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IMPROVEMENTS TO A QUEUE AND DELAY ESTIMATION ALGORITHM 
UTILIZED IN VIDEO IMAGING VEHICLE DETECTION SYSTEMS 

Marshall T. Cheek, H. Gene Hawkins, Jr. and James A. Bonneson 
 

ABSTRACT 
Video Imaging Vehicle Detection Systems (VIVDS) are steadily becoming the dominant method 
for the detection of vehicles at a signalized traffic approach.  This research investigated the use 
of VIVDS for quantitatively estimating queue length at signalized intersections.  The technique 
proposed in this research uses a series of strategically placed virtual detectors to produce queue 
length measurements.  Queue length measurements are then processed and corrected using 
numerous statistical techniques and ultimately provide accurate estimates of queue length.  The 
results of this research show that a linear regression method using previous queue measurements 
to establish a queue growth rate, plus the application of a Kalman Filter for minimizing error and 
controlling queue growth produced accurate estimates of queue length.  During validation tests, 
the linear regression technique was capable of describing 86 percent of the variance in observed 
baseline queue length data. The researcher would recommend the implementation of the linear 
regression technique with a Kalman Filter, because this method requires little calibration, while 
producing an adaptive queue estimation method that has proven to be accurate.  This system 
provides a cost effective method for producing quantitative estimates of queue length which may 
be used in adaptive or traffic responsive control systems or so that the traffic engineer can more 
easily determine MOEs at a signalized intersection. 

INTRODUCTION 
There is a need for real-time queue and delay estimation of vehicles at signalized intersections, 
as often times, modern traffic signal controllers are able to use real-time queue and delay data to 
optimize signalized intersection performance.  Queue length estimates can provide a valuable 
indication to the traffic engineer as to roadway conditions, and can allow the engineer to assess 
the performance of a roadway.  Historically, inductive loop detectors have been used to collect 
this information.  More recently, VIVDS are steadily becoming the preferred method for 
detecting vehicles at signalized intersections.  VIVDS are progressively replacing inductive loop 
detectors at signalized intersections due to the high cost of maintenance and frequency of repair 
involved with non-VIVDS detection (1).  However, VIVDS have some limitations when used to 
detect traffic (particularly queues) located further from the intersection.  After implementing 
initial versions of the QDA, it was realized that using the furthest active detector from the stop 
line without a correction mechanism, did not produce accurate queue estimates.  Therefore, 
mathematical correction mechanisms are essential for eliminating noise associated with 
measured queue length values collected by VIVDS hardware. In this research, a queue length 
estimation algorithm was developed for VIVDS to produce reasonable estimates of queue length, 
while minimizing noise associated with measured queue length estimates collected by VIVDS 
hardware. 

Problem Statement 
This research focused upon evaluating the potential accuracy that could be realized in a VIVDS 
queue detection and delay estimation algorithm (QDA) during the red phase of a signal cycle.  
The original algorithm was developed as part of National Cooperative Highway Research 
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Program (NCHRP) Project 3-79 (1).  This QDA was based on a weighted average of previous 
and current estimates of queue length in order to produce output queue length estimates.  
However, the original algorithm contained a mathematical bias, leading to estimates output from 
the QDA that were inherently low.  It also required some effort to calibrate.  The researchers 
sought to produce an improved QDA that minimized the bias, required less calibration, and 
produced accurate estimates of queue length.  They achieved this by using a different queue 
estimation technique and applying a Kalman Filter to minimize error and control queue growth.  
The research also uses functions common to most VIVDS hardware, such that the proposed 
mathematical technique can be easily implemented using existing VIVDS functions and 
technology. 

LITERATURE REVIEW 
This section is intended to give an overview of the fundamental concepts and principles involved 
in the determination of a queue estimation model.  The literature review introduces VIVDS 
concepts, applications of VIVDS and the origins and theoretical explanation of the Kalman 
Filter. 

Video Imaging Vehicle Detection Systems 
Early development of VIVDS began in the 1970s in the United States and throughout the world 
(2).  Today, VIVDS are becoming an increasingly popular method for detecting vehicles at 
signalized intersections.  VIVDS are primarily used for presence detection near the stop line of a 
signalized approach.  VIVDS cameras are typically placed on mast arms or on mast arm poles. 
VIVDS technology utilizes a series of virtual video detection zones placed on the roadway 
through the use of specialized hardware typically consisting of cameras and controller cards.  
 The primary benefits of these systems reside in their cost efficiency and adaptability 
compared to alternative detection methods such as inductive loop detectors (3).   

