ary (no args) op:

A symbol, representing a variable or constant (e.g. ‘a’)

- Unary (1 arg) op:

‘∼’,‘-’, representing NOT, negation (e.g. ‘∼a’)

- Binary (2 arg) op:

‘==>’ or ‘>>’, representing forward implication

‘<==’ or ‘<<’, representing backward implication

‘<=>’ or ‘%’, representing logical equality

‘=/=’ or ‘∧’, representing logical disequality (XOR)

- N-ary (0 or more args) op: ‘&’, ‘|’, representing conjunction and dis-
junction

Internally PPL converts your sentence to the conjunctive normal form
(CNF) using the package to CNF.

5.3 The function p

This is the function that allows the insertion of sentence and probabilities
in order to create a knowledge base. For doing this follow the structure:

PPL.p(sentence, lowprob, upperprob)

Where sentence is the sentence you want to insert. The arguments
lowprob, upperprob are, respectively, the lower and upper probabilities of
the sentence.

Note that the last two arguments can be omitted, inserting, then, sen-
tences without a specific probability interval. If only one was omitted, the
function will interpret as if the lower and upper probabilities are equals.

9

5.4 Inserting sentences and probabilities

Using the sintax specified in the section 5.2, there two possible ways of
inserting a sentence. You can set a variable with the desired sentence and
then use this variable in the function PPL.p

>>> s1 = ‘∼(B|C)’
>>> PPL.p(s1, 0.3, 0.8)

Or you can enter the sentence using directly the function PPL.p:

>>> PPL.p(‘∼(B|C)’, 0.3, 0.8)

5.5 Inference

PPL can check coherency and perform extensions (inferences) in a knowledge
base. To do so, first you have to insert some assessments (section 5.4)
and then, if they are coherent, PPL will computate the upper and lower
probabilities for any adicional event.

After inserting the assessments, you have two choices: just check their
coherency and/or extend them. If you choose the first option, the function
to be used is the PPL.checkCoherence:

>>> PPL.checkCoherence()

The result of this interaction should be ‘coherent!’ or ‘incoherent!’. In
case you want to perform inference:

>>> s2 = ‘A∧C’
>>> PPL.extension(s2)

Where s2 is the adicional assessment that you want to calculate the
upper and lower probabilities. If the assessments are coherent, the result of
this interaction should be something like this:

Lower: 0.2

Upper: 0.6

When the function extension is used, PPL calls the function checkCoherence

and if it returns ‘coherent!’, then the probabilities interval is calculated.

6 Examples

Here is an example of use of PPL:

10

>>> import PPL

>>> s1 = ’a <=> (b|c)’

>>> s1

’a <=> (b|c)’

>>> s2 = PPL.toCNF(s1)

>>> s2

’((~b | a) & (~c | a) & (b | c | ~a))’

>>> PPL.p(s1, 0.5)

>>> s3 = ’d | (e & f) | g’

>>> s3

’d | (e & f) | g’

>>> s4 = PPL.toCNF(s3)

>>> s4

’((e | d | g) & (f | d | g))’

>>> PPL.p(s3, 0.3, 0.8)

>>> PPL.checkCoherence()

Coherent!

In Figure 1 a similar example is executed with IDLE:

Figure 1: Example of using PPL in IDLE

11

7 The Consistency Checker

7.1 The algorithm

This algorithm was implemented by Paulo Sérgio de Souza Andrade in the
Geracol package [8].

7.2 Comunication with PPL

The following sections present the formats of the files used to send infor-
mantion (inserted sentences, probabilities, etc) from PPL to Geracol and to
receive the results from Geracol to PPL. It is important to notice that these
files are internal to the system; as an user you do not need to use them nor
edit them.

Figure 2 presents all components of the system:

Figure 2: Schematical diagram of PPL System

Format Manual: PPL → Geracol

This file is called ppl file.txt.
Comments can appear in any part of the file but they must preceded by

the symbol # at the beginning of the line.
The first line that is not a comment must contain the following constants,

in order of appeareance:

numvar numcla numcnf

- numvar: number of distinct variables in the problem.

- numcla: number of clauses that appear in the following numcla lines,
not including commentaries lines.

- numcnf: number of sentences, in the conjuctive normal form, with
their probabilities interval. The last sentence is the one to be inferred.

The number 0 at the end of a line identifies the end of a clause.
A simple example:

5 variables, 3 clauses e 3 sentences

5 3 3

12

Clauses group

1 3 4 0

-1 3 -5 0

-3 4 2 -1 0

Senteces and probabilities gruops

Probabilities interval for the conjuction

#of first and third clauses

0.1 0.3 1 3 0

Exact probabilitie for the second clause

0.5 0.5 2 0

Sentence to be inferred

0.0 0.0 1 2 0

Format: Geracol → PPL

The file is called saida.txt; itts structure is presented in the following lines
with some explanation.

INICIO
HINI start of processing date and hour.
ARQ name of the file.
RSL S for a consistent problems, N for inconsistents and F for fail.
MIN lower probability value for the inferred sentence.
MAX upper probability value for the inferred sentence.
TMPC approximated total time of processing of the Restricted Master

Problem(RMP).
TMPI approximated total time of processing of Subproblem (SP).
ITEC number of iterations to solve the RMP.
ITEI number of iterations to solve the SP.
ITGC number of iterations of the columm generator method.
ITEX total number of times that SP was solved with the standard pa-

rameters definitions.
HFIM end of processing date and hour.
FIM

A simple example:

INICIO

HINI Sab Aug 11 16:12:12 2007

ARQ ppl file.txt

RSL S

13

MIN 2.000000e-001

MAX 5.000000e-001

TMPC 3.200000e-002

TMPI 1.560000e-001

ITGC 18

ITEX 2

HFIM Fri Feb 23 18:55:12 2007

FIM

8 Acknowledgements

PPL was created at Escola Politecnica da Universidade de São Paulo (http://www.poli.usp.br)
from 2006 to 2007, with substantial support from CNPq (http://www.cnpq.br)
during the first year of development and FAPESP (http://www.fapesp.br)
during the second one.

We hope PPL works well and provides useful assistance and guidance.

Good luck!

André da Costa Teves
Danillo Paulo Couto

References

[1] G. Boole. The Laws of Thought. Dover edition, 1958.

[2] T. Hailperin. Sentential Probability Logic, Lehigh University Press,
Bethlehem, 1996.

[3] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71-87, 1986.

[4] T. Berners-Lee, J. Hendlers, O. Lassila. The Semantic Web, Scientific
American, p. 34-43, 2001.

[5] Stuart J. Russel, P. Norvig. Artificial Intelligence: A Modern Aproach,
p.281-284, 1995

[6] R. E. Neapolitan. Probabilistic Reasoning in Expert Systems. Prentice
Hall, 1990

14

http://www.poli.usp.br
http://www.cnpq.br
http://www.fapesp.br

[7] G. Georgakapoulos, D. Kavvadias, C. Papadimitriou. Probabilistic sat-
isfiability. Journal of Complexity, 4:111, 1988.

[8] P. S. de S. Andrade. Método de Geracão de Colunas aplicado ao prob-
lema de Satisfatibilidade Probabilistica, 2006.

[9] P. Hansen, B. Jaumard. Probabilistic Satisfiability, Technical Report,
1997

15

	Introduction
	A little bit of history …
	Background
	PPL overview

	Downloading PPL
	Pre-requisites
	Installation
	Using PPL
	Starting off
	Sintax
	The function p
	Inserting sentences and probabilities
	Inference

	Examples
	The Consistency Checker
	The algorithm
	Comunication with PPL

	Acknowledgements