VIVDS Application Research and Development 
VIVDS utilize technology that has existed since the 1950s.   While limited in scope with respect 
to the applicability of these systems, most early VIVDS systems were developed to provide 
presence detection on signalized intersection approaches.  In the 1990s, research was conducted 
that investigated the feasibility of using VIVDS for purposes other than presence detection.  
 Research conducted by Michalopoulos et al. investigated the possibility of using VIVDS for 
more advanced traffic data measurements (2, 4).  This research measured speed, and travel time 
associated with vehicles traveling along a corridor.  The results of this research showed that 
given the advances in VIVDS technology at the time, VIVDS measurements could be relied 
upon to make accurate measurements of speed and travel time.  Results of this study showed that 
advanced VIVDS technology used in the study proved to be 95-97 percent accurate for 
measuring the speed of vehicles through a corridor.  Furthermore, the results of this study 
showed that for simple presence detection, VIVDS performed just as well as loops during 
experimentation.  Research performed by Michalopoulos et al. also mentions the early realization 
and possible development of VIVDS technology for the purposes of producing quantitative 
queue estimates, as well as estimating measures of effectiveness such as delay, number of stops, 
and energy consumption (2).  However, no documents could be found that present results as to 
the findings of this type of research. 
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VIVDS Queue Research and Development 
Most research involving VIVDS and queue length detection, involves the simple process of 
identifying when queues are present on a subject approach (5). These detection systems offer 
only a mechanism by which to qualitatively indicate whether a queue has formed.  Research 
conducted by Rourke and Bell investigated the use of fast Fourier transforms (FFT) in order to 
detect the formation of queues.  This method was able to detect queue presence by defining an 
analysis window, then utilizing the frequency and power of the spectrum associated with images 
produced within this analysis window (5, 6).  Furthermore, methods developed by Hoose utilized 
a full frame approach for queue detection (6).   The full frame method is able to obtain an image 
no matter the position of the object on the screen.  Hence, the full frame is utilized in the 
analysis, as opposed to the previous method that only analyzes objects within a specified analysis 
window.  The full frame method is then able to track the obtained image, in this case a vehicle, 
and is able to track the object through a succession of frames.  Both of these methods have been 
used to establish queue presence detection algorithms. The queue presence information can then 
be passed to a traffic signal controller, and a controller response can be initiated.  Additionally, 
this information can provide a monitoring system for alerting traffic management personnel of 
roadway conditions (5 ,6).   
 Limited research pertaining to the quantitative measurement of queue length using VIVDS 
could be found.  The researcher was able to identify only one application of VIVDS technology 
where researchers claim to have successfully implemented VIVDS to estimate the length of a 
traffic queue.  In 1995, the Institution of Electrical Engineering in Great Britain published a 
paper entitled Real-time Image Processing Approach to Measure Traffic Queue Parameters (7).  
The objectives of this research were intended to quantitatively establish measurements in real-
time pertaining to traffic queue length. 
 The algorithm utilized by the authors of this paper consisted of two components, motion 
detection and vehicle detection.   The motion detection algorithm described in this paper is 
essentially the same process by which standard VIVDS detectors operate.  This process involves 
the comparison of consecutive frames.  While applying noise and background filters, the 
algorithm is capable of distinguishing differences in vehicle location between the successive 
frames.  Thus, if imaging properties associated with vehicles surpasses a specified threshold, a 
detection event is recorded.  The second algorithm, vehicle detection, incorporates edge 
detection.  Edge detection utilizes a technique that analyzes the boundaries of objects that appear 
in each frame of an image.  These areas represent areas of substantial structural properties when 
viewing the full frame image produced by VIVDS.  Edges are also known to be less sensitive to 
variations in ambient lighting.  Thus edge detectors were believed by these researchers to be an 
optimal method for detecting precisely where vehicles are located on a roadway by placing edge 
detectors where vehicle outlines are likely to exist (7). 
 The combination of motion and vehicle detection algorithms ultimately produces the 
estimate of queue length.  The motion detection algorithm is used to distinguish areas of 
relatively little motion, to areas where substantial motion is present.  Then, the vehicle detection 
algorithm serves as a refinement tool, whereby the areas of relatively little motion are analyzed 
by edge detectors to determine if vehicles are present within this region.  If a queue is detected, a 
queue length is reported based on the calibration input by the engineers (7).  Limited 
documentation of the actual experimental procedure could be located, nor could other documents 
that reference this technique.  This method implements advanced imaging hardware that is not 
typical of a standard VIVDS setup.  This distinguishes this research from that proposed in this 
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research, whereby a queue and delay estimation algorithm is to be implemented in a generic way 
so that a variety VIVDS hardware can use the technique. 

Kalman Filters 
In 1960, the creation of a mathematical filtering procedure for the optimization of discrete-data 
linear filtering problems was published by Rudolph Kalman.  The filter was designed to provide 
recursive solutions to multiple-input, multiple-output systems intended to find optimal solutions 
based on noisy outputs (8).  The Kalman Filter minimizes the mean-squared error.  In other 
words, it minimizes the squared difference between an estimator and the value in which the 
estimator is approximating.  The appeal of the Kalman Filter involves this technique’s ability to 
minimize error in real-time associated with a system’s theoretical performance based on 
measured performance of the system collected at regular intervals. Furthermore, drastic 
improvements in computer technology around 1960 aided the widespread acceptance of the 
Kalman Filter for a multitude of applications and made this technique ideally suited for real-time 
estimation procedures (9). 

The Kalman filter is designed to minimize the variance of the estimation error experienced 
during the output of a linear system.  Accordingly, in order for a Kalman Filter to be 
implemented, the process must be described in linear terms (10).  A linear system is simply the 
process that can be described by the following two equations involving the state equation 
(Equation 1), and the observed measurement equation (Equation 2) (9, 11): 
 
 111 −−− ++= kkkk wBuAxx  (Equation 1) 
 kkk vHxz +=  (Equation 2) 
 
where 
 xk= process state vector at time tk, 
 A = matrix relating xk-1 to xk, 
 B = matrix relating optional control input, uk-1, to the state, xk, 
 uk = optional control input, 
 wk = assumed to be a white noise sequence with known covariance, Qk,. 
  zk= vector measurement at time tk, 

 H = matrix giving the ideal noiseless connection between the measurement and the state 
vector at time tk, and 

 vk = measurement error, assumed to be a white noise sequence with known covariance, Rk. 
 
 To start the iterative process, there must a set of initial conditions from which to begin.  The 
terms Qk and Rk, representing process noise covariance and measurement noise covariance 
respectively, are usually measured during offline calibration before the implementation of the 
Kalman Filter. The process and measurement covariance error terms can be determined by 
knowing the error terms wk  and vk  (9). 
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where 
           Qk = Covariance matrix associated with wk, and 
           Rk = Covariance matrix associated with vk. 
 
 While the measurement noise covariance, Rk, is generally easy to determine, the process 
noise covariance term, Qk, can often prove difficult to obtain.  This is due to the fact that it is 
often impossible to directly observe the process we are estimating. Therefore, Qk must often 
times be estimated at the discretion of the researcher. The proper calibration of Qk and Rk can 
lead to superior Kalman Filter performance.  As such, care should be applied in determining 
these values (9). 
 The beginning sequences of the Kalman Filter requires that the process state equation, kx̂  be 
structured based on knowledge of an a priori state estimate, −

kx̂ , where the “hat” denotes an 
estimate, and the super-minus represents the fact that a term is an a priori estimate.  
Additionally, the a priori error covariance associated with the a priori estimate is given by the 
term, −

kP .  These terms are determined by evaluating the following equations (8, 9, 11): 
 
 11ˆˆ −−

− += kkk BuxAx  (Equation 5) 
 k

T
kk QAAPP += −

−
1  (Equation 6) 

 
where 
           −

kx̂  =A priori estimate of the process state vector,     
          −

kP  = A priori error covariance matrix associated with −
kx̂ , and 

          kQ  = Process noise covariance.   
 
 Now that the time update equations have been established in Equations 10 and 11, the 
measurement update equations must be established.  The first step of this process requires the 
calculation of the Kalman gain, Kk, also known as the “Blending Factor” (see Equation 7).  The 
next step is to actually measure the process so that zk can be obtained, and a posteriori state 
estimate can be calculated (see Equation 13).  The final step in the measurement update process 
is to make a posteriori error covariance estimate by evaluating Equation 9 (9, 11). 
 
 ( ) 1−−− += k

T
k

T
kk RHHPHPK  (Equation 7) 

 ( )−− −+= kkkkk xHzKxx ˆˆˆ  (Equation 8) 
 ( ) −−= kkk PHKIP  (Equation 9) 
 
where 
           Kk = Kalman gain, “Blending Factor”,  
           kx̂  = Posteriori of the process state vector, and 
           kP  = Posteriori estimate of the error covariance associate with the process state vector. 
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 Once each phase has been completed (time update and measurement update), the posteriori 
state estimate is recycled to create a new a priori estimate of the process state vector.  A 
graphical illustration of the Kalman Filter process can be seen in Figure 1. 
 

 
Figure 1 - Kalman Filter Illustration (9) 

DATA COLLECTION  
The intersection of George Bush Drive and Wellborn Road in College Station, Texas served as 
the test site for this analysis.  This site offered ample space for setting up video cameras adjacent 
to the roadway and had existing VIVDS hardware in place.  During this study, three types of data 
were recorded.  First video data were recorded from the VIVDS camera.  Second, the phase 
status of traffic signals was recorded using an industrial computer.  Lastly, video data were 
recorded for the purposes of establishing baseline measurements involving queue length and 
vehicle counts on the subject approach.   

VIVDS Data Collection Procedure 
The City of College Station allowed a research team to use the VIVDS video feed from the 
intersection of George Bush Drive and Wellborn Road to record video data (see Figure 2).  
These data would then be reduced and used in the laboratory for the design, calibration and 
validation of the queue estimation technique.  The VIVDS camera was mounted on a 5 ft riser 
arm and is located at an approximate height of 24 ft above the roadway.  Video data were 

Time Update (Predict) 

1. Project the state ahead 

11ˆˆ −−
− += kkk BuxAx  

2. Project the error covariance ahead 

k
T

kk QAAPP += −
−

1  

Measurement Update (Correct) 

1. Compute the Kalman gain 

( ) 1−−− += k
T

k
T

kk RHHPHPK  
2. Update the estimate with measurement, zk 

( )−− −+= kkkkk xHzKxx ˆˆˆ  
3. Update the error covariance 
 ( ) −−= kkk PHKIP  

Initial estimates for 1ˆ −kx  and 1−kP  
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recorded for one approach at this intersection.  Video data from the VIVDS camera was 
transformed from an analog signal output from the VIVDS camera and converted to a digital 
signal where it was then stored to an industrial computer.  Later, this digital video data were 
transferred to DVD, where the data were replayed, extracted and archived for future analysis.   
 

 
Figure 2 - George Bush Drive and Wellborn Road in College Station, Texas 

Phase Status Data 
The phase status of the indication displayed by the traffic signal was recorded from the traffic 
signal controller during the same time period that video data were being recorded from VIVDS 
cameras.  The phase status data was eventually used under laboratory conditions and replayed at 
the same time video data were being played.  Essentially video data from the VIVDS camera and 
phase status data were synchronized on an industrial computer as if recorded events were 
happening in real-time. 

Baseline Data Collection Procedure 
Video cameras placed adjacent to the roadway were able to capture queue formation as far as 
400 ft upstream from the stop line on the subject approach.  Video cameras were placed adjacent 
to the roadway at an approximate distance of 280 ft from the roadway.  Video cameras recorded 
video data concurrently with video footage obtained from the VIVDS camera as well the traffic 
signal phase status data.  This was necessary so that researchers could compare VIVDS queue 
estimates to baseline queue estimates determined by cameras adjacent to the roadway.  For the 
purposes of this study, the length of a traffic queue was defined as the rear of the furthest stopped 
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vehicle behind the stop line, or a vehicle that is slowing that is within 20 ft of the furthest 
stopped vehicle during the red phase of a traffic signal cycle. 
 Once data collection concluded, data from the video cameras were then extracted manually.  
Data pertaining to queue length and vehicle counts were recorded every 10 seconds during video 
playback.  These data then allowed the researcher to obtain baseline queue length data. 

Laboratory Procedure 
Once data were collected using the data collection procedure described, data were analyzed 
under laboratory conditions.  VIVDS camera data were output utilizing the recorded DVD video 
footage of the subject approach and were fed to an Autoscope “Rackvision” VIVDS processing 
unit.  It is believed that this procedure involving the use of recorded DVD video footage offers 
many advantages over conducting these experiments under field conditions.  For instance, using 
recorded footage allows the researcher to notice the affects of small refinements in queue logic, 
detector design, or other experimental modifications.  In total, 24 hours of video data were 
analyzed, four were used for algorithm development and 20 hours were used for algorithm 
validation. 
 The VIVDS processing unit contains an imaging file that was merged with the output 
VIVDS camera footage.  The imaging file containing sensors designed by the researcher, and 
created virtual detection zones on the VIVDS camera footage.  Using these sensors, the queue 
estimation algorithm was able to produce estimates based on specified assumptions, design 
guidelines, and traffic engineering principles specified by the researcher.  
 As can be seen in Figure 3, video imaging data and phase status data are merged when the 
algorithm estimates queue length in 10 second intervals.  The phase status data alerts the queue 
estimation algorithm as to the current phase status, and allows it to initiate or terminate 
subroutines and algorithms for the estimation of MOEs during a particular phase during a cycle.  
 A typical VIVDS sensor layout for queue detection in the right-hand lane can be seen in 
Figure 4.  Each horizontal bar in Figure 4 represents a detector placed at a pre-determined 
distance from the stop line.  This setup consists of eight distinct detection zones associated with 
distances such that queue lengths of 50, 100, 150, 200, 250, 300, 350 and 400 ft from the stop 
line can be reported (1) 
 Notice in Figure 4 that the two nearest detectors to the stop line (those that report 50 and 100 
ft) incorporate two detectors placed in close proximity to one another.  The reasoning behind this 
detector design is that it is believed that this design adds increased reliability due to detector 
redundancy.  A Boolean logic function “OR” joins the two detectors and if either is switched 
“on,” the associated queue length is reported. 
 When vehicles begin to accumulate at a signalized intersection, the algorithm is allowed to 
report queue length once a detector has been switched “on” for a certain period of time.  Hence, 
detectors function on a delay and vehicles must be present on a detector for a specified duration 
of time in order to place a call.  Once a detection zone reports that the queue length has reached a 
certain distance from the stop line, these data are sent to a laboratory computer, and its value is 
analyzed by the algorithm. 
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Figure 3 - Hardware Setup for QDA Experimentation (1) 
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Figure 4 - Typical VIVDS Setup for Queue Detection (1) 

DATA ANALYSIS 
The research analysis used four different types of data:   
 

• Baseline data, 
• VIVDS measurement data, 
• Estimates from measurement data, and 
• Kalman Filter adjusted estimates. 
 

Baseline data (or ground-truth data) were obtained from video cameras placed adjacent to the 
roadway.  These data represent true queue length during any one time interval.  The next 
component is VIVDS measurement data.  These data are obtained directly from VIVDS system 
detectors placed at 50 ft intervals from the stop-line.  The third component involves estimates 
developed from measurement data.  Estimates are calculated from various modeling techniques 
using queue growth trends associated with previous measurements that are aimed at obtaining 
results that are reasonably close to baseline queue lengths.  The last component involves the 
utilization of the Kalman Filter to adjust estimates and minimize error associated with estimated 
queue lengths. 
 During algorithm development, a number of techniques were evaluated for their potential for 
adequately estimating queue length using queue measurements from previous intervals.  A 
technique was developed whereby the slope of the two previous intervals was used to predict the 
queue length in the current interval (incremental slop technique).  Furthermore, a technique was 
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developed that used the measured queue length in the initial interval of the red phase and the 
previous queue measurement to estimate queue length in the current interval (moving slope 
technique).  Both of these techniques however, were found to cause more than desired 
fluctuations in queue length estimation.  The use of a technique that performed a linear 
regression analysis during every time interval was found to outperform all techniques analyzed.  
A description of the linear regression technique is given in the following subsection.  The linear 
regression technique was found to be able to better describe baseline queue data, and was able to 
describe approximately 83 percent of baseline queue measurement.  This is opposed to 73 
percent and 80 percent produced by the incremental slope and moving slope techniques, 
respectively. 

Linear Regression Technique 
A technique for modeling linear, deterministic queuing was achieved by performing a linear 
regression analysis using previous queue measurements.  This method essentially took measured 
queue lengths recorded from previous intervals, and used these measurements to establish the 
rate of growth of the traffic queue.  Queue lengths were recorded every 10 seconds.  If during the 
red phase, 60 seconds had elapsed since the beginning of the red phase, this would mean that 
approximately six polling intervals were recorded by the QDA.  The QDA would then take these 
six stored measurements and perform a linear regression analysis and would create a “best-fit” 
trendline corresponding to these points.  The slope of this trendline would then serve as the 
growth rate to be implemented in the Kalman Filter.  The growth rate is recomputed every 
interval, hence, another linear regression would be carried out at 70 seconds, using 7 
measurements of queue length.  Figure 5 illustrates the linear regression method. 
 The construction of the linear regression equation is important for the understanding of the 
trends associated with queue data.  However, it is the slope of the trendline that is of particular 
interest.  The slope provides a rate of growth that can be incorporated in the Kalman Filter to 
project the growth of estimates computed in the iterative calculations. 
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Figure 5 - Linear Regression Technique 

The Kalman Filter Applied to Queue Estimates 
A linear queuing model is used as the primary model for describing queue growth using VIVDS.  
This simplistic model results in the use of a single linear equation for describing growth of a 
traffic queue.  As such, the Kalman Filter described in the Literature Review of this paper 
reduces from a system of linear equations, best solved through linear algebra processes, to a 
system described by scalar equations (i.e., a system incorporating 1×1 matrices). 
 The scalar Kalman Filter begins by obtaining values of Qk and Rk, which represent the 
covariance of the estimation error and measurement error respectively.  These values are 
obtained by taking offline measurements and estimates and comparing these values to baseline 
queue measurements.  The measurement and estimation error that are produced are then 
statistically analyzed, and the standard deviation of each error term obtained.  The error 
covariance with respect to the measurement error and estimation error are determined as follows 
(9): 
 
 =kQ ( ErrorEstimationσ )2     (Equation 10) 

=kR ( ErrortMeasuremenσ )2    (Equation 11) 
 
where 

ErrorEstimationσ  = Standard deviation of the estimation error, ft, and 

ErrortMeasuremenσ  = Standard deviation of the measurement error, ft. 
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 The measurement error is obtained through offline measurements.  Offline standard 
deviation calculations were made using measurement error readings for an approximate 15 
minute period.  Equation 12 illustrates how the error of measurements was calculated compared 
to baseline values and Equation 13 demonstrates how the standard deviation of the error terms 
was determined. 
 

'kkk qqe −=  (Equation 12) 

 
N

ee
N

k
k

ErrortMeasuremen

∑
=

−
= 1

2)(
σ  (Equation 13) 

 
where 
     ke  = Measurement error at time “k”, ft, 
      qk = Baseline queue length at time “k”, ft, 
     qk’ = Measured queue length at time “ k”, ft, 
       e  = Average measurement error, ft, and 
       N = Number of observations.  
 
 During offline measurements, the standard deviation of the measurement error was 
determined to be 45.67 feet.  This value was inserted into Equation 10, and used in the iterative 
processes involved in the Kalman Filter.   
 There are many methods for obtaining the estimation or process error covariance, denoted 
“Qk”.  Of these techniques, there exists an approximation method proposed by Welch and 
Bishop. According to Welch and Bishop, acceptable results can be obtained if one “injects” 
enough uncertainty into the process via the selection of “Qk” (11).  Essentially, Welch and 
Bishop are making assumptions based on previous knowledge of a process. 
 The estimation error term was assumed to be 50 ft for the initial interval.  As Welch and 
Bishop state in their description of the Kalman Filter, it is often common to begin the calibration 
of the error term Qk by assuming a reasonable value for this input (11).  The 50 ft value is an 
assumed value and is believed to be reasonable as it reflects the distance between detectors and 
closely resembles the quantities obtained for the standard deviation of the measurement error.  
This assumption for obtaining the estimation error, is common, and is supported by Welch and 
Bishop (11).  It is important to note that the assumption of 50 ft estimation error is only true for 
the initial iteration of offline runs of the Kalman Filter.  Once the 15 minute offline runs were 
complete, the Kalman Filter has modified the estimation error.  The 50 ft assumption merely 
provides a place to begin the iterative process. 
 The assumed value of 50 ft for estimation error was utilized in offline testing for the 
approximate 15 minute duration.  The resulting estimates produced during the offline procedure 
were then compared to baseline queue values corresponding to the same time period of offline 
analysis.  The estimation error was calculated using Equation 14, and the corresponding standard 
deviation of the error was calculated as shown in Equation 15.  The standard deviation of the 
estimation error in Equation 15 was used in Equation 10 to ultimately produce the estimation 
error (Qk).   
 
 kkk qqe ˆ−=  (Equation 14) 
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where 
      ke  = Estimation error at time “k”, ft, 
      qk = Baseline queue length at time “k”, ft, 
     kq̂  = Estimated queue length at time “k”, ft, 
       e  = Average estimation  error, ft, and 
       N = Number of observations.  
 
 When the standard deviation of the estimation error was calculated, it was found to be 51.01.  
This results after an initial assumption of 50 feet for the standard deviation of the estimation 
error.  The calculated value was obtained by using a combination of the linear regression growth 
technique as well as a Kalman Filter.  The following sections will describe how to combine these 
two mathematical techniques to produce queue estimates.   
 Once these values are determined, attention must be turned to the term Hk.  The matrix Hk 
was described in the Literature Review as the connection between the measurement and state 
vector at a specific time, tk.  For the estimation of queue lengths, the measurement of queue 
length has a direct relationship to that which is output from the current state equation.  
Accordingly, this direct one-to-one ratio results in the following reduction associated with 
Equation 2 describing the observed measurement (see Equations 16 and 17 for reduction). 
 
 1=kH  (Equation 16) 
 ( ) kkk vxz +×= 1  (Equation 17) 
 
 In Figure 1, the Kalman Filter begins with the a priori estimate and the error term.  The 
terms 1ˆ −kx  and 1−kP  are both initially zero (see Equations 18 and 19). This simplifies the initial 
stages of the Kalman Filter process and results in the prediction portion of the filter to yield a 
perfect estimate, that is, the a priori estimate is assumed perfect, with no error associated with 
the measurement.  This seems logical, as during the beginning seconds of the red interval, it is 
common for no vehicles to be queued.  While this assumption is highly dependant upon the 
definition of a queued vehicle, the researcher believes that for the purposes of establishing a 
reference point, the time at the beginning of the red phase where no vehicles are queued serves as 
a perfect estimate of queue length.   
 
 0ˆ0 =x  (Equation 18)  
 00 =P  (Equation 19) 
 
 Now that all of the parameters have been obtained, the recursive loop utilized by the Kalman 
Filter can begin.  Initially, the Kalman Filter begins by inserting the values 0x̂  and 0P . This 
allows for the evaluation of Equations 20 and 21.  Recall that in the previous subsections that the 
slope of the linear regression model was discussed.  This value is now used.  The slope is 
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inserted for the variable uk-1, or for the first iteration this value is u0.  The 1×1 matrix, B, is the 
time step, or in this case 10 seconds.  The quantity Buk-1 is an optional term provided in the 
Kalman Filter.  It is an optional control input intended to provide for the adaptation of an 
estimate from one time step to the next.  In this equation there will always be a direct 
relationship between the Kalman Filter estimate of queue length, and the time update (predicted 
estimate).  Therefore, the A term will be one. 
 
 001ˆ BuAxx +=−  (Equation 20) 
 
 During time interval t1, both the estimate from the previous time step, x0, and the slope, u0, 
are zero (assumed queue length is zero).  This initial estimate of queue length, x0, is assumed to 
be perfect.  The term, P0, the a priori error covariance, from the previous interval, is also zero.  
Thus, the error term, P1, is then equal to the error covariance, Q, associated with the estimate 
error (Equation 21). 
 
 QQPP =+=−

01  (Equation 21) 
 
 During this time step and subsequent time steps, the equation for determining the Kalman 
gain in the corrector portion of the Kalman Filter significantly reduces due to the fact that the 
matrix Hk is equal to unity.  
 
 ( ) 1

111
−−− += RHHPHPK TT  (Equation 22) 

 1
111 )( −−− +=⇒ RPPK  (Equation 23) 

 
 Similarly, the updated estimated output from the filter, kx̂  also reduces.  In this research the 
variable z is representative of the measured queue length for the current time step. The equation 
for determining the Kalman Estimate of queue length reduces similar to that of the Kalman gain, 
as the H term is equal to one, and can be ignored. 
 
 ( )−− −+= 11111 ˆˆˆ xHzKxx  (Equation 24) 
 ( )−− −+=⇒ 11111 ˆˆˆ xzKxx  (Equation 25) 
 
 The last step of this initial iteration of the Kalman Filter concludes with the calculation of a 
new error covariance term, P1.  Notice that the “I” term reduces to a 1×1 identity matrix. This 
makes this scalar value equal to one. 
 
 ( ) −−= 111 PHKIP  (Equation 26) 
 ( ) −−=⇒ 111 PKIP  (Equation 27) 
 
 This ends the initial iteration of the Kalman Filter.  Calculations can now begin for the 
second iteration, for time t2.  Once the initial iterations are complete, the recursive nature of the 
Kalman Filter becomes apparent.  Those estimates from the previous time step, t1 are used in the 
new prediction portion of the Kalman Filter in the current time-step, t2 (see Equations 28 and 29).  
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Hence, a new estimate of queue length, given by −
2x̂ , is produced based on the Kalman Filter 

output queue length from the previous time-step. 
 
 112 ˆˆ BuxAx +=−  (Equation 28) 
 QPP +=−

12  (Equation 29) 
 
 Note that during this iteration, the estimate is not perfect, queue length and the 
corresponding error will not be zero during this or subsequent time-steps. 

RESULTS 
The validation procedure was carried out using data from George Bush Drive and Wellborn 
Road.  During this procedure, 20 hours of video data were analyzed, consisting of nearly 5500 
measurement points. 
 Results indicate that the average error associated with each 10 second interval is 6.52 feet. 
The magnitude of the error, whether high or low, was shown to be 21.86 feet or approximately 
one car length.  Furthermore, each 10 second interval was compared to baseline data for a 
corresponding interval.  The results of this analysis is shown by the predicted vs. actual queue 
plot in Figure 6.  The results show a coefficient of determination value (R2) of 0.8574. 
 

y = 0.925x + 13.054
R2 = 0.8574
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Figure 6 - Predicted vs. Actual Queue Plot for the Linear Regression Technique 

(Validation) 
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Discussion of Results 
A noticeable trend was observed when comparing the predicted vs. actual queue plot in Figure 6.  
A coefficient of determination value of 0.8574 indicates that approximately 86 percent of queue 
length data can be explained by the queue algorithm.  It was the researcher’s goal to create a 
queue estimation technique using VIVDS hardware and an algorithm that best describes the 
actual queue length at an approach, while capable of describing variances in actual queue length 
data.  A method capable of describing 86 percent of the variance of a data set provides strong 
support for the implementation of this method for VIVDS queue estimation.  Therefore, the 
researcher believes this technique using a Kalman Filter is a viable method for estimating the 
length of a queue formed at a signalized approach. 
 The linear regression method use to make queue estimates and queue growth rates is 
simplistic with respect to its mathematical procedure, and it can be argued that a more 
sophisticated model may provide a more accurate model for describing vehicle queuing.  This 
analysis had to assume linear queue growth (due to the Kalman Filter), thus, selecting a model 
for queue growth was limited.  A more complex queue estimation technique should incorporate 
more detectors with smaller graduations between detection zones.  This should allow for the 
utilization of a more complex queue growth model, as smaller detector spacing will not cause as 
much initial error as detectors spaced at 50 ft introduces to the queue growth models.  A 
simplistic hardware setup requires a simplistic modeling approach supported by correction 
procedures that ensure that the model is under control.  The queue estimation technique 
described in this research, using a linear regression model and a Kalman Filter accomplishes the 
stated objective, and minimizes noise with respect to queue estimation.  The queue estimation 
algorithm is shown to minimize error to a surprising degree given that only eight detectors over a 
400 foot analysis area were used.   

CONCLUSION 
This research investigated a queue estimation algorithm using standard VIVDS hardware.  This 
technique used measurements of queue length obtained from VIVDS detectors placed 
strategically along a signalized approach.  Measurement queue length data was combined with 
queue length estimates using a Kalman Filter, which attempted to minimize error with respect to 
queue length estimates produced by the algorithm. 
 It was found that the magnitude of error produced by this technique for any 10 second 
interval is approximately 22 feet.  Predicted vs. actual queue plots reveal that the algorithm is 
capable of explaining 86 percent of actual queue length data. The queue estimation algorithm 
described in this research and the use of a Kalman Filter requires relatively little calibration to 
implement.  This technique is adaptive in the sense that it seems to automatically correct itself 
using the Kalman Filter and does not allow estimates to get out of control.   
 Applications of this research include the potential for real-time traffic signal control.  The 
use of quantitative estimates of queue length provides an important MOE for making decisions 
with respect to traffic control.  The use of quantitative queue estimates can be used for adaptive 
traffic signal control or a traffic responsive (TRSP) control system.  The application of this 
research is simplistic in the sense that all VIVDS features used to interact with the queue 
estimation algorithms are common features to most VIVDS systems.  The implementation of 
such a system would provide a flexible means of estimating queue length with little calibration, 
and upfront cost to install.    
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